小学奥数几何中的重叠问题

合集下载

【二升三】小学数学奥数第14讲:重叠问题-教案

【二升三】小学数学奥数第14讲:重叠问题-教案

(三年级)暑期备课教员:* * *第14讲重叠问题一、教学目标: 1. 知识与技能方面:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。

2.过程与方法方面:使学生感知集合图的产生过程,初步培养学生建模意识和能力,渗透多种方法解决问题的意识。

3.情感态度价值观方面:培养学生初步养成善于观察、善于思考的学习习惯。

二、教学重点:初步体会集合的有关思想方法,并能用之来解决实际问题。

三、教学难点:对重复部分的理解。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(6分)师:同学们,我想试试你们的反应快不快,请大家猜个脑筋急转弯,好吗?生:好。

师:有两个爸爸和两个儿子去动物园,每人买一张票,可是他们只买了三张票这是为什么?怎么会出现这2+2等于3的情况呢?生:因为有一个人既是爸爸又是儿子。

师:真棒,用了一组非常恰当的关联词:“既……又……”。

其实这两个爸爸和两个爷爷的身份分别是爷爷、爸爸、孙子对吧。

生:是的。

师:因为爸爸有两个身份,重叠了,所以我们算人数时只能算一次。

两个爸爸加上两个儿子是等于4人,但是要减去重复算了的一个爸爸,所以最后就等于3人,也就只需要买3张票了。

师:今天我们这节课要研究的就是与这有关的非常有趣的重叠问题。

(板书课题:重叠问题)二、探索发现授课(40分)(一)例题一:(12分)下列是参加学习小组的名单,语文小组有8人,数学小组有9人, 14人参加了学习小组,请问语文和数学都参加的有多少人?师:同学们,请看例题一,说一说自己的困惑。

生:语文小组有8人,数学小组有9人,为什么总人数不是17人,是14人?。

二年级奥数重叠问题

二年级奥数重叠问题

图中间重叠部分表示两道题都做对的人数,把做第一道题和做对第二道题的人数加起来得21+18=39人,这39人比全班总人数36多出了39-36=3人,这多出的3人既在做对第一题的人数中算过,也在做对第二道题的人数中算过,即表示两道题都做对的人数。
1
2

160厘米
90厘米
?厘米
90+90-160=20(厘米) 答:中间钉在一起的部分长20厘米。
把两块一样长的木板像下图这样钉在一起成了一块木板。如果这块钉在一起的木板长8米,中间重叠部分是2米,这两块木板各长多少米?
【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是2米,所以这两块木板的总长度是8+2=10米,每块木板的长度是10÷2=5米。




两块木板各长80厘米,如下图,钉在一起。中间钉在一起的地方是15厘米。这两块钉起来的木板长多少厘米?

ቤተ መጻሕፍቲ ባይዱ
15厘米
80厘米
80厘米
80+80-15=145(厘米) 答:这两块钉起来的木板长145厘米。
两块各长90厘米的木板钉成一块长160厘米的木板,中间钉在一起的部分长多少厘米?
39+42=81(人) 81-50=31(人) 答:有31人语文、数学都得了100分。
50个同学参加期末考试,每个同学至少有一门是100分。语文得100分的39人,数学得100分的是42人,请问有多少人语文、数学都得了100分?

一次数学测试,全班36人中,做对第一道聪明题的有21人,做对第二道聪明题的有18人,每人至少做对一道。问两道聪明题都做对的有几人? 【思路导航】根据题意,画出下图:

小学三年级奥数第19讲 重叠问题(含答案分析)

小学三年级奥数第19讲 重叠问题(含答案分析)
2、三(5)班有42名同学,会下象棋的有21名同学,会下围棋的有17名,两种棋都不会的有10名。两种棋都会下的有多少名?
3、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。三年级既带矿泉水又带水果的小朋友有多少人?
4、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。三(4)班共有学生多少人?
【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是16厘米,所以这两块木板的总长度是120+16=136厘米,每块木板的长度是136÷2=68厘米。
练习3:
1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
【思路导航】根据题意,画出下图:
图中间重叠部分表示两道题都做对的人数,把做第一道题和做对第二道题的人数加起来得21+18=39人,这39人比全班总人数36多出了39-36=3人,这多出的3人既在做对第一题的人数中算过,也在做对第二道题的人数中算过,即表示两道题都做对的人数。
练习4:
1.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。已知参加赛跑的有36人,参加跳绳的有38人。两项比赛都参加的有几人?
2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。鲜花队共多少人?
【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?
练习3:
1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?

