存在性问题与恒成立问题
函数的恒成立、存在性问题的方法总结大全(干货)

关于函数的恒成立、存在性(能成立)问题关于二次函数的恒成立、存在性(能成立)问题是常考考点,其基本原理如下:(1)已知二次函数2()(0)f x ax bx c a =++≠,则:0()00a f x >⎧>⇔⎨∆<⎩恒成立;0()00a f x <⎧<⇔⎨∆<⎩恒成立. (2)若表述为:“已知函数2()(0)f x ax bx c a =++≠”,并未限制为二次函数,则应有:00()000a a b f x c >==⎧⎧>⇔⎨⎨∆<>⎩⎩恒成立或;00()000a a b f x c <==⎧⎧<⇔⎨⎨∆<<⎩⎩恒成立或.注:在考试中容易犯错,要特别注意!!!恒成立问题与存在性(能成立)问题,在解决此类问题时,可转化为其等价形式予以解答,将此类问题的可能出现的17种情形归纳总结大全如下,并通过常考例题进行讲解:已知定义在[,]a b 上的函数()f x ,()g x .(1)[,]x a b ∀∈,都有()f x k >(k 是常数)成立等价于min [()]f x k >([,]x a b ∈). (2)[,]x a b ∀∈,都有()f x k <(k 是常数)成立等价于max [()]f x k <([,]x a b ∈). (3)[,]x a b ∀∈,都有()()f x g x >成立等价于min [()()]0f x g x ->([,]x a b ∈). (4)[,]x a b ∃∈,都有()()f x g x >成立等价于max [()()]0f x g x ->([,]x a b ∈). (5)1[,]x a b ∀∈,2[,]x a b ∀∈都有12()()f x g x >成立等价于min max [()][()]f x g x >. (6)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x >成立等价于min min [()][()]f x g x >. (7)1[,]x a b ∃∈,2[,]x a b ∀∈使得12()()f x g x >成立等价于max max [()][()]f x g x >. (8)1[,]x a b ∃∈,2[,]x a b ∃∈使得12()()f x g x >成立等价于max min [()][()]f x g x >.(9)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于min minmax max [()][()][()][()]g x f x g x f x ≤⎧⎨≥⎩.(10)1[,]x a b ∃∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于()f x 的值域与()g x 的值域交集不为∅.(11)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x k +≥(k 是常数)成立等价于min max [()][()]f x g x k +≥.(12)1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x g x k -≤(k 是常数)成立等价于max min [()][()]g x f x k-≤且.max min [()][()]f x g x k -≤. 特别地,1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x f x k -≤(k 是常数)成立等价于max min ()()f x f x k -≤.(13)1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x g x k -≥(k 是常数)成立等价于min max [()][()]g x f x k-≥或.min max [()][()]f x g x k -≥. 特别地,1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x f x k -≥(k 是常数)成立等价于min max ()()f x f x k -≥.(14)1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x g x k -≤(k 是常数)成立等价于min max [()][()]g x f x k-≤且.min max [()][()]f x g x k -≤. 特别地,1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x f x k -≤(k 是常数)成立等价于min max ()()f x f x k -≤.(15)1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x g x k -≥(k 是常数)成立等价于max min [()][()]g x f x k-≥或.max min [()][()]f x g x k -≥. 特别地,1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x f x k -≥(k 是常数)成立等价于max min ()()f x f x k -≥.(16)1[,]x a b ∀∈,2[,]x a b ∃∈使得12|()()|f x g x k -≤(k 是常数)成立等价于min min [()][()]g x f x k-≤且.max max [()][()]f x g x k -≤. (17)1[,]x a b ∀∈,2[,]x a b ∃∈使得12|()()|f x g x k -≥(k 是常数)成立等价于max max [()][()]g x f x k-≥或.min min [()][()]f x g x k -≥. 【评注】(9)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于min minmax max[()][()][()][()]g x f x g x f x ≤⎧⎨≥⎩.()y g x =所在区域能包含()y f x =所在区域时,满足条件.∀⊆∃.题目中有时会这样表述:对任意的1[,]x a b ∈,都有2[,]x a b ∈,使得12()()f x g x =成立,(9)的表达的意思完全相同.所以大家要深入理解定理中的“任意的”、“都有”的内涵:即当1[,]x a b ∈时,()f x 的值域不过是()g x 的子集.【例1】(1)(2010•山东•理14)若对任意0x >,231xa x x ++恒成立,则a 的取值范围是 . (2)现已知函数2()41f x x x =-+,且设12314n x x x x <<<⋯<,若有12231|()()||()()||()()|n n f x f x f x f x f x f x M --+-+⋯+-,则M 的最小值为( )A .3B .4C .5D .6(3)已知21()lg(31)()()2x f x x x g x m =++=-,,若对任意1[03]x ∈,,存在2[12]x ∈,,使12()()f x g x >,则实数m 的取值范围是 .(4)已知函数()f x x =,2()252()g x x mx m m R =-+-∈,对于任意的1[2,2]x ∈-,总存在2x R ∈,使得12()()f x g x =成立,则实数m 的取值范围是( ) A .1[,1]9B .(,1]-∞C .(,1][4,)-∞+∞D .(,1][3,)-∞+∞(5)已知函数2()1f x x x =-+,[1,2]x ∈,函数()1g x ax =-,[1,1]x ∈-,对于任意1[1,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( ) A .(,4]-∞- B .[4,)+∞C .(,4][4,)-∞-+∞D .(,4)(4,)-∞-+∞(6)(2008•天津•文10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为( ) A .{|12}a a <B .{|2}a aC .{|23}a aD .{2,3}(7)(2008•天津•理15)设1a >,若仅有一个常数c 使得对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log a a x y c +=,这时a 的取值的集合为 .)0x >,12x∴(当且仅当112353=+15,故答案为:1[,)5+∞.2()x x =-的图象是开口向上,过的抛物线,由图象可知,函数在上单调递减,在上单调递增,12314n x x x x <<<⋯<,(1)2f ∴=-,(2)f =-对应的函数值(2()41f x x x =-+图象上的点的纵坐标)之差的绝对值,结合231)||()()||()()|n n f x f x f x f x -+-+⋯+-表示函数max M ,||(1)(2)f f -5M ,故上单调递增,)法一:()2(2f x x ==-+2,2]时,x 2()3f x ,(f x ∴12)(22)2x x +=--<+,令f 单调递增,当(1,2]x ∈-,也是最大值;又(2)f 22[52m m --∈--,对于任意的的值域的子集,22m ,1m 或4m ,故选:)因为2()f x x x =-0时,()g x 在[1-[1,1]B a a =---,由题意可得,1113-,解得4a ;0时,()g x 在[1-的值域为[1,1]a a ---, 1113-,解得4a -,4][4,)+∞.故选:C .)3xy =,得,在[,2a a 上单调递减,所以2a ,即2a 故选:B .)log log a x c +,log a xy c ∴=,cxy a ∴=c a1122a a -⇒223a c log c +⎧⎨⎩的取值的集合为{2}.故答案为:【评注】深入理解(6)题题干中的“任意的”、“都有”的内涵:即当[,2]x a a ∈时,()f x 的值域M 不过是2[,]a a 的子集.值得关注的是:“[,2]x a a ∈”是指每一个这样的x ,2[,]y a a ∈是指存在这样的y ,理解到由函数的定义域导出值域M 是2[,]a a 的子集,由此才有:222[,][,]2a a a a ⊆.(6)与(7)唯一的差别就是:(7)中要求时唯一的,如何转化“唯一”这个条件是本题的关键,与函数的单调性联系起来来进行解答,需要有较强的转化问题的能力. 【例2】已知函数2()[2sin()sin ]cos ,3f x x x x x x R π=++∈.(1)求函数()f x 的最小正周期; (2)若存在05[0,]12x π∈,使不等式0()f x m <成立,求m 的取值范围. ))x .存在【例3】已知实数0a >,且满足以下条件:①x R ∃∈,|sin |x a >有解;②3[,]44x ππ∀∈,2sin sin 10x a x +-; 求实数a 的取值范围.【解析】实数10得:1sin sin a x-2[,1]2t ∈时,2()2f t f =1sin sin ax -22a ;综上,a 的取值范围是2{1}a a <.【例4】(1)已知函数2()2f x k x k =+,[0,1]x ∈,函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.对任意1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x <成立.求k 的取值范围.(min min ()()g x f x <)(2)已知函数2()2f x k x k =+,[0,1]x ∈.函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.对任意1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x =成立,求k 的取值范围.(()f x 的值域是()g x 的值域的子集即可.) (3)已知函数2()2f x k x k =+,[0,1]x ∈.函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.存在1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x =成立,求k 的取值范围.(()g x 的值域与()f x 的值域的交集非空.)5k ,解得5k ,则求5k .,当[0,1]x ∈时,函数单调递增,2[,2k k k +2)[5,2210]k k ∈++,[0,1],存在210]k +,即225222k k k k k ⎧⎨++⎩,解得5k ,则求5k . 时,函数单调递增,2,2]k k +,1)k x +++10]+,由对存,存在2x 1()f x =成2][5,2k +,即252k k +且22210k k k +,解得4114k-或1414k --.【例5】已知(2)23x f x x =-+. (1)求()f x 的解析式;(2)函数2(2)5()1x a x ag x x +-+-=-,若对任意1[24]x ∈,,总存在2[24]x ∈,,使12()()g x f x =成立,求a 取值范围.,即2()(log )2log f t t =-)(log 2log x x =-+【例6】(1)已知函数1()f x e =-,3(4)g x x x =-+-,若有()()f a g b =,则b 的取值范围为( )A .]2222[+-,B .)2222(+-,C .]31[,D .)31(,(2)已知函数()1x f x e =-,2()44g x x x =-+-.若有()()f a g b =,则b 的取值范围为( ) A.[2-+ B.(2-+ C .[1,3]D .(1,3))()f x e =【例7】(1)(2014•江苏•10)已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+都有()0f x <,则实数m 的取值范围为 .(2)已知函数2()(f x x bx c b =++、)c R ∈且当1x时,()0f x ,当13x 时,()0f x 恒成立. (ⅰ)求b ,c 之间的关系式;(ⅱ)当3c 时,是否存在实数m 使得2()()g x f x m x =-在区间(0,)+∞上是单调函数?若存在,求出m 的取值范围;若不存在,请说明理由.(3)(2017•天津•理8)已知函数23,1()2,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩,设a R ∈,若关于x 的不等式()||2x f x a +在R 上恒成立,则a 的取值范围是( ) A .47[,2]16-B .4739[,]1616-C .[-D .39[]16- (4)已知定义域为R 的函数()f x 满足22(())()f f x x x f x x x -+=-+. (①)若(2)3f =,求(1)f ;又若(0)f a =,求()f a ;(①)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式.【解析】(1)二次函数2()1f x x mx =+-的图象开口向上,对于任意[,1]x m m ∈+,都有()0f x <成立,∴(1)0与(1)0f 同时成立,则必有m ,使满足题设的(g 22()()g x f x b m x c =+-+开口向上,且在0b .20b m ∴.3c ,1)4b ∴=-.这与上式矛盾,从而能满足题设的实数【评注】本题主要考查一元二次函数的图象与性质.一元二次函数的对称性、最值、单调性是每年高考必考内容,要引起重视.)法一:当1x 时,关于x 的不等式)||2x x a +在R 2332x a x x +-+,2133322x a x x +--+,由132y x =+-的对称轴为14处取得最大值-3的对称轴为334x =处取得最小值47391616a① 时,关于x 的不等式)||2x x a +在R 上恒成立,即为22)2x a x x++, 22)2x a x +,由3232()22322x x x x =-+-=-(当且仅当21)3x =>取得最大值212222x x x =(当且仅当21)x =>取得最小值2.则32a ①由①①可得,47216a . ()x 的图象和折线||2xa =+,1x 时,y =11145x解得4716a =-;1x >时,y 解得2a =.由图象平移可得,47216a .故选:法三:根据题意,作出的大致图象,如图所示.【例8】(2012•陕西•理21第2问•文21第3问)设函数2()f x x bx c =++,若对任意1x ,2[1,1]x ∈-,有12|()()|4f x f x -,求b 的取值范围.|4, 4M ,即min 4M . 2b <-时,min )|(1)f =-102b -<时,即2b 时,24M 恒成立,所以2b ;012b- 时,即20b 时,21)4M 恒成立,所以20b ;综上可得,22b -,即b 的取值范围是。
恒成立存在性问题

1 含参数恒成立存在性问题1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、存在性(有解)问题的转化:()a f x >有解⇒()min a f x >;()a f x ≤有解()max a f x ⇒≤3.设函数()x f 、()x g ,任意[]b a x ,1∈,任意[]d c x ,2∈,使得()()12f x g x ≥,则()()min max f x g x ≥4.设函数()x f 、()x g ,任意[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5.设函数()x f 、()x g ,存在[]b a x ,1∈,任意[]d c x ,2∈,使得()()12f x g x ≥,则()()max max f x g x ≥6.设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ (在各条件下()()12f x g x ≤也可推出相应的关系,自己总结)7.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()12=f x g x ,则()f x 在[]b a x ,1∈上的值域M 是()x g 在[]d c x ,2∈上的值域N 的子集,即:M ⊆N 。
8.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;例1、任意()1,2x ∈,不等式240x mx ++<恒成立,求m 的取值范围。
恒成立与存在性问题课件

数列极限问题例题
要点一
总结词
数列极限问题例题是恒成立与存在性问题中另一类常见的 题目,主要考察学生对数列极限的定义和求解能力。
要点二
详细描述
数列极限问题例题通常包括给定数列的通项公式,求数列 的极限值,或者在一定条件下判断数列的收敛性等问题。 在解题时,学生需要熟练掌握极限的定义和求解方法,以 及数列的通项公式和收敛性的判断等知识。
总结词
对于连续函数,极值点通常在导数为零 的点处取得。
VS
详细描述
对于一元函数,我们可以通过求解导数为 零的点来找到极值点。而对于多元函数, 我们需要求解偏导数为零的点,这些点通 常被称为驻点。
数列中项问题
总结词
详细描述
总结词
详细描述
数列中项问题是探求数列中 某一项的值小于或大于该项 前面的所有项和该项后面的 所有项。
02
反证法
反证法是一种间接证明存在性命题的方法。它通过假设命题不成立,然
后推出矛盾,从而证明命题的正确性。
03
排除法
排除法是一种通过排除不可能的情况来证明存在性命题的方法。它通过
列出所有不可能的情况,然后证明其中至少有一种情况是成立的,从而
证明命题的正确性。
03
恒成立问题的应用
函数最值问题
总结词
函数最值问题是恒成立问题的一个重要应用,通过求解函数的最值,可以解决许 多实际生活中的问题。
详细描述
函数最值问题主要研究一个或多个自变量取值时,函数所取得的最大或最小值。 在解决函数最值问题时,通常需要考虑函数的单调性、极值、导数等性质,以及 可能涉及的几何意义等。
数列极限问题
总结词
数列极限问题是数学中的一个经典问题,主要研究当数列的 项数趋于无穷时,数列的项的值是如何变化的。
恒成立与存在性问题

函数中的 恒成立和存在性 问题
单击此处添加文本具体内容,简明扼要地 阐述你的观点
(1)恒成立问题 1. ∀x∈D,均有 f(x)>A 恒成立,则 f(x)min>A; 2. ∀x∈D,均有 f(x)﹤A 恒成立,则 f(x)max<A. 3. ∀x∈D,均有 f(x) >g(x)恒成立,则 F(x)= f(x)- g(x) >0
x1, x2 D, 使得f (x1) g(x2 ) 两值域有交集 对x1, x2 , 有f (x1) g(x2 ) f (x)值域 g(x)值域
x1, 对x2 , 都有f (x1) g (x2 ) f (x)值域 g(x)值域
两x个1, x变2 量D,都有f (x1) g(x2 ) f (x)min g(x)max
(2)存在性问题
1. ∃x0∈D,使得 f(x0)>A 成立,则 f(x) max >A; 2. ∃x0∈D,使得 f(x0)﹤A 成立,则 f(x) min <A
3. ∃x0∈D,使得 f(x0) >g(x0)成立,设 F(x)= f(x)- g(x)
∴ F(x) max >0
4. ∃x0∈D,使得 f(x0) <g(x0)成立,设 F(x)= f(x)- g(x)
练习 使得f (x1) g(x2 ),求a的取值范围。
PART 1
若本题(2)条件改为:对任意x1 (0,),使得任意的x2 [0,1] 都有f (x1) g(x2 )求a的取值范围
x1, x2 D, 使得f (x1) g(x2 ) 两值域有交集 对x1, x2 , 有f (x1) g(x2 ) f (x)值域 g(x)值域
使得f (x1) gx2 ,求a的范围。
专题4 双变量存在恒成立与存在性问题-(人教A版2019选择性必修第二、三册) (教师版)

