数学与应用数学毕业论文
数学与应用数学专业毕业论文
数学与应用数学专业毕业论文一、教学中的常见问题1、学习兴趣不足在当前的中小学数学教学中,普遍存在着学生学习兴趣不足的问题。
一方面,由于数学学科的抽象性和严谨性,使得许多学生在学习过程中感到枯燥乏味,难以产生兴趣;另一方面,教师在教学过程中往往过于关注知识的传授,忽视了激发学生的学习兴趣。
(1)课堂氛围枯燥,缺乏趣味性在传统数学课堂中,教师往往采用“一言堂”的教学方式,课堂氛围较为严肃,学生被动接受知识,缺乏积极参与和互动。
这种教学方式使得数学课堂变得枯燥无味,难以激发学生的学习兴趣。
(2)教学手段单一,缺乏创新性在教学过程中,部分教师过于依赖教材和PPT,教学手段单一,缺乏创新。
这使得学生在学习过程中感到乏味,难以产生学习兴趣。
2、重结果记忆,轻思维发展在数学教学中,部分教师过于关注学生的考试成绩,导致教学过程中重视结果记忆,轻视思维发展。
(1)题海战术,忽视思维训练为了提高学生的考试成绩,部分教师采用题海战术,让学生大量做题。
这种做法虽然能在一定程度上提高学生的解题能力,但忽视了思维训练,导致学生难以形成系统的数学思维。
(2)教学过程过于关注答案,忽视思考过程在教学过程中,部分教师过于关注答案的正确性,而忽视了学生的思考过程。
这种做法使得学生在遇到新问题时,难以运用所学知识进行思考和解决。
3、对概念的理解不够深入在数学学习中,概念的理解至关重要。
然而,在当前的教学中,部分学生对概念的理解不够深入,影响了他们的数学学习。
(1)概念教学过于表面,缺乏深入剖析在概念教学中,部分教师仅仅停留在定义的层面,未能深入剖析概念的内涵和外延,导致学生对概念的理解不够深入。
(2)忽视概念之间的联系,难以形成知识体系在教学中,部分教师未能引导学生理解概念之间的联系,使得学生在面对复杂问题时,难以将所学知识进行整合,形成系统的知识体系。
二、教学实践与思考1、梳理脉络,全面理解教材(1)从培养目标出发,理解课程核心素养的发展体系为了提高数学教学的质量,教师需要从培养目标出发,深入理解课程核心素养的发展体系。
数学与应用数学专业毕业论文范文
如何写数学与应用数学专业的论文我是一位大一的学生,导员老师为了虽然我没写过论文,但还是想提点建议,楼主不妨考虑一下。
作为大一学生,限于学识和能力,要写作的所谓“专业论文”,不会要求达到毕业论文那样高的水平,只要对所学过某一方面的知识和方法作一个较为系统的整理就可以了。
鉴于此,下面就楼主所提到的四门课程各拟一题,仅供参考: 1.数学分析:极限的求法; 2.高等代数:行列式的计算方法; 3.空间解析几何:仿射变换及其应用; 4.高等几何:高等几何在平面几何证题中的应用。
应用数学专业毕业论文先修课程:数学与应用数学专业主要课程、教育类课程等适用专业:数学与应用数学(本科、师范)一、目的培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。
使学生获得科学、教学研究方法的初步训练。
培养学生的独立研究能力和重视开发学生的创新能力。
两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。
学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。
四、毕业论文成绩评定 1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。
2.成绩分5个等级:优秀、良好、中等、及格、不及格。
毕业生毕业论文统一格式要求一、论文用纸:B5纸打印。
二、论文标题: 1、主标题:用小二号黑体字,置于首页第一行,居中。
2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。
其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。
三、论文正文: 1、字体:用四号仿宋体。
2、段落:行距为24磅。
3、页码:居中。
四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。
五、注释:如有注释,皆在正文之后注明。
数学与应用数学大学导论课论文怎么写(一)题名(Title,Topic)题名又称题目或标题。
中北大学数学与应用数学专业毕业论文研究
中北大学数学与应用数学专业毕业论文研究1.引言数学与应用数学专业作为一门重要的应用数学学科,具有广泛的研究领域和应用价值。
本篇论文旨在对中北大学数学与应用数学专业的毕业论文研究进行探讨,通过对该领域的研究成果和发展趋势的分析,为相关领域的学生和研究人员提供一定的参考和借鉴。
2.数学与应用数学专业的研究内容2.1 数学建模数学建模是数学与应用数学专业的重要研究内容之一。
数学建模的目的是利用数学工具和方法对实际问题进行数学建模和求解,从而为社会经济发展和科学研究提供支持和指导。
在中北大学数学与应用数学专业的毕业论文研究中,数学建模的应用非常广泛,涉及到经济、环境、生物医学等多个领域。
2.2 数学分析数学分析是数学与应用数学专业的核心研究内容之一。
数学分析是对数学概念和定理进行严密证明和推导的一门数学学科。
在中北大学数学与应用数学专业的毕业论文研究中,数学分析的应用非常广泛,用于研究各个领域的数学问题和物理问题。
2.3 随机过程随机过程是数学与应用数学专业的重要研究内容之一。
随机过程是研究随机变量随时间变化的一种数学工具。
在中北大学数学与应用数学专业的毕业论文研究中,随机过程的应用非常广泛,用于研究金融、保险、信号处理等领域的问题。
3.中北大学数学与应用数学专业毕业论文研究的研究成果3.1 数学建模方面的研究成果中北大学数学与应用数学专业的毕业论文研究在数学建模方面取得了一定的研究成果。
例如,研究人员通过对某个具体问题进行数学建模,提出了一种新的模型并利用数值方法进行求解,取得了较好的效果。
这些研究成果不仅丰富了数学建模的理论体系,也为相关领域的应用提供了有效的解决方案。
3.2 数学分析方面的研究成果中北大学数学与应用数学专业的毕业论文研究在数学分析方面也取得了一些突破。
例如,研究人员通过对某个数学公式进行推导和证明,得到了一些新的结论。
这些研究成果不仅扩展了数学分析的研究范围,也为相关领域的应用提供了新的数学工具。
数学与应用数学毕业论文
数学与应⽤数学毕业论⽂数学与应⽤数学毕业论⽂######学院本科学⽣毕业论⽂(设计)题⽬论数学史的教育价值系别数理系专业数学与应⽤数学学⽣姓名######学号#######指导教师###### 职称讲师论⽂字数10506完成⽇期2012 年 5 ⽉21 ⽇⽬录⼀、数学史学科的介绍及其发展 (2)(⼀)数学史学科介绍 (2)1.数学史的研究对象 (2)2.数学史的分期 (2)3.数学史的意义 (2)(⼆)数学的发展史 (2)1.数学发展史简述 (2)2.数学悖论与数学史上的三次危机 (2)⼆、当代数学教学的现状调查及特点 (3)(⼀)学⽣数学学习情况的调查 (3)1.问卷和调查情况 (3)2.对调查结果的分析 (3)(⼆)中国数学教学的若⼲特点 (3)1.中国的数学教学突出知识性的具体⽬标 (3)2.中国的数学教学长于由“旧知”引出“新知” (3)3.中国的数学教学注重新知识内部的深⼊理解 (3) 4.中国的数学教学重视解题和关注⽅法、技巧 (3) 5.中国的数学教学重视巩固、训练和记忆 (3)三、中国数学基础教育的缺失与出路 (4)1.中国数学基础教育成功吗 (4)2.中国数学基础教育缺失什么 (4)3.中国数学基础教育的出路在哪⾥ (4)四、数学史的教育价值 (5)参考⽂献 (6)致谢 (7)论数学史的教育价值###### 数理学摘要数学史是穿越时空的数学智慧。
