有机反应机理第六章二

合集下载

有机化学第六章烯烃

有机化学第六章烯烃

CH3
CH2CH3
CC
H
H
顺-2-戊烯
H
CH2CH3
CC
CH3
H
反-2-戊烯
Z式:双键碳原子上两个较优基团或原子处于双键同侧。
E式:双键碳原子上两个较优基团或原子处于双键异侧。
(优)CH3 C
H
CH2CH3(优)
CH3
C
C
CH3
(优)CH3CH2
CH(CH3)2(优) C
CH2CH2CH3
(Z)- 3-甲基-2-戊烯 (E)- 3-甲基-4-异丙基-3-庚烯
68% 17%
Br + C6H5CH CHCH3
-Br 环正离子
C6H5CH=CHCH3 Cl2
+ Cl C6H5CH CHCH3 Cl-
*
碳正离子
Cl- Cl
+
C6H5CH CHCH3
离子对
一般情况,加溴通过环正离子中间体 进行。
加氯通过环正离子中间体、碳正离子 或离子对进行。
立体选择性反应(stereoselective reaction)
0.33 0 /10-30 c.m 4oC -138.9oC
反式异构体对称性较高,熔点高于顺式异构体。 顺式异构体极性较强,沸点高于反式异构体。
第五节 化学反应
(一)催化氢化 (二)亲电加成反应 (三)自由基加成反应 (四)硼氢化反应 (五)氧化反应 (六) -氢卤代反应 (七) 聚合反应
(一) 催化氢化
顺式烯烃
H
H
C C Br2
CH3
CH3
H
H
Br
CH3
a Br-
CH3 b
Br

有机反应机理第六章(二)

有机反应机理第六章(二)
第6章 活性中间体的研究(续)
6.5 有机自由基 自由基是指有一个未成对电子的原子或分子 自由基是缺电子的中间体,但不带电荷,其性质与 正碳离子和卡宾等缺电子的中间体差别较大
有机反应机理
6.5.1 自由基的结构和稳定性 烷基自由基具有7电子结构,因而是缺电子的
烷基自由基的中心碳原子杂化态处于sp2与sp3之间, 近似于sp2杂化,具有扁平的角锥型结构
自由基夺取氢的反应则相反, Me3C-H的氢容易 被自由基夺取, RO-H的氢则难以被自由基夺取, 因为RO-H键的BDE高于Me3C-H键的BDE
有机反应机理
由于上述原因,自由基反应常选择甲醇,水和苯作 溶剂
如果用乙醚,THF,CH2Cl2,丙酮或氯仿作溶剂, 常会发生自由基夺取溶剂分子中的氢的副反应
有机反应机理
O O O O
O 2 O
CH3 C CH3 N N
CH3 C CH3
hv
CH3 N2 + 2 C CH3
有机反应机理
通过键离解能可以判断化学键均裂的难易
H H BDE/kj/mol 435
Br Br 192
不难看出,Br-Br键易断裂,H-H键不易断裂
有机反应机理
一些键在光照下可使电子激发到*轨道上,形成 双自由基
The formation of cyclic amines from N-halogenated amines via an intramolecular 1,5-hydrogen atom transfer to a nitrogen radical is known as the Hofmann-Loffler-Freytag reaction (HLF reaction)
有机反应机理

第六七章有机化学反应机理的案例

第六七章有机化学反应机理的案例

利用反应中焓变和自由能变化或热变化,可以计 算达到平衡时的温度。 如△G=△H-T△S;知道了自由能△G变化,还 可以计算平衡常数K的大小, △G=-RTlnK。 通常△G为正值,得出K值很小,说明对反应不利, △G为负值,得到的K值较大,表明对反应有利。 熵值△S的研究,可以提供反应类型的信息。
研究有机反应机理的目的是认识参加反应化合物 的原子或基团的结合,在位置、次序和结合方式 在反应过程中所发生的变化,以及这些变化的动 力是出于哪些因素。 有机反应机理是有机化学理论的组成部分,它能 帮助我们把许多看来无关的反应联系在一起,找 出它们的共同规律,用以指导反应条件的选择, 达到提高产率的目的,并可作为新的合成反应的 依据。 反应按何种历程进行,取决于反应物和试剂的性 质,以及反应的条件,如温度、压力、催化剂和 溶剂等。
CH3
CH3
C + + OHCH3

CH3
CH3
CH3
C
CH3 (D)
OH
CH3
C
CH3 (E)
OH
(C)
活性中间体
过渡态 I I
SN1反应的能量变化过程:
Ü Á Ä ¿
(B) (D) (C) E1 (A) H E2
(E)
´ Ó · ¦ ½ ø ³ Ì
SN1的特点:
①分步进行;
②决速步骤为C-X解离,单分子反应,有v=k[RX]; ③有C+中间体,构型保持与构型转化机率相同;产物 外消旋化.
(2)在紧密的离子对阶段,溶剂分子或其它亲 核试剂进攻R+,由于溶剂或其它亲核试剂尚未进 入R+和L-之间,且由于L-的屏蔽作用,溶剂分子 或其它亲核试剂只能从L-的背面进攻R+,故产生 产物构型的倒转,相当于SN2历程。 (3)溶剂分子或其它亲核试剂进攻R+,发生在 溶剂介入的离子对阶段,则溶剂或其它亲核试剂 很可能从前后两面进攻,导致外消旋化,但从正 面进攻R+时,或多或少受到L-的屏蔽作用,故仍 以背面进攻为主,产物除主要得到外消旋产物外, 尚有部分构型倒转产物。

