小学数学奥数解题技巧第十二讲 消元法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二讲消元法

在数学中,“元”就是方程中的未知数。“消元法”是指借助消去未知数去解应用题的方法。当题中有两个或两个以上的未知数时,要同时求出它们是做不到的。这时要先消去一些未知数,使未知数减少到一个,才便于找到解题的途径。这种通过消去未知数的个数,使题中的数量关系达到单一化,从而先求出一个未知数,然后再将所求结果代入原题,逐步求出其他未知数的解题方法叫做消元法。

(一)以同类数量相减的方法消元

例买1张办公桌和2把椅子共用336元;买1张办公桌和5把椅子共用540元。求买1张办公桌和1把椅子各用多少钱?(适于四年级程度)

解:这道题有两类数量:一类是办公桌的张数、椅子的把数,另一类是钱数。先把题中的数量按“同事横对、同名竖对”的原则排列成表12-1。这就是说,同一件事中的数量横向对齐,单位名称相同的数量上下对齐。

表12-1

从表12-1第②组的数量减去第①组对应的数量,有关办公桌的数量便消去,只剩下有关椅子的数量:

5-2=3(把)

3把椅子的钱数是:

540-336=204(元)

买1把椅子用钱:

204÷3=68(元)

把买1把椅子用68元这个数量代入原题,就可以求出买1张办公桌用的钱数是:

336-68×2

=336-136

=200(元)

答略。(二)以和、积、商、差代换某数的方法消元

解题时,可用题中某两个数的和,或某两个数的积、商、差代换题中的某个数,以达到消元的目的。

1.以两个数的和代换某数

*例甲、乙两个书架上共有584本书,甲书架上的书比乙书架上的书少88本。两个书架上各有多少本书?(适于四年级程度)解:题中的数量关系可用下面等式表示:

甲+乙=584 ①

甲+88=乙②

把②式代入①式(以甲与88的和代换乙),得:

甲+甲+88=584

甲×2+88=584

2甲=584-88

=496

甲=496÷2

=248(本)

乙=248+88

=336(本)

答略。

2.以两个数的积代换某数

*例 3双皮鞋和7双布鞋共值242元,一双皮鞋的钱数与5双布鞋的钱数相同。求每双皮鞋、布鞋各值多少钱?(适于四年级程度)解:因为1双皮鞋与5双布鞋的钱数相同,所以3双皮鞋的钱数与5×3=15(双)布鞋的钱数一样多。

这样可以认为242元可以买布鞋:

15+7=22(双)

每双布鞋的钱数是:

242÷22=11(元)

每双皮鞋的钱数是:

11×5=55(元)

答略。

3.以两个数的商代换某数

*例 5支钢笔和12支圆珠笔共值48元,一支钢笔的钱数与4支圆珠笔的钱数一样多。每支钢笔、圆珠笔各值多少钱?(适于五年级程度)

解:根据“一支钢笔的钱数与4支圆珠笔的钱数一样多”,可用12÷4=3(支)的商把12支圆珠笔换为3支钢笔。

现在可以认为,用48元可以买钢笔:

5+3=8(支)

每支钢笔值钱:

48÷8=6(元)

每支圆珠笔值钱:

6÷4=1.5(元)

答略。

4.以两个数的差代换某数

*例甲、乙、丙三个人共有235元钱,甲比乙多80元,比丙多90元。三个人各有多少钱?(适于五年级程度)

解:题中三个人的钱数有下面关系:

甲+乙+丙=235

甲-乙=80

甲-丙=90

③由②、③得:

乙=甲-80

丙=甲-90

⑤用④、⑤分别代替①中的乙、丙,得:

甲+(甲-80)+(甲-90)=235

甲×3-170=235

甲×3=235+170

=405

甲=405÷3

=135(元)

乙=135-80

=55(元)

丙=135-90

=45(元)

答略。

(三)以较小数代换较大数的方法消元

在用较小数量代换较大数量时,要把较小数量比较大数量少的数量加上,做到等量代换。

*例 18名男学生和14名女学生共采集松树籽78千克,每一名男学生比每一名女学生少采集1千克。每一名男、女学生各采集松树籽多少千克?(适于五年级程度)

解:题中说“每一名男学生比每一名女学生少采集1千克”,则18名男生比女生少采集1×18=18(千克)。假设这18名男生也是女生(以小代大),就应在78千克上加上18名男生少采集的18千克松树籽。

这样他们共采集松树籽:

78+18=96(千克)

因为已把18名男学生代换为女学生,所以可认为共有女学生:

14+18=32(名)

每一名女学生采集松树籽:

96÷32=3(千克)

每一名男学生采集松树籽:

3-1=2(千克)

答略。

(四)以较大数代换较小数的方法消元

在用较大数量代换较小数量时,要把较大数量比较小数量多的数量减去,做到等量代换。

*例胜利小学买来9个同样的篮球和5个同样的足球,共付款432元。已知每个足球比每个篮球贵8元,篮球、足球的单价各是多少元?(适于五年级程度)

解:假设把5个足球换为5个篮球,就可少用钱:

8×5=40(元)

这时可认为一共买来篮球:

9+5=14(个)

买14个篮球共用钱:

432-40=392(元)

篮球的单价是:

392÷14=28(元)

足球的单价是:

28+8=36(元)

答略。

(五)通过把某一组数乘以一个数消元

当应用题的两组数量中没有数值相等的两个同类数量时,应通过把某一组数量乘以一个数,而使同一类数量中有两个数值相等的数量,然后再消元。

相关文档
最新文档