数学的发展历史呈现给我们的是⼀幅既源远流长,⼜⽇新⽉异的画卷。
学习研读它将使我们获得思想上的启迪、精神上的陶冶,有助于开阔视野、了解数学及其思想、⽅法、发展的动态过程,加深对数学本质的认识,有助于教师和学⽣形成正确的数学观,有助于学⽣正确理解数学概念的形成过程,有助于实现数学活动过程的教学,有助于培养学⽣的数学创新精神。
数学史也是数学课程不可或缺的有机组成部分,在数学教学中融合数学史教育,不仅能体现数学知识,数学思想⽅法的价值,也能体现情感、态度和价值观⽅⾯的价值。
数学与应用数学专业毕业论文
数学与应用数学专业毕业论文论文题目:数学教学中的德育渗透摘要:我们如何更好地结合学科特点在数学教学中进行德育教育?本文将从实施德育渗透的内容、要求、方法、原则及应注意的问题五个方面阐述如何在数学教学中渗透德育教育。
利用数学史对学生进行爱国主义教育。
结合数学实际对学生进行辩证唯物主义教育、对学生进行人生价值观的教育、利用数学美对学生审美教育、贯彻素质教育原则。
深入钻研教材、挖掘德育因素、德育渗透要适时适度。
关键词:数学教学德育渗透1数学中蕴含的德育内容1.1理想教育数学源于实际,且随着生产力的发展而发展。
华罗庚说:“宇宙之大,粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁无处不用数学。
”结合数学教学内容使学生了解数学知识在现代化建设和科技发展中的巨大作用,必将激发他们学好数学,以报效祖国的情感使学生了解科技的突飞猛进对数学工具的更高要求,而有待后人不断探索创新的事实,必将增强学生的使命感,将现实和理想结合起来。
发奋学习这样可为学生树立革命人生观打下坚实的基础。
像陈景润,他攀登“哥德巴赫猜想”这一科学高峰的艰险历程中,为了理想,为了科学,以契而不舍,坚忍不拔的毅力,在不足十平方米的斗室中,埋头苦干,常常为了一个公式,一个数据而废寝忘食,终于在1972年把人们200多年未能解决的“哥德巴赫猜想”证明大大的向前推进了一步。
这些名人的感人事迹无疑会让学生受到极大的感染,以此激励、教育学生像这些楷模学习,树立远大的理想[2]。
1.2利用数学史对学生进行爱国主义教育我国历史悠久,有光辉灿烂的文化史、数学史。
商高定理(勾股定理)、祖恒原理、杨辉三角、《周髀算经》,《九章算术》……是传统数学的宝贵财富。
历史名人举世瞩目,仅公元前三世纪的刘徽一人就赢得了多项世界之最:他最早提出分数除法法则,给最小公倍数以严格定义、应用小数、提出非平方数的近似值公式,给出负数定义和负数加法法则,把比例和“三数法则”结合起来,给出一次方程定义和完整解法,提出割圆术、把圆周率计算到3、1416,用无穷分割证明了方锥的体积公式,创造“重差术”(即测量可望不可及目标的一种方法)现在虽时过境迁,但割圆术仍不失为极限这一费解概念极好的几何解释。
数学与应用数学专业大学毕业论文
数学与应用数学专业大学毕业论文一、引言数学与应用数学专业涵盖了数学理论和数学应用的学习,旨在培养学生在数学理论和方法上的深入理解和应用能力。
本次毕业论文旨在探究数学与应用数学的重要性以及其在现代社会中的应用。
二、数学的重要性1. 数学理论的推动作用数学理论作为科学发展的基础,对现代科学和技术的发展起到了重要的推动作用。
通过深入理解数学的基本原理和概念,学生可以在未来的职业生涯中运用数学方法解决实际问题。
2. 数学在科学研究中的应用数学在自然科学和社会科学等领域中起到了重要的作用。
在物理学、化学、生物学等自然科学领域,数学模型被广泛运用于预测、解释以及模拟实验。
在经济学、管理学、社会学等社会科学领域,数学方法可以用来分析数据、描述现象以及推理推论。
3. 数学教育的培养能力数学学科的学习不仅仅是为了培养学生的数学知识和技能,更重要的是培养学生的逻辑思维能力、抽象思维能力、创造力以及解决问题的能力。
这些能力在学生的终身学习和职业发展中都起到了重要的作用。
三、数学与应用数学的应用领域1. 工程与技术领域数学在工程和技术领域中应用广泛。
在电子工程、计算机科学和信息技术等领域,数学方法被用于设计和优化算法、模拟和分析电路,以及解决不同领域的工程问题。
2. 金融与经济领域数学在金融与经济领域中起到了重要的作用。
通过建立数学模型和运用数学方法,可以预测市场走势、风险管理和投资决策。
金融数学和金融工程等学科的发展也证明了数学在金融领域中的重要性。
3. 自然科学领域数学在自然科学领域中也有广泛的应用。
在物理学、化学、天文学等领域中,数学方法被用于解决实验数据分析、数值计算和模拟实验等问题。
数学模型和方程式可以帮助科学家理解和解释现象,指导实验和观测。
4. 社会科学领域社会科学领域也离不开数学的应用。
例如,在心理学、社会学和统计学等领域中,数学方法可以帮助研究者分析数据、探索关联性以及验证假设。
数学模型的运用可以揭示出隐藏在数据背后的规律和趋势。
数学与应用数学专业毕业论文
数学与应用数学专业毕业论文数学与应用数学专业毕业论文数学与应用数学专业是一门深奥而又实用的学科,它涉及到数理逻辑、代数、几何、微积分、概率统计等多个领域。
毕业论文是学生在大学期间的重要任务之一,它不仅要求学生掌握所学知识,还需要学生具备独立思考和解决问题的能力。
本文将从数学与应用数学专业毕业论文的选题、研究方法和结果分析等方面进行探讨。
一、选题数学与应用数学专业毕业论文的选题是一个关键的环节。
学生可以选择自己感兴趣的领域进行深入研究,也可以选择与实际应用紧密相关的课题。
例如,可以选择在金融领域中应用数学模型来解决问题,或者研究图像处理中的数学算法等。
选题时需要考虑到自己的兴趣和专业背景,同时也要考虑到课题的研究难度和可行性。
二、研究方法研究方法是数学与应用数学专业毕业论文的核心。
学生可以运用数学分析、数值计算、模拟实验等方法来解决问题。
例如,可以运用微积分的知识来分析函数的性质,或者使用概率统计的方法来分析数据的规律。
在具体的研究过程中,学生需要运用数学模型来描述问题,并进行合理的假设和推导。
同时,还需要进行数据采集和实验验证,以验证自己的研究结果。
三、结果分析结果分析是数学与应用数学专业毕业论文的重要组成部分。
学生需要对自己的研究结果进行全面准确的分析和解释。
在结果分析中,学生可以运用图表、统计数据等形式来展示自己的研究成果。
同时,还需要对结果进行深入的讨论,分析其意义和局限性。
在结果分析中,学生还可以提出自己的观点和建议,为相关领域的研究和应用提供参考。
四、实际应用数学与应用数学专业毕业论文的实际应用是其重要价值之一。