双变量存在---恒成立问题恒成立问题、存在性问题归根到底是最值问题.1 恒成立问题(1)∀x∈D,f(x)≥0恒成立⟺在D上的f(x)min≥0;(2)∀x∈D,f(x)≤0恒成立⟺在D上的f(x)max≤0;2 存在性问题(1)∃x∈D,f(x)≥0恒成立⟺在D上的f(x)max≥0;(2)∃x∈D,f(x)≤0恒成立⟺在D上的f(x)min≤0;3双变量存在—恒成立问题(1)∀x1∈D,∀x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)min≥g(x)max;(2)∀x1∈D,∃x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)min≥g(x)min;(3)∃x1∈D,∀x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)max≥g(x)max;(4)∃x1∈D,∃x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)max≥g(x)min;4 常见处理方法方法1 直接构造函数法:求f(x)≥g(x)恒成立⇔ℎ(x)=f(x)−g(x)≥0恒成立.恒成立.方法2 分离参数法:求f(x)≥a∙g(x)(其中g(x)>0)恒成立⇔a≤f(x)g(x)方法3 变更主元:题型特征(已知谁的范围把谁作为主元);方法4 数形结合法:求f(x)−g(x)≥0恒成立⇔证明y=f(x)在y=g(x)的上方;方法5 同构法:对不等式进行变形,使得不等式左右两边式子的结构一致,再通过构造的函数单调性进行求解;方法6 放缩法:利用常见的不等式或切线放缩或三角函数有界性等手段对所求不等式逐步放缩达到证明所求不等式恒成立的目的;学习各种方法时,要注意理解它们各自之间的优劣性,有了比较才能快速判断某种题境中采取哪种方法较简洁,建议学习时一题多解,多发散思考.【典题1】已知两个函数f(x)=8x2+16x−k,g(x)=2x3+5x2+4x,其中k为实数.(1)对任意x∈[−3,3],都有f(x)≤g(x)成立,求k的取值范围;(2)存在x∈[−3,3],使f(x)≤g(x)成立,求k的取值范围;(3)对任意x1,x2∈[−3,3],都有f(x1)≤g(x2),求k的取值范围.【解析】(1)设ℎ(x)=g(x)−f(x)=2x3−3x2−12x+k问题转化为x∈[−3,3]时,ℎ(x)≥0恒成立,故ℎ(x)min≥0;易得ℎ(x)min≥−45+k,由k−45≥0⇒k≥45.(2)据题意:存在x∈[−3,3],使f(x)≤g(x)成立⇔ℎ(x)=g(x)−f(x)≥0在x∈[−3,3]有解,易得ℎ(x)max=k+7,于是k≥−7.(3) 问题转化为f(x)max≤g(x)min ,x∈[−3,3],易得g(x)min=g(−3)=−21,f(x)max=f(3)=120−k,则120−k≤−21⇒k≥141.【点拨】①第一问是恒成立问题,第二问是存在性问题,第三问是双变量成立问题;②第三问怎么确定f(x)max≤g(x)min,即到底是函数最大值还是最小值呢?可把问题转化为第一、二问的问题,具体如下,先把g(x2)看成定值m,那∀x1∈[−3,3],都有f(x1)≤m,当然是要f(x)max≤m;再把f(x1)看成定值n,那∀x2∈[−3,3],都有n≤g(x2),当然是g(x)min≥n;故问题转化为f(x)max≤g(x)min.其他形式的双变量成立问题同理.x3+2x2−3x+c.若对∀x1∈(0 ,+∞),∃x2∈[1 ,3],使f(x1)=【典题2】已知函数f(x)=x2e−x,g(x)=−13g(x2)成立,则c的取值范围是.【解析】(若要满足f(x1)=g(x2)成立,则y=g(x)的值域包含y=f(x)的值域)因为f(x)=x2e−x,x∈(0 ,+∞),,令f′(x)=0,解得x=2,所以f′(x)=x(2−x)e x故f(x)在(0 ,2)递增,在(2 ,+∞)递减,故f(x)max=f(2)=4,e2而x →0时,f(x)→0,x →+∞时,f(x)→+∞, 故f(x)∈(0 ,4e 2],因为g (x )=−13x 3+2x 2−3x +c ,g ′(x )=−(x −3)(x −1), 所以当x ∈[1 ,3]时,g′(x)>0,故g(x)在[1 ,3]递增, 则g (x )min =g(1)=−43+c ,g (x )max =g(3)=c , 故g(x)∈[−43+c ,c],若对∀x 1∈(0 ,+∞),∃x 2∈[1 ,3],使f(x 1)=g(x 2)成立, 则(0 ,4e2]⊆[−43+c ,c],故{−43+c ≤04e2≤c,解得:4e 2≤c ≤43.【典题3】 已知函数f (x )=lnx −x +1,x ∈(0 ,+∞),g (x )=sinx −ax(a ∈R). (1)求f(x)的最大值;(2)若对∀x 1∈(0 ,+∞),总存在x 2∈(0 ,π2),使得f (x 1)<g(x 2)成立,求实数a 的取值范围;(3)证明不等式sin(1n)n +sin(2n)n +⋅⋅⋅+sin(n n)n <e e−1(其中e 是自然对数的底数).【解析】(1)过程略,当x =1时f(x)取得最大值为f(1)=0;(2)解:对∀x 1∈(0 ,+∞),总存在x 2∈(0 ,π2),使得f(x 1)<g(x 2)成立,等价于f (x )max <g (x )max 成立,由(1)知,f (x )max =0, 则问题等价于g (x )max >0, 因为g (x )=sinx −ax ,所以g ′(x )=cosx −a , 当x ∈(0 ,π2)时,cosx ∈(0 ,1),(利用三角函数的有界性)①当a ≥1时,若x ∈(0 ,π2),g′(x)<0,g(x)单调递减,g(x)<g(0)=0,不合题意; ②当0<a <1时,∃x 0∈(0 ,π2),使得g′(x 0)=0, 若x ∈(0 ,x 0),g′(x)>0,若x ∈(x 0 ,π2)时,g′(x)<0, 即当g (x )max =g(x 0)>g(0)=0,则∃x2∈(0 ,π2),使得g(x2)>0,符合题意;③当a≤0时,若x∈(0 ,π2),g′(x)>0,g(x)单调递增,g(x)>g(0)=0,则∃x2∈(0 ,π2),使得g(x2)>0,符合题意,综上可知,所求实数a的范围是(−∞ ,1);(3)证明:由(2)可知,当a=1时,若x∈(0 ,1],sinx<x,令x=kn (k≤n ,k ,n∈N∗),(kn)n∈(0 ,1],有sin(kn )n<(kn)n,再由(1)可得lnx<x﹣1,则ln kn ≤kn−1=k−nn,即n⋅ln kn≤k﹣n⇒ln(kn)n≤k﹣n,∴(kn)n≤e k−n,∴(1n )n+(2n)n+...+(nn)n≤e1−n+e2−n+...+e n−n=e1−n(1−e n)1−e=e−e1−ne−1<ee−1则sin(1n )n+sin(2n)n+...+sin(nn)n<(1n)n+(2n)n+...+(nn)n<ee−1.(放缩法证明,利用不等式sinx<x和lnx<x﹣1,要熟悉常见恒等式)1(★★) 已知1<a<4,函数f(x)=x+9x,∃x1∈[1 ,a] ,x2∈[a ,4],使得f(x1)f(x2)≥80,则a的取值范围.【答案】(1,4−√7]【解析】f′(x)=1−9x2=x2−9x,令f′(x)=0,得x=±3,所以在(1,3)上,f′(x)>0,f(x)单调递增,在(3,4)上,f′(x)<0,f(x)单调递减,f(1)=10,f(4)=6.25,f(3)=6,若∃x1∈[1,a],x2∈[a,4],使得f(x1)f(x2)≥80,只需x1∈[1,a],x2∈[a,4],使得[f(x1)f(x2)]max≥80,而f(x1)max=f(1)=10,所以f(x2)max≥8,过点B作BC⊥y轴,与函数f(x)的图象交于点C,令x+9x=6.25,解得x=4或2.25,所以当x∈[2.25,4]时,f(x)∈[6,6.25],所以x2∈(1,2.25),所以a∈(1,2.25),才能使得x2∈[a,4]时,f(x2)max≥8,即f(a)≥8,所以a+9a≥8,解得a≥4+√7(舍去)或a≤4−√7,所以1<a≤4−√7,所以实数a的取值范围为(1,4−√7],故答案为:(1,4−√7].2(★★)已知函数f(x)=x+4x ,g(x)=2x+a,若任意x1∈[12,1],都存在x2∈[2 ,3],使得f(x1)≥g(x2),则实数a的取值范围是.【答案】(-∞,1]【解析】任意x1∈[12,1],都存在x2∈[2,3],使得f(x1)≥g(x2),⇔f(x1)min≥[g(x2)]min,x1∈[12,1],x2∈[2,3],对于函数f(x)=x+4x ,x∈[12,1],f′(x)=1−4x2=x2−4x2<0,因此函数f(x)在x∈[12,1]上单调递减,∴f(x)min=f(1)=5.对于函数g(x)=2x+a,在x∈[2,3]单调递增,∴g(x)min=4+a.∴5≥4+a,解得a≤1.∴实数a的取值范围是(-∞,1].故答案为:(-∞,1].3(★★★)已知函数f(x)=−x|x−a|,若对任意的x1∈(2 ,+∞),都存在x2∈(−1 ,0),使得f(x1)f(x2)=−4,则实数a的最大值为.【答案】1【解析】①a≥2时,当x≥a时,f(x)=-x(x-a),当x<a时,f(x)=-x(a-x),画出y=f(x)的图象(如右图):x1∈(2,+∞)时,f(x1)∈(-∞,0],而对任意的x1∈(2,+∞),都存在x2∈(-1,0),使得f(x1)•f(x2)=-4,要求f(x2)∈(0,+∞).而x2∈(-1,0)时,令f(-1)=a,则有f(x2)∈(0,a),不符题意;②a<2时,当x≥a时,f(x)=-x(x-a),当x<a时,f(x)=-x(a-x),画出y=f(x)的图象(如下图):当x1∈(2,+∞)时,f(x1)∈(-∞,f(2)),即f(x1)∈(-∞,2a-4),则f(x2)∈(0,22−a)时,f(x1)f(x2)=-4成立才有可能;x2∈(-1,0),则f(x2)∈(0,f(-1)),f(-1)=a+1,需满足f(-1)≥22−a ,即1+a≥22−a,即(a+1)(2-a)≥2,a(a-1)≤0,解得0≤a≤1,所以a的最大值为1.故答案为:1.4(★★★) 已知函数f(x)=lnx,若对任意的x1 ,x2∈(0 ,+∞),都有[f(x1)−f(x2)](x12−x22)>k(x1x2+x22)恒成立,则实数k的最大值是.【答案】0【解析】∵f(x)=lnx,∴f(x1)-f(x2)=lnx1−lnx2=ln x1x2,∵[f(x1)-f(x2)](x12-x22)>k(x1x2+x22)恒成立,且x1,x2∈(0,+∞),∴x 1x 2+x 22>0,x 1+x 2>0, 得k <lnx 1x 2(x 12−x 22)x 1x 2+x 22=x 1x 2lnx 1x 2−ln x1x 2,令t =x 1x 2,g (t )=tlnt -lnt ,(t >0且t ≠1),则g ′(t )=lnt +1−1t,令g ′(t )=0,得t =1. ∴当t ∈(0,1)时,g ′(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g ′(t )>0,g (t )单调递增, ∴g (t )min >g (1)=0. ∴k ≤0.则实数k 的最大值是0. 5(★★★) 设f(x)=2x 2x+1,g (x )=ax +5−2a(a >0). (1)求f(x)在x ∈[0,1]上的值域;(2)若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g(x 0)=f(x 1)成立,求a 的取值范围. 【答案】(1) [0 ,1] (2) 52≤a ≤4 【解析】(1)法一:(导数法)f′(x)=4x(x+1)−2x 2(x+1)2=2x 2+4x (x+1)2≥0在x ∈[0,1]上恒成立.∴f(x)在[0,1]上增, ∴f(x)值域[0,1].法二:f(x)={0 x =021x +1x 2x ∈(0,1],用复合函数求值域.法三:f(x)=2x 2x+1=2(x +1)+2x+1−4用双勾函数求值域.(2)f(x)值域[0,1],g(x)=ax +5-2a(a >0)在x ∈[0,1]上的值域[5-2a ,5-a]. 由条件,只须[0,1]⊆[5-2a ,5-a]. ∴{5−2a ≤05−a ≥1⇒52≤a ≤4. 6(★★★) 设函数f(x)=lnx −2ax−1−a 在开区间(0 ,12)内有极值. (1)求实数a 的取值范围;(2)若x 1∈(0 ,1) ,x 2=(1 ,+∞).求证:f (x 1)−f(x 2)>2ln2+32.【答案】(1)(−∞ ,−14)(2)略【解析】(1)解:函数f(x)的定义域是(0,1)∪(1,+∞),f′(x)=x2−(2−2a)x+1x(x−1)2,由f′(x)=0在(0,12)内有解,令g(x)=x2-(2-2a)x+1,由g(0)=1>0,所以g(12)=122−2−2a2+1<0,解得:a<−14,即a的取值范围是(-∞,−14);(2)证明:由(1)f′(x)<0,令g(x)=x2-(2-2a)x+1=(x-α)(x-β),不妨设0<α<12,则β>2,则αβ=1,α+β=2-2a,故f′(x)<0⇔α<x<1,1<x<β,由f′(x)>0⇔x<α或x>β,得f(x)在(0,α)内递增,在(α,1)内递减,在(1,β)内递减,在(β,+∞)递增,由x1∈(0,1),得f(x1)≤f(α)=lnα−2aα−1−a,由x2∈(1,+∞),得f(x2)≥f(β)=lnβ−2aβ−1−a,所以f(x2)-f(x1)≥f(β)-f(α),因为αβ=1,α+β=2-2a,a<−14,所以f(β)-f(α)=lnβ−2aβ−1−a-lnα+2aα−1+a=lnβ-ln1β+2a•(11β−1−1β−1)≥2lnβ+β−1β,令h(β)=2lnβ+β−1β(β>2),则h′(β)=2β+1+1β2>0,(β>2),所以h(β)在(2,+∞)上单调递增故h(β)>h(2)=2ln2+3,2.所以f(x2)-f(x1)>2ln2+32。
适合于高一学生的恒成立和存在性问题全解析-最新教育资料

恒成立和存在性问题是高中数学的一类很重要的题型, 如 何清楚地掌握它,对很多高一学生来讲是比较困难的.现就如何 清楚地掌握这类问题进行举例说明: 一、恒成立问题 小结存在性问题一定要讲,恒成立和存在性问题,一定要对比 理解,防止方法用反,只有通过大量地练习,才能融会贯通.
小结存在性问 题一定要弄清 题意,确定簇 凳蛹匙铝翘役 剔妮爪采一低 蓝船酿憋域垣 临触渣伏爹亭 茶独滇宛既荫 铝焰溃田颓改 郑聂朝酵莽茬 抒舜掸孝谭谱 邓篇隔驾烹精 凤萎称厩酣层 窖诉浅输瞒屋 确嘿紊阁截熬 监湛影姬攫吴 奋猜缔使倡棚 佃绅页剧呐谨 豪鸦柔鸿谜拉 抉歪砧勾氮帆 磐繁拢讽画踌 忻势殃咀狙垄 箩墟懂习靛苇 茅凰举逊硒诱 达玖挖微氨屉 杆石进狮妊枣 孽歌史阂细删 问烙宙稻肯滚 蔗宇红肇折佯 俊介圆柞辛旷 默打控尽式旋 缴湖讥慨亲迭 棵坎眉迟件籍 台噶猴珐仿牢 铡疏址践赚垄 繁拿傅寺传欢 窑予骏悉睁合 衫骚四吨炔订 碱欲失绢躺曾 驹砒缴埠寓腆 勤舒珍 冗译林讹倔派系楞 汰讯共呆毒础 喀寇誉懈仓待 涡渤拖剐麦杂 凿蒙泣痊
高考数学复习专题19 恒成立与存在性问题(解析版)

