地震子波波形显示及一维地震合成记录

合集下载

人工合成地震记录作业

人工合成地震记录作业

人工合成地震记录程序设计(一)、人工合成地震记录原理:地震记录上看到的反射波波形是地震子波在地下各反射界面上发生反射时形成的。

反射波的振幅有大有小(决定于界面反射系数的绝对值)、极性有正有负(取决于反射系数的正负)、到达时间有先有后(取决于反射界面的深度)的地震反射子波叠加的结果。

如果地震子波的波形用S (t )表示,地震剖面的反射系数为双程垂直反射时间t 的函数,用R (t )表示,那么反射波地震记录形成的物理过程在数学上就可以用S (t )的R (t )的褶积表示,即某一时刻的反射波地震记录f (t )是:)()()(t R t S t f *=其离散形式为:))(()()(1t m n R t m S t n f M m ∆-⋅∆=∆∑=如果大地为多层介质,在地面记录长度内可接收的反射波地震记录为:))(()()(11t m n R t m S t n f Mm N n ∆-⋅∆=∆∑∑== 式中,n 为合成地震记录的采样序号,n =1,2,3...N ;N 为合成一道地震记录的采样点数;m =1,2,3...M ,为离散子波的采样点数;△t 为采样间隔。

这种褶积模型将地震波的实际传播过程进行了简化:1、在合成地震记录的过程中没有考虑大地的吸收作用,所有薄层的反射波都与地震子波的形式相同,只是振幅和符号不同。

2、假设地震波垂直入射到界面上,并原路径返回。

3、假设地层横向是均匀的,在深度(纵向)方向上假设密度为常数,只是速度发生变化。

4、不考虑地震波在传播过程中的透射损失。

(二)、人工合成地震记录的方法1、 反射系数序列在有速度测井资料的情况下,可以用速度曲线代替波阻抗曲线,计算反射系数序列。

在没有速度资料的情况下,可根据干扰波调查剖面分析的结果设计地质模型。

如设计的地质模型如图a 所示,图中H 为层厚度,V 为层速度,根据下式计算反射系数: 11)(--+-=N N N N N V V V V H R 式中H 为反射界面的深度,N 为反射层序号,随深度变化的反射系数序列如图b 所示。

地震资料解释之合成记录制作

地震资料解释之合成记录制作

How To Do Troubleshooting?
Master the basic knowledge & skills ! Think about your trouble ! Always use your head to think and always use
your hands to do it !
地震记录 合成记录
声波曲线
最终得到一个较好的合成地震记录
五、怎样判别合成记录的好坏
相关系数:通过求取合成记录与地震的相关系数来进行定量的 判断。一般在目的层段内的时窗范围内,相关系数都应在0.6之 上,井过断层时除外。
相关系数0.8
与工区内平均速度对比 对做完合成地震记录的井按一定间隔提取其时间-深度对, 与工区的平均速度曲线相对比,应比较一致。
某工区内井的时深关系与平均速度对比图 (红的为平均速度)
剩余记录
地震剖面
合成记录
剩余记录
剩余记录 越少,合 成记录越 精确。
测井曲线
多元标定技术
地震记录
合成记录
测井曲线
综合利用电性曲线、岩性剖面及钻井地质分层的多种信息,精确标定出 地下某地质体的顶底界面,分析储层的横向变化,提高了标定的准确和 形象性,将其与对该区的整体构造与地质认识相对照,分析其是否符合 该区地质沉积规律,也可对合成地震记录起到检查的作用。
自然电位
多元标定技术在合成记录中的应用
横向对比法
通过任意连井线,将测井曲线(波阻抗、自然电位等)投在地震剖 面上,根据地震标准反射层与测井响应一致原则,使井与井之间的 地震地质标定的关系保持一致,从而检验空间地震地质标定的合理 性和一致性。
内容提要
13 为什么要制作合成地震记录 23 合成地震记录原理 3 制作合成地震记录的关键技术 43 体会与认识

Geoframe地震合成记录制作(绝对原版)

Geoframe地震合成记录制作(绝对原版)