毕业论文的研究成果可以为相关领域的实际问题提供解决方案。
例如,通过研究金融领域中的数学模型,可以为投资者提供科学的投资策略;通过研究图像处理中的数学算法,可以为图像识别和图像重构等提供技术支持。
因此,数学与应用数学专业毕业论文的实际应用价值不容忽视。
综上所述,数学与应用数学专业毕业论文是学生在大学期间的重要任务之一。
数学与应用数学毕业论文
数学与应用数学毕业论文数学与应用数学作为一门重要的学科,涉及到了各种数学理论和方法在现实生活中的应用。
在本篇毕业论文中,将着重探讨数学与应用数学领域的一些重要内容,并结合实际案例进行分析和讨论。
首先,我们将从数学的基础知识入手,探讨数学在解决实际问题中的应用。
数学的基础知识包括代数、几何、概率论等多个方面,这些基础知识为我们理解和应用数学打下了坚实的基础。
例如,在几何学中,我们可以运用几何知识来解决关于空间结构和形状的问题;在代数学中,我们可以利用代数方法来解决各种方程和不等式;在概率论中,我们可以用概率的概念来描述和分析随机事件的规律性。
接着,我们将重点讨论数学在金融领域中的应用。
金融数学是数学与应用数学领域中一个重要的分支,它将数学的方法和技巧应用到金融市场的建模和预测中。
例如,通过数学模型可以对金融市场的波动性进行分析和预测,从而帮助投资者制定有效的投资策略;又如,通过数学的方法可以对金融产品的定价进行准确计算,保证金融交易的稳定和有效性。
此外,我们还将探讨数学在人工智能和机器学习中的应用。
随着人工智能技术的快速发展,数学方法在机器学习领域中扮演了重要角色。
例如,通过数学模型可以对大数据进行分析和挖掘,从而发现数据中的隐藏规律;又如,通过数学的方法可以构建复杂的神经网络模型,实现对人工智能系统的训练和优化。
综上所述,数学与应用数学是一门重要的学科,它不仅包含丰富的基础知识,而且在各个领域中都有着广泛的应用。
通过本篇毕业论文的研究,我们可以更加深入地了解数学与应用数学领域的相关内容,并为今后的学习和研究提供参考和帮助。
希望本篇毕业论文能够对读者有所启发和帮助,谢谢!。
数学与应用数学专业毕业论文2
数学与应用数学专业毕业论文(2) 数学与应用数学专业毕业论文范文数学与应用数学专业毕业论文范文(二)论文题目:七年级学生数学解题能力的培养摘要:学生数学解题能力是数学知识在更高层次上的抽象与概括,单纯的数学知识只能是学生的知识积累,而数学解题能力的培养是一种授之以渔的过程.七年级学生从小学单纯的数字计算到初中代数的引入,以及几何知识的扩展,他们掌握数学知识的广度和深度都有了不同程度的增加,因此培养学生的解题能力是必不可少的教学环节.教师在课堂中应重视数学思想方法的教学,加强学生数学解题的规范性,不断归纳总结,增强解题效果.学生在解题时会从不同角度考虑和分析问题,学会一题多解、一题多变、一题多得,从而巩固了所学知识.解题能力的培养对发展学生创造性思维能力具有重要意义.关键词:七年级;数学题;解题能力;创造性思维第一章七年级学生解题能力培养的意义七年级数学是初中学习中关键的基础,它不仅是小学和初中数学知识衔接的重要阶段,更是学生获得知识,同时更是思维能力、情感态度与价值观方面得到进步和发展的时期,所以了解七年级数学的学习特点是很重要的.七年级数学是在小学数学知识的基础上进行拓展和延伸的.难度比较适中,宽度有所加大.它与小学数学的最大的不同点是七年级数学的概念有显著的增加.对于小学的概念读懂就可以了,而七年级的数学概念需要牢牢记住和掌握,在学习的过程中须有一种敢于挑战的精神,抓住知识的本质,细抠所学内容,在理解的基础上掌握概念、运用概念,这写方法贯穿中学数学学习的始终.小学数学的计算与中学比较相对简单,中学数学的计算比较繁杂.想要学好中学数学知识必须培养准确而迅速的计算习惯.首先需要对所学的概念和定义深层的理解和熟练的掌握,其次还需要在做题的过程中专心的审题和细致检查,严格要求自己不能在基本的计算上粗心而出错误,并以此为考试成绩不高找借口,养成凡事认真仔细的习惯.在小学知识与学习习惯的基础上,培养自己独立完成习题并且敢于克服难题的能力.中学的学习到类似于小学奥数一样的难题,一定要发扬敢于接受挑战的精神,在习题的过程中养成一中也会遇题多解、多题一解、一题多变的习惯,注重培养发散思维与做题技巧.因此在小学升入七年的数学学习中,培养较好的解题能力是学好中学数学知识的关键,是为以后的数学学习打下牢靠基础的保证.第二章培养数学解题能力的方法2.1重视基本概念和基础知识的掌握数学中的.定义、公式、定理、命题等,是解题的依据,对于这些基本概念和基础知识,教师教学时不应忽视,并能熟练地将不仅要讲解来龙去脉,还要指导学生透过表面抓住本质,其应用.对书中基本概念、基本知识的熟练掌握是提高做题能力的必须.对于刚步入初中的学生来说,中学概念的大量增加是一个较大的挑战,所以教师要注重培养学生对基本概念和基础知识的掌握,严格要求学生牢记定义,概念.在上课,要反复回顾这节课的概念、定义;下课后,布置关于基本概念的习题,在做题的过程中,学生就会应用学过的概念去做题,通过不断的训练,来加强基本概念的记忆与理解.2.2培养学生审题的能力七年级学生解数学题时,普遍存在着见题就解的习惯.当遇见条件明显的题时,这种现象尤为显著.这是提高学生解题能力的一大障碍.为改正这种不良习惯,教师需要通过详细分析题意,找出简捷易懂的解题方法,让学生体会到仔细审题的优越之处,逐步形成分析题目的习惯,从而提高学生的解题能力.在解数学应用题时,要做到三点:“一读、二画、三复述”.读题是审题教学的第一步.指导学生用默读方式,一边读,一边思考.在教学过程中要逐步提高学生的读题能力,先要求学生逐字逐句地读,以后要求学生连贯地读,关键词语要加重语气读.然而会读题并不等于理解题意.为了使学生更好地理解题意,可以指导学生画画点点,画上各种符号.一般用双竖线“||”把应用题的条件与问题分开,用横线“—”把已知条件断开,用着重点“ ”表示关键词.复述题意是为了检验学生是否真正弄懂题目的意思.对学生复述题意的训练,可以逐步使学生养成认真审题的良好习惯,同时也可以培养学生的数学语言表达能力以及理解和记忆能力.然而审题能力的培养在应用题教学中表现得尤为重要.教学实践证明,学生解答不出应用题,主要的困难在于对题意不理解.“理解了题意,等于题目做出了一半”.但是学生往往对审题拘于形式,拿到题目就把题中数字进行简单组合,导致错误.应用题的难度是在找出问题中所蕴涵的数学关系.所以首先要加强学生“说”的培养,理解题意.对于有些叙述较为抽象、冗长的应用题,可引导学生将题目的叙述进行简化,即说出应用题的已知条件和问题.其次要加强关键词句的观察,理解题意.有时候仅一字之差,题目的数量关系就发生变化了,进而解法也有很大的差异.2.3通过变式训练提高学生解题能力学生的做题技巧是基本计算之上才会有的,所以要把基本计算练好.但是大量的基本计算训练容易僵化学生的思维,不利于创新能力的培养,因此要科学地运用变式来提高解题能力,通过变式来改变题目的条件或结论,找出已知条件与问题之间的联系,能够使学生把握题中不变的东西,熟悉做题的技巧,同时也培养了学生联想、转化、归纳、推理、探索的思维能力.其中变式训练包括一题多解,多题一解,一题多变.2.4重视数学思想方法的教学在教学过程中,教师对数学思想方法的传授对学生解题能力的提高起至关重要的作用.