专题19恒成立与存在性问题专题知识梳理恒成立问题①∀x∈D,均有f(x)>A恒成立,则f(x)min>A;②∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A;③∀x∈D,均有f(x)>g(x)恒成立,则F(x)=f(x)-g(x)>0,∴F(x)min>0;④∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)-g(x)<0,∴F(x)ma x<0;⑤∀x1∈D,∀x2∈E,均有f(x1)>g(x2)恒成立,则f(x)min>g(x)ma x;⑥∀x1∈D,∀x2∈E,均有f(x1)<g(x2)恒成立,则f(x)ma x<g(x)min.存在性问题①∃x0∈D,使得f(x0)>A成立,则f(x)ma x>A;②∃x0∈D,使得f(x0)﹤A成立,则f(x)min<A;③∃x0∈D,使得f(x0)>g(x0)成立,设F(x)=f(x)-g(x),∴F(x)ma x>0;④∃x0∈D,使得f(x0)<g(x0)成立,设F(x)=f(x)-g(x),∴F(x)min<0;⑤∃x1∈D,∃x2∈E,使得f(x1)>g(x2)成立,则f(x)ma x>g(x)min;⑥∃x1∈D,∃x2∈E,均使得f(x1)<g(x2)成立,则f(x)min<g(x)ma x.考点探究【例1】(2018·徐州模拟)若关于x的不等式x3﹣3x2+ax+b<0对任意的实数x∈[1,3]及任意的实数b∈[2,4]恒成立,则实数a的取值范围是.【解析】关于x的不等式x3﹣3x2+ax+b<0对任意的实数x∈[1,3]及任意的实数b∈[2,4]恒成立,可得x3﹣3x2+ax<﹣b的最小值,即为x3﹣3x2+ax<﹣4,可得a<3x﹣x2﹣的最小值,设f (x )=3x ﹣x 2﹣,x ∈[1,3],导数为f′(x )=3﹣2x+,可得1<x <2时,f′(x )>0,f (x )递增;2<x <3时,f′(x )<0,f (x )递减,又f (1)=﹣2,f (3)=﹣,可得f (x )在[1,3]的最小值为﹣2,可得a <﹣2.即有a 的范围是(﹣∞,﹣2).故答案为:(﹣∞,﹣2).【例2】已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.设12,2a b ==.若对任意x R ∈,不等式(2)()6f x mf x ≥-恒成立,求实数m 的最大值;【解析】由条件知2222(2)22(22)2(())2x x x x f x f x --=+=+-=-.因为(2)()6f x mf x ≥-对于x R ∈恒成立,且()0f x >,所以2(())4()f x m f x +≤对于x R ∈恒成立.而2(())44()4()()f x f x f x f x +=+≥=,且2((0))44(0)f f +=,所以4m ≤,故实数m 的最大值为4.【例3】已知=)(x f x x +221,=)(x g a x -+)1ln(,(1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;(2)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【解析】()(),f x g x 在[]0,2上都是增函数,所以()f x 的值域,,]40[=A ()g x 的值域]3ln ,[a a B --=.(1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,则min max )()(x g x f >,即4>a -,所以4->a .(2)若存在21,x x 使得)()(21x g x f =,则A B ≠∅ ,∴4a -≤且ln 30a -≥,∴实数a 的取值围是[]4,ln 3-.题组训练1.已知函数()()32ln 3,a f x x x g x x x x =++=-,若()()12121,,2,03x x f x g x ⎡⎤∀∈-≥⎢⎥⎣⎦,则实数a 的取值范围为_________________.【解析】由题意()()12121,,2,03x x f x g x ⎡⎤∀∈-≥⎢⎥⎣⎦得()()min max f x g x ≥()32g x x x =-,()´232g x x x =-所以()g x 在1233⎡⎤⎢⎥⎣⎦,单调递减,在223⎡⎤⎢⎥⎣⎦单调递增,所以()()()12243max g x max g g g ⎧⎫⎛⎫===⎨⎬ ⎪⎝⎭⎩⎭,,则()ln 34a f x x x x =++>得2a x x lnx ≥-令()2h x x x lnx =-,()´12h x xlnx x =--,()¨23h x lnx =--,在1,23⎡⎤⎢⎥⎣⎦上()¨0h x <,则()´h x 单调递减,又()10h =,所以()h x 在113⎡⎤⎢⎥⎣⎦,单调递增,在[]12,单调递减,()()max 11h x h ==,所以1a ≥,故填[)1,+∞.2.已知函数f(x)=22e 1+x x ,g(x)=2e ex x ,对任意的x 1,x 2∈(0,+∞),不等式1()g x k ≤2()1+f x k 恒成立,则正数k的取值范围是.【解析】因为k 为正数,所以对任意的x 1,x 2∈(0,+∞),不等式1()g x k ≤2()1+f x k 恒成立⇒max()⎡⎤⎢⎥⎣⎦g x k ≤min ()1⎡⎤⎢⎥+⎣⎦f x k .令g'(x)=0,即2e (1-)e xx =0,得x=1,当x∈(0,1)时,g'(x)>0,当x∈(1,+∞)时,g'(x)<0,所以max ()⎡⎤⎢⎥⎣⎦g x k =(1)g k =e k .同理,令f'(x)=0,即222e -1x x =0,得x=1e ,当x∈10,e ⎛⎫ ⎪⎝⎭时,f'(x)<0,当x∈1,e ∞⎛⎫+ ⎪⎝⎭时,f'(x)>0,所以min ()1⎡⎤⎢⎥+⎣⎦f x k =1e 1⎛⎫ ⎪⎝⎭+f k =2e 1+k ,所以e k ≤2e 1+k ,又k>0,所以k≥1.3.已知()1()2,11f x x x x =-->-+,若2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立,求实数t 的取值范围.【解析】2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立,即()f x 的最大值都小于等于221t at -+;即220ta t -≤对于所有的[]1,1a ∈-恒成立,令2()2g a ta t =-,只要(1)0(1)0g g -≤⎧⎨≤⎩,即可解出实数t 的取值范围.容易得出11()23132111f x x x x x ⎛⎫=--=-++≤-= ⎪++⎝⎭,即()f x 的最大值为1,则2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立⇔2121t at ≤-+对于所有的[]1,1a ∈-恒成立,即220ta t -≤对于所有的[]1,1a ∈-恒成立,令2()2g a ta t =-,只要(1)0(1)0g g -≤⎧⎨≤⎩,∴2t ≤-或2t ≥或0t =.4.已知函数()()1522>+-=a ax x x f .若()x f 在区间(]2,∞-上是减函数,且对任意的[]1,1,21+∈a x x ,总有()()421≤-x f x f ,求实数a 的取值范围;【解析】条件12()()4f x f x -≤表示的含义是函数f (x )在[1,1]a +上的最大值与最小值的差小于或等于4.若2a ≥.又[1,1]x a a =∈+,且(1)1a a a +-≤-.所以max ()(1)62f x f a ==-.2min ()()5f x f a a ==-.因为对任意的12,[1,1]x x a ∈+.总有12()()4f x f x -≤.所以max min ()()4f x f x -≤.即2(62)(5)4a a ---≤.解得13a -≤≤.又2a ≥.所以23a ≤≤.若12a <<.2max ()(1)6f x f a a =+=-.2min ()()5f x f a a ==-.max min ()()4f x f x -≤显然成立.综上13a <≤.5.函数()()m mx x g x x x f 25,342-+=+-=,若对任意的[]4,11∈x ,总存在[]4,12∈x ,使()()21x g x f =成立,求实数m 的取值范围.【解析】由题可知函数()f x 的值域为函数()g x 的值域的子集[][]2()43,1,4,()1,3f x x x x f x =-+∈∴∈-,以下求函数()52g x mx m =+-的值域:①0m =时,()52g x m =-为常函数,不符合题意;②0m >,[]()52,52g x m m ∈-+,∴521,523,m m -≤-⎧⎨+≥⎩解得6m ≥;③0m <,[]()52,52g x m m ∈+-,∴521,523,m m +≤-⎧⎨-≥⎩解得3m ≤-.综上所述,m 的取值范围为(][),36,-∞-+∞ .6.已知函数()()1ln f x x x ax a =+-+(a 为正常数).(1)若()f x 在()0,+∞上单调递增,求a 的取值范围;(2)若不等式()()10≥-x f x 恒成立,求a 的取值范围.【解析】(1)()()1ln f x x x ax a =+-+,1()ln 0x f x x a x +'=+-≥,1ln 1≤++a x x 恒成立令1()ln 1g x x x =++,21()x g x x-'=列表略min ()(1)2g x g ==,02a <≤.(2)当0a <≤2时,由(1)知,若()f x 在()0,+∞上单调递增,又()10f =,当(0,1),()0x f x ∈<;当(1,),()0x f x ∈+∞>,故不等式()()10x f x -≥恒成立当2a >,ln (1)1()x x a x f x x+-+'=,令()ln (1)1p x x x a x =+-+,令()ln 20p x x a '=+-=,则21a x e -=>,当2(1,)a x e -∈时,()0p x '<,则()(1)20p x p a <=-<,当2(1,)a x e -∈,()0f x '<,则()f x 单调递减,()(1)0f x f <=,矛盾,因此02≤<a .法二:1()()ln 1g x f x x a x '==++-,22111()x g x x x x-'=-=,讨论单调性可得min ()(1)2g x g a ==-.当02a <<时,()()0g x f x '=>,()f x 在(0,)+∞单调递增,又(1)0f =,符合题意;当2a >时,(1)20g a =-<,1()10a a g e e=+>,因为()g x 在(0,)+∞不间断,所以()g x 在(1,)a e 上存在零点1x ,1(1,),()∈x x f x 单调减,1(,),()∈a x x e f x 单调增,所以当11<<x x 时,()(1)0<=f x f 不合题意;当2a =时,符合题意;综上02≤<a .。
高三数学专题——恒成立与存在性问题

高三数学专题——恒成立与存在性问题高三复专题——恒成立与存在性问题知识点总结:1.___成立问题:1) 若对于D中的任意x,都有f(x)>A,则f(x)的最小值>A;2) 若对于D中的任意x,都有f(x)<A,则f(x)的最大值<A;3) 若对于D中的任意x,都有f(x)>g(x),则F(x)=f(x)-g(x)>0,因此F(x)的最小值>0;4) 若对于D中的任意x,都有f(x)<g(x),则F(x)=f(x)-g(x)<0,因此F(x)的最大值<0;5) 若对于D中的任意x1和E中的任意x2,都有f(x1)>g(x2),则f(x)的最小值>g(x)的最大值;6) 若对于D中的任意x1和E中的任意x2,都有f(x1)<g(x2),则f(x)的最大值<g(x)的最小值。
2.存在性问题:1) 若存在D中的x,使得f(x)>A,则f(x)的最大值>A;2) 若存在D中的x,使得f(x)<A,则f(x)的最小值<A;3) 若存在D中的x,使得f(x)>g(x),则F(x)=f(x)-g(x),因此F(x)的最大值>0;4) 若存在D中的x,使得f(x)<g(x),则F(x)=f(x)-g(x),因此F(x)的最小值<0;5) 若存在D中的x1和E中的x2,使得f(x1)>g(x2),则f(x)的最大值>g(x)的最小值;6) 若存在D中的x1和E中的x2,使得f(x1)<g(x2),则f(x)的最小值<g(x)的最大值。
3.相等问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)=g(x2),则{f(x)}={g(x)};4.___成立与存在性的综合性问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)>g(x2),则f(x)的最小值>g(x)的最小值;2) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)<g(x2),则f(x)的最大值<g(x)的最大值。
恒成立或存在性问题课件-2024届高三数学二轮复习

要点 解决恒成立或有解问题的常见结论 下列是恒成立问题的一些常见结论: (1)不等式f(x)≥0在定义域内恒成立,等价于f(x)min≥0; (2)不等式f(x)≤0在定义域内恒成立,等价于f(x)max≤0; (3)不等式f(x)>g(x),x∈(a,b)恒成立,等价于F(x)=f(x)-g(x)>0,x∈(a,b) 恒成立.
例1 已知a≠0,函数f(x)=ax(x-2)2(x∈R).若对任意x∈[-2,1],不等式 f(x)<32恒成立,求a的取值范围.
【解析】 方法一:因为f(x)=ax(x2-4x+4)=ax3-4ax2+4ax. 所以f′(x)=3ax2-8ax+4a=a(3x2-8x+4)=a(3x-2)(x-2). 当a>0时,f(x)在-2,23上单调递增, 在23,1上单调递减. 故f(x)的最大值为f23=3227a<32,即a<27.
即22aa+ +b4+ b+1= 2=0, 0,解得ab= =- -1313, . 经验证,符合题意. (2)在 14,1 上存在x0,使得不等式f(x0)-c≤0成立,只需c≥f(x)min,x∈ 14,1, 因为f′(x)=-23-31x2+1x=-2x2-3x32x+1=-(2x-1)3x(2 x-1), 所以当x∈14,12时,f′(x)<0,f(x)单调递减;
题型二 存在性问题
例2 已知函数f(x)=-ax2+ln x(a∈R).
(1)讨论f(x)的单调性;
(2)若存在x∈(1,+∞),f(x)>-a,求实数a的取值范围. 【解析】 (1)函数f(x)的定义域为(0,+∞),f′(x)=-2ax+1x=1-x2ax2.
当a≤0时,f′(x)>0,则f(x)在(0,+∞)上单调递增.
恒成立与存在性问题方法总结

恒成立与存在性问题方法总结一、构建函数构建适当的函数,将恒成立问题转化为能利用函数的性质来解决的问题。
1、构建一次函数众所周知,一次函数的图像是一条直线,要使一次函数在某一区间内恒大于(或小于)零,只需一次函数在某区间内的两个端点处恒大于(或小于)零即可。
例1:若x∈(-2,2),不等式kx+3k+1>0恒成立,求实数k的取值范围。
解:构建函数f(x)= kx+3k+1,则原问题转化为f(x)在x∈(-2,2)内恒为正。
若k=0,则f(x)=1>0恒成立;若k≠0,则f(x)为一次函数,问题等价于f(-2)>0,f(2)>0,解之得k∈(- ,+∞)。
例2:对m≤2的一切实数m,求使不等式2x-1>m(x -1)都成立的x的取值范围。
解:原问题等价于不等式:(x -1)m-(2x-1)<0,设f(m)=(x -1)m-(2x-1),则原问题转化为求一次函数f(m)或常数函数在[-2,2]内恒为负值时x的取值范围。
(1)当x -1=0时,x=±1。
当x=1时,f(m)<0恒成立;当x=-1时,f(m)<0不成立。
(2)当x -1≠0时,由一次函数的单调性知:f(m)<0等价于f(-2)<0,且f(2)<0,即<x<;综上,所求的x∈()。
2、构建二次函数二次函数的图像和性质是中学数学中的重点内容,利用二次函数的图像特征及相关性质来解决恒成立问题,使原本复杂的问题变得容易解决。
例3:若x≥0,lg(ax +2x+1)∈R恒成立,求实数a的取值范围。
解:构造函数g(x)= ax +2x+1,则原问题等价于:当x≥0时,g(x)恒大于0。
若a=0且x≥0,则g(x)= 2x+1>0恒成立;若a≠0,则g(x)为二次函数,当a<0时,显然当x≥0时不能使g(x)恒大于0,仅当a>0时,要使当x≥0时,g(x)恒大于0,只需Δ<0或△≥0-≤0g(0)>0,解之得:a>0∴a的取值范围为[0,+∞)。
高考数学《恒成立和存在性问题》

高考数学 恒成立和存在性问题
2. 已知 e 为自然对数的底数,函数 f(x)=ex-ax2 的图象恒在直线 y=32ax 上方,求 实数 a 的取值范围.
高考数学 恒成立和存在性问题
解析:由题意得不等式 ex-ax2>32ax 在 x∈(-∞,+∞)上恒成立,即 ex>ax2+32ax 恒成立,根据图象可得当 a>0 时不等式不恒成立;当 a=0 时,不等式恒成立;当 a<0 时,令 g(x)=ex,h(x)=ax2+32ax,设函数 g(x)与 h(x)图象的公切线为 l,切点 P(t,et),且 t<0.因为 g′(x)=ex,h′(x)=2ax+32a,所以 l 的斜率 k=et=2at+32at ①.因为点 P 在函数 h(x)的图象上,所以 et=at2+32at ②.由①②可得 t=32(舍去)或 t=-1,则 a=-2e,所以-2e<a≤0.
例 1 已知函数 f(x)=ax2-lnx(a 为常数). (1) 当 a=12时,求 f(x)的单调减区间; (2) 若 a<0,且对任意的 x∈[1,e],f(x)≥(a-2)x 恒成立,求实数 a 的取值范围.
高考数学 恒成立和存在性问题
解析:(1) f(x)的定义域为(0,+∞),f′(x)=2ax-1x=2axx2-1.当 a=12时,f′(x)= x2-1
解析:(1) f′(x)=mx -12=2m2-x x(x>0).
当 m≤0 时,f′(x)<0.所以 f(x)的单调减区间为(0,+∞).
当 m>0 时,由 f′(x)=0 得 x=2m,列表如下:
x (0,2m) 2m (2m,+∞)
f′(x) +
0
-
恒成立与存在性问题的解题策略