(小学奥数)几何中的重叠问题

(小学奥数)几何中的重叠问题

1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數). 二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-3.幾何中的重疊問題1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.【例 1】 把長38釐米和53釐米的兩根鐵條焊接成一根鐵條.已知焊接部分長4釐米,焊接後這根鐵條有多長?【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 因為焊接部分為兩根鐵條的重合部分,所以,由包含排除法知,焊接後這根鐵條長3853487+-=(釐米).【答案】87釐米【巩固】 把長23釐米和37釐米的兩根鐵條焊接成一根鐵條.已知焊接部分長3釐米,焊接後這根鐵條有多長?【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 焊接部分為兩根鐵條的重合部分,由包含排除法知,焊接後這根鐵條長:2337357+-=(釐米).【答案】57釐米【例 2】 兩張長4釐米,寬2釐米的長方形紙擺放成如圖所示形狀.把它放在桌面上,覆蓋面積有多少平方釐米?【考點】幾何中的重疊問題 【難度】1星 【題型】解答例題精講圖中小圓表示A 的元素的個數,中圓表示B 的元素的個數,大圓表示C 的元素的個數.1.先包含:A B C ++ 重疊部分A B 、B C 、C A 重疊了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重疊部分A B C 重疊了3次,但是在進行A B C ++- A B B C A C --計算時都被減掉了. 3.再包含:A B C A B B C A C A B C ++---+.图32厘米4厘米【解析】 兩個長方形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為2釐米的正方形,如果利用兩個42⨯的長方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在兩個長方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,被覆蓋面積=長方形面積之和-重疊部分.於是,被覆蓋面積4222212=⨯⨯-⨯=(平方釐米).【答案】12釐米【巩固】 如圖3,一張長8釐米,寬6釐米,另一個正方形邊長為6釐米,它們中間重疊的部分是一個邊長為4釐米的正方形,求這個組合圖形的面積.【考點】幾何中的重疊問題 【難度】1星 【題型】解答图3【解析】 兩個圖形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為4釐米的正方形,如果利用長方形和正方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在長方形和正方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,組合圖形的面積=長方形面積+正方形面積-重疊部分.於是,組合圖形的面積:86664468⨯+⨯-⨯=(平方釐米).【答案】68平方釐米【巩固】 一個長方形長12釐米,寬8釐米,另一個長方形長10釐米,寬6釐米,它們中間重疊的部分是一個邊長4釐米的正方形,求這個組合圖形的面積.【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 兩個長方形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為4釐米的正方形,如果利用兩個長方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在兩個長方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,組合圖形的面積=長方形面積之和-重疊部分.於是,組合圖形的面積12810644140=⨯+⨯-⨯=(平方釐米).【答案】140平方釐米【例 3】三個面積均為50平方釐米的圓紙片放在桌面上(如圖),三個紙片共同重疊的面積是10平方釐米.三個紙片蓋住桌面的總面積是100釐米.問:圖中陰影部分面積之和是多少?【考點】幾何中的重疊問題【難度】2星【題型】解答C BA10【解析】將圖中的三個圓標上A、B、C.根據包含排除法,三個紙片蓋住桌面的總面積=(A圓面積B+圓面積C+圓面積-)(A與B重合部分面積A+與C重合部分面積B+與C重合部分面積+)三個紙片共同重疊的面積,得:100505050A=++-()(與B重合部分面積A+與C重合部分面積B+與C重合部分面積10+),得到A、B、C三個圓兩兩重合面積之和為:16010060-=平方釐米,而這個面積對應於圓上的那三個紙片共同重疊的面積的三倍與陰影部分面積的和,即:60103=⨯+陰影部分面積,則陰影部分面積為:603030-=(平方釐米).【答案】30平方釐米【巩固】如圖,已知甲、乙、丙3個圓的面積均為30,甲與乙、乙與丙、甲與丙重合部分的面積分別為6,8,5,而3個圓覆蓋的總面積為73.求陰影部分的面積.【考點】幾何中的重疊問題【難度】2星【題型】解答【解析】設甲圓組成集合A,乙圓組成集合B,丙圓組成集合C.A B C===30,A B=6,B C=8,A C=5,A B C=73,而A B C=A B C+--A B B C A C A B C--+.有73=30×3-6-8-5+A B C,即A B C=2,即甲、乙、丙三者的公共面積(⑧部分面積)為2.那麼只是甲與乙(④),乙與丙(⑥),甲與丙(⑤)的公共的面積依次為6-2=4,8-2=6,5-2=3,所以有陰影部分(①、②、③部分之和)的面積為73-4-6-3-2=58.【答案】58【例 4】如圖,三角形紙板、正方形紙板、圓形紙板的面積相等,都等於60平方釐米.陰影部分的面積總和是40平方釐米,3張板蓋住的總面積是100平方釐米,3張紙板重疊部分的面積是多少平方釐米?【考點】幾何中的重疊問題【難度】3星【題型】解答【解析】了三次.所以三張紙重疊部分的面積60310040220()(平方釐米).=⨯--÷=【答案】20平方釐米【巩固】如圖所示,A、B、C分別是面積為12、28、16的三張不同形狀的紙片,它們重疊在一起,露在外面的總面積為38.若A與B、B與C的公共部分的面積分別為8、7,A、B、C這三張紙片的公共部分為3.求A與C公共部分的面積是多少?【考點】幾何中的重疊問題【難度】3星【題型】解答【解析】設A與C公共部分的面積為x,由包含與排除原理可得:⑴先“包含”:把圖形A、B、C的面積相加:12281656++=,那麼每兩個圖形的公共部分的面積都重複計算了1次,因此要排除掉.⑵再“排除”:5687x---,這樣一來,三個圖形的公共部分被全部減掉,因此還要再補回.⑶再“包含”:56873x---+,這就是三張紙片覆蓋的面積.根據上面的分析得:5687338x=.x---+=,解得:6【答案】6。

小学奥数图形--重叠求面积

小学奥数图形--重叠求面积

重叠求面积
一、基础达标
1、两个完全一样的长方形,长8厘米,宽3厘米。

重叠后总面积是多少平方厘米 ?
2、如图,一大一小的两个正方形有一部分重合,两块没有重合的阴影部分面积相差多少?
3、有一块菜地长20米,宽12米。

菜地中间留了2米宽的路,把菜地平分成4小块。

每小块地的面积是多少?
4、两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。

5、如图,以AB为直径作半圆,三角形ABC是直角三角形,AB长40厘米,BC长30厘,求阴影部分①比阴影部分②面积大多少平方厘米?
二、能力提升
1、如右图,两个正方形的边长分别为14厘米和8厘米,甲、乙两块空白区域的面积之和为156平方厘米,那么阴影部分的面积是多少平方豪米。