对数学问题发现、思考、规律的揭示,及结论的推广等过程都体现着某种数学思想,并受某种数学思维的指导.在教学中忽视这个过程就意味着失去了向学生传授数学思想方法的机会.因此,我们遵循“教师主导,学生主体”的教学原则,在教学过程中运用启发式教学,培养学生的自主创新能力,使其能够熟练运用各种数学思想方法,而非填鸭式教学,这就要求教师处理数学问题中循序善导.在中学数学教材中都蕴含了那些数学思想方法呢?第一,具体的数学方法有:消元法,换元法,配方法,待定系数法等;第二,科学的逻辑方法有:类比,归纳,演绎,以及分析法,综合法,反证法等;第三,常用的数学思想有:数形结合思想,方程的思想,分类讨论的思想等.例如在掌握一元一次方程(组)的解法后,可让学生尝试求解二元、三元一次方程(组)的方法,其实就是用消元法将三元转化为二元,再将二元转化为一元方程(组)进行求解,初步体会化归思想.2.5加强学生数学解题的规范性的教学讲解例题作为教学过程的一个重要部分,它不仅能激发学生对于数学知识学习的兴趣,而且对学生做题过程有重要的示范作用.教师在讲授每节课时,一定要充分发挥例题的重要作用,仔细地研究分析相关例题的解题规范与注意要点.讲解例题、作业、习题、试题时板书的规范的格式,这样学生就有参照,自然上行下效.对于学生的作业,应该要求解题过程有理有据,每一步都有出处,有条件.小学阶段的几何知识较少,解几何题时的要求比较低,而中学阶段解几何题时要求用几何语言表达.不同阶段的要求不同,解题的规范也会发生变化,因此教师一定严格要求学生的书写格式以及语言表达,强化解题规范意识,使学生的规范解题成为习惯.2.6不断归纳总结,增强解题功效解题不能只注意解题过程的完成或单纯追求结果的对与错,解题后,要求学生归纳所用知识,重要知识的用法,解类似题的方法技巧,并查错补遗,寻求最佳方案等.通过这样的训练,培养学生的良好的解题习惯,通过过程挖掘,提炼解题指导思想,归纳总结解题方法,上升到思想方法的高度,抓住实质,揭示规律,从而更高层次上发挥解每一类数学问题的功能作用,大量节省做题时间同时大大提高效率,学生的解题能力才会得到较大提高.七年级所学知识中几何证明主要考到的是说明三角形全等,因此在做题过程中时刻注意已知条件中是否给出说明三角形全等的条件,以数学是自然科学是基础学科,是中小学教育中必不可少的基础学科,它对发展学生的智力,培养学生的能力,特别在培养人的思维方面,具有其它学科任何一门学科都无法替代的特殊功能,中学数学解题能力的培养也是多方面的,没有固定的模式,我们要不断加强教育理论的学习,及时准确把握学生的状况,改进教法,引导学生真正成为学习的主人,让素质教育在数学教育这块园地中开出更美的花朵,结出丰硕的果实.参考文献[1](美)G·波利亚著,涂泓,冯承天译.怎样解题[M].上海科技教育出版社,2000-4-25[2]希阳,源流.七年级发散思维大课堂[M].龙门书局,2012-6-20[3]杨红潮.中学生数理化(七年级数学)(北师大版)[J].中华人民共和国新闻出版总署,2012,14(1)[4]薛金星.中学教材全解(七年级数学)(北师大版)[M].人民教育出版社,2010-4-15[5](美)乔治·波利亚著,刘景麟等译.数学的发现:对解题的理解、研究与讲授[M].科学出版社,2009-05-01[6]金英兰.初中解题方法数学7年级(第3次修订版)[M].延边大学出版社,2011-05-01。
数学系优秀毕业论文(通用12篇)
数学系优秀毕业论文(通用12篇)数学系优秀毕业论文(通用12篇)难忘的大学生活将要结束,同学们毕业前都要通过最后的毕业论文,毕业论文是一种有计划的检验学生学习成果的形式,那么问题来了,毕业论文应该怎么写?下面是小编精心整理的数学系优秀毕业论文(通用12篇),欢迎大家分享。
数学系优秀毕业论文篇1摘要:《数学课程标准》指出:数学的知识、思想和方法必须由学生在现实的数学实践活动中理解和发展,而不是单纯地依靠教师的讲解去获得。
因此,教师要以学生的生活和现实问题为载体和背景,以学生的直接体验和生活信息为主要内容,把教科书中的数学知识巧妙而灵动地转化为数学活动。
关键词:应用数学;走进生活;数学活动《义务教育数学课程标准》指出:数学的知识、思想和方法必须由学生在现实的数学实践活动中理解和发展,而不是单纯地依靠教师的讲解去获得。
因此,教师要以学生的生活和现实问题为载体和背景,以学生的直接体验和生活信息为主要内容,把教科书中的数学知识巧妙而灵动地转化为数学活动。
引领学生通过自主探究、合作交流等实践活动,发现、理解、掌握数学知识,并在运用所学知识解决实际问题的过程中形成技能,提升能力。
下面结合自己的教学实践,谈几点粗浅做法与思考。
一、走进生活,应用有价值的数学知识数学来源于生活,离开了生活,数学将是一片死海,没有生活的数学是没有魅力的。
同样,生活离开了数学,那将是一个无法想象的世界。
因此,在教学中,应从学生的生活经验和已有知识出发,巧妙创设真实的生活场境,提供大量的数学信息。
这样,既让学生感受到了数学与生活的密切联系,又彰显了数学鲜活的生命力,促使学生萌生主动运用数学解决实际问题的意识。
(一)课前调查,萌发应用意识教师要善于把日常生活中遇到的问题呈现在学生面前,引领学生用数学的眼光观察生活,为数学知识的学习收集素材,让学生在生活的每个角落都感受到数学的存在,切实体会到数学渗透在我们生活的方方面面,促使学生自觉地将数学与生活联系起来,萌发应用意识。
数学与应用数学专业的毕业论文
数学与应用数学专业的毕业论文数学与应用数学专业的毕业论文数学与应用数学专业是一门理论与实践相结合的学科,涉及到数学理论的研究与数学在实际问题中的应用。
而毕业论文是数学与应用数学专业学生完成学业的重要环节,旨在通过独立研究与论文撰写,展示学生在该领域的专业能力和研究成果。
一、选择合适的毕业论文题目选择一个合适的毕业论文题目对于顺利完成论文至关重要。
在选择题目时,学生可以从自己感兴趣的领域出发,结合导师的研究方向进行选择。
同时,要考虑到论文的可行性和实用性,以及对学术界的贡献程度。
一个好的论文题目应该具备研究的深度和广度,能够激发学生的思考和创新。
二、论文的研究方法和理论基础在进行毕业论文的研究过程中,学生需要选择适当的研究方法和理论基础。
研究方法可以包括数学建模、实证研究、理论分析等,而理论基础则是研究的基石。
学生需要通过文献调研和实际操作,选择适合自己研究方向的方法和理论,确保论文的科学性和可信度。
三、数据的收集与分析在进行应用数学专业的毕业论文研究时,数据的收集与分析是一个重要的环节。
学生可以通过实地调研、问卷调查、文献分析等方法收集相关数据,然后运用数学统计学方法进行数据分析。
数据的收集与分析能够为论文的结论提供有力的支持,同时也能够培养学生的实践能力和数据处理能力。
四、论文的撰写与表达毕业论文的撰写与表达是整个研究过程的总结与展示。
学生需要按照学校或学院的要求,规范地撰写论文的各个部分,包括摘要、引言、研究方法、数据分析、结果与讨论等。
同时,学生还需要注重论文的语言表达和逻辑结构,确保论文的可读性和连贯性。
在撰写过程中,学生可以请教导师或其他专业人士的意见和建议,以提高论文的质量。