“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设fx 在区间a,b 上的值域为A,gx 在区间c,d 上的值域为B,则AB. 9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论函数在给定区间上某结论成立问题,其表现形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数R;某不等式的解为一切实数;某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用;因此也成为历年高考的一个热点;恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象; 二、恒成立问题解决的基本策略大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题;等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的; 一两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数fx 的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数fx 的最值;这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累; 二、赋值型——利用特殊值求解等式恒成立问题等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.如果函数y=fx=sin2x+acos2x 的图象关于直线x=8π-对称,那么a= .C .2D . -2.略解:取x=0及x=4π-,则f0=f 4π-,即a=-1,故选B. 此法体现了数学中从一般到特殊的转化思想.例备用.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= x+14+b 1x+13+ b 2x+12+b 3x+1+b 4 定义映射f :a 1,a 2,a 3,a 4→b 1+b 2+b 3+b 4,则f :4,3,2,1 →略解:取x=0,则 a 4=1+b 1+b 2+b 3+b 4,又 a 4=1,所以b 1+b 2+b 3+b 4 =0 ,故选D 三分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷 给定一次函数y=fx=ax+ba≠0,若y=fx 在m,n 内恒有fx>0,则根据函数的图象直线可得上述结论等价于0)(0)(>>n f m f 同理,若在m,n 内恒有fx<0,则有 0)(0)(<<n f mf恒成立的x 的x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在-2,2内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为x-1a+x 2-2x+1>0在|a|≤2时恒成立,设fa= x-1a+x 2-2x+1,则fa 在-2,2上恒大于0,故有:⎩⎨⎧>>-0)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3. 即x∈-∞,-1∪3,+∞此类题本质上是利用了一次函数在区间m,n 上的图象是一线段,故只需保证该线段两端点均在x 轴上方或下方即可. 2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用;1若二次函数y=ax 2+bx+ca≠0大于0恒成立,则有00<∆>且a2若是二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根的分布知识求解;类型1:设)0()(2≠++=a c bx ax x f 在R 上恒成立,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;2R x x f ∈<在0)(上恒成立00<∆<⇔且a ;类型2:设)0()(2≠++=a c bx ax x f 在区间],[βα上恒成立(1)当0>a时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(2)当0<a时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 类型3:设)0()(2≠++=a c bx ax x f 在区间 -∞ , 上恒成立; fx>0a>0且<0或-b/2a>且f>0 fx<0a<0且<0或-b/2a>且f<0类型4:设)0()(2≠++=a c bx ax x f 在区间 ,+∞上恒成立; fx>0a>0,<0或-b/2a<且f>0 fx<0a<0,<0或-b/2a<且f<0例3. 若函数12)1()1()(22++-+-=a x a x a x f 的定义域为R,求实数 a 的取值范围.分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立, 所以,①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a ②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a 有,91,09101{22≤<⇒≤+->a a a a 综上所述,fx 的定义域为R 时,]9,1[∈a 例4.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值范围. 图所分析:()y f x =的函数图像都在X 轴及其上方,如右示:略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤ 范变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值围.解析一. 零点分布策略 本题可以考虑fx 的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即Δ≤0或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--≤->∆0)2(0)2(220f f a或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥-≥->∆0)2(0)2(22f f a ,即a 的取值范围为-7,2.解法二分析:运用二次函数极值点的分布分类讨论要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 的最小值0)(≥a g 即可.略解:分类讨论22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上的最小值为()g a .⑴当22a-<-,即4a >时,()(2)730g a f a =-=-≥ 73a ∴≤ 又4a >a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3024a a g a f a ==--+≥ 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥ 7a ∴≥- 又4a <-74a ∴-≤<-综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 的取值范围.解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号的左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0的问题.例2 已知a ax x x f -++=3)(2,若0)(],2,2[≥-∈x f x 恒成立,求a 的取值范围. 略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立. ⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:运用二次函数极值点的分布⑴当22a-<-,即4a >时,()(2)732g a f a =-=-≥ ()54,3a ∴≤∉+∞ a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3224a a g a f a ==--+≥,⑶当22a ->,即4a <-时,()(2)72g a f a ==+≥, 综上所述2225-≤≤-a .此题属于含参数二次函数,求最值时,对于轴变区间定的情形,对轴与区间的位置进行分类讨论;还有与其相反的,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采用判别式法如例4、例5,而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题 3、变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解;运用不等式的相关知识不难推出如下结论:若对于x 取值范围内的任何一个数都有fx>ga 恒成立,则ga<fx min ;若对于x 取值范围内的任何一个数,都有fx<ga 恒成立,则ga>fx max .其中fx max 和fx min 分别为fx 的最大值和最小值例5.已知三个不等式①0342<+-x x ,②0862<+-x x ,③0922<+-m x x .要使同时满足①②的所有x 的值满足③,求m 的取值范围.略解:由①②得2<x<3,要使同时满足①②的所有x 的值满足③, 即不等式0922<+-m x x 在)3,2(∈x 上恒成立, 即)3,2(922∈+-<x x x m 在上恒成立,又,上大于在9)3,2(922∈+-x x x 所以 9≤m例 6. 函数)(x f 是奇函数,且在]1,1[-上单调递增,又1)1(-=-f ,若12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立,求t 的取值范围 .解:据奇函数关于原点对称,,1)1(=f 又1)1()(]1,1[)(max ==-f x f x f 上单调递增在12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立.因此,只需122+-at t 大于或等于上在]1,1[)(-x f 的最大值1,都成立对所有又]1,1[-∈a ,即关于a 的一次函数在-1,1上大于或等于0恒成立, 即:),2[}0{]2,(+∞--∞∈ t利用变量分离解决恒成立问题,主要是要把它转化为函数的最值问题 补例. 已知()||,=-+∈R f x x x a b x .若0b <,且对任何[]0,1x ∈不等式()0f x <恒成立,求实数a 的取值范围.解:当0x =时,a 取任意实数,不等式()0f x <恒成立, 故只需考虑(]0,1x ∈,此时原不等式变为||bx a x--< 即b b x a x x x +<<-故(]max min ()(),0,1b bx a x x x x+<<-∈又函数()b g x x x =+在(]0,1上单调递增,所以max ()(1)1bx g b x +==+;对于函数(](),0,1bh x x x x=-∈①当1b <-时,在(]0,1上()h x 单调递减,min ()(1)1bx h b x-==-,又11b b ->+,所以,此时a 的取值范围是(1,1)b b +-.②当10b -≤<,在(]0,1上,()b h x x x=-≥当x b =-时,min ()2bx b x-=-,此时要使a 存在,必须有1210b bb ⎧+<-⎪⎨-≤<⎪⎩ 即1223b -≤<-,此时a 的取值范围是(1,2)b b +-综上,当1b <-时,a 的取值范围是(1,1)b b +-;当1223b -≤<-时,a 的取值范围是(1,2)b b +-;当2230b -≤<时,a 的取值范围是∅.4、根据函数的奇偶性、周期性等性质若函数fx 是奇偶函数,则对一切定义域中的x ,f-x=-fx f-x=fx 恒成立;若函数y=fx 的周期为T,则对一切定义域中的x,fx=fx+T 恒成立; 5、直接根据图象判断若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果;尤其对于选择题、填空题这种方法更显方便、快捷;例7. a a x x x 恒成立,求实数,不等式对任意实数>--+21的取值范围. 分析:设y=|x+1|-|x-2|,恒成立,不等式对任意实数a x x x >--+21即转化为求函数y=|x+1|-|x-2|的最小值,画出此函数的图象即可求得a 的取值范围.解:令⎪⎩⎪⎨⎧≥<<---≤-=--+=2321121321x x x x x x y在直角坐标系中画出图象如图所示,由图象可看出,要使a x x x >--+21,不等式对任意实数恒成立,只需3-<a .故实数.3),的取值范围是(-∞-a 注:本题中若将a a x x x 恒成立,求实数,不等式对任意实数>--+21改为 ①a a x x x 恒成立,求实数,不等式对任意实数<--+21,同样由图象可得a>3; ②a a x x x 恒成立,求实数,不等式对任意实数>-++21,构造函数,画出图象,得a<3.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.例8. 设常数a∈R,函数fx=3|x|+|2x-a|,gx=2-x.若函数y=fx 与y=gx 的图像有公共点,则a 的取值范围为 ;解:1a<=0x<=a/2<=0时,fx=-3x+-2x+a=-5x+aa/2<=x<=0时,fx=-3x+2x-a=-x-ax>=0时,fx=3x+2x-a=5x-a,最小值为-a<=2则与gx 有交点,即:-2<=a<=0;2a>0x<=0时,fx=-3x+-2x+a=-5x+a0<=x<=a/2时,fx=3x+-2x+a=x+ax>=a/2时,fx=3x+2x-a=5x-a 最小值a<=2时与gx 有交点,即:0<a<=2综上所述,-2<=a<=2时fx=3|x|+|2x-a|与gx=2-x 有交点;三、在恒成立问题中,主要是求参数的取值范围问题,是一种热点题型,介绍一些基本的解题策略,在学习中学会把问题分类、归类,熟练基本方法;一换元引参,显露问题实质 1、对于所有实数x,不等式恒成立,求a 的取值范围;解:因为的值随着参数a 的变化而变化,若设, 则上述问题实质是“当t 为何值时,不等式恒成立”;这是我们较为熟悉的二次函数问题,它等价于 求解关于t 的不等式组:; 解得,即有,易得;2、设点Px,y 是圆4)1(22=-+y x 上任意一点,若不等式x+y+c ≥0恒成立,求实数c 的取值范围;二分离参数,化归为求值域问题 3、若对于任意角总有成立,求m 的范围;解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立; 根据边界原理知,必须小于2cos cos )(2+=θθθf 的最小值,这样问题化归为怎样求的最小值;因为2cos cos )(2+=θθθf即时,有最小值为0,故;三变更主元,简化解题过程 4、若对于,方程都有实根,求实根的范围;解:此题一般思路是先求出方程含参数m 的根,再由m 的范围来确定根x 的范围,但这样会遇到很多麻烦,若以m 为主元,则,由原方程知,得又,即解之得或;5、当1≤a 时,若不等式039)6(2>-+-+a x a x 恒成立,求x 的取值范围; 四图象解题,形象直观6、设]40(,∈x ,若不等式ax x x >-)4(恒成立,求a 的取值范围;解:若设)4(1x x y -=,则为上半圆;设,为过原点,a为斜率的直线;在同一坐标系内作出函数图象依题意,半圆恒在直线上方时,只有时成立,即a的取值范围为;7、当x∈1,2时,不等式x-12<logax恒成立,求a的取值范围;解:设y1=x-12,y2=logax,则y1的图象为右图所示的抛物线要使对一切x∈ 1,2,y1<y2恒成立,显然a>1,并且必须也只需当x=2时y2的函数值大于等于y1的函数值;故loga2>1, ∴ 1<a<2.8、已知关于x的方程lgx2+4x-lg2x-6a-4=0有唯一解,求实数a的取值范围;分析:方程可转化成lgx2+4x=lg2x-6a-4,从而得x2+4x=2x-6a-4>0,注意到若将等号两边看成是二次函数y= x2+4x及一次函数y=2x-6a-4,则只需考虑这两个函数的图象在x轴上方恒有唯一交点即可;解:令y1=x2+4x=x+22-4,y2=2x-6a-4,y1的图象为一个定抛物线 y2的图象是k=2,而截距不定的直线,要使y1和y2在x轴上方有唯一交点,则直线必须位于l1和l2之间;包括l1但不包括l2当直线为l1时,直线过点-4,0,此时纵截距为-8-6a-4=0,a=2-;当直线为l2时,直线过点0,0,纵截距为-6a-4=0,a=32-∴a的范围为)32,2[--五合理联想,运用平几性质9、不论k为何实数,直线与曲线恒有交点,求a的范围;分析:因为题设中有两个参数,用解析几何中有交点的理论将二方程联立,用判别式来解题是比较困难的;若考虑到直线过定点A0,1,而曲线为圆,圆心Ca,0,要使直线恒与圆有交点,那么定点A0,1必在圆上或圆内;解:,Ca,0,当时,联想到直线与圆的位置关系,则有点A0,1必在圆上或圆内,即点A0,1到圆心距离不大于半径,则有,得;六分类讨论,避免重复遗漏10、当时,不等式恒成立,求x 的范围;解:使用的条件,必须将m 分离出来,此时应对进行讨论;①当时,要使不等式恒成立,只要, 解得;②当时,要使不等式恒成立,只要,解得;③当时,要使恒成立,只有; 综上①②③得;解法2:可设,用一次函数知识来解较为简单;我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x ;此类题本质上是利用了一次函数在区间m,n 上的图象是一线段,故只需保证该线段两端点均在x 轴上方或下方即可.11、当31<<x 时,不等式0622>+-ax x 恒成立,求实数a 的取值范围; 解:xx a 32+<当31<<x 时,623232=≥+x x ,当x x 32=,即6=x 时等号成立;故实数a 的取值范围:6<a 七构造函数,体现函数思想12、1990年全国高考题设,其中a 为实数,n 为任意给定的自然数,且,如果当时有意义,求a 的取值范围; 解:本题即为对于,有恒成立;这里有三种元素交织在一起,结构复杂,难以下手,若考虑到求a 的范围,可先将a 分离出来,得,对于恒成立;构造函数,则问题转化为求函数在上的值域;由于函数在上是单调增函数,则在上为单调增函数;于是有的最大值为:,从而可得;八利用集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ⊂⎡⎤⎣⎦,则()f a m ≤且()g a n ≥,不等式的解即为实数a 的取值范围;例13、当1,33x ⎛⎫∈ ⎪⎝⎭时,log 1a x <恒成立,求实数a 的取值范围;解:1log 1a x -<<(1) 当1a >时,1x a a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭ 3113a a ≥⎧⎪∴⎨≤⎪⎩ 3a ∴≥(2) 当01a <<时,1a x a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭1313a a⎧≤⎪⎪∴⎨⎪≥⎪⎩103a ∴<≤综上所得:103a <≤或3a ≥ 四、其它类型恒成立问题能成立问题有时是以不等式有解的形式出现的;1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;分析:思路、对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可.简解:令na=g max x=a/2;令ma=f min x,fx=x-a 2+1-a 2,故1对称轴x=a<1,即或0<a<1时,ma= f min x=f1=2-2a,由ma>na 解得a<4/5,注意到a 的范围从而得a 的范围:0<a<4/5;2对称轴x=a>2时,ma= f min x=f2=5-4a,由ma>na 解得a<10/9,注意到a 的范围从而得a 无解:;3对称轴x=a∈1,2时,ma= fminx=fa=2-2a,由ma>na 解得4171+->a 或4171--<a ,注意到a 的范围从而得a 的范围21≤<a :;; 综合123知实数a 的取值范围是:0,4/5∪1,2 2、已知两函数2)(x x f =,m x g x-⎪⎭⎫⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、主参换位法已知某个参数的范围,整理成关于这个参数的函数题型三、分离参数法欲求某个参数的范围,就把这个参数分离出来 题型四、数形结合恒成立问题与二次函数联系零点、根的分布法 五、不等式能成立问题有解、存在性的处理方法若在区间D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()f x B <成立,则等价于在区间D 上的()min f x B <.1、存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______; 解:设()31f x x x =++-,由()23f x a a ≤-有解,()2min3a a f x ⇒-≥, 又()()31314x x x x ++-≥+--=,∴234a a -≥,解得41a a ≥≤-或;1、求使关于p 的不等式x p px x 212+<++在p ∈-2,2有解的x 的取值范围;解:即关于p 的不等式012)1(2<+-+-x x p x 有解,设()()2121f p x p x x =-+-+,则()f p 在-2,2上的最小值小于0;1当x>1时,fp 关于p 单调增加,故f min p=f-2=x 2-4x+3<0,解得1<x<3;2 当x<1时,fp 关于p 单调减少,故f min p=f2=x 2-1<0,解得-1<x<1; 3当x=1时,fp=0,故f min p=fp<0不成立;综合123知实数x 的取值范围是:-1,1∪1,3例、设命题P:x1,x2是方程x 2-ax-2=0的二个根,不等式|m 2-5m-3|≥|x 1-x 2|对任意实数a∈-1,1恒成立;命题Q :不等式|x-2m|-|x|>1m>0有解;若命题P 和命题Q 都是真命题,求m的值范围;解:1由P 真得:8||221+=-a x x ,注意到a 在区间-1,1, 3||max 21=-x x ,由于|m 2-5m-3|≥|x 1-x 2|对任意实数a∈-1,1恒成立,故有3|||35|max 212=-≥--x x m m解得: m≤-1或m≥6或0≤m≤51由Q 真,不等式|x-2m|-|x|>1m>0有解,得|x-2m|-|x|max =2m>1,解得:m>1/2 由于12都是相公命题,故m 的值范围:1/2<m≤5或m≥6.举例1已知不等式0224>+⋅-x x a 对于+∞-∈,1[x 恒成立,求实数a 的取值范围. 2若不等式0224>+⋅-x x a 对于]3,(-∞∈a 恒成立,求实数x 的取值范围. 分析:1由0224>+⋅-x x a 得:xx a 222+<对于+∞-∈,1[x 恒成立,因212≥x,所以22222≥+xx ,当22=x时等号成立.所以有22<a . 2注意到0224>+⋅-x x a 对于]3,(-∞∈a 恒成立是关于a 的一次不等式.不妨设)24(2)(++⋅-=x x a a f ,则)(a f 在]3,(-∞∈a 上单调递减,则问题等价于0)3(>f ,所以2202234>⇒>+⋅-x x x 或12<x ,则x 取值范围为),1()0,(+∞-∞ .小结:恒成立与有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体;①不等式()f x M <对x I ∈时恒成立max ()f x M•⇔<,x I ∈;即()f x 的上界小于或等于M ; ②不等式()f x M <对x I ∈时有解min ()f x M•⇔<,x I ∈; 或()f x 的下界小于或等于M ; ③不等式()f x M >对x I ∈时恒成立min ()f x M•⇔>,x I ∈;即()f x 的下界大于或等于M ; ④不等式()f x M >对x I ∈时有解max ()f x M ⇔>,x I ∈.; 或()f x 的上界大于或等于M ;高中数学难点强化班第四讲140709课后练习答案:一.填空选择题每小题6分,共60分1、对任意的实数x ,若不等式a x x >--+21恒成立,那么实数a 的取值范围 ;答案:|x+1|-|x-2| -|x+1-x-2|=-3,故实数a 的取值范围:a<-3 2、不等式2sin 4sin 10x x a -+-<有解,则a 的取值范围是解:原不等式有解()()22sin 4sin 1sin 231sin 1a x x x x ⇒>-+=---≤≤有解,而()2minsin 232x ⎡⎤--=-⎣⎦,所以2a >-;3.若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是 A 1a <- B ||1a ≤ C ||1a < D 1a ≥ 解析:对∀x R ∈,不等式||x ax ≥恒成立 则由一次函数性质及图像知11a -≤≤,即||1a ≤;答案:选B4.当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .解析: 当(1,2)x ∈时,由240x mx ++<得24x m x +<-.令244()x f x x x x+==+,则易知()f x 在(1,2)上是减函数,所以[1,2]x ∈时()(1)5maxf x f ==,则2min 4()5x x+->-∴5m ≤-.5.已知不等式223(1)1ax x a x x a -++>--+对任意(0)a ∈+∞,都成立,那么实数x 的取值范围为 .分析:已知参数a 的范围,要求自变量x 的范围,转换主参元x 和a 的位置,构造以a 为自变量x 作为参数的一次函数()g a ,转换成∀(0)a ∈+∞,,()0g a >恒成立再求解;解析:由题设知“223(1)1ax x a x x a -++>--+对∀(0)a ∈+∞,都成立,即22(2)20a x x x +-->对∀(0)a ∈+∞,都成立;设22()(2)2g a x a x x =+--a R ∈,则()g a 是一个以a 为自变量的一次函数;220x +>恒成立,则对∀x R ∈,()g a 为R 上的单调递增函数; 所以对∀(0)a ∈+∞,,()0g a >恒成立的充分必要条件是(0)0g ≥,220x x --≥,∴20x -≤≤,于是x 的取值范围是{|20}x x -≤≤;6.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是 A .0,2 B .0,8 C .2,8 D .-∞,0分析:()f x 与()g x 的函数类型,直接受参数m 的影响,所以首先要对参 数进行分类讨论,解析:当0m =时,()810f x x =-+>在1(,)8-∞上恒成立在R 上恒成立,显然不满足题意;如图1当0m <时,()g x 在R 上递减且()0g x mx =>只在(,0)-∞而()f x 是一个开口向下且恒过定点0,1的二次函数,当0m >时,()g x 在R 上递增且()0g x mx =>在(0,)+∞而()f x 是一个开口向上且恒过定点0,1的二次函数,数x ,()f x 与()g x 的值至少有一个为正数则只需()0f x >在(-∞恒成立;如图3则有24024(4)80m m m m -⎧<⎪⎨⎪∆=--<⎩或402m m -≥解得48m <<或04m <≤, 综上可得08m <≤即(0,8)m ∈; 故选B;7、已知两函数()2728f x x x c =--,gx=6x 2-24x+21;1对任意[]3,3x ∈-,都有()()f x g x ≤成立,那么实数c 的取值范围 c ≥0 ; 2存在[]3,3x ∈-,使()()f x g x ≤成立,那么实数c 的取值范围 c ≥-25 ; 3对任意[]12,3,3x x ∈-,都有()()12f xg x ≤,那么实数c 的取值范围 c ≥150 ; 4存在[]12,3,3x x ∈-,都有()()12f xg x ≤,那么实数c 的取值范围 c ≥-175 ;解析:1设()()()322312h x g x f x x x x c =-=--+,问题转化为[]3,3x ∈-时,()0h x ≥恒成立,故()min 0h x ≥;令()()()266126120h x x x x x '=--=+-=,得1x =-或2;由导数知识,可知()h x 在[]3,1--单调递增,在[]1,2-单调递减,在[]2,3单调递增,且()345h c -=-,()()17h x h c =-=+极大值,()()220h x h c ==-极小值,()39h c =-,∴()()min 345h x h c =-=-,由450c -≥,得45c ≥;2据题意:存在[]3,3x ∈-,使()()f x g x ≤成立,即为:()()()0h x g x f x =-≥在[]3,3x ∈-有解,故()max 0h x ≥,由1知()max 70h x c =+≥,于是得7c ≥-;3它与1问虽然都是不等式恒成立问题,但却有很大的区别,对任意[]12,3,3x x ∈-,都有()()12f xg x ≤成立,不等式的左右两端函数的自变量不同,1x ,2x 的取值在[]3,3-上具有任意性,∴要使不等式恒成立的充要条件是:max min ()(),[3,3]f x g x ••x •≤∈-;∵()()[]27228,3,3f x x c x =---∈-∴ ()()max3147f x f c =-=-,∵()26840g x x x '=+-=()()23102x x +-,∴()0g x '=在区间[]3,3-上只有一个解2x =; ∴()()min248g x g ==-,∴14748c -≤-,即195c ≥.4存在[]12,3,3x x ∈-,都有()()12f xg x ≤,等价于()()min 1max 2f x g x ≤,由3得()()min 1228f x f c ==--,()()max 23102g x g =-=,28102130c c --≤⇒≥-点评:本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件; 二.简答题每题10分8、10分若不等式2(1)(1)3(1)0m x m x m +--+-<对任意实数x 恒成立,求实数m 取值范围 解:)10,2[9、①对一切实数x,不等式32x x a --+>恒成立,求实数a 的范围; ②若不等式32x x a --+>有解,求实数a 的范围; ③若方程32x x a --+=有解,求实数a 的范围; 解:①5-<a ②5<a ③]5,5[-∈a10.已知函数()()2lg x ax a x f --=Ⅰ若()x f 的定义域Φ≠A ,试求a 的取值范围.Ⅱ 若()x f 在()3,2∈x 上有意义, 试求a 的取值范围. Ⅲ若()0>x f 的解集为()3,2,,试求a 的值.解答:这三问中,第Ⅰ问是能成立问题,第Ⅱ问是恒成立问题,第Ⅲ问是恰成立问题.Ⅰ ()x f 的定义域非空,相当于存在实数x ,使02>--x ax a 成立,即()2x ax a x --=ϕ的最大值大于0成立,(),0444422max >+=---=a a a a x ϕ 解得 4-<a 或0>a .Ⅱ()x f 在区间()3,2上有意义,等价于()2x ax a x --=ϕ0>在()3,2恒成立,即()x ϕ的最小值大于0.解不等式组 ()⎪⎩⎪⎨⎧≥≤-,03,252ϕa 或()⎪⎩⎪⎨⎧≥>-,02,252ϕa ⎩⎨⎧≥---≥,093,5a a a 或⎩⎨⎧≥---<042,5a a a 解得 .29-≤aⅢ()0>x f 的解集为()3,2,等价于不等式12>--x ax a 的解集为()3,2;于是有012<-++a ax x ,这等价于方程012=-++a ax x 的两个根为2和3, 于是可解得5-=a .。
恒成立、存在问题