机理习题及答案

机理习题及答案

第六章 有机反应机理和测定方法6-1 利用稳定态近似原理指导下列反应生成C 的速度公式:解:k 2× k 1k 2+k -16-2 从观察到的实验现象提出符合这些现象的反应历程。

1)下列两个反应有相等的反应速度并遵循相同的动力学方程:-O H2)hOHH-反应在重水中进行时若在反应完成前回收原料有氘代原料产生。

CH 2C H 2N H 2CH 2C H 2O H CH 2C H 2OH H 2SO 4***CD 2CH 2O HH O CDCH 2CD 2CH 2BrCDCH2CH 3O Na CH 3O H+5) HOCl 和CH 2=CHCH 2*Cl 得到三种产物1 ,2 , 3 ,若用CH 2=C (CH 3)CH 2*Cl 反应,则标记*Cl 重排的产物比例要小得多。

ClClCl O HClCl O HClCl O H *+***+H OCl6)铬酸氧化(CH 3)2CD(OH)的速度为(CH 3)2CH (O D)的六分之一。

7)化合物1进行S N 1反应比2快,3进行S N 2反应比4慢。

8)顺 1,2-环己二醇与HIO 4反应比反式异构体快。

9) 2R ,3S -3-氯-2-丁醇在NaOH/C 2H 5OH 溶液中反应得光活性的环氧化物,再用KOH/H 2O 处理得内消旋2,3-丁二醇。

10)CH 3O1 进行酸性水解生成无18O 的乙酸,CH 3O2在同样条件下生成带18O 的乙酸。

解: 1)两个反应决速步骤都是O HH-2)P hHP h-CH2CH2N H2CH2CH2O HCH2CH2O HCH2CH2N2CH2CH2****+*+CD2CH2O HCD CH2CD2CH2O H2CD2CH2++决速步骤为生成碳正离子,未牵涉C-D键断裂。

CD2CH2Br CDCH2CH3OCH3OD本反应是E1cb反应, 决速步骤为生成碳负离子,牵涉C-D键断裂。

5)次氯酸HOCl和同位素标记了的烯丙基氯H2C=CHCH2*Cl反应生成三种产物:ClCH2CH(OH)CH2*Cl、HOCH2CHClCH2*Cl和HOCH2CH*ClCH2Cl 。

第六章 有机反应活性中间体

第六章 有机反应活性中间体

RC
CR'
RX + R'2CuLi
R-R' + R'Cu + LiX
23
(3)羧基化和脱羧反应
羧化:
O O
RMgI+ O
C
O
H
OMgI
R
R
OH
O
O
CH3Li + O C O
物质量的比 1 : 1
H
OLi
H3C
R
OH
脱羧:
CH3COONa
-CO2 NaOH 400℃
CH3 + CO2 H+ CH4
当羧基的邻位 有拉电子基时, 可以在较低温 度下脱羧.
稳定的 自由基
O
( iii) 键的离解能 自由基是由共价键均裂产生的, 键 的离解能越大, 产生的自由基越不稳定,容易二聚生 成原来化合物。键的裂解能小的键如含有-O-O-, C-N=N-C 等弱键的化合物, 所产生的自由基比较 稳定。
30
常见自由基按稳定性排序:
(C6H5)3C > (C6H5)2CH > C6H5CH2 > CH2=C H CH2 > (CH3)3C > CH3 CHCH2CH3 >
- OH -
+ N2
(5)质子或其他带正电的原子团与不饱和键加成。
+ R+ (CH 3)3C=CH 2 + H+
CH 3
R (CH 3)3C+-CH 3 CH3CH-CH 2CH3
13
+ H+
6. 碳正离子的反应
1. 与带有电子的亲核体结合:取代反应(SN1) R+ + Nu- RNu

有机合成化学:第六章 缩合反应

有机合成化学:第六章 缩合反应
颠茄酮 设计其它合成路线?
第六章 缩合反应
上例是由于选择不同的起始原料,而选择不同的合成路线,使 产品成本大大降低。如果没有很好的路线选择时,可以通过优化 反应条件,提高产物的收率,降低成本。从产品收率上讲,能提 高1-5%。我们可能认为没什么意义,可对企业讲,产品成本会降 低2-8%左右。如果一个产品产值上亿时,可估算一下其价值了。 所以,一个化工产品刚上市时价格较高,随着生产时间延长,价 格逐渐降低,很大可能是由于生产工艺和生产条件的改变所致。
-CO2
CH3CH CH2CO2H
H3C
O O O
60~76%
CH3NO2 + H3CCH
C H
CO2C2H5
NaOC2H5 CH3CH CH2CO2C2H5
55%
CH2NO2
第六章 缩合反应 CH3
CN
PhCH CO2C2H5 + H2C
C H
CN
KOH 83%
CN
PhC CH2CH2CN CO2C2H5
LDA
H3C
CH3
第六章 缩合反应
羰基化合物烷基化最大负反应是O-烷基化产物。如:
副产物
第六章 缩合反应
LDA CH3(CH2)3CO2CH3 BrCH2CH
CH2
CH3CH2CH2CH CO2CH3 CH2CH CH2
LDA
CH2CH3
C2H5Br CH3CH2Байду номын сангаас CO2CH3
可以分步引入
90%
5. Knoevenagel反应:
这类反应的特点是一个亚甲基上连接两个吸电子基团,使
得其氢活性明显提高,反应较易进行。一般使用弱碱 (有机胺)