五、论文的答辩与评审完成毕业论文后,学生还需要进行论文的答辩与评审。
答辩是学生对自己研究成果的展示和解释,评审则是对论文质量的评价和认可。
在答辩和评审过程中,学生需要清晰地陈述自己的研究内容和方法,并回答评委的问题。
数学与应用数学专业的毕业论文
数学与应用数学专业的毕业论文数学与应用数学专业的毕业论文数学与应用数学专业是一门综合性较强的学科,它在现代科学和技术中扮演着重要的角色。
而毕业论文是数学与应用数学专业学生完成学业的重要环节之一,它不仅是对所学知识的总结与应用,更是对学生综合能力的考验。
本文将从数学与应用数学专业毕业论文的意义、选题与研究方法以及撰写技巧等方面进行探讨。
首先,数学与应用数学专业毕业论文的意义不仅在于对所学知识的运用,更重要的是培养学生的科研能力和创新思维。
在论文的选题和研究过程中,学生需要运用所学的数学理论和方法,分析和解决实际问题,这既需要扎实的数学基础,也需要学生具备独立思考和解决问题的能力。
通过论文的撰写,学生可以更好地理解和掌握所学的知识,并培养自己的科研兴趣和能力,为今后的学术研究或职业发展打下坚实的基础。
其次,选择合适的论文选题和研究方法是数学与应用数学专业毕业论文的关键。
在选题方面,学生可以结合自己的兴趣和实际需求,选择与数学与应用数学专业相关的研究领域或热点问题进行深入研究。
同时,还可以参考前人的研究成果,选择有一定研究价值和创新性的课题。
在研究方法方面,学生可以根据选题的特点和要求,选择合适的数学模型和分析方法进行研究。
例如,可以运用概率论和统计学方法来分析实际问题的概率分布和相关性,或者运用微分方程和数值计算方法来求解实际问题的解析解或数值解等。
然后,撰写数学与应用数学专业毕业论文需要注意一些技巧和规范。
首先,论文的结构应该清晰合理,包括引言、研究方法、实验结果与分析、结论等部分。
引言部分应该简要介绍研究背景和意义,明确研究目的和方法。
研究方法部分应该详细描述所采用的数学模型和分析方法,确保读者能够理解和复现实验过程。
实验结果与分析部分应该客观准确地呈现实验结果,并结合数学理论进行深入分析和讨论。
最后,结论部分应该总结研究成果,指出不足之处,并提出进一步研究的方向和建议。
此外,数学与应用数学专业毕业论文的撰写还需要注意语言表达的准确性和科学性。
数学与应用数学专业毕业论文
数学与应用数学专业毕业论文数学与应用数学专业是一门涉及广泛且充满挑战性的学科。
无论是在理论研究还是实际应用上,数学与应用数学都起着重要的作用。
在这篇文章中,我们将探讨一些与数学与应用数学专业相关的毕业论文选题。
1. 数论在密码学中的应用数论是研究整数性质及其关系的数学分支。
在当今数字化时代,安全性成为了信息交流中至关重要的一环。
密码学在保护信息安全方面发挥了重要作用。
通过研究数论中的素数分解、离散对数等算法,可以应用于密码学中的加密和解密过程中。
本论文将深入探讨数论在密码学中的应用,并就其相关算法的效率和安全性进行研究和评估。
2. 图论在社交网络分析中的应用社交网络已经成为人们日常生活中重要的一部分。
通过构建数学模型,可以揭示社交网络中个体之间的联系、影响力传播以及群体行为规律等。
图论作为研究节点和边之间相互关系的数学分支,在社交网络分析中具有重要意义。
本论文将基于图论方法,采用网络分析工具,对社交网络中的节点度中心性、聚类系数等指标进行研究,并以某社交网络为案例进行实证分析和探讨。
3. 微分方程在物理建模中的应用物理现象通常可以通过微分方程进行建模和描述。
微分方程作为研究变量之间关系的数学工具,在物理建模中广泛应用。
本论文将以某具体物理现象为例,通过选取合适的微分方程模型,进行求解和分析,并对其合理性和精确性进行讨论。
通过这一研究,可以进一步揭示微分方程在物理建模中的作用和应用价值。
4. 统计学在医学研究中的应用统计学作为研究收集整理数据方法和推断结论的学科,在医学研究中拥有广泛的应用。
通过合理设计实验、分析数据和研究结果,可以得出结论并为临床决策提供依据。
本论文将选择某一医学研究领域,结合实际案例,运用统计学方法进行数据分析,并就结果进行解读和讨论。
同时,对数据处理过程中可能存在的风险和误差进行评估和探讨。
以上只是数学与应用数学专业毕业论文选题的几个示例。
无论选择哪个选题,都需要合理设置研究目标、提出问题,并采用适当的方法和技巧进行研究。
数学与应用数学专业毕业论文54642
数学与应用数学专业毕业论文54642学生对数学学科和教学内容的看法调查结果从调查结果可以看出,学生对数学学科的认识和对教学内容的喜好与其研究兴趣和努力程度密切相关。
只有少数学生认为数学能使人聪明,对人的性格有影响,以及在生活中有广泛作用。
因此,中学数学的教学应该注重培养学生对数学的兴趣和认识,让他们在研究中体验到愉悦和成功,从而提高课堂效率。
2、激发数学研究兴趣,减少研究分化,提高课堂教学效率在素质教育理念和《新课标》标准的指导下,如何才能最大程度地激发学生的数学研究兴趣,培养他们的创新能力和创造能力,提高课堂效率呢?首先,要从学生的研究兴趣入手。
研究兴趣是一种力求认识世界、渴望获得科学文化知识的意向活动。
只有当学生对所学的知识产生浓厚的兴趣,才会产生研究的积极性。
因此,中学数学的课堂教学的首要任务是激发学生的兴趣。
其次,教师要注重课堂教学的互动性,采用多种教学方法,让学生在课堂上积极参与,体验到成功和愉悦,从而培养他们的创新能力和创造能力。
例如,可以采用小组讨论、课堂展示、游戏等多种形式,让学生在互动中研究,提高课堂效率。
最后,教师要注重学生的个性差异,采用因材施教的方法,让每个学生都能在研究中感受到成功和成就感。
同时,要注重鼓励和肯定,让学生在研究中保持积极向上的态度,激发他们的研究兴趣,提高课堂效率。
总之,要提高中学数学的课堂效率,首先要从学生的研究兴趣入手,激发他们的兴趣;其次要注重课堂教学的互动性,采用多种教学方法,培养学生的创新能力和创造能力;最后要注重学生的个性差异,采用因材施教的方法,让每个学生都能在研究中感受到成功和成就感。
只有这样,才能真正提高中学数学的课堂效率。
根据图1数据,有75%的学生对数学学科持有好感并认为数学很重要。
这些学生主观上认为应该学好数学,为数学课程的开设打下了广泛的基础。
根据初中学生对教学内容的爱好情况调查表,可以看出喜欢计算题和几何证明题的学生最多,而最不喜欢的是概念、定义、公式、法则、定理和作图题。
数学与应用数学本科毕业论文
数学与应用数学本科毕业论文数学与应用数学本科毕业论文随着科技的不断发展,数学在现代社会中的应用越来越广泛。
作为一门基础学科,数学为其他学科的研究提供了理论基础和方法论。
在数学专业的本科学习中,毕业论文是对学生综合能力的一次全面考察,也是对所学知识的应用与拓展。
本文将探讨数学与应用数学本科毕业论文的主题选择、研究方法和写作技巧。
一、主题选择数学与应用数学本科毕业论文的主题选择应该紧密结合实际应用,既要有一定的理论深度,又要有实际问题的解决方法。
可以从以下几个方面考虑:1. 数学模型与应用数学模型是将实际问题抽象化的数学描述,通过数学方法求解,得到问题的解决方案。