恒成立和存在性问题一、恒成立问题例1 已知函数f(x)=x|x-a|+2x.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方.f(x)=x3-6ax2+9a2x(a∈R),当a>0时,若对∀x∈[0,3]有f(x)≤4恒成立,求实数a的取值范围.例2已知函数f(x)=ax3+bx2-3x(a,b∈R),在点(1,f(1))处的切线方程为y+2=0.(1)求函数f(x)的解析式;(2)若对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.例3 已知函数f (x )=x -1-a ln x (a ∈R). (1)求证:f (x )≥0恒成立的充要条件是a =1; (2)若a <0,且对任意x 1,x 2∈(0,1],都有|f (x 1)-f (x 2)|≤4⎪⎪⎪⎪⎪⎪1x 1-1x 2,求实数a 的取值范围.已知函数f (x )=lg x ,求证:∀x 1,x 2∈(0,+∞),f (x 1)+f (x 2)2≤f ⎝ ⎛⎭⎪⎪⎫x 1+x 22.g (x )=1sin θ·x+ln x 在[1,+∞)上为增函数,且θ∈(0,π),则θ的值为________.二、存在性问题例1 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.f (x )=x (x -a )2,g (x )=-x 2+(a -1)x +a (其中a为常数).(1)如果函数y =f (x )和y =g (x )有相同的极值点,求a 的值;(2)设a >0,问是否存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得f (x 0)>g (x 0),若存在,请求出实数a 的取值范围;若不存在,请说明理由.例3 已知函数f (x )=2|x -m |和函数g (x )=x |x -m |+2m -8. (1)若方程f (x )=2|m |在[-4,+∞)上恒有惟一解,求实数m 的取值范围;(2)若对任意x 1∈(-∞,4],均存在x 2∈[4,+∞), 使得f (x 1)>g (x 2)成立,求实数m 的取值范围.(教材选修2-1 P20复习题5改编)例 命题“∃x ∈(0,+∞),x 2-ax +1≤0”为真命题,则a 的取值范围为________.f (x )=mx 33+x 2-x ,m ∈R ,函数f (x )在(2,+∞)上存在单调递增区间,求m 的取值范围.参考答案 例1【解答】 (1)f (x )=x |x -a |+2x =⎩⎨⎧x 2+(2-a )x ,x ≥a ,-x 2+(2+a )x ,x <a .由f (x )在R 上是增函数,则⎩⎪⎨⎪⎧a ≥-2-a 2,a ≤2+a 2,即-2≤a ≤2,故a 的取值范围为-2≤a ≤2.(2)由题意得对任意的实数x ∈[1,2],f (x )<g (x )恒成立,即x |x -a |<1在[1,2]恒成立,也即x -1x <a <x +1x 在[1,2]恒成立,故当x ∈[1,2]时,只要x -1x 的最大值小于a 且x +1x 的最小值大于a 即可,而当x ∈[1,2]时,⎝ ⎛⎭⎪⎪⎫x -1x ′=1+1x 2>0,从而x -1x 为增函数,由此得⎝ ⎛⎭⎪⎪⎫x -1x max =32; 当x ∈[1,2]时,⎝ ⎛⎭⎪⎪⎫x +1x ′=1-1x 2>0,从而x +1x 为增函数,由此得⎝⎛⎭⎪⎪⎫x +1x min =2, 所以32<a <2.变1【解答】 f ′(x )=3x 2-12ax +9a 2=3(x -a )(x -3a ),故f (x )在(0,a )上单调递增,在(a,3a )上单调递减,在(3a ,+∞)上单调递增.(1)当a ≥3时,函数f (x )在[0,3]上递增, 所以函数f (x )在[0,3]上的最大值是f (3),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (3)≤4,a ≥3,解得a ∈∅.(2)当1≤a <3时,有a <3≤3a ,此时函数f (x )在[0,a ]上递增,在[a,3]上递减,所以函数f (x )在[0,3]上的最大值是f (a ),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (a )≤4,1≤a <3,解得a =1.(3)当a <1时,有3>3a ,此时函数f (x )在[a,3a ]上递减,在[3a,3]上递增,所以函数f (x )在[0,3]上的最大值是f (a )或者是f (3).由f (a )-f (3)=(a -3)2(4a -3),① 0<a ≤34时,f (a )≤f (3),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (3)≤4,0<a ≤34,解得a ∈⎣⎢⎢⎡⎦⎥⎥⎤1-239,34. ②34<a <1时,f (a )>f (3),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (a )≤4,34<a <1,解得a ∈⎝ ⎛⎭⎪⎪⎫34,1.综上所述,a ∈⎣⎢⎢⎡⎦⎥⎥⎤1-239,1.例2【解答】 (1)∵f ′(x )=3ax 2+2bx -3,根据题意,得⎩⎨⎧ f (1)=-2,f ′(1)=0,即⎩⎨⎧ a +b -3=-2,3a +2b -3=0,解得⎩⎨⎧a =1,b =0,∴f (x )=x 3-3x .(2)令f ′(x )=3x 2-3=0,即3x 2-3=0,解得x =±1,(-2,-1) (-1,1) (1,2) + - + ∵f (-1)=max min 2. 则对于区间[-2,2]上任意两个自变量的值x 1,x 2,都有|f (x 1)-f (x 2)|≤f (x )max -f (x )min =4,所以c ≥4,即c 的最小值为4.变题【解答】 (1)①充分性:当a =1时,f (x )=x -1-ln x ,f ′(x )=1-1x =x -1x ,所以当x >1时,f ′(x )>0,所以函数f (x )在(1,+∞)上是增函数,当0<x <1时,f ′(x )<0,所以函数f (x )在(0,1)上是减函数,所以f (x )≥f (1)=0.②必要性.f ′(x )=1-a x =x -ax ,其中x >0.(i)当a ≤0时,f ′(x )>0恒成立,所以函数f (x )在(0,+∞)上是增函数. 而f (1)=0,所以当x ∈(0,1)时,f (x )<0,与f (x )≥0恒成立相矛盾. 所以a ≤0不满足题意. (ii)当a >0时,因为当x >a 时,f ′(x )>0,所以函数f (x )在(a ,+∞)上是增函数; 当0<x <a 时,f ′(x )<0,所以函数f (x )在(0,a )上是减函数. 所以f (x )≥f (a )=a -1-a ln a .因为f (1)=0,所以当a ≠1时,f (a )<f (1)=0,此时与f (x )≥0恒成立相矛盾. 所以a =1,综上所述,f (x )≥0恒成立的充要条件是a =1.(2)由(1)可知,当a <0时,函数f (x )在(0,1]上是增函数,又函数y =1x 在(0,1]上是减函数,不妨设0<x 1≤x 2≤1,则|f (x 1)-f (x 2)|=f (x 2)-f (x 1),⎪⎪⎪⎪⎪⎪⎪⎪1x 1-1x 2=1x 1-1x 2, 所以|f (x 1)-f (x 2)|≤4⎪⎪⎪⎪⎪⎪⎪⎪1x 1-1x 2等价于f (x 2)-f (x 1)≤4x 1-4x 2,即f (x 2)+4x 2≤f (x 1)+4x 1. 设h (x )=f (x )+4x =x -1-a ln x +4x .则|f (x 1)-f (x 2)|≤4⎪⎪⎪⎪⎪⎪⎪⎪1x 1-1x 2等价于函数h (x )在区间(0,1]上是减函数. 因为h ′(x )=1-a x -4x 2=x 2-ax -4x 2,所以所证命题等价于证x 2-ax -4≤0在x ∈(0,1]时恒成立,即a ≥x -4x 在x ∈(0,1]上恒成立,即a 不小于y =x -4x 在区间(0,1]内的最大值.而函数y =x -4x 在区间(0,1]上是增函数,所以y =x -4x 的最大值为-3, 所以a ≥-3.又a <0,所以a ∈[-3,0).θ=π2 【解析】 由题意,g ′(x )=-1sin θ·x 2+1x≥0在[1,+∞)上恒成立,即sin θ·x -1sin θ·x 2≥0在[1,+∞)上恒成立.∵θ∈(0,π),∴sin θ>0.故sin θ·x -1≥0在[1,+∞)上恒成立,只需sin θ·1-1≥0,即sin θ≥1,只有sin θ=1.结合θ∈(0,π),得θ=π2.存在问题【解答】 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14, 曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8, 所以曲线y =f (x )在点(2,f (x ))处的切线方程为 8x -y -2=0.(2)解法一:f ′(x )=3x 2-2ax =3x ⎝⎛⎭⎪⎪⎫x -23a (1≤x ≤2), 当23a ≤1,即a ≤32时,f ′(x )≥0,f (x )在[1,2]上为增函数, 故f (x )min =f (1)=11-a ,所以11-a <0,a >11,这与a ≤32矛盾.当1<23a <2,即32<a <3时,当1≤x <23a ,f ′(x )<0;当23a <x ≤2,f ′(x )>0,所以x =23a 时,f (x )取最小值,因此有f ⎝ ⎛⎭⎪⎪⎫23a <0,即827a 3-49a 3+10=-427a 3+10<0,解得a >3352,这与32<a <3矛盾;当23a ≥2,即a ≥3时,f ′(x )≤0,f (x )在[1,2]上为减函数,所以f (x )min =f (2)=18-4a ,所以18-4a <0,解得a >92,这符合a ≥3.综上所述,a 的取值范围为a >92.解法二:由已知得:a >x 3+10x 2=x +10x2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x3,∵1≤x ≤2,∴g ′(x )<0,所以g (x )在[1,2]上是减函数.g (x )min =g (2),所以a >92.【解答】 (1)f (x )=x (x -a )2=x 3-2ax 2+a 2x , 则f ′(x )=3x 2-4ax +a 2=(3x -a )(x -a ),令f ′(x )=0,得x =a 或a3,而g (x )在x =a -12处有极大值.∴a -12=a ⇒a =-1,或a -12=a 3⇒a =3.综上,a =3或a =-1.(2)假设存在,即存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得 f (x 0)-g (x 0)=x 0(x 0-a )2-[-x 20+(a -1)x 0+a ]=x 0(x 0-a )2+(x 0-a )(x 0+1)=(x 0-a )[x 20+(1-a )x 0+1]>0,当x 0∈⎝ ⎛⎭⎪⎫-1,a 3时,又a >0,故x 0-a <0, 则存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得x 20+(1-a )x 0+1<0. ①当a -12>a 3,即a >3时,由⎝ ⎛⎭⎪⎫a 32+(1-a )⎝ ⎛⎭⎪⎫a 3+1<0得a >3或a <-32,∴a >3;②当-1≤a -12≤a 3,即0<a ≤3时,4-(a -1)24<0得a <-1或a >3,∴a 无解.综上,a >3.【解答】 (1)f ′(x )=-x 2-23x +53,令f ′(x )>0,即x 2+23x -53<0,解得-53<x <1,∴f (x )的单调增区间为⎝ ⎛⎭⎪⎫-53,1;单调减区间为⎝ ⎛⎭⎪⎫-∞,-53和(1,+∞).(2)由(1)可知:当x ∈[0,1]时,f (x )单调递增,∴当x ∈[0,1]时,f (x )∈[f (0),f (1)],即f (x )∈[-4,-3].又g ′(x )=3x 2-3a 2,且a ≥1,∴当x ∈[0,1]时,g ′(x )≤0,g (x )单调递减,∴当x ∈[0,1]时,g (x )∈[g (1),g (0)],即g (x )∈[-3a 2-2a +1,-2a ],又对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立⇔[-4,-3]⊆[-3a 2-2a +1,-2a ],即⎩⎪⎨⎪⎧-3a 2-2a +1≤-4,-3≤-2a ,解得1≤a ≤32.【解答】 (1)由f (x )=2|m |在x ∈[-4,+∞)上恒有惟一解, 得|x -m |=|m |在x ∈[-4,+∞)上恒有惟一解. 当x -m =m 时,得x =2m ,则2m =0或2m <-4, 即m <-2或m =0.综上,m 的取值范围是m <-2或m =0.(2)f (x )=⎩⎨⎧2x -m (x ≥m ),2m -x (x <m ),原命题等价为f (x 1)min >g (x 2)min .①当4≤m ≤8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在[4,m ]上单调递减,[m ,+∞)上单调递增,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以4<m <5或6<m ≤8.②当m >8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在⎣⎢⎢⎡⎦⎥⎥⎤4,m 2单调递增,⎣⎢⎢⎡⎦⎥⎥⎤m 2,m 上单调递减,[m ,+∞)上单调递增,g (4)=6m -24>g (m )=2m -8,故g (x )≥g (m )=2m -8,所以2m -4>2m -8, 解得4<m <5或m >6.所以m >8.③0<m <4时,f (x )在(-∞,m ]上单调递减,[m,4]上单调递增, 故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即72<m <4.④m ≤0时,f (x )在(-∞,m ]上单调递减,[m,4]上单调递增, 故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即m >72(舍去).综上,m 的取值范围是⎝⎛⎭⎪⎪⎫72,5∪(6,+∞).【答案】 a ≥2【解析】 原命题等价为∃x ∈(0,+∞),x 2+1x ≤a ,令f (x )=x 2+1x =x +1x ≥2,所以a ≥2.。
高一同步专题《函数中的“恒成立”问题与“存在性”问题》PDF