有机化学 06第六章 卤代烃2

有机化学 06第六章 卤代烃2

离去基团的影响:
R-Cl
R-Br
R-I
反应速度增大
6.3.2 消除反应 E (Elimination reaction)
βα

R CH CH 2 + NaOH △
HX
RCH=CH 2 + NaX + H 2O
从分子中脱去一个简单小分子,如HX、H2O等,同时 产生不饱和键的反应称为消除反应。
反应中除α碳脱去X外,在β碳上脱去H,故称为β-消 除反应。
C2H5O- + CH3
CH3 C CH3
Br
[C2H5O-
进攻-H
] H
CH3
CH2 C CH3
Br
CH 3 CH3 C =CH2 + C2H5OH + Br-
SN2反应机理
HO- + CH3Br
[ ] H H HO C Br
进攻-C H
CH3OH + Br-
试剂碱性强,升高温度有利于E2反应。
四、亲核取代反应与消除反应的关系
醇溶液
胺RNH2 + HX
RONO2 + Ag X
硝酸酯
亲核取代反应通式:
RCδ+H2 Xδ- + Nu -
RCH2Nu + X -
反应底物
亲核试剂
产物
离去基团
卤代烷
HO- 、CN- 、 OR-、NH3 ONO-2等
醇、腈、 醚、胺 硝酸酯等
卤素离子
由试剂的负离子部分或未共用电子对去进攻而引
发反应,进攻试剂都有较大的电子云密度,能提供一
写出下列反应的主要产物
CH3
Br NaOH ,C2H5OH

高等有机 第六章 羰基化合物的反应

高等有机 第六章 羰基化合物的反应

子效应。 子效应。如: (3) 应用: 应用:
O 2N
CHO >
CHO > CH3
CHO
羰基与HCN加成,不仅是增加一个碳原子的增长碳 羰基与 加成, 加成 链方法,而且其加成产物 羟基腈又是一类较为活泼的 链方法,而且其加成产物α-羟基腈又是一类较为活泼的 化合物,在有机合成上有着重要的用处。 化合物,在有机合成上有着重要的用处。如:
R (R)H C =O R + HCN (R)H C CN OH
α - 羟基腈(又称氰醇) 又
实 验 事实 : 2 min 完成反应
一滴 OH
HCN
H
+
H
+
+ CN
3~4 h 原料的50%起反应 起
加 H+,反应 υ↓, 大量 加 H+ 则难反应 , 12
实验事实证明:该加成反应起决定性作用的是 实验事实证明:该加成反应起决定性作用的是CN , CN ↑,有利于反应的进行。 ,有利于反应的进行。 (1) 反应机理: 反应机理:
CH3 C CX3 OH
CH3 C O 缩合反应: 1. 自身缩合: R RCH2CH =O + H CHCH=O
dil. OH
=
CH3 C OH + CX3 O + CHX3 卤仿
OH R RCH2CH CHCH=O R
△ H2O
=
O
O
O
β -羟基醛 羟
RCH2CH =CCH =O
α,β-不饱和醛 不
① NaBH4 或 LiAlH4 ② H3O +
RCH=CH (R')H
OH C H
B. Al[OCH(CH3)2]3 / (CH3)2CHOH还原法 还 RCH=CH (R')H (3) 金属还原法:

有机化学第六章卤代烃

有机化学第六章卤代烃

第六章卤代烃卤代烃是一种简单的烃的衍生物,它是烃分子中的一个或多个氢原子被卤原子(F, CL, Br, I)取代而生成的化合物。

一般可以用R-X表示,X代表卤原子。

由于卤代烃的化学性质主要有卤原子决定,因而X是卤代烃的官能团。

根据卤代烃分子中烃基的不同,可以将卤代烃分为卤代烷烃、卤代烯烃、卤代炔烃和卤代芳烃等。

第一节卤代烷烃一. 卤代烷烃的分类和命名(一) 卤代烷烃的分类1. 根据卤代烷烃分子中所含卤原子的种类,卤代烷烃分为:氟代烷:如CH3-F氯代烷:如:CH3-CL溴代烷:如:CH3-Br碘代烷:如:CH3-I2. 根据卤代烷烃分子中所好卤原子的数目的多少,卤代烷烃分为:一卤代烷:如:CH3CL, CH3-CH2-Br二卤代烷:如:CH2CL2,多卤代烷:CHCL33. 根据卤代烷烃分子中与卤原子直接相连的碳原子的类型的不同,卤代烷烃可以分为:伯卤代烷(一级卤代烷)R-CH2-Br仲卤代烷(二级卤代烷)叔卤代烷(三级卤代烷)(二)卤代烷烃的命名1. 普通命名使用范围:结构比较简单的卤代烷常采用普通命名法命名:原则:根据卤原子的种类和与卤原子直接相连的烷基命名为“某烷”,或按照烷烃的取代物命名为“卤某烷”。