可以选择某个实际问题,通过建立数学模型,研究其解的存在性、唯一性、稳定性等性质。
例如,可以研究交通流量模型、生态系统模型、金融风险模型等。
2. 数学算法与计算方法数学算法是解决数学问题的具体步骤和方法,计算方法是利用数学算法解决实际问题的过程。
可以选择某个数学算法或计算方法进行研究,分析其优缺点、适用范围和改进方法。
例如,可以研究最优化算法、数值解法、数据挖掘算法等。
3. 数学与其他学科的交叉应用数学与其他学科的交叉应用是数学发展的重要方向之一。
可以选择某个学科领域,通过数学方法解决其相关问题。
例如,可以研究医学图像处理中的数学模型、物理学中的微分方程求解、经济学中的统计分析等。
二、研究方法数学与应用数学本科毕业论文的研究方法可以分为理论分析和实证研究两种。
1. 理论分析理论分析是通过推理和证明来研究问题的方法。
可以选择某个数学理论或方法,进行深入的推导和证明,分析其性质和应用。
例如,可以选择微分方程的解析解求解方法,通过推导和证明得到其解的形式和性质。
2. 实证研究实证研究是通过实际数据和实验来验证理论和方法的有效性和适用性。
可以选择某个实际问题,收集相关数据,进行统计分析和建模,验证数学方法的可行性和准确性。
例如,可以选择金融市场的波动性研究,通过收集股票价格数据,进行波动性分析和建模。
数学与应用数学毕业论文范文(精选)
数学与应用数学毕业论文范文(精选)毕业论文题目:数学模型在社会经济中的应用摘要随着社会的发展和经济的进步,人们越来越多地将数学模型应用到各个领域,改善人们的生活质量。
这篇文章将探讨数学模型在社会经济领域的应用,包括在商业管理、决策分析、金融市场、价格发放、核心技术研发、预测分析等方面的应用。
本文重点介绍了数学模型在商业管理领域的应用,例如投资分析,企业成本分析,以及在金融市场的应用,包括股票价格预测,投资组合管理,风险管理等。
本文最后介绍了人们在不同领域用数学模型解决实际问题的若干实例,以及可能发展的方向。
关键词:数学模型;商业管理;金融市场;实例AbstractWith the development of society and economic progress, more and more mathematical models are adopted in various fields, thus improving the quality of people's life. This paper will explore the application of mathematical models in social and economic fields, including business management, decision analysis, financial markets, price issue, core technology research and development, prediction analysis and so on. This paper mainly introduces the application of mathematical models in the field of business management, such as investment analysis, enterprise cost analysis, and in the field of financial market, includingstock price prediction, portfolio management, risk management and so on. Finally, this paper introduces several examples of people using mathematical models to solve practical problems in different fields, as well as the possible direction of development.。
数学与应用数学本科毕业论文
仿真算法设计与实现
01
数值计算方法
运用数值计算技术,如插值、拟 合、数值积分等,对模型进行求
解。
03
智能优化算法
借鉴自然现象和生物行为,设计 智能优化算法,如遗传算法、蚁 群算法等,用于求解优化问题。
02
蒙特卡罗方法
基于概率统计理论,通过随机抽 样模拟系统行为,适用于复杂系
统仿真。
04
并行计算技术
数学与应用数学本科毕业论 文
2024-01-09
目录
• 引言 • 数学与应用数学基础理论 • 应用数学领域研究 • 数学建模与仿真分析 • 数学与应用数学前沿研究 • 结论与展望
01
引言
研究背景和意义
数学与应用数学的发展
简要介绍数学与应用数学的历史发展 、主要分支以及在各个领域的应用情 况。
研究的重要性
研究平面上的点、直线和二次曲线的 性质,包括坐标法、向量法和解析法 等。
研究在射影变换下图形的不变性质和 变化规律,包括射影平面、射影空间 和射影变换等。
空间解析几何
研究三维空间中的点、直线和平面的 性质,包括空间向量的运算、空间直 角坐标系和空间曲线与曲面等。
概率论与数理统计
1 2 3
概率论基础
数学与应用数学的发展需要广泛的学术交流与合作。未来可以积极参加学术会议、研讨会等活动,与同 行专家进行深入交流和讨论,共同推动数学与应用数学的进步和发展。
感谢您的观看
THANKS
研究线性规划问题的理论、算法及其在经济管理、交通运输等领域 的应用。
非线性规划
研究非线性规划问题的求解方法,如梯度法、牛顿法等,并探讨其 在机器学习、人工智能等领域的应用。
组合优化
数学与应用数学 毕业论文
数学与应用数学毕业论文数学与应用数学毕业论文随着科技的不断发展,数学在现代社会中的应用越来越广泛。
数学作为一门基础学科,不仅在科学研究中起着重要的作用,而且在工程技术、金融经济、医学生物等领域都有着不可替代的地位。
本文将探讨数学与应用数学在不同领域中的应用,并分析其对社会发展的影响。
首先,数学在科学研究中起着重要的作用。
无论是物理学、化学、生物学还是天文学,都离不开数学的支持。
数学通过建立数学模型,对实验数据进行分析和处理,帮助科学家揭示自然界中的规律。
例如,微积分在物理学中的应用,可以描述物体的运动规律和力的作用;概率论在生物学中的应用,可以分析基因突变的概率和遗传疾病的发生机制。
因此,数学的发展与科学研究密不可分,为科学家提供了强大的工具和方法。
其次,数学在工程技术领域中有着广泛的应用。
无论是建筑设计、交通规划还是电子通信,都需要数学的支持。
数学可以通过几何学和力学等分支,对结构的稳定性和强度进行分析,确保工程的安全可靠。
同时,数学在电子通信中的应用也非常重要,例如编码理论和密码学,保障了信息的安全传输。
因此,数学的应用不仅提高了工程技术的水平,也为人们的生活提供了更多的便利。
再次,数学在金融经济领域中起着重要的作用。
金融市场的运行充满了不确定性和风险,而数学可以通过建立数学模型和统计分析,对金融市场进行预测和风险评估。
例如,随机过程和期权定价理论在金融衍生品的定价和风险管理中有着广泛的应用。