(Ⅳ)对任意 x1 D1 ,存在 x2 D2 ,使得 f x1 g x2 , f (x) x D1 g(x) x D2 ;
(二)“存在性”问题(“有解”问题):(分离参数,转化为函数的“最值”问题):
(Ⅰ)存在 x D ,使得 a f (x) 成立(即 a f (x) ( x D )有解) a f (x)min ; 存在 x D ,使得 a f (x) 成立 a f (x)min ;
1 2x 1
15,
1 3
2 2x 1
2, 3
2 5
1
2 2x 1
1 3
,
3 5
,即
m
log 2
1
2 2x 1
,
x
1,
2
的值域为
1 3
,
3 5
。
所以,
m
的取值范围为
1 3
,
3 5
①.求 a 的取值范围;
②.若对任意实数 m , f m 1 f m2 t 0 恒成立,求实数 t 的取值范围。
〖解〗(1)若 a 2 ,则当 x 0 时, f (x) x2 2x ,
x 0 时, x 0 , f x x2 2x ,
第4页共7页
《函数中的“恒成立”问题与“存在性”问题》
高三数学专题恒成立与存在性问题

高三复习专题——恒成立与存在性问题知识点总结:(1)恒成立问题1. ∀x∈D,均有f(x)>A恒成立,则f(x)min>A;2. ∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A.3. ∀x∈D,均有f(x) >g(x)恒成立,则F(x)=f(x)- g(x) >0,∴F(x)min >04. ∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)- g(x) ﹤0,∴F(x) ma x﹤05. ∀x1∈D, ∀x2∈E,均有f(x1) >g(x2)恒成立,则f(x)min> g(x)ma x6. ∀x1∈D, ∀x2∈E,均有f(x1) <g(x2)恒成立,则f(x) ma x < g(x) min(2)存在性问题1. ∃x0∈D,使得f(x0)>A成立,则f(x) ma x >A;2. ∃x0∈D,使得f(x0)﹤A成立,则f(x) min <A3. ∃x0∈D,使得f(x0) >g(x0)成立,设F(x)=f(x)- g(x),∴F(x) ma x >04. ∃x0∈D,使得f(x0) <g(x0)成立,设F(x)=f(x)- g(x),∴F(x) min <05. ∃x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min6. ∃x1∈D, ∃x2∈E,均使得f(x1) <g(x2)成立,则f(x) min < g(x) ma x(3)相等问题1. ∀x1∈D, ∃x2∈E,使得f(x1)=g(x2)成立,则{ f(x)}{g(x)}(4)恒成立与存在性的综合性问题1. ∀x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x)m in>g(x)m in2. ∀x1∈D, ∃x2∈E, 使得f(x1) <g(x2)成立,则f(x)max <g(x)max(5)恰成立问题1. 若不等式f(x)>A在区间D上恰成立,则等价于不等式f(x)>A的解集为D;2.若不等式f(x)<B在区间D上恰成立,则等价于不等式f(x)<B的解集为D.► 探究点一 ∀x ∈D ,f (x )>g (x )的研究例1、已知函数12)(2+-=ax x x f ,xa x g =)(,其中0>a ,0≠x . 对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;【思路分析】等价转化为函数0)()(>-x g x f 恒成立,通过分离变量,创设新函数求最值解决. 简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .► 探究点二 ∃x ∈D ,f (x )>g (x )的研究对于∃x ∈D ,f (x )>g (x )的研究,先设h (x )=f (x )-g (x ),再等价为∃x ∈D ,h (x )max >0,其中若g (x )=c ,则等价为∃x ∈D ,f (x )max >c .例 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.【解答】 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14,曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8,所以曲线y =f (x )在点(2,f (x ))处的切线方程为8x -y -2=0.(2)解法一:f ′(x )=3x 2-2ax =3x ⎝⎛⎭⎫x -23a (1≤x ≤2), 当23a ≤1,即a ≤32时,f ′(x )≥0,f (x )在[1,2]上为增函数,故f (x )m in =f (1)=11-a ,所以11-a <0,a >11,这与a ≤32矛盾.当1<23a <2,即32<a <3时,当1≤x <23a ,f ′(x )<0;当23a <x ≤2,f ′(x )>0,所以x =23a 时,f (x )取最小值,因此有f ⎝⎛⎭⎫23a <0,即827a 3-49a 3+10=-427a 3+10<0,解得a >3352,这与32<a <3矛盾; 当23a ≥2,即a ≥3时,f ′(x )≤0,f (x )在[1,2]上为减函数,所以f (x )m in =f (2)=18-4a ,所以18-4a <0,解得a >92,这符合a ≥3.综上所述,a 的取值范围为a >92.解法二:由已知得:a >x 3+10x 2=x +10x 2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x 3,∵1≤x ≤2,∴g ′(x )<0,所以g (x )在[1,2]上是减函数.g (x )m in =g (2),所以a >92.【点评】 解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间[1,2]的关系;解法二是用的参数分离,由于ax 2>x 3+10中x 2∈[1,4],所以可以进行参数分离,而无需要分类讨论.► 探究点三 ∀x 1∈D ,∀x 2∈D ,f (x 1)>g (x 2)的研究 例、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.思路分析:解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xa b +-≤或x b x a )10(2-+-≤; 方法3:变更主元,0101)(≤-++⋅=b x a x a ϕ,]2,21[∈a 简解:方法1:对b x x a b x x g x h ++=++=)()(求导,22))((1)(x a x a x x a x h +-=-=', 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者. ⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴a b a b b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .► 探究点四 ∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究,第一步先转化为∃x 2∈D ,f (x 1)m in >g (x 2),再将该问题按照探究点一转化为f (x 1)m in >g (x 2)m in .例、已知函数f (x )=2|x -m |和函数g (x )=x |x -m |+2m -8.(1)若方程f (x )=2|m |在[-4,+∞)上恒有惟一解,求实数m 的取值范围;(2)若对任意x 1∈(-∞,4],均存在x 2∈[4,+∞),使得f (x 1)>g (x 2)成立,求实数m 的取值范围.【解答】 (1)由f (x )=2|m |在x ∈[-4,+∞)上恒有惟一解,得|x -m |=|m |在x ∈[-4,+∞)上恒有惟一解.当x -m =m 时,得x =2m ,则2m =0或2m <-4,即m <-2或m =0.综上,m 的取值范围是m <-2或m =0.(2)f (x )=⎩⎪⎨⎪⎧ 2x -m x ≥m ,2m -x x <m ,原命题等价为f (x 1)m in >g (x 2)m in .①当4≤m ≤8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在[4,m ]上单调递减,[m ,+∞)上单调递增,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以4<m <5或6<m ≤8.②当m >8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在⎣⎡⎦⎤4,m 2单调递增,⎣⎡⎦⎤m 2,m 上单调递减,[m ,+∞)上单调递增,g (4)=6m -24>g (m )=2m -8,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以m >8.③0<m <4时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增,故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即72<m <4.④m ≤0时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增,故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即m >72(舍去).综上,m 的取值范围是⎝⎛⎭⎫72,5∪(6,+∞). 【点评】 因为对于∀x ∈D ,f (x )>c ,可以转化为f (x )m in >c ;∃x ∈D ,c >g (x ),可以转化为c >g (x )m in ,所以本问题类型可以分两步处理,转化为f (x )m in >g (x )m in .► 探究点五 ∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究,若函数f (x )的值域为C 1,函数g (x )的值域为C 2,则该问题等价为C 1⊆C 2.例、设函数f (x )=-13x 3-13x 2+53x -4.(1)求f (x )的单调区间;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a .若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立,求a 的取值范围.【解答】 (1)f ′(x )=-x 2-23x +53,令f ′(x )>0,即x 2+23x -53<0,解得-53<x <1,∴f (x )的单调增区间为⎝⎛⎭⎫-53,1;单调减区间为⎝⎛⎭⎫-∞,-53和(1,+∞). (2)由(1)可知:当x ∈[0,1]时,f (x )单调递增,∴当x ∈[0,1]时,f (x )∈[f (0),f (1)],即f (x )∈[-4,-3].又g ′(x )=3x 2-3a 2,且a ≥1,∴当x ∈[0,1]时,g ′(x )≤0,g (x )单调递减,∴当x ∈[0,1]时,g (x )∈[g (1),g (0)],即g (x )∈[-3a 2-2a +1,-2a ],又对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立⇔[-4,-3]⊆[-3a 2-2a +1,-2a ],即⎩⎪⎨⎪⎧-3a 2-2a +1≤-4,-3≤-2a , 解得1≤a ≤32.恒成立与存在有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。
不等式的恒成立与存在性问题

恒成立与存在性问题【基础知识整合】1、恒成立问题①.x D ∀∈,()a f x >恒成立,则max ()a f x >②.x D ∀∈,()a f x <恒成立,则min()a f x <③.x D ∀∈,()()f x g x >恒成立,记()() (0)F x f x g x =->,则min 0() F x >④.x D ∀∈,()()f x g x <恒成立,记()() (0)F x f x g x =-<,则max 0() F x <⑤.1122,x D x D ∀∈∈,12()()f x g x >恒成立,则min max ()()f x g x >⑥.1122,x D x D ∀∈∈,12()()f x g x <恒成立,则max min ()()f x g x <2、存在性问题①.x D ∃∈,()a f x >成立,则min ()a f x >②.x D ∃∈,()a f x <成立,则max()a f x <③.x D ∃∈,()()f x g x >成立,记()() (0)F x f x g x =->,则max 0() F x >④.x D ∃∈,()()f x g x <成立,记()() (0)F x f x g x =-<,则min 0() F x <⑤.1122,x D x D ∃∈∈,12()()f x g x >成立,则max min ()()f x g x >⑥.1122,x D x D ∃∈∈,12()()f x g x <成立,则min max ()()f x g x <3、恒成立与存在性混合不等问题①.1122,x D x D ∀∈∃∈,12()()f x g x >成立,则min min ()()f x g x >②.1122,x D x D ∀∈∃∈,12()()f x g x <成立,则max max ()()f x g x <4、恒成立与存在性混合相等问题若()f x ,()g x 的值域分别为,A B ,则①.1122,x D x D ∀∈∃∈,12()()f x g x =成立,则A B ⊆②.1122,x D x D ∃∈∃∈,12()()f x g x =成立,则A B ≠∅ 5、解决高中数学函数的存在性与恒成立问题常用以下几种方法①函数性质法;②分离参数法;③主参换位法;④数形结合法等.6、一次函数)0()(≠+=k b kx x f 若[]n m x f y ,)(在=内恒有0)(>x f ,则根据函数的图像可得⎩⎨⎧><⎩⎨⎧>>0)(00)(0n f a m f a 或可合并成⎩⎨⎧>>0)(0)(n f m f ,同理若[]n m x f y ,)(在=内恒有0)(<x f 则有⎩⎨⎧<<0)(0)(n f m f 例1:对于满足||2p ≤的所有实数p ,求使不等式212x px p x ++>+恒成立的x 的取值范围.例2:若不等式)1(122->-x m x 的所有22≤≤-m 都成立,则x 的取值范围__________7、二次函数——利用判别式、韦达定理及根的分布求解有以下几种基本类型:类型1:设2()(0).f x ax bx c a =++≠R x x f ∈>在0)(上恒成立00<∆>⇔且a ;R x x f ∈<在0)(上恒成立00<∆<⇔且a 类型2:设2()(0).f x ax bx c a =++≠(用函数图象解决,不太适用)(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立,222()00()0.bb b a aa f f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<>⎩⎩⎩或或],[0)(βα∈<x x f 在上恒成立()0,()0.f f αβ<⎧⇔⎨<⎩(2)当0<a 时,],[0)(βα∈>x x f 在上恒成立()()0,0.f f αβ>⎧⎪⇔⎨>⎪⎩],[0)(βα∈<x x f 在上恒成立,222()00()0.b b b a a af f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<<⎩⎩⎩或或【基础典例分析】例1:已知函数()log a f x x =,()2log (22)a g x x t =+-,其中0a >且1a ≠,t R ∈.(Ⅰ)若4t =,且1[,2]4x ∈时,()()()F x g x f x =-的最小值是-2,求实数a 的值;(Ⅱ)若01a <<,且1[,2]4x ∈时,有()()f x g x ≥恒成立,求实数t 的取值范围.例2:已知=)(x f x x +221,=)(x g a x -+)1ln(,(Ⅰ)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;(Ⅱ)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.例3:设函数()21ln 2a f x a x x bx -=+-,a R ∈且1a ≠.曲线()y f x =在点()()1,1f 处的切线的斜率为0.若存在[)1,x ∈+∞,使得()1af x a <-,求a 的取值范围.例4:已知函数()133x x af x b+-+=+(Ⅰ)当1a b ==时,求满足()3x f x =的x 的取值;(Ⅱ)若函数()f x 是定义在R 上的奇函数;①存在R t ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若()g x 满足()()()12333x x f x g x -⋅+=-⎡⎤⎣⎦,若对任意x R ∈,不等式(2)()11g x m g x ⋅-≥恒成立,求实数m 的最大值.例5:已知=)(x f x x +221,=)(x g a x -+)1ln(,⑴若存在]2,0[∈x ,使得)()(x g x f =,求实数a 的取值范围;⑵若存在]2,0[∈x ,使得)()(x g x f >,求实数a 的取值范围;⑶若对任意]2,0[∈x ,恒有)()(x g x f >,求实数a 的取值范围;⑷若对任意]2,0[,21∈x x ,恒有)()(21x g x f >,求实数a 的取值范围;⑸若对任意]2,0[2∈x ,存在]2,0[1∈x ,使得)()(21x g x f >,求实数a 的取值范围;⑹若对任意]2,0[2∈x ,存在]2,0[1∈x ,使得)()(21x g x f =,求实数a 的取值范围;⑺若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;⑻若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【高考真题研究】(2017天津卷理8)已知函数()23,12,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩,设a R ∈,若关于x 的不等式()2xf x a + 在R 上恒成立,则a 的取值范围是()(A)47,216⎡⎤-⎢⎥⎣⎦(B)4739,1616⎡⎤-⎢⎥⎣⎦(C)23,2⎡⎤-⎣⎦(D)3923,16⎡⎤-⎢⎥⎣⎦(2015全国卷Ⅰ理12)设函数()f x =(21)xe x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是()(A)[32e-,1)(B)[32e -,34)(C)[32e ,34)(D)[32e,1)(2014全国卷Ⅰ理11)已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为()(A)(2,)+∞(B)(,2)-∞-(C)(1,)+∞(D)(,1)-∞-(2015全国卷Ⅱ理21(2))设函数()2emxf x x mx =+-.若对于任意[]12,1,1x x ∈-,都有()()121e f x f x -- ,求m 的取值范围.(2015山东卷理21(2))设函数()()()2ln 1f x x a x x =++-,其中a R ∈,若0x ∀>,()0f x 成立,求a 的取值范围.【名题精选,提升能力】1、函数2()3f x x ax =++,当[]2,2x ∈-时,()f x a ≥恒成立,则a 的取值范围是2、已知函数()f x =(,1]-∞上有意义,则a 的取值范围是3、若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,则x 的取值范围是4、若=)(x f x x +221,=)(x g a x -+)1ln(,对∀123,,[0,2]x x x ∈,恒有()()()123f x f x g x +>,则实数a 的取值范围是5、已知数列{}n a 是各项均不为零的等差数列,n S 为其前n项和,且n a =(n *∈Ν).若不等式8nn a n λ+≤对任意n *∈Ν恒成立,则实数λ的最大值为5、设函数x x e x f 1)(22+=,x ex e x g 2)(=,对),0(,21+∞∈∀x x ,不等式1)()(21+≤k x f k x g 恒成立,则正数k 的取值范围为7、已知函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩,()|||1|g x x k x =-+-,若对任意的12,x x R ∈,都有12()()f x g x ≤成立,则实数k 的取值范围为8、当210≤<x 时,x a x log 4<,则a 的取值范围是()(A)(0,22)(B)(22,1)(C)(1,2)(D)(2,2)9、已知函数()931x x f x m m =-⋅++对()0 x ∈+∞,的图象恒在x 轴上方,则m 的取值范围是()(A)22m -<<+(B)2m<(C)2m<+(D)2m ≥+10、设函数3()f x x x =+,x R ∈.若当02πθ<<时,不等式0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是()(A)1(,1]2(B)1(,1)2(C)[1,)+∞(D)(,1]-∞11、定义在R 上的偶函数()f x 在[)0,+∞上递减,若()()()ln 1ln 121f ax x f ax x f -+++--≥对[]1,3x ∈恒成立,则实数a 的取值范围为()(A)()2,e (B)1,e⎡⎫+∞⎪⎢⎣⎭(C)1,e e ⎡⎤⎢⎥⎣⎦(D)12ln3,3e+⎡⎤⎢⎥⎣⎦12、不等式2220x axy y -+≥对于任意]2,1[∈x 及]3,1[∈y 恒成立,则实数a 的取值范围是()(A)a ≤22(B)a ≥22(C)a ≤311(D)a ≤2913、已知函数()()2ln 1f x a x x =+-,若对(),0,1p q ∀∈,且p q ≠,有()()112f p f q p q+-+>-恒成立,则实数a 的取值范围为()(A)(),18-∞(B)(],18-∞(C)[)18,+∞(D)()18,+∞14、若对[),0,x y ∀∈+∞,不等式2242x y x y ax ee +---≤++,恒成立,则实数a 的最大值是()(A)14(B)1(C)2(D)1215、已知函数2ln ()()()x x b f x b R x+-=∈,若存在1[,2]2x ∈,使得()'()f x x f x >-⋅,则实数b的取值范围是()(A)(-∞(B)3(,2-∞(C)9(,)4-∞(D)(,3)-∞16、设曲线()e x f x x =--上任意一点处的切线为1l ,总存在曲线()32cos g x ax x =+上某点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为()(A)[]1,2-(B)()3,+∞(C)21,33⎡⎤-⎢⎥⎣⎦(D)12,33⎡⎤-⎢⎥⎣⎦17、若曲线21:C y x =与曲线2:x C y ae =(0)a >存在公共切线,则a 的取值范围为()(A)28[,)e+∞(B)28(0,e(C)24[,)e+∞(D)24(0,]e18、若存在两个正实数,x y ,使得等式()()324ln ln 0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是()(A)(),0-∞(B)30,2e ⎛⎤ ⎥⎝⎦(C)3,2e⎡⎫+∞⎪⎢⎣⎭(D)()3,0,2e⎡⎫-∞+∞⎪⎢⎣⎭ 19、已知函数321()3f x x x ax =++.若1()x g x e =,对任意11[,2]2x ∈,存在21[,2]2x ∈,使12'()()f x g x ≤成立,则实数a 的取值范围是()(A)(,8]e-∞-(B)[8,)e-+∞(C))e (D)3(,]32e -20、设函数()3269f x x x x =-+,()32111(1)323a g x x x ax a +=-+->,若对任意的[]20,4x ∈,总存在[]10,4x ∈,使得()()12f x g x =,则实数a 的取值范围为()(A)91,4⎛⎤ ⎥⎝⎦(B)[)9,+∞(C)][91,9,4⎛⎫⋃+∞ ⎪⎝⎭(D)][39,9,24⎡⎫⋃+∞⎪⎢⎣⎭21、设函数()()()21ln 31f x g x ax x =-=-+,若对任意[)10,x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为()(A)94(B)2(C)92(D)422、已知()()2cos ,43f x x x g x x x =+=-+-,对于[],1a m m ∀∈+,若,03b π⎡⎤∃∈-⎢⎥⎣⎦,满足()()g a f b =,则m 的取值范围是()(A)22⎡-+⎣(B)1⎡+⎣(C)2⎡+⎣(D)12⎡+⎣23、已知函数()()()221ln ,,1xf x ax a x x a Rg x e x =-++∈=--,若对于任意的()120,,x x R ∈+∞∈,不等式()()12f x g x ≤恒成立,,则实数a 的取值范围为()(A)[)1,0-(B)[]1,0-(C)3,2⎡⎫-+∞⎪⎢⎣⎭(D)3,2⎛⎤-∞- ⎥⎝⎦。
恒成立与存在性问题