2、如图,由两个完全一样的直角三角形叠在一起而成的,求阴影部分的面积是多少平方米?
3、如图(单位: 厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积。

4、如图,直角三角形ABC,AB长是40厘米,图中阴影部分的甲的面积比阴影部分乙的面积大148平方厘米,求:BC的长度。

5、下图的长方形是一块草坪,中同有丙条宽1米的走道,求植草的面枳。

三、竞赛链接
(第九届“走进美妙数学花园”决赛题选)如图所示,四个相叠的正方形,边长分别是11、9、7、5,求红色区与黑色区的面积差。

小学三年级奥数第19讲 重叠问题(含答案分析)

小学三年级奥数第19讲 重叠问题(含答案分析)

第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。

数学中,我们将这样的问题称为重叠问题。

解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。

二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。

小张从前数起,红旗是第8面;从后数起,红旗是第10面。

这行彩旗共多少面?练习1:1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。

这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。

这一行座位有多少个?【例题2】同学们排队做操,每行人数同样多。

小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。

做操的同学共有多少个?练习2:1、同学们排队跳舞,每行、每列人数同样多。

小红的位置无论从前数从后数,从左数还是从右数起都是第4个。

跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。

鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。

如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。

这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。

小学奥数7 7 1 容斥原理之重叠问题一专项练习及答案解析

小学奥数7 7 1 容斥原理之重叠问题一专项练习及答案解析

(一)7-7-1.容斥原理之重叠问题教学目标1.了解容斥原理二量重叠和三量重叠的内容;掌握容斥原理的在组合计数等各个方面的应用.2.知识要点一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个(,相当于中文“和”或者“或”的数,用式子可表示成:”读作“并”其中符号“BAB?A?B?A则称这一公式为包含与排除原理,简称容斥原”读作“交”,相当于中文“且”的意思.)意思;符号“,即阴影表示大圆部分,表示大圆与小圆的公共部分,记为:理.图示如下:表示小圆部分,BACBA,即阴表示大圆与小圆的公共部分,记为:表示小圆部分,表示大圆部分,:面积.图示如下BACBA影面积.1.先包含——B?A重叠部分计算了次,多加了次;1BA2.再排除——2B?A?AB次的重叠部分减去.把多加了1BA的元素的个数,可分以下两步进行:包含与排除原理告诉我们,要计算两个集合的并集BABA、的一切元素都“包含”意思是把(第一步:分别计算集合的元素个数,然后加起来,即先求B、BA、AB?A );进来,加在一起.(第二步:从上面的和中减去交集的元素个数,即减去意思是“排除”了重复计算的元素个数)BAC?二、三量重叠问题类又是既是类元素的个数类元素个数类元素个数类与类、类元素个数的总和?CC?BB?B?AAA类类、同时是类、类的元素个数既是类又是类的元素个数既是类又是类的元素个数??CCCBABA?.图示如下:的元素个数.用符号表示为:CBAC?A?C?AB?BC??ABC?AB的元素的个数,图中小圆表示的元素的个数,中圆表示BA大圆表示的元素的个数.C1.先包含:C?A?B次.次,、重叠了多加了重叠部分、1ACBCBA2.再排除:2C?A??ABBCA?B?C次,但是在进行重叠部分重叠了CAB?CBA??3计算时都被减掉了.CC?ABAB?.3.再包含:CCA?ABB??AB?CAB?C?来帮助分析思考.(在解答有关包含排除问题时,我们常常利用圆圈图韦恩图)1ofpage8 教师版题库.容斥原理之重叠问题(一)1-7-7.例题精讲两量重叠问题小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳】【例1BA ________、圆。

六年级奥数-重叠问题

六年级奥数-重叠问题

第十二讲重叠问题姓名容斥原理就是:在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

公式法:运用容斥原理一:C=A+B-AB,这一公式可计算出两个集合圈的有关问题(C表示两个集合的并集,A、B表示两个集合,AB表示两个集合的交集)。

运用容斥原理二:D=A+B+C-AB-AC-BC+ABC,这一公式可计算出三个集合的有关问题。

(D表示三个集合的并集,A、B、C表示三个不同的集合,AB、AC、BC表示两个不同集合的交集,ABC表示三个集合的交集)图象法:根据题意画图,并借助图形帮助分析,逐个地计算出各个部分,从而解答问题。

例1:某班40位同学在一次数学测验中,答对第一题的有23人,答对第二题的有27人,两题都答对的有17人,问有几个同学两题都不对?例2:某班有学生48人,其中21人参加数学竞赛,13人参加作文竞赛,有7人既参加数学竞赛又参加作文竞赛。

那么(1)只参加数学竞赛的有多少人?(2)参加竞赛的一共有多少人?(3)没有参加竞赛的一共有多少人?例3:某校有三个兴趣小组,体育、书法和美术。

已知参加这三个兴趣小组的学生人数分别是25人、24人和30人。

同时参加体育、书法兴趣小组的有5人,同时参加体育、美术兴趣小组的有2人,同时参加书法、美术兴趣小组的有4人,有1人同时参加了这三个兴趣小组,问:共有多少人参加兴趣小组?例4:某校对五年级100名同学进行学习兴趣调查,结果有58人喜欢语文,有38人喜欢数学,有52人喜欢外语。