如:CH 3CL甲基氯(氯甲烷)CH 3CH2Br乙基溴(溴乙烷)CH 3CH2CH 2CH2I正丁基碘(正碘丁烷)CH 3BrCH 3I1H 3 C -------- CH -------- CH CL1H 3 C -------- CH --------- CH 2CH 3H3C-—C------------- CL11CH 3异丁基氯仲丁基溴叔丁基氯(异氯丁烷)(仲溴丁烷)(叔氯丁烷)2.系统命名法范围:复杂的卤代烷烃一般采用系统命名法原则:将卤原子作为取代基,按照烷烃的命名原则来R进行命名。

方法:1) 选择连有卤原子的最长碳链为主链,并根据主链 所含碳原子的数目命名为“某烷”作为母体;2)将支链和卤原子均作为取代基;3) 对于主链不带支链的卤代烷烃,主链编号从距离 卤原子最近的一端开始;4) 对于主链带支链的卤代烷烃,主链的编号应遵循 “最低系列规则”;5)把取代基和卤原子的名称按“次序规则”依次写 在“某烷”之前(次序按先后顺序写),即得该卤代烷 烃的名称。

高等有机第六章---芳烃的亲核取代反应

高等有机第六章---芳烃的亲核取代反应

第六章 芳烃的亲核取代反应同烯烃一样,芳烃也可进行亲电取代和亲核取代,其中芳烃的结构起着十分重要的作用。

第一节 芳烃的亲电取代反应 一、机理:σ络合物E +++HE E基团离去的难易程度(1)亲电取代是个平衡可逆过程如磺基、硝基及其它基团之间的互换,此性质也可用于芳烃中位置的保护。

(2)正常的亲电取代是基于芳烃体系的稳定性,但如果出现的一个体系的稳定性更大于芳烃体系,可能就停留在中间状态。

E +++GHEGE H+OHOE H(3)亲电取代中定位效应第一类取代基团:以邻、对位为主不是以绝对来确定因此总伴有产物,运用可逆和各个位置均有分布的理论可以合成一些独特的化合物,如三异丙苯长时间二、碳正离子的来源和类型1、卤素(催化剂)—— 略(除F 2) 苯环正离子,* 另一种方法是重氮法2、氧正离子:CH 3C O O +24CH 3COO +OC OCH 3运用于苯环特别特别活泼的场合,因为过氧酸受热不稳定,只能低温反应,那么对苯环的要求就较高3、氮型正离子(i )+NO 2 硝基正离子 +NO 亚硝基正离子亚硝酸酯RO NONH 2OONH 2NO 2(ii )重氮离子 N ≡N +C l适用于苯环特别活泼的场合,理由同上+OHN N OH 偶合N N +Cl4、碳型正离子 两种形式: CH 2+(烷基化) +C=O (酰化) (i )不饱和体系在酸的催化下:(质子催化)H +CH 3C NCH 3C NH CH 3CH O H+CH 3C HOHOH +OHCH 2例:酚醛树脂的合成OHCH 2OHCH 2CH 2OH又例:氯甲基化:HCHO ,ZnCl 2,HCl其实经历了一取代过程(ii )羟基化合物的脱水,在酸性条件下OH H +(iii )卤代烷烃在路易斯酸催化 (iv )CO 2OHCH2OHOH CO2KOHOHOHCOOH起保护作用的OHOHBrOHOH5、其它正离子SOOOH磺酸型P ClCl磷型6、相互取代反应CH3OCH3CH3OCH3NO2+CH3OCH3NO2NO2第二节 芳香族的亲核取代 一、SN 2历程一般条件下,芳香族上的任何基团都稳定不易取代 此情况同烯烃但当邻、对位有强吸电子基团时,该官能团可被取代。

有机化学06第六章卤代烃

有机化学06第六章卤代烃

二烷基铜锂
合成烷烃的方法
2.与Mg、Li的反应
RX
2Li
RLi + LiX
绝对乙醚
或绝对四氢呋喃 有机锂试剂
RX
Mg
RMgX
绝对乙醚 或绝对四氢呋喃
Grignard试剂
RLi和RMgX的反应
与活泼氢的反应
RMgX + HY RH + MgXY
HY=各种含活泼氢的化合物 如:酸、醇、水、氨、端炔等。
Cl NH2
Cl CuI
OH O NH
Cl
Cl
双氯芬酸
2.亲核取代反应机理
A. 动力学结果
CH3CH2Br OH CH3CH2OH + Br 反应速率=k[CH3CH2Br][OH-]
反应速率同时与两个反应物浓度相关,称该反应为双分子 历程,其机理为SN2机理。
OH
(CH3)3CBr
(CH3)3COH + Br
2CH3CH2CH2Br + Na CH3CH2CH2CH2CH2CH3
B. Wurtz-Fitting反应
1RX + phX + 2Na R-ph + 2NaX
phBr + CH3CH2CH2Br + Na phCH2CH2CH3
RX
2Li -LiX
RLi CuX
各种R'X
R2CuLi
R-R'
CH3
2-溴-2-甲基丙烷
6.2 化学性质I——亲核取代反应
1.亲核取代反应事实
R - X + Nu-
R - Nu + X-
A. 水解反应
CH3
CH3C-Br