01
总结词
一次函数性质简单,常用于基础问 题。
总结词
一次函数在定义域内单调,不存在 极值点。
03
02
总结词
一次函数图像为直线,单调性明显。
总结词
一次函数在定义域内单调,恒成立 与存在性问题较易解决。
04
二次函数的恒成立与存在性问题实例
总结词
二次函数开口方向由二次项系数决定。
总结词
二次函数在区间$[-infty, frac{b}{2a}]$上单调递增,在区间$[-
利用三角函数的周期性、对称性、数形结合 等方法,判断三角函数在某个区间内是否存 在极值点或零点。
三角函数存在性问题的应 用
在解决实际问题中,如物理、工程等领域, 常常需要判断某个三角函数是否满足某些条
件,如是否存在最优解或可行解。
03
恒成立与存在性问题的解 法
分离参数法
总结词
分离参数法是一种通过将参数分离到不等式的两边,从而简化问题的方法。
判别式法
总结词
判别式法是一种通过引入判别式来解决 问题的方法。
VS
详细描述
判别式法的基本思想是通过引入判别式来 简化方程的解的求解过程。这种方法在处 理一元二次方程和二元二次方程组时非常 有效。通过判别式,我们可以更容易地找 到方程的解,并且可以更好地理解解的性 质和分布。
04
实例分析
一次函数的恒成立与存在性问题实例
详细描述
分离参数法的基本思想是将参数从不等式中分离出来,单独放在不等式的另一 边,这样可以更容易地找到参数的取值范围,从而解决问题。这种方法在处理 包含参数的不等式问题时非常有效。
数形结合法
总结词
数形结合法是一种通过将问题转化为 图形问题,从而直观地理解问题的方 法。
恒成立和存在性问题

恒成⽴和存在性问题⾼⼀函数专题同步拔⾼,难度4颗星!模块导图知识剖析恒成⽴和存在性问题类型(1) 单变量的恒成⽴问题①∀x ∈D ,f (x )<a 恒成⽴,则f (x )max <a②∀x ∈D ,f (x )>a 恒成⽴,则f (x )min >a③∀x ∈D ,f (x )<g (x )恒成⽴,则F (x )=f (x )−g (x )<0,∴f (x )max <0④∀x ∈D ,f (x )>g (x )恒成⽴,则F (x )=f (x )−g (x )>0,∴f (x )min >0(2) 单变量的存在性问题①∃x 0∈D ,使得f (x 0)<a 成⽴,则f (x )min <a②∃x 0∈D ,使得f (x 0)>a 成⽴,则f (x )max >a③∃x 0∈D ,使得f (x 0)<g (x 0)恒成⽴,则F (x )=f (x )−g (x )<0,∴f (x )min <0④∃x 0∈D ,使得f (x 0)>g (x 0)恒成⽴,则F (x )=f (x )−g (x )>0,∴f (x )max >0(3) 双变量的恒成⽴与存在性问题①∀x 1∈D ,∃x 2∈E ,使得f (x 1)<g (x 2)恒成⽴,则f (x )max <g (x )max ;②∀x 1∈D ,∃x 2∈E ,使得f (x 1)>g (x 2)恒成⽴,则f (x )min >g (x )min ;③∀x 1∈D ,∀x 2∈E ,f (x 1)<g (x 2)恒成⽴,则f (x )max <g (x )min ;④∃x 1∈D ,∃x 2∈E , 使得f (x 1)<g (x 2)恒成⽴,则f (x )min <g (x )max ;(4) 相等问题①∃x 1∈D ,∃x 2∈E ,使得f (x 1)=g (x 2),则两个函数的值域的交集不为空集;②∀x 1∈D ,∃x 2∈E ,使得f (x 1)=g (x 2),则f (x )的值域⊆g (x )的值域解题⽅法恒成⽴和存在性问题最终可转化为最值问题,具体的⽅法有直接最值法分类参数法变换主元法数形结合法经典例题【题型⼀】恒成⽴和存在性问题的解题⽅法直接构造函数最值法【典题1】 设函数f (x )=3|x |x 2+9的最⼤值是a ,若对于任意的x ∈[0,2),a >x 2−x +b 恒成⽴,则b 的取值范围是_.【解析】 当x =0时,f (x )=0;当x ≠0时,f (x )=3|x |x 2+9=3|x |+9|x |≤32√9=12,则f (x )max=12,即a =12.由题意知x 2−x+b <12在x ∈[0,2)上恒成⽴,即x 2−x +b −12<0在x ∈[0,2)上恒成⽴(∗),(把不等式中移到右边,使得右边为,从⽽构造函数y =g (x )求最值)令g (x )=x 2−x +b −12,则问题(∗)等价于在x ∈[0,2)上g (x )<0恒成⽴,在x ∈[0,2)上,g (x )<g (2)=4−2+b −12=32+b∴32+b ≤0即b ≤−32.【点拨】① 直接构造函数最值法:遇到类似不等式f (x )<g (x )恒成⽴问题,可把不等式变形为f (x )−g (x )<0,从⽽构造函数h (x )=f (x )−g (x )求其最值解决恒成⽴问题;② 在求函数的最值时,⼀定要优先考虑函数的定义域;③ 题⽬中y =g (x )在x ∈[0,2)上是取不到最⼤值,g (x )<g (2)=32+b ,⽽要使得g (x )<0恒成⽴,32+b 可等于0,即32+b ≤0,⽽不是32+b <0分离参数法【典题1】 已知函数f (x )=3x +8x +a 关于点(0,−12)对称,若对任意的x ∈[−1,1],k ⋅2x −f (2x )≥0恒成⽴,则实数k 的取值范围为_.【解析】 由y =3x +8x 为奇函数,可得其图象关于(0,0)对称,可得f (x )的图象关于(0,a )对称,函数f (x )=3x +8x +a 关于点(0,−12)对称,可得a =−12,对任意的x ∈[−1,1],k ⋅2x −f (2x )≥0恒成⽴,⇔∀x ∈[−1,1],k ⋅2x −3⋅2x +82x −12≥0恒成⽴,【思考:此时若利⽤直接构造函数最值法,求函数f (x )=k ⋅2x −3⋅2x +82x −12,x ∈[−1,1]的最⼩值,第⼀函数较复杂,第⼆函数含参要分即k ⋅2x ≥3⋅2x +82x −12在x ∈[−1,1]恒成⽴,所以k ≥82x 2−122x +3,(使得不等式⼀边是参数k ,另⼀边不含k 关于x 的式⼦,达到分离参数的⽬的)令t =12x ,由x ∈[−1,1],可得t ∈12,2,设h (t )=8t 2−12t +3=8t −342−32,当t =2时,h (t )取得最⼤值11,则k 的取值范围是k ≥11.【点拨】①分离参数法:遇到类似k ⋅f (x )≥g (x )或k +f (x )≥g (x )等不等式恒成⽴问题,可把不等式化简为k >h (x )或k <h (x )的形式,达到分离参数的⽬的,再求解y =h (x )的最值处理恒成⽴问题;② 恒成⽴问题最终转化为最值问题,⽽分离参数法,最好之处就是转化后的函数不含参,避免了⿇烦的分离讨论.【典题2】 已知f (x )=log 21−a ⋅2x +4x ,其中a 为常数(1)当f (1)−f (0)=2时,求a 的值;(2)当x ∈[1,+∞)时,关于x 的不等式f (x )≥x −1恒成⽴,试求a 的取值范围;【解析】 (1)f (1)−f (0)=2⇒log 2(1−2a +4)−log 2(1−a +1)=log 24⇒log 2(5−2a )=log 24(2−a )⇒5−2a =8−4a ⇒a =32;(2)log 21−a ⋅2x +4x ≥x −1=log 22x −1⇒1−a ⋅2x +4x ≥2x −1⇒a ≤2x +12x −12,令t =2x ,∵x ∈[1,+∞)∴t ∈[2,+∞),设h (t )=t +1t −12,则a ≤h (t )min ,∵h (t )在[2,+∞)上为增函数⇒t =2时,h (t )=t +1t −12有最⼩值为2,∴a ≤2.【点拨】 在整个解题的过程中不断的利⽤等价转化,把问题慢慢变得更简单些.变换主元法【典题1】 对任意a ∈[−1,1],不等式x 2+(a −4)x −2a >0恒成⽴,求x 的取值范围.思考痕迹 见到本题中“x 2+(a −4)x −2a >0恒成⽴”潜意识中认为x 是变量,a 是参数,这样会构造函数f (x )=x 2+(a −4)x −2a ,⽽已知条件是a ∈[−1,1],觉得怪怪的做不下去;此时若把a 看成变量,x 看成参数呢?【解析】因为不等式x 2+(a −4)x −2a >0恒成⽴⇔不等式(x −2)a +x 2−4x >0恒成⽴...①,令f (a )=(x −2)a +x 2−4x ,若要使得①成⽴,只需要f (−1)>0f (1)>0⇔x 2−5x +2>0x 2−3x −2>0解得x >5+√172或x <3−√172,故x 的取值范围x ∣x >5+√172 或 x <3−√172.【点拨】 变换主元法,就是要分辨好谁做函数的⾃变量,谁做参数,⽅法是以已知范围的字母为⾃变量.数形结合法【典题1】 已知a >0,f (x )=x 2−a x , 当x∈(−1,1)时,有f (x )<12恒成⽴,求a 的取值范围.思考痕迹本题若⽤直接最值法,求函数f (x )=x 2−a x ,x ∈(−1,1)的最⼤值,就算⽤⾼⼆学到的导数求解也是难度很⼤的事情;⽤分离参数法呢?试试也觉得⼀个硬⾻头.看看简单些的想法吧!【解析】 不等式x 2−a x <12(x ∈(−1,1))恒成⽴等价于x 2−12<a x (x ∈(−1,1))恒成⽴...①,令f (x )=x 2−12,g (x )=a x ,若①成⽴,则当x ∈(−1,1)时,f (x )=x 2−12的图像恒在g (x )=a x 图像的下⽅,则需要g (1)>f (1)g (−1)>f (−1)⇔a >121a >12或a =1(不要漏了a =1,因为a >0,g (x )=a x 不⼀定是指数函数)⼜a >0,所以12<a <2,即实数a 的取值范围为12,2.【点拨】① 数形结合法:∀x ∈D ,f (x )<g (x )恒成⽴⇒在x ∈D 上,函数y =f (x )的图像在函数y =g (x )图像的下⽅.② 遇到h (x )<0不等式恒成⽴,可以把不等式化为f (x )<g (x )⽤数形结合法,⽽函数y =f (x )与y =g (x )最好是熟悉的函数类型,⽐如本题中构造出f (x )=x 2−12,g (x )=a x 两个常见的基本初级函数.【题型⼆】 恒成⽴与存在性问题混合题型【典题1】 已知函数f (x )=x 3+1,g (x )=2−x −m +1.(1)若对任意x 1∈[−1,3],任意x_2∈[0 ,2]都有f(x_1)≥g(x_2)成⽴,求实数m 的取值范围.()[]()()(){{{}{{[](2)若对任意x_2∈[0 ,2],总存在x_1∈[-1 ,3]使得f(x_1)≥g(x_2)成⽴,求实数m的取值范围.【解析】(1)由题设函数f(x)=x^3+1,g(x)=2^{-x}-m+1.对任意x_1∈[-1 ,3],任意x_2∈[0 ,2]都有f(x_1)≥g(x_2)成⽴,知:f\left(x_{1}\right)_{\min } \geq g\left(x_{2}\right)_{\max },∵f(x)在[-1 ,3]上递增,\therefore f\left(x_{1}\right)_{\min }=f(-1)=0⼜∵g(x)在[0 ,2]上递减,\therefore g\left(x_{2}\right)_{\max }=g(0)=2-m∴有0≥2-m,∴m的范围为[2 ,+∞)(2)由题设函数f(x)=x^3+1,g(x)=2^{-x}-m+1.对任意x_2∈[0 ,2],总存在x_1∈[-1 ,3]使得f(x_1)≥g(x_2)成⽴,知f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max },∴有f(3)≥g(0),即28≥2-m,∴M的范围为[-26 ,+∞).【点拨】对于双变量的恒成⽴--存在性问题,⽐如第⼆问中怎么确定f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max },即到底是函数最⼤值还是最⼩值呢?具体如下思考如下,⼀先把g\left(x_{2}\right)看成定值m,那\exists x_{1} \in[-1,3],都有f\left(x_{1}\right) \geq m,当然是要f(x)_{\max } \geq m;⼆再把f\left(x_{1}\right)看成定值n,那\forall x_{2} \in[0,2],都有n \geq g\left(x_{2}\right),当然是n \geq g(x)_{\max };故问题转化为f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max }.其他形式的双变量成⽴问题同理,要理解切记不要死背.【典题2】设f(x)=\dfrac{x^{2}}{x+1},g(x)=ax+3-2a(a>0),若对于任意x_1∈[0 ,1],总存在x_0∈[0 ,1],使得g(x_0)=f(x_1)成⽴,则a的取值范围是\underline{\quad \quad }.【解析】\because f(x)=\dfrac{x^{2}}{x+1},当x=0时,f(x)=0,当x≠0时,f(x)=\dfrac{1}{\dfrac{1}{x^{2}}+\dfrac{1}{x}}=\dfrac{1}{\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^{2}-\dfrac{1}{4}},由0<x≤1,即\dfrac{1}{x} \geq 1,\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^{2}-\dfrac{1}{4} \geq 2,\therefore 0<f(x) \leq \dfrac{1}{2},故0 \leq f(x) \leq \dfrac{1}{2},⼜因为g(x)=ax+3-2a(a>0),且g(0)=3-2a,g(1)=3-a.由g(x)递增,可得3-2a≤g(x)≤3-a,对于任意x_1∈[0 ,1],总存在x_0∈[0 ,1],使得g(x_0)=f(x_1)成⽴,可得\left[0, \dfrac{1}{2}\right] \subseteq[3-2 a, 3-a],可得\left\{\begin{array}{l} 3-2 a \leq 0 \\ 3-a \geq \dfrac{1}{2} \end{array}\right.,\therefore \dfrac{3}{2} \leq a \leq \dfrac{5}{2}.巩固练习1(★★) 已知1+2^x+a\cdot 4^x>0对⼀切x∈(-∞ ,1]上恒成⽴,则实数a的取值范围是\underline{\quad \quad }.2 (★★) 若不等式2x-1>m(x^2-1)对满⾜|m|≤2的所有m都成⽴,求x的取值范围.3 (★★) 若不等式3x^2-\log_a x<0在x\in\left(0, \dfrac{1}{3}\right)内恒成⽴,实数a的取值范围.4 (★★★) 已知函数f(x)=x^2-3x,g(x)=x^2-2mx+m,若对任意x_1∈[-1 ,1],总存在x_2∈[-1 ,1]使得f(x_1)≥g(x_2 ),则实数m的取值范围.5 (★★★) 已知a>0且a≠1,函数f(x)=a^x+a^{-x}(x∈[-1 ,1]),g(x)=ax^2-2ax+4-a(x∈[-1 ,1]).(1)求f(x)的单调区间和值域;(2)若对于任意x_1∈[-1 ,1],总存在x_0∈[-1 ,1],使得g(x_0)=f(x_1)成⽴,求a的取值范围;(3)若对于任意x_0∈[-1 ,1],任意x_1∈[-1 ,1],都有g(x_0)≥f(x_1)恒成⽴,求a的取值范围.答案1.\left(-\dfrac{3}{4},+\infty\right)2.\dfrac{\sqrt{7}-1}{2}<x<\dfrac{\sqrt{3}+1}{2}3.\dfrac{1}{27} \leq a<14.m≤-1或m≥3Processing math: 64%5.(1) \left[2, a+\dfrac{1}{a}\right](2) a>1(3) \left[\dfrac{1}{3}, 1\right)。
专题4 双变量存在恒成立与存在性问题-(人教A版2019选择性必修第二、三册) (教师版)