而且喜欢语文和数学(但不喜欢外语)的有6人,喜欢数学和外语(但不喜欢语文)的有4人,三科都喜欢的有12人,而且每人至少喜欢一科。

问有多少同学只喜欢语文?例5:分母是1001的最简真分数有多少个?它们的和是多少?例6:某商店调查该商店出售的A、B两种商品销售情况,在被调查的家庭对象中,有1/3不用A商品,有4/7不用B商品,另外有22家既用A商品也用B商品,有1/6的家庭则两种产品都没有用,问该商店共调查了多少户家庭?例7:某班学生中78%喜欢游泳,80%喜欢玩游戏机,84%喜欢下棋,88%喜欢看小说。

五年级奥数题及答案:重叠问题

五年级奥数题及答案:重叠问题

15.如果买 3 盒水彩笔和 5 个书包,需要 259 元,如果买 2 盒水彩笔和 3 个书包,需要 161 元, 2 个书包和 2 盒水彩笔共要多少元?
16.一个两位数, 十位数字与个位数字之和是 这个两数是多少?
10,数字之差是 4,且个位数字小于十位数字,
17.一群公猴、母猴、小猴共 38 只,每天摘桃 266 个.已知 1 只公猴每天摘桃 10 个, 1 只 母猴每天摘桃 8 个, 1 只小猴每天摘桃 5 个.又知公猴比母猴少 4 只,那么这群猴子中,小 猴有多少只?
4.一个水池,单开进水管, 6 分钟可将空水池注满,单开出水管 若同时打开进、出水管,多少分钟可将水池注满?
8 分钟可将满池水放完,
5.甲、乙两人修路队共有 76 人,甲队增加本队人数的 两队共增加了 384 人,求甲、乙两队原有各有多少人?
4 倍,乙队增加本队人数的
6 倍后,
6.一个食堂买来面粉是大米的 2 倍,每天吃 30 千克大米, 40 千克面粉,几天后大米全部 吃完,面粉还剩余 160 千克,这个食堂买来大米和面粉各多少千克?
6.一个食堂买来面粉是大米的 2 倍,每天吃 30 千克大米, 40 千克面粉,几天后大米全部 吃完,面粉还剩余 160 千克,这个食堂买来大米和面粉各多少千克?
考点 :列 方程解含有两个未知数的应用题。 分析:由 题意得出:大米吃的总天数和减去 160 千克之后的面粉吃的天数相等,即等量关系
式:(面粉的重量﹣ 160)÷40=大米的重量 ÷30,设出买来大米 x 千克,则买来面粉 2x 千克,据此列出方程并解方程即可. 解答:解 :设买来大米 x 千克,则面粉为 2x 千克, ( 2x﹣ 160) ÷40=x ÷30,
考 差倍问题。 点: 分 从 “如果从甲筐中拿出 18 个放进乙筐,两筐的苹果就同样多 ”,可知甲筐比乙筐多 析: 18×2=36 个, 先设乙筐有 x 个,则甲筐有 x+36 个, 再根据如果从乙筐拿出 13 个放进甲

三年级奥数:重叠问题,包含与排除问题的解题方法

三年级奥数:重叠问题,包含与排除问题的解题方法

三年级奥数:重叠问题,包含与排除问题的解题方法
在日常生活中,我们经常需要统计一些数据,在统计的过程中,往往会发现有些数量重复出现。

为了使重复的部分不被重复计算,人们研究出一种新的计算方法,然后再把重复计算的数目排除,使得计算的结果既不重复也不遗漏。

解决重叠问题时,我们常常利用韦恩图(圆圈图)来帮助分析死牢,关键是找出重复的次数。

木板重叠问题
两块一样长的木块叠在一起,求每块木块的长度时,用重叠后的总长度加上重叠部分的长度,然后再除以2;两块不一样长的木块重叠在一起,求其中一块木块的长度时,用重叠后的总长度加上重叠部分的长度,然后再减去另一块木块的长度。

韦恩图解题
韦恩图解题
做这类重叠问题时,首先根据题目条件画出韦恩图:
总人数=分别参加两项的人数-两项都参加的人数;
两项都参加的人数=分别参加两项的人数和-总人数;
参加某一项的人数=总人数+两项都参加的人数-参加另一项的人数。

韦恩图解题
当题目中提到至少存在一种情况的时候,那么总人数中还可能会有两种情况都不存在的情况。

此时候的总人数=至少参加一项的人数+两项都不参加的人数。

小学三年级奥数第19讲 重叠问题附答案解析

小学三年级奥数第19讲 重叠问题附答案解析

第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。

数学中,我们将这样的问题称为重叠问题。

解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。

二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。

小张从前数起,红旗是第8面;从后数起,红旗是第10面。

这行彩旗共多少面?练习1:1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。

这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。

这一行座位有多少个?【例题2】同学们排队做操,每行人数同样多。

小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。

做操的同学共有多少个?练习2:1、同学们排队跳舞,每行、每列人数同样多。

小红的位置无论从前数从后数,从左数还是从右数起都是第4个。

跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。

鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。

如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。

这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。

小学奥数容斥原理之重叠问题(二)精选练习例题含答案解析(附知识点拨及考点)

小学奥数容斥原理之重叠问题(二)精选练习例题含答案解析(附知识点拨及考点)

教学目标1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.知识要点一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成: A B A B A B (其中符号“ ”读作“并”,相当于中文“和”或者“或”的意思;符号“ 读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为: A B ,即阴影面积.图示如下: A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为: A B ,即阴影面积.第一步:分别计算集合A、B的元素个数,然后加起来,即先1求A B (意思A是B把A、B 的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去 C A B (意思是“排除”了重复计算的元素个数).、三量重叠问题A类、B 类与C 类元素个数的总和A类元素的个数B类元素个数C 类元素个数既是A类又是B类的元素个数既是B类又是C类的元素个数既是A类又是C类的元素个数同时是A类、B类、C类的元素个数.用符号表示为:A B C A B C A B B C A C A B C .图示如下:ABAB 包含与排除原理告诉我们,要计算两个集合A、B的并集 A B 的元素的个数,可分以下两步进行:ABC3ABC在解答有关包含排除问题时,我们常常利用圆圈图 (韦恩图 )来帮助分析思考.例题精讲模块一、三量重叠问题例 1】 一栋居民楼里的住户每户都订了 2 份不同的报纸。