第六章 重排反应

第六章 重排反应
O C6H5C—NH—CH3
=
NH2
=
(Z)次
CH3CH2 H t-Bu C C= N CH3 OH H
+
:
N-甲基苯甲酰胺
O
CH3C—NH C
Bu-t H CH2CH3
=
用途: 1、由酮制备酰胺、羧酸和胺
2、由重排后的产物确定酮肟的构型
—COOH +H3O+
OH CH3 C=N
H+
O
=
C—NHCH3
羧酸
CH3NH2
酰胺

—COOH
+H3O
+
O
OH
H+
=
C—NHCH3
CH3
C=N
CH3NH2
根据水解得到的产物可推知酰胺的结构,根据酰胺的结构 和基团反式迁移的规律,可进一步推知原来肟的构型为Z型。
贝克曼(Beckmann)重排
3、工业化:尼龙-6的合成
+
O + H2N
OH
H
OH N
H
+
N
+ OH2
CH3 H3C C CH2 NH2 CH3
CH3 H3C CH3
NaNO 2 H+
CH3 H3C CH3
C CH2 N2
+
- N2
C CH2
+
CH3 H3C
CH3
+
C CH2 CH3
-H2O
H3C
C CH2 CH3 OH
1.1 重排到缺电子的碳原子上
4. 二苯基乙二酮—二苯基羟基乙酸的重排
PhCOCOPh 1)OH 2)H3O+

第六章+氧化反应(2)

第六章+氧化反应(2)

ArCHOCrCl2 OH ArCHO 2H 2 CrO3
HOCrOCl2
ArCH(OCrCl2 OH)2 Etard复合体
2. 氧化形成酮、羧酸
苄位亚甲基被氧化成相应的酮,常用的氧化剂或催化剂有两类: 铈的络合物和铬(Ⅵ)的氧化物或铬酸盐。如硝酸铈铵(CAN), 反应在酸性介质中进行,一般用硝酸作反应介质,收率较高。
一、苄位C-H键的氧化 苄位C-H键被氧化生成相应的芳香醇、醛、酮或 羧酸,氧化反应产率较高。
1. 氧化生成醛
醛基特别是苯甲醛易被进一步氧化,要使反应停滞在醛基阶 段,需用选择性氧化剂,较好的氧化剂有硝酸铈铵(CAN), 三氧化铬-乙酐,以及钴乙酸盐和铈乙酸盐等。

(1)硝酸铈铵(CAN):CAN和50%AcOH一起,可将甲苯芳 烃的苄位C-H键氧化成芳醛;CAN还可与其他酸混合作为选择性 氧化剂,常用的酸有高氯酸、乙酸等。通常条件下,多甲基芳烃 仅一个甲基被氧化。此时,选择适宜的温度是重要的。
O CH 2 CH CH3 3 CH 3 Collins 试剂 (15eq.) CH 2Cl2 , r.t. CH 3 CH 3 CH 2 CH 3 (95%)
PCC(25eq.) BzO C 6H 6, reflux, 24 h (89%) BzO O
以上两种试剂同样适用于芳烃苄位基的氧化,另外,在一些反 应中,用Collins试剂试剂进行氧化时发生烯丙双键的移位,是由 于铬酸氧化按自由基机理进行的,中间体烯丙基自由基会转位。
O CH 3 KMnO4 /KOH 0 oC
O COOH
三、烯丙位活性C-H键的氧化

烯丙位的甲基、亚甲基或次甲基在一些氧化剂作用下可被氧 化成相应的醇(酯)、醛或酮,而双键不被氧化或破坏,但 可能发生双键位置的迁移。 在这些氧化反应中,烯丙基自由基或正离子是构成烯丙位上 烃基氧化的中间体。

有机化学第06章 芳烃(2)

有机化学第06章 芳烃(2)

特点:
①这些取代基与苯环直接相连的原子一般都是饱和的或带
有孤电子对或带负电荷(苯环、乙烯基除外);
②大都是给电子取代基,除卤素外,这类定位基均能使苯
环上电子云密度升高,使苯环活化。因此这些定位基又称
活化基;
③这些取代苯(除卤苯外)的亲电取代反应活性比苯高,
反应速度比苯快。
(2)间位定位基 (第二类定位基) X
2
I + 2Cu
+ 2CuI
二、性质
与苯性质相似,将其中的一个苯基看作是另一个苯基的取 代基。
CH3
混酸 Δ
NO2
混酸 Δ
NO2
CH3
NO2+
NO2
+
CH3
NO2 NO2
CH3
若其中一个苯环上含间位定位基时,则发生异环取代; 若是邻对位定位基,则发生同环取代。
6.9稠环芳烃
一、 萘及其衍生物
1、化学性质
Δ ,~90%
O
O 9,10-蒽醌 OO
K2Cr2O7+H2SO4 或CrO3 + HAC
9,10-菲 醌
二、定位规律的理论解释 1、电子效应 1)邻、对位定位基对苯环的影响
δ- H
δ-
2)从共振论观点
进攻邻位 :
CH3H +
E
CH
δ- H
CH 3 H +E
CH3
进攻对位 : +
HE
CH3 +
HE
X
+Y
Y
间位定位能力由强到弱的次序大致如下:
+
NR3
NO2 , CCl3 , CN , SO3H,