此外,数学在经济学中的应用也非常重要,例如宏观经济模型和经济增长理论,可以帮助政府制定经济政策和推动经济发展。
因此,数学的应用不仅对金融市场的稳定起着重要作用,也对经济的发展起到了推动作用。
最后,数学在医学生物领域中也有着广泛的应用。
生物医学工程、生物信息学和生物统计学等领域都离不开数学的支持。
数学可以通过建立数学模型和统计分析,对疾病的发生机制和治疗方法进行研究。
例如,生物医学工程中的医学成像技术,通过数学算法对图像进行重建和分析,帮助医生做出准确的诊断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原师范学院毕业论文(设计)等价无穷小量性质的理解、推广及应用姓名吴艳芳学号 ************年级 2012级专业数学与应用数学系(院)理学院指导教师 ******2014年3月13日等价无穷小量具有很好的性质,灵活运用这些性质,无论是在求极限的运算中,还是在正项级数的敛散性判断中,都可取到预想不到的效果,能达到罗比塔法则所不能取代的作用.通过举例,对比了不同情况下等价无穷小量的应用以及在应用过程中应注意的一些性质条件,不仅使这些原本复杂的问题简单化,而且可避免出现错误地应用等价无穷小量. 关键词:等价无穷小量;极限;洛必达法则;比较审敛法;优越性Equivalent Infinitesimal have good characters ,both in operation of test for Limit and determine whether the positive series converges or diverges , if these quality that apply flexibly can obtain more effect , the effection can not be replace by L'Hospital Rule. This paper give examples and compare some instance to pay attention to condition in application of Equivalent Limit , so the question can be simply and avoid error in application. Keywords:equivalent infinitesimal;limitation;l'hospital's rule;comparison test;superiority.目录1 引言 (1)2等价无穷小量的概念及其重要性质 (1)2.1等价无穷小量的概念 (1)2.2等价无穷小量的重要性质 (2)2.3等价无穷小量性质的推广 (2)3等价无穷小量的应用 (5)3.1求函数的极限 (5)3.2等价无穷小量在近似计算中的应用 (5)3.3利用等价无穷小量和泰勒公式求函数极限 (6)3.4等价无穷小量在判断级数收敛中的应用 (7)4等价无穷小量的优势 (8)4. 1运用等价无穷小量求函数极限的优势 (8)4. 2 等价无穷小量在求函数极限过程中的优势 (9)5结论........................................ 错误!未定义书签。
参考文献.................................... 错误!未定义书签。
致谢.. (12)1 引言等价无穷小量概念是微积分理论中最基本的概念之一,但在微积分理论中等价无穷小量的性质仅仅在“无穷小的比较”中出现过,其他地方似乎都未涉及到.其实,在判断广义积分、级数的敛散性,特别是在求极限的运算过程中,无穷小具有很好的性质,掌握并充分利用好它的性质,往往会使一些复杂的问题简单化,可起到事半功倍的效果,反之,则会错误百出,有时还很难判断错在什么地方.因此,有必要对等价无穷小量的性质进行深刻地认识和理解,以便恰当运用,达到简化运算的目的.2等价无穷小量的概念及其重要性质这部分在同济大学应用数学系主编的«高等数学»、华东师范大学数学系的«数学分析»、马振明老师和吕克噗老师的«微分习题类型分析»、张云霞老师的«高等数学教学»以及Song QB, Shen J Y. On illegal coping and distributing detection mechanism for digital goods [J]. Journal of Computer Research and Development中做了详细的讲解,下面是我对这部分的理解与总结.推广部分的性质在书中未做证明,根据所学的知识以及数学方法我对其进行了证明.2.1等价无穷小量的概念2.11定义若函数(包括数列)在某变化过程中以零为极限,则称该函数为这个变化过程中的无穷小量. 如函数2x, sinx, 1- cosx, ln(1+x)均为当x→0 时的无穷小量.对于数列只有一种情形, 即n→∞, 如数列{ 1n} 为n→∞时的无穷小量或称为无穷小数列.注意:1) 绝对值非常小的数不是无穷小量, 0 是唯一的是无穷小量的数; 无穷小量无限趋近于0 而又不等于0.2) 无穷小量是变量, 与它的变化过程密切相关,且在该变化过程中以零为极限.如函数1x当x→∞时的无穷小量,但当x→1时不是无穷小量.3)两个(相同类型)无穷小量之和、差、积仍为无穷小量.4)无穷小量与有界量的乘积为无穷小量.2.12无穷小量的比较1) 若存在正数K 和L,使得在某0()o U x 上有()()f x K Lg x ≤≤,则称f 与g 为当0x x →时的同阶无穷小量.特别当0()lim(0)()x x f x c c g x →=≠ 则称()f x 与()g x 是同阶无穷小. 2) 若()lim ()f xg x =1, 则称()f x 与()g x 是等价无穷小量, 记为()f x ~()g x . 3) 若()lim()f xg x = 0, 则称()f x 是()g x 高阶无穷小, 记作()f x =(())o g x . 注: 并不是任意两个无穷小均可比较, 如当x →0 时,1sin x x与2x 都是无穷小量, 但它们不能进行阶的比较.2.2等价无穷小量的重要性质设α,α′,β,β′,γ 等均为同一自变量变化过程中的无穷小,② 若α~β,β~γ,则α~γ.注意 1)需要注意的是在运用无穷小替换解题时,等价无穷小量一般只能在对积商的某一项做替换,和差的替换是不行的.2)以上性质说明我们利用无穷小量的代换性质将无穷小的等价替换推广到和与差的形式,并对的不定式极限的求解作了简化,使其适用的函数类范围扩大,从而简化函数极限的运算过程,对不定式极限的求解有很大的意义.3等价无穷小量的应用等价无穷小量的应用在冯录祥老师的«关于等价无穷小量量代换的一个注记»、王斌老师的«用罗比塔法则求未定式极限的局限性的探讨»、华东师范大学数学系的«数学分析»、盛祥耀老师的«高等数学»、马振明老师和吕克噗老师的«微分习题类型分析»、Shivakumar N, G.Molina H. SCAM: A Copy Detection Mechanism for Digital Documents [A]. The 2nd International Conference in Theory and Practice of Digital Libraries[C]. USA Austin Texas: [s. n]以及刘玉琏老师和傅沛仁老师的«数学分析讲义»中都有详细的分析与注解,在这一部分我只是按照自己的需要从中选取内容,再加上自己筛选例题解答例题写出来的.