如果该居民楼的住户只订了甲、乙、丙三种报 纸,其中甲报 30 份,乙报 34 份,丙报 40份,那么既订乙报又订丙报的有 __________________ 户。

三年级奥数4种重叠问题

三年级奥数4种重叠问题

三年级奥数4种重叠问题
以下是三年级奥数中的 4 种重叠问题:
1. 鸡兔同笼问题:假设有若干只鸡和若干只兔子,它们共有若干只脚。

如果假设其中的一些鸡变成了兔子,那么脚的总数会增加;如果假设其中的一些兔子变成了鸡,那么脚的总数会减少。

问有多少只鸡和兔子?
2. 重叠盒子问题:有若干个盒子,每个盒子都可以容纳若干只小动物。

现在要根据每个盒子的容量,将小动物平均分到每个盒子中。

问有多少个盒子和小动物?
3. 重叠蛋糕问题:有若干个蛋糕,每个蛋糕都可以切成若干份。

现在要根据每个蛋糕的切块数,将蛋糕平均分到每个小朋友手中。

问有多少个蛋糕和小朋友?
4. 重叠排队问题:有若干个小朋友,每个小朋友都可以排在若干种位置。

现在要根据每个小朋友的位置,将小朋友排队。

问有多少个小朋友和排队方式?。

三年级奥数第19讲----重叠问题

三年级奥数第19讲----重叠问题

第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。

数学中,我们将这样的问题称为重叠问题。

解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法.二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。

小张从前数起,红旗是第8面;从后数起,红旗是第10面。

这行彩旗共多少面?【思路导航】根据题意,画出下图:从图上可以看出,从前数起红旗是第8面,从后数起是第10面,这样红旗就数了两次,重复了一次,所以这行彩旗共有8+10-1=17面。

练习1:1。

小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个.这队小朋友共有多少人?2。

学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。

这一行座位有多少个?3。

同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个.这一排共有多少个同学?【例题2】同学们排队做操,每行人数同样多。

小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个.做操的同学共有多少个?【思路导航】根据题意,画出下图:由图可看出:小明的位置从左数第4个,右数第3个,说明横行有4+3-1=6个人;从前数第5个,从后数第6个,说明竖行有5+6-1=10人,所以做操的同学共有:6×10=60人。