06醛和酮的人名反应

06醛和酮的人名反应
3
Oppenauer氧化反应
一、背景(续) 在金属烷氧基化合物(比如异丙氧基铝)存在下,使用酮作氧化剂 将伯醇和仲醇氧化成相应的醛和酮的过程就称为 Oppenauer氧化 反应。 这个反应的逆反应,即将醛和酮还原成醇的过程,是另一个人 名反应,称为Meerwein-Ponndorf-Verley还原反应。
7、起始的产物是亚胺盐,用水水解得到相应的醛,用H2S处理得 到硫醛(thioaldehyde),而与羟胺(hydroxyamine)反应则得到腈, 或还原为胺。
15
Vilsmeier甲酰化反应
二、Vilsmeier甲酰化反应的特点(续) 8、Vilsmeier甲酰化反应的区域选择性倾向于空间位阻小的位置,
8、伯醇氧化绝不会出现过度氧化成酸的情况。
9、1,4-和1,5-二醇(diol)的氧化通常生成内酯(lactone)。
10、丙酮是最常用的氧化剂,但是芳香或脂肪醛因为不容易 被还原也是适合的氧化剂。
6
Oppenauer氧化反应
三、Oppenauer氧化反应的改进 1、加入质子酸能显著提高氧化反应的速度。 2、Oppenauer氧化反应也可以使用多相(heterogeneous)催化剂 (比如,氧化铝(alumina)、分子筛(zeolite))。多相催化剂反应 比传统的均相(homogeneous)的优点是催化剂非常方便地从反 应体系中分离。
23
Wacker反应
五、应用(Application) 不对称全合成cytotoxic diterpenoid (-)-sclerophytin A推定的结构是 由L. A. Paquette及其合作者完成的。在合成的起始阶段,双环中 间体的端烯转化成相应的甲基酮就是采用Wacker oxidation反应实 现的。尽管反应时间有点长,但收率好。但是最后发现合成的 产物结构与天然物的结构不符。

有机化学第六章 链烃——二烯烃2

有机化学第六章 链烃——二烯烃2
1,2-加成和1,4-加成的实质就是一个化学反应的区域选择性的问题
共轭二烯两种加成方式的能量曲线示意图
1, 2-加成产物生成 较快,解离也较快。
1, 4-加成产物生成 较慢,解离也较慢。
较低温度有利于1,2-addition
较高温度有利于1,4-addition
1,2-加成和1,4-加成的比较
9KPa, 18%
但具有供电子基的双烯体和具有吸电子基的亲双烯体的D-A反应则较易 进行。例如:
CHO
+
115℃, 2-4h
甲苯 , 82%
CHO
O
O
+
O 苯,100℃
O
1h, 90%
O
O
实验事实表明,D-A确实存在着取代基效应
G
+
W
G
双烯体
亲双烯体
G W
G
R
G
OR
NHR
(供电子基)
反应速度和 反应产率显 著提高

C R(H)
CO2R(H)
W
CN
NO2
(吸电子基)
5. D-A反应的区域选择性——邻、对位加成规律
当1-取代双烯体和1-取代亲双烯体反应时,D- A 反应的 主产物为两个取代基处于邻位的产物。
G
W
+
W
G
G
W
+
W (主产物) (次产物,很少)
Ph
CHO
Ph CH O
Ph CHO
当2-取代双烯体和1-取代亲双烯体反应时,D- A 反应 的主产物为两个取代基处于对位的产物
期的产物是由1,2-加成方式控制的,因此,1,2-加成称为速度控制的反 应步骤,又称为动力学控制反应步骤。

有机原理06.还原反应

有机原理06.还原反应


RCHO RCH2NH2 RCH=CHR’(Z,cis) 氢化 RCH2CH2R’ RCH2OH RCHOHR’ ArCH3 氢解 RCH2OH + R’OH RCH2NHR’ RCH2NH2
R
炔烃的加氢
顺式加氢 Lindlar 催化剂:Pd/CaCO3, 喹啉 反式加氢 Na, 液氨 炔烃 + H2 Lindlar Catalyst ( Pd/ BaSO4/ quinoline) 部分毒化用于还原反应活性高的官能团 cis olefins (Lindlar Reduction) 酰氯+ H2, Pd/BaSO4 醛 (Rosemund Reduction) Org. Rxn. 1948, 4, 362 烯烃
载体铂催化剂:Pt/C 酸能促进铂的催化氢化。 缺点:价格昂贵。
(3)钯催化剂
对烯烃、炔烃加氢活性高,还原酮、腈、硝基 化合物,还原氨化反应等,氢解活性也很强。 为最常用的催化剂之一, 可制成氧化钯、钯黑和载体钯(Pd/C)
钯碳催化剂(10%)的制备 在200ml烧杯中加入5.0氯化钯,65ml水和8.8mL浓 盐酸,加热助溶。呈棕色溶液,待用。在1000ml三 口瓶中放人250g粉状活性碳(化学纯)和200mL水。 加热煮沸15 min。在搅拌下加入上述棕色氯化钯溶 液。在剧烈搅拌下,维持温度在90-95oC之间,徐 徐加入22m1甲醛(40%)。加毕,继续搅拌15min。 然后冷却到20oC以下,在搅拌下慢慢加入30%氢氧 化钾水溶液,使反应混合液的pH=5~6。再搅拌 20mL 过滤,水洗二、三次,转移到烧杯中,用5% 硝酸浸泡过夜,或更长时间。过滤,水洗至中性, 取出干燥,密闭保存,待用。
还原硝基化合物:
还原肟:

有机反应机理第六章(一)

有机反应机理第六章(一)
有机反应机理
与含未共用电子对的亲核试剂反应(续)
When the nucleophile is RCO2H, the carbonyl O makes the new bond, not the O of the OH group
有机反应机理
与亲核试剂反应
有机反应机理
与亲核试剂反应
Pi-bond nucleophiles can also add to carbocations and a new carbocation is formed
第6章 活性中间体的研究
6.1 活性中间体概述 6.2 碳正离子 6.3 卡宾 6.4 碳负离子
6.5 有机自由基
有机反应机理
1活性中间体的研究在机理研究中有何意义和作用? 2 有机反应中常见的活性中间体有哪些?
3 掌握有机自由基、卡宾、碳正离子、碳负离子
等常见活性中间体的结构、产生的条件和反应性
有机反应机理
相邻原子上的未共用电子对,键和键对碳正离 子的稳定化作用
有机反应机理
相邻原子上有未共用电子对时的共振结构
R X C
R
R X C
R
稳定化作用顺序:周期表自左向右,自上而下降低 X = N > O > F;X = O > S
有机反应机理
氮原子的稳定化作用最强,因此,亚胺正离子是 一个较稳定的中间体
有机反应机理
碳正离子重排的实例
Pinacol rearrangement 邻二叔醇重排,频哪醇重排
有机反应机理
酸催化下,邻二叔醇失去一分子水,重排成醛或酮 的反应:
R R
1
R C R
1
R H R
1
C

高等有机第六章

高等有机第六章
一、 亲电取代反应历程
X + E X E
π络合物
X H E X + E H
σ络合物
X H E
π络合物
芳香亲电取代的一般机理
二、亲电体的活性(略) 三、定位效应和反应活性 1、邻对位定位基和间位定位基 邻对位定位基 -I及+C效应基团:-OR,-OH,-NR2 -F, Cl, -Br, I +I及+C效应基团:-O-I及-C效应基团:CH3 > CH3CH2 > (CH3)2CH2 > (CH3)3C 间位定位基 -I 效应基团:N+R3,P+R3,As+R3,N+H3 -I及-C效应基团:NO2,CN,SO3H,CHO,COR, COOH,CONH
(n10)
定义:分子式符合(CH)n的环多次甲基化合物称为轮烯。
命名:
轮烯是根据碳氢的数目来命名的。
(CH)10
H
H
十碳五烯, 10-轮烯 或 [10]轮烯
判别轮烯芳香性的原则
(1)轮烯是非扩张环,有环内氢与环外氢。环内氢无斥力 (2)环碳必须处在同一平面内。 (3)符合4n+2规则。
H H
HH HH
(2) 环辛四烯双负离子
能发生典型的烯烃 反应。离域能为零。 具有单、双键结构。 澡盆型。
4HCCH
Ni(CN)2 15-20 atm, 50oC (70%)
无芳香性
- 2Na 乙醚
=