请看下面的内容:利用等价无穷小,在做近似计算,有时可以起到意想不到的效果,如:例8 求0lim sin 3x x→ 解 解法一(等价无穷小量替换):由于ln(1+3x)等价于3x,sin3x 等价于 3x,则,由无穷小替换定理有:0ln(13)lim sin 3x x x →+=03x lim 13x x→=. 解法二(两个重要极限):由于1300sin 3lim ln(13)1,lim 13x x x x x x→→+==, 0ln(13)lim sin 3x x x→+=1300ln(13)ln(13)3lim lim 1sin 3sin 333x x x x x x x x x x→→++==. 解法三(洛必达法则):0ln(13)lim sin 3x x x→+=003113lim lim 13cos3cos3(13)x x x x x x →→+==+. 由此例可以发现,很多时候求解函数极限的方法多种多样.其中包括极限的运算法则、两个重要极限、洛必达法则以及无穷小替换等等.所以我们求解一道题时要进行全方位、多角度的思考,找出最适合、最恰当的解题方法.对上例的几种不同解法进行比较,我们很容易地发现恰当利用无穷小替换能够快速、准确地求解一些函数极限.20,30x x →→,x ln(12)2,ln(13)3x x x ++等价于等价于,则由无穷小替换定理有ln(12lim ln(13)x x x →-∞++):=2lim 3xx x →-∞=+∝.由此例看求解上述极限时,很显然利用等价无穷小量替换更简单、便捷.另外,值得注意的是对本例在使用洛必达法则计算时,如果不把23xx 写到分母上,而是继续使用洛必达法则,就会出现循环计算,将永远得不到结果.由此更能体现等价无穷小量替换的重要性.同时本例还说明不仅是在极限存在时而且在极限为无穷大时同样都可以使用等价无穷小量替换.具有局限性,只要充分地掌握好等价无穷小量的4条性质就不难求出正确的结论.结论极限计算是《微积分理论》中的一个重要内容,等价无穷小量代换又是极限运算中的一个重要的方法.利用等价无穷小量代换计算极限,主要是指在求解有关无穷小的极限问题时利用等价无穷小量的性质、定理施行的等价无穷小量替换的计算方法,通常与洛必达法则一起使用,目的是使解题步骤简化,减少运算错误.进行等价无穷小量代换的原则是整体代换或对其中的因子进行代换.即在等价无穷小量的代换中,可以分子分母同时进行代换,也可以只对分子(或分母)进行代换.当分子或分母为和式时,通常不能将和式中的某一项以等价无穷小量替换,而应将和式作为一个整体、一个因子进行代换,即必须是整体代换;当分子或分母为几个因子相乘积时,则可以只对其中某些因子进行等价无穷小量代换.简言之,只有因子才可以进行等价无穷小量替换.参考文献[ 1 ]同济大学应用数学系,主编.高等数学.第5版[M].高等教育出版社,2002,7 56~59.[ 2 ]杨文泰,等.价无穷小量代换定理的推广[J].甘肃高师学报,2005,10(2):11~13. [ 3 ] 王斌.用罗比塔法则求未定式极限的局限性的探讨[J].黔西南民族师专学报,2001.[ 4 ] 华东师范大学数学系. 数学分析[M]. 北京: 高等教育出版社, 2001.[ 5 ] 盛祥耀. 高等数学[M]. 北京: 高等教育出版社, 1987.[ 6 ] 冯录祥. 关于等价无穷小量量代换的一个注记[J]. 伊犁师范学院学报, 2006( 3) : 25- 26.[ 7 ] 段丽凌,杨贺菊. 关于等价无穷小量替换的几点推广.[ J ]. 河北自学考试, 2007, (06).[ 8 ] 华东师范大学数学系.数学分析(上册)[ M] .(第三版)北京:高等教育出版社,2004.62.[ 9 ] 马振明,吕克噗.微分习题类型分析[ M ] .兰州:兰州大学出版社,1999.59,45-65.[10] 崔克俭,应用数学[ M ],北京:中国农业出版社,2004.[11] 张云霞. 高等数学教学[J]. 山西财政税务专科学校学报 , 2001.04.[12]任治奇 , 梅胤胜.数学分析[M]. 渝西学院学报(社会科学版) , 1998.02[13] 刘玉琏傅沛仁:数学分析讲义[M].北京:人民教育出版社,2000.[14] Song QB, Shen J Y. On illegal coping and distributing detection mechanism for digital goods [J]. Journal of Computer Research and Development , 2001, 38(1): 121- 125.[15] Shivakumar N, G.Molina H. SCAM: A Copy Detection Mechanism for Digital Documents [A]. The 2nd International Conference in Theory and Practice of Digital Libraries[C]. USA Austin Texas: [s. n], 1995: 9- 17.[16] Shivakumar N, G.Molina H. Building a Scalable and Accurate Copy Detection Mechanism [A]. The 1st ACM Conference on Digital Libraries[C]. USA BethesadaMaryland: [s. n], 1996: 34- 41.致谢走的最快的总是时间,来不及感叹,大学生活已近尾声,四年多的努力与付出,随着本次论文的完成,将要划下完美的句号.本论文设计在王广兰老师的悉心指导和严格要求下业已完成,从课题选择到具体的写作过程,论文初稿与定稿无不凝聚着王广兰老师的心血和汗水,在我的毕业设计期间,王广兰老师为我提供了种种专业知识上的指导和一些富于创造性的建议,王老师一丝不苟的作风,严谨求实的态度使我深受感动,没有这样的帮助和关怀和熏陶,我不会这么顺利的完成毕业设计.在此向王广兰老师表示深深的感谢和崇高的敬意!在临近毕业之际,我还要借此机会向在这四年中给予我诸多教诲和帮助的各位老师表示由衷的谢意,感谢他们四年来的辛勤栽培.不积跬步何以至千里,各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现,顺利完成毕业论文.同时,在论文写作过程中,我还参考了有关的书籍和论文,在这里一并向有关的作者表示谢意.我还要感谢同组的各位同学以及我的各位室友,在毕业设计的这段时间里,你们给了我很多的启发,提出了很多宝贵的意见,对于你们帮助和支持,在此我表示深深地感谢!2014年3月13日.。