双变量存在---恒成立问题恒成立问题、存在性问题归根到底是最值问题.1 恒成立问题(1)∀x∈D,f(x)≥0恒成立⟺在D上的f(x)min≥0;(2)∀x∈D,f(x)≤0恒成立⟺在D上的f(x)max≤0;2 存在性问题(1)∃x∈D,f(x)≥0恒成立⟺在D上的f(x)max≥0;(2)∃x∈D,f(x)≤0恒成立⟺在D上的f(x)min≤0;3双变量存在—恒成立问题(1)∀x1∈D,∀x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)min≥g(x)max;(2)∀x1∈D,∃x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)min≥g(x)min;(3)∃x1∈D,∀x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)max≥g(x)max;(4)∃x1∈D,∃x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)max≥g(x)min;4 常见处理方法方法1 直接构造函数法:求f(x)≥g(x)恒成立⇔ℎ(x)=f(x)−g(x)≥0恒成立.恒成立.方法2 分离参数法:求f(x)≥a∙g(x)(其中g(x)>0)恒成立⇔a≤f(x)g(x)方法3 变更主元:题型特征(已知谁的范围把谁作为主元);方法4 数形结合法:求f(x)−g(x)≥0恒成立⇔证明y=f(x)在y=g(x)的上方;方法5 同构法:对不等式进行变形,使得不等式左右两边式子的结构一致,再通过构造的函数单调性进行求解;方法6 放缩法:利用常见的不等式或切线放缩或三角函数有界性等手段对所求不等式逐步放缩达到证明所求不等式恒成立的目的;学习各种方法时,要注意理解它们各自之间的优劣性,有了比较才能快速判断某种题境中采取哪种方法较简洁,建议学习时一题多解,多发散思考.【典题1】已知两个函数f(x)=8x2+16x−k,g(x)=2x3+5x2+4x,其中k为实数.(1)对任意x∈[−3,3],都有f(x)≤g(x)成立,求k的取值范围;(2)存在x∈[−3,3],使f(x)≤g(x)成立,求k的取值范围;(3)对任意x1,x2∈[−3,3],都有f(x1)≤g(x2),求k的取值范围.【解析】(1)设ℎ(x)=g(x)−f(x)=2x3−3x2−12x+k问题转化为x∈[−3,3]时,ℎ(x)≥0恒成立,故ℎ(x)min≥0;易得ℎ(x)min≥−45+k,由k−45≥0⇒k≥45.(2)据题意:存在x∈[−3,3],使f(x)≤g(x)成立⇔ℎ(x)=g(x)−f(x)≥0在x∈[−3,3]有解,易得ℎ(x)max=k+7,于是k≥−7.(3) 问题转化为f(x)max≤g(x)min ,x∈[−3,3],易得g(x)min=g(−3)=−21,f(x)max=f(3)=120−k,则120−k≤−21⇒k≥141.【点拨】①第一问是恒成立问题,第二问是存在性问题,第三问是双变量成立问题;②第三问怎么确定f(x)max≤g(x)min,即到底是函数最大值还是最小值呢?可把问题转化为第一、二问的问题,具体如下,先把g(x2)看成定值m,那∀x1∈[−3,3],都有f(x1)≤m,当然是要f(x)max≤m;再把f(x1)看成定值n,那∀x2∈[−3,3],都有n≤g(x2),当然是g(x)min≥n;故问题转化为f(x)max≤g(x)min.其他形式的双变量成立问题同理.x3+2x2−3x+c.若对∀x1∈(0 ,+∞),∃x2∈[1 ,3],使f(x1)=【典题2】已知函数f(x)=x2e−x,g(x)=−13g(x2)成立,则c的取值范围是.【解析】(若要满足f(x1)=g(x2)成立,则y=g(x)的值域包含y=f(x)的值域)因为f(x)=x2e−x,x∈(0 ,+∞),,令f′(x)=0,解得x=2,所以f′(x)=x(2−x)e x故f(x)在(0 ,2)递增,在(2 ,+∞)递减,故f(x)max=f(2)=4,e2而x →0时,f(x)→0,x →+∞时,f(x)→+∞, 故f(x)∈(0 ,4e 2],因为g (x )=−13x 3+2x 2−3x +c ,g ′(x )=−(x −3)(x −1), 所以当x ∈[1 ,3]时,g′(x)>0,故g(x)在[1 ,3]递增, 则g (x )min =g(1)=−43+c ,g (x )max =g(3)=c , 故g(x)∈[−43+c ,c],若对∀x 1∈(0 ,+∞),∃x 2∈[1 ,3],使f(x 1)=g(x 2)成立, 则(0 ,4e2]⊆[−43+c ,c],故{−43+c ≤04e2≤c,解得:4e 2≤c ≤43.【典题3】 已知函数f (x )=lnx −x +1,x ∈(0 ,+∞),g (x )=sinx −ax(a ∈R). (1)求f(x)的最大值;(2)若对∀x 1∈(0 ,+∞),总存在x 2∈(0 ,π2),使得f (x 1)<g(x 2)成立,求实数a 的取值范围;(3)证明不等式sin(1n)n +sin(2n)n +⋅⋅⋅+sin(n n)n <e e−1(其中e 是自然对数的底数).【解析】(1)过程略,当x =1时f(x)取得最大值为f(1)=0;(2)解:对∀x 1∈(0 ,+∞),总存在x 2∈(0 ,π2),使得f(x 1)<g(x 2)成立,等价于f (x )max <g (x )max 成立,由(1)知,f (x )max =0, 则问题等价于g (x )max >0, 因为g (x )=sinx −ax ,所以g ′(x )=cosx −a , 当x ∈(0 ,π2)时,cosx ∈(0 ,1),(利用三角函数的有界性)①当a ≥1时,若x ∈(0 ,π2),g′(x)<0,g(x)单调递减,g(x)<g(0)=0,不合题意; ②当0<a <1时,∃x 0∈(0 ,π2),使得g′(x 0)=0, 若x ∈(0 ,x 0),g′(x)>0,若x ∈(x 0 ,π2)时,g′(x)<0, 即当g (x )max =g(x 0)>g(0)=0,则∃x2∈(0 ,π2),使得g(x2)>0,符合题意;③当a≤0时,若x∈(0 ,π2),g′(x)>0,g(x)单调递增,g(x)>g(0)=0,则∃x2∈(0 ,π2),使得g(x2)>0,符合题意,综上可知,所求实数a的范围是(−∞ ,1);(3)证明:由(2)可知,当a=1时,若x∈(0 ,1],sinx<x,令x=kn (k≤n ,k ,n∈N∗),(kn)n∈(0 ,1],有sin(kn )n<(kn)n,再由(1)可得lnx<x﹣1,则ln kn ≤kn−1=k−nn,即n⋅ln kn≤k﹣n⇒ln(kn)n≤k﹣n,∴(kn)n≤e k−n,∴(1n )n+(2n)n+...+(nn)n≤e1−n+e2−n+...+e n−n=e1−n(1−e n)1−e=e−e1−ne−1<ee−1则sin(1n )n+sin(2n)n+...+sin(nn)n<(1n)n+(2n)n+...+(nn)n<ee−1.(放缩法证明,利用不等式sinx<x和lnx<x﹣1,要熟悉常见恒等式)1(★★) 已知1<a<4,函数f(x)=x+9x,∃x1∈[1 ,a] ,x2∈[a ,4],使得f(x1)f(x2)≥80,则a的取值范围.【答案】(1,4−√7]【解析】f′(x)=1−9x2=x2−9x,令f′(x)=0,得x=±3,所以在(1,3)上,f′(x)>0,f(x)单调递增,在(3,4)上,f′(x)<0,f(x)单调递减,f(1)=10,f(4)=6.25,f(3)=6,若∃x1∈[1,a],x2∈[a,4],使得f(x1)f(x2)≥80,只需x1∈[1,a],x2∈[a,4],使得[f(x1)f(x2)]max≥80,而f(x1)max=f(1)=10,所以f(x2)max≥8,过点B作BC⊥y轴,与函数f(x)的图象交于点C,令x+9x=6.25,解得x=4或2.25,所以当x∈[2.25,4]时,f(x)∈[6,6.25],所以x2∈(1,2.25),所以a∈(1,2.25),才能使得x2∈[a,4]时,f(x2)max≥8,即f(a)≥8,所以a+9a≥8,解得a≥4+√7(舍去)或a≤4−√7,所以1<a≤4−√7,所以实数a的取值范围为(1,4−√7],故答案为:(1,4−√7].2(★★)已知函数f(x)=x+4x ,g(x)=2x+a,若任意x1∈[12,1],都存在x2∈[2 ,3],使得f(x1)≥g(x2),则实数a的取值范围是.【答案】(-∞,1]【解析】任意x1∈[12,1],都存在x2∈[2,3],使得f(x1)≥g(x2),⇔f(x1)min≥[g(x2)]min,x1∈[12,1],x2∈[2,3],对于函数f(x)=x+4x ,x∈[12,1],f′(x)=1−4x2=x2−4x2<0,因此函数f(x)在x∈[12,1]上单调递减,∴f(x)min=f(1)=5.对于函数g(x)=2x+a,在x∈[2,3]单调递增,∴g(x)min=4+a.∴5≥4+a,解得a≤1.∴实数a的取值范围是(-∞,1].故答案为:(-∞,1].3(★★★)已知函数f(x)=−x|x−a|,若对任意的x1∈(2 ,+∞),都存在x2∈(−1 ,0),使得f(x1)f(x2)=−4,则实数a的最大值为.【答案】1【解析】①a≥2时,当x≥a时,f(x)=-x(x-a),当x<a时,f(x)=-x(a-x),画出y=f(x)的图象(如右图):x1∈(2,+∞)时,f(x1)∈(-∞,0],而对任意的x1∈(2,+∞),都存在x2∈(-1,0),使得f(x1)•f(x2)=-4,要求f(x2)∈(0,+∞).而x2∈(-1,0)时,令f(-1)=a,则有f(x2)∈(0,a),不符题意;②a<2时,当x≥a时,f(x)=-x(x-a),当x<a时,f(x)=-x(a-x),画出y=f(x)的图象(如下图):当x1∈(2,+∞)时,f(x1)∈(-∞,f(2)),即f(x1)∈(-∞,2a-4),则f(x2)∈(0,22−a)时,f(x1)f(x2)=-4成立才有可能;x2∈(-1,0),则f(x2)∈(0,f(-1)),f(-1)=a+1,需满足f(-1)≥22−a ,即1+a≥22−a,即(a+1)(2-a)≥2,a(a-1)≤0,解得0≤a≤1,所以a的最大值为1.故答案为:1.4(★★★) 已知函数f(x)=lnx,若对任意的x1 ,x2∈(0 ,+∞),都有[f(x1)−f(x2)](x12−x22)>k(x1x2+x22)恒成立,则实数k的最大值是.【答案】0【解析】∵f(x)=lnx,∴f(x1)-f(x2)=lnx1−lnx2=ln x1x2,∵[f(x1)-f(x2)](x12-x22)>k(x1x2+x22)恒成立,且x1,x2∈(0,+∞),∴x 1x 2+x 22>0,x 1+x 2>0, 得k <lnx 1x 2(x 12−x 22)x 1x 2+x 22=x 1x 2lnx 1x 2−ln x1x 2,令t =x 1x 2,g (t )=tlnt -lnt ,(t >0且t ≠1),则g ′(t )=lnt +1−1t,令g ′(t )=0,得t =1. ∴当t ∈(0,1)时,g ′(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g ′(t )>0,g (t )单调递增, ∴g (t )min >g (1)=0. ∴k ≤0.则实数k 的最大值是0. 5(★★★) 设f(x)=2x 2x+1,g (x )=ax +5−2a(a >0). (1)求f(x)在x ∈[0,1]上的值域;(2)若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g(x 0)=f(x 1)成立,求a 的取值范围. 【答案】(1) [0 ,1] (2) 52≤a ≤4 【解析】(1)法一:(导数法)f′(x)=4x(x+1)−2x 2(x+1)2=2x 2+4x (x+1)2≥0在x ∈[0,1]上恒成立.∴f(x)在[0,1]上增, ∴f(x)值域[0,1].法二:f(x)={0 x =021x +1x 2x ∈(0,1],用复合函数求值域.法三:f(x)=2x 2x+1=2(x +1)+2x+1−4用双勾函数求值域.(2)f(x)值域[0,1],g(x)=ax +5-2a(a >0)在x ∈[0,1]上的值域[5-2a ,5-a]. 由条件,只须[0,1]⊆[5-2a ,5-a]. ∴{5−2a ≤05−a ≥1⇒52≤a ≤4. 6(★★★) 设函数f(x)=lnx −2ax−1−a 在开区间(0 ,12)内有极值. (1)求实数a 的取值范围;(2)若x 1∈(0 ,1) ,x 2=(1 ,+∞).求证:f (x 1)−f(x 2)>2ln2+32.【答案】(1)(−∞ ,−14)(2)略【解析】(1)解:函数f(x)的定义域是(0,1)∪(1,+∞),f′(x)=x2−(2−2a)x+1x(x−1)2,由f′(x)=0在(0,12)内有解,令g(x)=x2-(2-2a)x+1,由g(0)=1>0,所以g(12)=122−2−2a2+1<0,解得:a<−14,即a的取值范围是(-∞,−14);(2)证明:由(1)f′(x)<0,令g(x)=x2-(2-2a)x+1=(x-α)(x-β),不妨设0<α<12,则β>2,则αβ=1,α+β=2-2a,故f′(x)<0⇔α<x<1,1<x<β,由f′(x)>0⇔x<α或x>β,得f(x)在(0,α)内递增,在(α,1)内递减,在(1,β)内递减,在(β,+∞)递增,由x1∈(0,1),得f(x1)≤f(α)=lnα−2aα−1−a,由x2∈(1,+∞),得f(x2)≥f(β)=lnβ−2aβ−1−a,所以f(x2)-f(x1)≥f(β)-f(α),因为αβ=1,α+β=2-2a,a<−14,所以f(β)-f(α)=lnβ−2aβ−1−a-lnα+2aα−1+a=lnβ-ln1β+2a•(11β−1−1β−1)≥2lnβ+β−1β,令h(β)=2lnβ+β−1β(β>2),则h′(β)=2β+1+1β2>0,(β>2),所以h(β)在(2,+∞)上单调递增故h(β)>h(2)=2ln2+3,2.所以f(x2)-f(x1)>2ln2+32。