有芳香性
C-C键键长平均 化,均为1.40A。 八个碳原子共平 面。
*Na给出二个电子。
3. 大环芳香结构(轮烯)
H H HH
HHH HH H
10-轮烯因环内 氢的相互作用, 使C不能同处 在同一平面内, 无芳香性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机反应机理
三-(五氯苯基)甲基自由基在溶液中可保存数天, 固态时可稳定存在,并能耐热至300℃
Cl Cl Cl Cl Cl Cl Cl C Cl Cl Cl Cl ClCl Cl Cl
有机反应机理
这是由于与自由基中心碳原子相连的芳基可以通过 共轭作用很好地稳定自由基
同时,体积较大的芳基自由基通过位阻作用使得 自由基之间较难反应,进一步稳定了自由基
相邻原子上的未共用电子对,键,键都能稳定 自由基,稳定性顺序: 叔碳自由基 > 仲碳自由基 > 伯碳自由基
有机反应机理
自由基与碳正离子稳定性的差别 自由基中心碳原子价壳层电子数为7,缺电子性不 如碳正离子严重,较相应碳正离子稳定
例如,伯碳正离子很难形成,而伯碳自由基则通常 可作为反应中间体
有机反应机理
深蓝色的二苯甲酮羰游基在用钠干燥溶剂时用作脱 氧剂
有机反应机理
6.5.3 自由基的反应
有关自由基的反应包括
与键的加成,裂解,夺取氢,复合,重排等
有机反应机理
与键的加成
例如溴自由基对双键的加成和自由基环化
有机反应机理
硝酮(nitrone)与自由基加成生成稳定的氮氧自由基, 常用作自由基捕集剂
有机反应机理
对于杂原子自由基,由于自由基是缺电子的,自由 电子所在原子电负性越大,相应自由基越不稳定 稳定性:
CR3
I
>
> Br
NR2
>
Cl
OR
F
>
>
HO· 和H· 极不稳定,通常不能作为反应中间体存在
有机反应机理
氮氧自由基是非常稳定的自由基,例如TEMPO
O H3C N CH3 CH3 H3C H3C
自由基夺取氢的反应则相反, Me3C-H的氢容易 被自由基夺取, RO-H的氢则难以被自由基夺取, 因为RO-H键的BDE高于Me3C-H键的BDE
有机反应机理
由于上述原因,自由基反应常选择甲醇,水和苯作 溶剂
如果用乙醚,THF,CH2Cl2,丙酮或氯仿作溶剂, 常会发生自由基夺取溶剂分子中的氢的副反应
自由基与碳正离子稳定性的差别(续) 相邻原子上的未共用电子对,键和键对自由基 的稳定化作用不如对碳正离子的稳定化作用强 这是因为自由基 的这些共轭作用 是占有轨道与占 有轨道间的作用, 有一个电子进入 反键轨道
有机反应机理
而碳正离子的这些共轭作用是占有轨道与空轨道间 的作用,电子都进入成键轨道
反式亚胺被转运到肝脏,在酶和ATP(腺苷三磷酸) 的作用下转变成顺式再送回视网膜
有机反应机理
氧化还原反应也是产生自由基的简便方法 单电子转移过程先生成阳离子自由基(氧化)或阴离 子自由基(还原),再分解成自由基和离子,例如:
人,称作羰 游基(ketyl)。
有机反应机理
自由基的复合和歧化 两分子自由基利用各自的自由电子所在轨道形成新 的键的反应称为自由基复合
有机反应机理
自由基夺取另一自由基分子中的氢,形成两分子八 隅体结构产物的反应称作自由基歧化,例如
有机反应机理
自由基重排
与碳正离子不同,自由基的同面协同的1,2-迁移 重排是对称性不允许的反应,但某些自由基可以 通过加成-裂解的途径发生1,2-迁移重排,例如
有机反应机理
O O O O
O 2 O
CH3 C CH3 N N
CH3 C CH3
hv
CH3 N2 + 2 C CH3
有机反应机理
通过键离解能可以判断化学键均裂的难易
H H BDE/kj/mol 435
Br Br 192
不难看出,Br-Br键易断裂,H-H键不易断裂
有机反应机理
一些键在光照下可使电子激发到*轨道上,形成 双自由基
O N CH3 CH3 H3C H3C
O N CH3 CH3
H3C
TEMPO, a stable nitroxyl
有机反应机理
6.5.2 自由基的产生
键的均裂 键的激发
单电子还原或氧化
有机反应机理
有机过氧化物和偶氮化合物分子中的氧-氧键和 碳-氮键的键能很低,很容易均裂为自由基, 常用来作为自由基反应的引发剂
有机反应机理
夺取氢
夺取氢也是自由基的基本反应,例如
有机反应机理
夺取卤素
自由基也可夺取反应物分子中的卤素,与夺取氢 是同一类反应
有机反应机理
自由基通常不能夺取反应物分子中的烷基,氰基等 基团,例如
有机反应机理
注意:自由基夺取氢的难易与离子型反应中脱质 子的难易是完全不同的
例如,碱性条件下RO-H很容易异裂成RO-和H+, 但Me3C-H键很难断裂
6.5.1 自由基的结构和稳定性 烷基自由基具有7电子结构,因而是缺电子的
烷基自由基的中心碳原子杂化态处于sp2与sp3之间, 近似于sp2杂化,具有扁平的角锥型结构
有机反应机理
自由基的扁平角锥结构很容易翻转
自由基翻转的能垒很低,只有2.5kJ/mol
自由基的快速翻转使得一些具有光学活性的 反应物经自由基机理反应后得到的是外消旋产物
有机反应机理
解释以下自由基重排的机理
有机反应机理
链反应和非链反应 自由基引发剂作用下的反应通常为链反应
使用化学计算量的氧化剂或还原剂所进行的反应不 是链反应 光化学反应中,单分子重排或消除通常不是链反 应,而加成,取代反应通常为链反应
有机反应机理
6.5.4 自由基反应实例
Hofmann-Loffler-Freytag反应(远程官能化反应)
The formation of cyclic amines from N-halogenated amines via an intramolecular 1,5-hydrogen atom transfer to a nitrogen radical is known as the Hofmann-Loffler-Freytag reaction (HLF reaction)
O R R
O R R
hv
双自由基可以发生自由基的各种反应
有机反应机理
某些顺式烯烃的双键在光照下异构成反式,可 能经过双自由基机理
H Ph Ph H hv Ph
H H Ph H Ph H Ph Ph
H Ph H
有机反应机理
动物的视网膜中存在具有顺式双键的亚胺11-cisretinal(视黄醛)imine,当光线照到眼睛时,异构 成反式,产生电脉冲,通过视神经传递给大脑
有机反应机理
例如光学活性的1-氯-2-甲基丁烷的氯化反应, 得到的产物是外消旋体
H ClH2C C C2H5
ClH2C C CH3 C2H5
ClH2C C
CH3 C2H5
CH3
Cl
Cl2
ClH2C
C
CH3 C2H5
+
ClH2C
CH3 C Cl C2H5
有机反应机理
自由基的稳定性 自由基与碳正离子一样,是缺电子的,任何稳定 碳正离子的因素也能稳定自由基
相关文档
最新文档