练习2:1.同学们排队跳舞,每行、每列人数同样多。

小红的位置无论从前数从后数,从左数还是从右数起都是第4个。

跳舞的共有多少人?2.为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。

小学数学竞赛 几何中的重叠问题.解析版

小学数学竞赛 几何中的重叠问题.解析版

1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.教学目标知识要点7-7-3.几何中的重叠问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米). 【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图3468【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答例题精讲12【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答CBA10【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B +圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答 【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .A B C ===30,A B =6,B C =8,A C =5,A B C =73,而AB C =A B C +--A B B C A C A B C --+.有73=30×3-6-8-5+AB C ,即A B C =2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(④),乙与丙(⑥),甲与丙(⑤)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(①、②、③部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星【题型】解答【解析】 阴部分的面积60310040220=⨯--÷=()(平方厘米).【答案】20平方厘米【巩固】如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A与B、B与C的公共部分的面积分别为8、7,A、B、C这三张纸片的公共部分为3.求A与C公共部分的面积是多少?【考点】几何中的重叠问题【难度】3星【题型】解答【解析】设A与C公共部分的面积为x,由包含与排除原理可得:⑴先“包含”:把图形A、B、C的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑵再“排除”:5687x---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑶再“包含”:56873---+,这就是三张纸片覆盖的面积.x根据上面的分析得:5687338x=.---+=,解得:6x【答案】6一年级(上)一.准备课1.数一数2.比多少二.位置1.上、下、前、后2.左、右三.1—5的认识和加减法1.1—5的认识2.比多少3.第几4.分和合5.加法6.减法7.0四.认识图形(一)认识图形五.6—10的认识和加减法1.6和72.8和93.104.连加、连减、加减混合六.11—20各数的认识1.11—20各数的认识2.10加几、十几加几和相应的减法七.认识钟表认识钟表八.20以内的进位加法2.8、7、9加几3.5、4、3、2加几4.解决问题一年级(下)一.认识图形(二)认识图形二.20以内的退位减法1.十几减92.十几减8、7、63.十几减5、4、3、24.解决问题三.分类与整理分类与整理四.100以内数的认识1.数数、数的组成2.数的顺序、比较大小3.解决问题4.整十数加一位数及相应的减法五.认识人民币1.认识人民币2.简单的计算六.100以内的加法和减法(一)1.整十数加、减整十数2.两位数加一位数、整十数3.两位数减一位数、整十数4.解决问题七.找规律1.找规律(一)2.找规律(二)二年级(上)一.长度单位1.厘米和米2.线段二.100以内的加法和减法(二)1.加法3.连加、连减和加减混合三.角的初步认识1.认识角2.认识直角3.认识钝角和锐角四.表内乘法(一)1.乘法的初步认识2.5的乘法口诀3.2、3、4的乘法口诀4.6的乘法口诀五.观察物体(一)观察物体(一)六.表内乘法(二)7、8、9的乘法口诀七.认识时间认识时间八.数学广角—搭配(一)数学广角—搭配(一)二年级(下)一.数据收集整理数据收集整理二.表内除法(一)1.除法的初步认识2.用2-6的乘法口诀求商3.解决问题三.图形的运动(一)1.轴对称图形2.平移和旋转四.表内除法(二)1.用7、8、9的乘法口诀求商2.解决问题五.混合运算混合运算六.有余数的除法1.有余数的除法的意义和计算2.解决问题七.万以内数的认识1.1000以内数的识2 .10000以内数的认识3 .整百、整千数加减法八.克和千克克和千克九.数学广角—推理生活中的推理三年级(上)一.时、分、秒1.秒的认识2.时间的计算二.万以内的加法和减法(一)1.口算两位数加减两位数2.几百几十加减几百几十3.三位数加减三位数的估算三.测量1.毫米、分米的认识2.千米的认识3.吨的认识四.万以内的加法和减法(二)1.加法2.减法五.倍的认识倍的认识六.多位数乘一位数1.口算乘法2.笔算乘法3.含0的乘法4.估算与解决问题七.长方形和正方形1.四边形2.周长、长方形和正方形周长八.分数的初步认识1.分数的初步认识(一)2.分数的初步认识(二)3.分数的简单计算4.分数的简单应用九.数学广角——集合集合思想三年级(下)一位置与方向(一)1 认识东、南、西、北四个方向2 认识东北、东南、西北、西南四个方向二除数是一位数的除法1 口算除法2 一位数出两、三位数的笔算除法3 商的中间或末尾有0的笔算除法4 用估算解决问题三复式统计表复式统计表四两位数乘两位数1 口算乘法2 笔算乘法五面积1 面积和面积单位2 长方形、正方形面积的计算3 面积单位间的进率六.年、月、日1 年、月、日2 24时计时法七小数的初步认识1 认识小数2 简单的小数加、减法八数学广角——搭配(二)数学广角——搭配(二)四年级(上)一大数的认识1 亿以内数的认识(一)2 亿以内数的认识(二)3 数的产生、十进制计数法和亿以上数的认识4 计算工具的认识、算盘和计算器5 1亿有多大二公顷和平方千米2 认识平方千米三角的度量1 线段、直线、射线和角2 角的度量3 角的分类4 画角四三位数乘两位数1 笔算乘法(一)2 笔算乘法(二)五平行四边形和梯形1 平行与垂直2平行四边形和梯形六除数是两位数的除法1 口算除法2 笔算除法(一)3 笔算除法(二)4 笔算除法(三)5 笔算除法(四)6 商的变化规律七条形统计图条形统计图八数学广角——优化数学广角——优化四年级(下)一四则运算1 加减法的意义和各部分间的关系2 乘除法的意义和各部分间的关系3 括号二观察物体(二)观察物体(二)三运算定律1 加法运算定律2 乘法运算定律四小数的意义和性质1 小数的意义和读写法2 小数的性质和大小比较3 小数点移动引起小数大小的变化4 小数与单位换算5 小数的近似数五三角形1 三角形的特性2 三角形的分类3 三角形的内角和六小数的加法和减法2 小数加减混合运算3 整数加法运算定律推广到小数七图形的运动(二)1 轴对称2 平移八平均数与条形统计图1 平均数2 复式条形统计图九数学广角——鸡兔同笼数学广角——鸡兔同笼五年级(上)一小数乘法1 小数乘整数2 小数乘小数3 积的近似数4 整数乘法二位置位置三小数除法1 除数是整数的小数除法2 一个数除以小数3 商的近似数4 循环小数5 用计算器探索规律6 解决问题四可能性事件发生的可能性五简易方程1 用字母表示数2 方程的意义及等式的性质3 解方程4 实际问题与方法六多边形的面积1 平行四边形的面积2 三角形的面积3 梯形的面积4 组合图形的面积七数学广角——植树问题数学广角——植树问题五年级(下)一观察物体(三)观察物体(三)二因数与倍数1 因数和倍数2 2、5、3的倍数的特征3 质数和合数三长方体和正方体1 长方体和正方体的认识2 长方体和正方体的表面积3 长方体和正方体的体积4 体积单位间的进率5 容积和容积单位四分数的意义和性质1 分数的意义2 真分数和假分数3 分数的基本性质4 约分5 通分6 分数和小数的互化五图形的运动(三)图形的运动(三)六分数的加法和减法1 同分母分数加减法2 异分母分数加减法3 分数加减混合运算七折线统计图折线统计图八数学广角——找次品数学广角——找次品六年级(上)一分数乘法1 分数乘法2 小数乘分数与分数混合运算3 解决问题二位置与方向(二)位置与方向三分数除法1 倒数的认识2 分数除法3 分数四则混合运算4 分数应用题四比1 比的意义2 比的基本性质3 比的应用五圆1 圆的认识2 圆的周长3 圆的面积4 扇形六百分数(一)1 百分数的意义和写法2 百分数与小数、分数的互化3 用百分数解决问题七扇形统计图扇形统计图八数学广角——数与形六年级(下)一负数负数二百分数(二)1 折扣2 成数3 税率4 利率三圆柱与圆锥1 圆柱2 圆锥四比例1 比例的意义和基本性质2 正比例和反比例的意义3 比例的应用五数学广角——鸽巢问题数学广角——鸽巢问题小学五年级数学上册复习教学知识点归纳总结第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

小学奥数专题-重叠问题(精华版)

小学奥数专题-重叠问题(精华版)

小学奥数专题-重叠问题(精华版) XXX奥数重叠问题专题日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题。

重叠问题中涉及到的容斥原理是奥数的四大原理之一,是奥数重要知识点。

学生研究奥数,一定要掌握容斥原理。

下面小编给大家分享解决重叠的方法。

1.解答重叠问题要用到数学中一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

2.解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次。

明确需要要求的是哪一部分,从而找出解答方法。

3.在数学中,我们经常用平面上封闭曲线的内部代表集合和集合之间的关系。

这种图称为XXX(也叫文氏图)。

4.解答重叠问题的常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复。

这个原理叫做包含与排斥原理,也叫容斥原理。

5.容斥道理1:如果被计数的对象,被分为A、B两大类,则:被计数对象的总个数=A类元素的个数+B类元素的个数-同时属于A类和B类的元素个数。

容斥道理2:如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A类元素的个数+B类元素的个数+C类元素的个数-同时属于A类和B类元素的个数-同时属于A类和C类元素个数-同时属于B类和C类元素个数+同时属于A类、B类、C类元素个数。

一、重叠问题之长度:(1)拼接(对接)(2)搭接(3)打结题目1:(搭接正问题:求总长度)把两段同样是20厘米长的纸条粘合在一起,形成一段更长的纸条。

中间堆叠的局部是6厘米,粘好的纸条长几何厘米?题目2:(搭接反问题一:等长搭接,求原来长度)把两段一样长的纸条粘合在一起,形成一段更长的纸条。

重叠问题(教案)四年级上册奥数人教版

重叠问题(教案)四年级上册奥数人教版

教案:重叠问题年级:四年级上册教材:奥数人教版教学目标:1. 让学生理解重叠问题的概念,能够识别和解决重叠问题。

2. 培养学生的观察能力、分析能力和逻辑思维能力。

3. 培养学生运用重叠问题的方法解决实际问题的能力。

教学重点:1. 理解重叠问题的概念和解决方法。

2. 解决重叠问题的实际应用。

教学难点:1. 重叠问题的解决方法的理解和运用。

2. 解决实际问题中的重叠问题。

教学准备:1. 教学课件或黑板、粉笔。

2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生观察教室里的物品,如书本、文具等,让学生发现重叠现象。

2. 提问:你们在生活中还见过哪些重叠现象?让学生举例并说明。

二、新课导入(10分钟)1. 引入重叠问题的概念,解释重叠问题是指在图形、物体或数据中存在部分相同或重复的情况。

2. 通过举例,让学生理解重叠问题的含义和特点。

三、解决重叠问题的方法(15分钟)1. 介绍解决重叠问题的方法,如排除法、画图法、列表法等。

2. 通过具体的例子,引导学生运用这些方法解决重叠问题。

四、实际应用(10分钟)1. 提供一些实际问题,让学生运用重叠问题的方法解决。

2. 引导学生观察、分析和解决实际问题,培养学生的应用能力。

五、巩固练习(10分钟)1. 提供一些练习题,让学生独立完成。

2. 引导学生分析和解决练习题,巩固所学知识。

六、总结和拓展(5分钟)1. 对本节课的内容进行总结,让学生明确重叠问题的概念和解决方法。

2. 提供一些拓展问题,让学生思考和探索。

教学反思:本节课通过引入生活中的重叠现象,让学生理解重叠问题的概念和解决方法。

在教学过程中,注重培养学生的观察能力、分析能力和逻辑思维能力。

通过实际问题的解决,让学生将所学知识运用到实际中,培养学生的应用能力。

在巩固练习环节,提供一些练习题,让学生独立完成,巩固所学知识。

最后,通过总结和拓展,让学生对重叠问题有更深入的理解和思考。

需要重点关注的细节是“解决重叠问题的方法”。

小学奥数几何中的重叠问题

小学奥数几何中的重叠问题

小学奥数几何中的重叠问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.7-7-3.几何中的重叠问题教学目标知识要点1.先包含——A B +重叠部分A B I 计算了2次,多加了1次; 2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B I 、B C I 、C A I 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---I I I重叠部分A B C I I 重叠了3次,但是在进行A B C ++- A B B C A C --I I I 计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+I I I I I .【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米). 【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米图3例题精讲【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B+圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答 【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .=30,=6,=8,=5,=73,而=.有73=30×3-6-8-5+,即=2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(⑧),乙与丙(⑧),甲与丙(⑧)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(⑧、⑧、⑧部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星 【题型】解答【解析】 阴6412CBA10A B C ==A B I B C I A C I A B C U U A B C U U A B C +--A B B C A C A B C --+I I I I I A B C I I A B C I I叠部分的面积60310040220()(平方厘米).=⨯--÷=【答案】20平方厘米【巩固】如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A与B、B与C的公共部分的面积分别为8、7,A、B、C这三张纸片的公共部分为3.求A与C公共部分的面积是多少?【考点】几何中的重叠问题【难度】3星【题型】解答Array【解析】设A与C公共部分的面积为x,由包含与排除原理可得:⑧ 先“包含”:把图形A、B、C的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑧ 再“排除”:5687x---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑧ 再“包含”:56873x---+,这就是三张纸片覆盖的面积.根据上面的分析得:5687338xx=.---+=,解得:6【答案】6。

小学奥数之重叠问题

小学奥数之重叠问题

十三、重叠问题一、知识要点:在生活中,我们常常会碰到有关重叠的问题。

什么是重叠呢?请看下面的图:A,B 两个圆圈重叠放在一起,两个圆圈重叠放在一起,C C 是它们的重叠部分。

基本关系:联合体AB=A+B-C重叠体:重叠体:C=A+B-AB C=A+B-AB对这类题目,我们要从信息入手,可以借助作图来分析,找出解题方法。

二、例题学习:例1:老师出了两道题,在40人中,做对第一题的有31人,做对第二题的有28人,每人至少做对一题,两道题都做对的有几人?分析:如图所示:圆A 表示做对第1题的人数,圆B 表示做对第二题的,两个圆的重叠部分表示两道题都做对的人数,的重叠部分表示两道题都做对的人数,3131人与28人的和中包含了两道题都做对的人数,一共是(的人数,一共是(32+28=5932+28=59人),比40人多出(人多出(59-40=1959-40=19人),这就是两道题都做对的人数。

解:解:31+38=5931+38=5931+38=59(人)(人)59-40=19 59-40=19(人)(人)试一试:教工运动会,参加跳绳比赛的有38人,参加踢毽子比赛的有39人,因病请假的有3人,如果全校教工有55人,那么既参加跳绳比赛又参加踢毽子比赛的老师有多少人?例2:校运动会上,四个年级共有118人参加了跑步比赛。

其中一、二年级共有70人参加,一、三年级共有65人参加,二、三年级共有59人参加,问:四年级有多少学生参加跑步比赛?分析:在(分析:在(70+65+59=19470+65+59=194人)中,一、二、三年级的参赛人数均重复出现了两次,因此一、二、三年级的参赛人数应是总人数的一半,这样四年级的参赛人数也就可以算出来了。

解:(解:(70+65+5970+65+5970+65+59)÷)÷)÷2=972=972=97(人)(人)118-97=21118-97=21(人)(人)试一试:某校三年级共有三个班级128名学生,一班和二班共有89人,二班和三班共有87人。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与C重合部分面积)10,得到A、B、C三个圆两两重合面积之和为:
而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:
60 10 3阴影部分面积,则阴影部分面积为:60 30 30(平方厘米)•
30平方厘米
数,用式子可表示成:AUB A B AI B(其中符号U”读作 并”,相当于中文 和”或者 或”的意思;符 号“I”读作 交”,相当于中文 且”的意思.)则称这一公式为包含与排除原理, 简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:AI B,即阴影面积•图示如下:
包含与排除原理告诉我们,要计算两个集合A B的并集AUB的元素的个数,可分以下两步进行:
第一步:分别计算集合A、B的元素个数,然后加起来,即先求A B(意思是把A、B的一切元素都 包含”
进来,加在一起);
第二步:从上面的和中减去交集的元素个数,即减去C AI B(意思是 排除”了重复计算的元素个数)•
二、三量重叠问题
A类、B类与C类元素个数的总和A类元素的个数B类元素个数C类元素个数 既是A类又是B类的元素个数 既是B类又是C类的元素个数 既是A类又是C类的元素个数 同时是A类、B类、C类 的元素个数.用符号表示为:AU BUC A B C AI B BI C AI C AI BI C.图示如下:
计算了一次,而实际上这部分只需计算一次就可以了•所以,组合图形的面积长方形面积之和
重叠部分•于是,组合图形的面积12 8 10 6 4 4 140(平方厘米)•
140平方厘米
三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘
米•三个纸片盖住桌面的总面积是100厘米•问:图中阴影部分面积之和是多少?
数学竞赛
小学奥数几何中的
重叠问题

1.了解容斥原理二量重叠和三量重叠的内容;
2.掌握容斥原理的在组合计数等各个方面的应用.

一、两量重叠问题
在一些计数问题中,经常遇到有关集合元素个数的计算•求两个集合并集的元素的个数,不能简单地
把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个
68平方厘米
一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是 个边长4厘米的正方形,求这个组合图形的面积.
几何中的重叠问题
【难度】
1星【题型】解答
6
两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,
如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被
例题精讲
【例1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有
多长?
【考点】几何中的重叠问题【难度】1星【题型】解答
【解析】因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长38 53 4 87
(厘米).
【答案】87厘米
【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条•已知焊接部分长3厘米,焊接后这根铁条有
多长?
【考点】几何中的重叠问题【难度】1星【题型】解答
【解析】焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:23 37 3 57(厘米)•
【答案】57厘米
如果利用两个4 2的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积
中各被计算了一次,而实际上这部分只需计算一次就可以了•所以,被覆盖面积长方形面积之
两个图形如图摆放时出现了重叠
【解析】
(见图中的阴影部分
6
),重叠部分恰好是边长为
如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,
4厘米的正方形,
那么重叠部分在长方形和正方形面
积中各被计算了一次,而实际上这部分只需计算一次就可以了•所以,组合图形的面积
长方形
面积 正方形面积 重叠部分•于是,组合图形的面积:8 6 6 6 4 4 68(平方厘米).
几何中的重叠问题【难度】2星 Nhomakorabea题型】解答
将图中的三个圆标上 圆面积C圆面积)纸片共同重叠的面积,
A、B、C•根据包含排除法,三个纸片盖住桌面的总面积(A圆面积B
(A与B重合部分面积A与C重合部分面积B与C重合部分面积)三个
得:100 (50 50 50) (A与B重合部分面积A与C重合部分面积B
160 100 60平方厘米,
和-重叠部分.于是,被覆盖面积4 2 2 2 2 12(平方厘米)•
【答案】12厘米
【巩固】
【考点】
【解析】
【答案】
【巩固】
【考点】
【解析】
【答案】
【例3】
【考点】
如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边 长为4厘米的正方形,求这个组合图形的面积.
几何中的重叠问题【难度】1星【题型】解答
相关文档
最新文档