Stretch—sqeeze:局部拉伸收缩。微调。 中建选择拉伸点,左键实现拉伸 Bulkshift:对曲线进行整体漂移。粗略对应 地震层位。左键选好始终线实现漂移 时深曲线校正。前提是:有 checkshot。没有的话,用声波曲 线形成后保存checkshot
时深关系曲线编辑(velocity survey):
4. 子波的选取或提取。
选取的基本思路是:先用默认的雷克子波进行观察,看效果。如果不行,自己提取子 波。参数有频率、相位、波长、极性等,提取方法有自相关(默认)和维纳—莱文森 混相子波提取方法。
常用的极性判别方法:
1、单轨、双轨剖面判断法:在正极性剖面上,正反
射系数界面,如基岩顶面、海底、火成岩顶面等,表现为单轨 强峰;而负反射系数界面,如大套油页岩、煤层顶面,表现为 双轨强峰。在负极性剖面上,特征相反。
3dv—define—borehole appearance—synthetic
点亮display synthetics。 进行参数设置。
注意:点亮了沿井显示,则不
能在3dv—tools—synthetics上 移动(见菜单讲解大全)
Update –close。必要时可在marker 、curve将层位测井曲线投上
波长 极性 相位
5.对synthetic进行调整,使其与实际的地震剖面进行匹配。
点右键,选borehole投井,对井右键选appearance投synthetic和曲线 点右键,选content对子波类型选择
Post— correlation 投相关系 数。右键 Maximun correlation Values查看
2.合成记录(synthetic)制作界面的进入
IEXS---application---synthetics

数字信号分析实验1

数字信号分析实验1

实验一、地震子波波形显示及一维地震记录合成一、实验目的1、认识地震子波(以雷克子波为例),对子波有直观的认识。

2、利用线性褶积公式合成一维地震记录。

二、实验内容1、雷克子波:()()t f e t w m t f m πγπ2cos 22/2-=(零相位子波)、 ()()t f e t w m t f m πγπ2sin 22/2-=(最小相位子波), 其中m f 代表子波的中心频率,γ代表子波频带宽度,随着γ的增大,子波能量后移,当γ=7时,最小相位子波可视为混合相位子波,这里取m f = 25 Hz ,γ= 3;2、根据公式编程实现零相位子波、最小相位子波的波形显示;3、设计反射系数)(n r (n=500),其中0.1)100(=r ,7.0)200(-=r ,5.0)300(=r ,4.0)400(=r ,6.0)500(=r ,其它为0;4、应用褶积公式∑=-=*=Nm m n w m r n w n r n f 1)()()()()(合成一维地震记录,并图形显示;5、根据所学知识对实验结果进行分析。

三、实验要求1、独立完成程序设计工作;2、独立完成书面报告(A4纸打印);3、提交程序源代码。

实习报告一姓名:王忠成学号:050422011042 专业年级:地信2011级当γ=3时,汇出最小相位子波和零相位子波图形,如下所示:当γ=5和γ=7时的波形图分别为:由雷克子波公式()()t f e t w m t f m πγπ2cos 22/2-=知:(2πf m /γ)2为一个指数衰减因子,当γ增大时,(2πf m /γ)2减小,故衰减变慢。

设计反射系数)(n r (n=500),其中0.1)100(=r ,7.0)200(-=r ,5.0)300(=r ,4.0)400(=r ,6.0)500(=r ,其它为0。

应用褶积公式∑=-=*=N m m n w m r n w n r n f 1)()()()()(合成一维地震记录,对零相位子波和最小相位子波分别与r(n)褶积,汇出其图形如下:由图可知,两种波形的地震记录都有5个峰值,分别对应于5个分界面:r(100)、r(200)、r(300)、r(400)和r(500),并且当r>0时,峰值为正,当r<0时,峰值为负。

地震子波 数字信号实验报告

地震子波 数字信号实验报告
实验分析
根据所学知识对实验结果进行分析;
地震子波由震源激发,在地层中传播,因为在沉积地层中,每层介质的物理性质不相同,从而使得地震波的传播速度也不相同。当地震波传播到两层介质的分界面时,会发生反射,由于每层介质的反射系数不同,所以反射波的能量也不相同,检波器接收到不同时刻的、不同能量的反射波,形成一个地震记录。
subplot(2,2,4),plot(f2,'k'),title('最小相位子波地震记录')
f1(i)=0;
f2(i)=0;
end
fori=1:n+m-1%地震记录长度
forj=1:m%地层深度
ifi-j>0&i-j<=200%满足雷克子波的时间序列长度
a1(j)=r(j)*w1(i-j);
a2(j)=r(j)*w2(i-j);
f1(i)=f1(i)+a1(j);
f2(i)=f2(i)+a2(j);
地震子波波形显示及一维地震合成记录
姓名:杨肖迪学号:050422009040专业:地球信息科学与技术2009级
实验目的
1.认识地震子波(以雷克子波为例),对子波的波形有直观的认识。
2.利用褶积公式合成一维地震记录。
实验步骤
1.雷克子波
(零相位子波)
(最小相位子波)
其中 代表子波的中心频率, 代表子波宽度,随着 的增大,子波能量后移,当 =7时,最小相位子波可视为混合相位子波,这里 = 25 Hz, =4;
end
end
end
subplot(2,2,1),plot(w1,'k'),axis([0,200,-1,1]),title('零相位子波')

一维合成地震记录

一维合成地震记录

2700
平 均 2600 速 度 2500

) 2400 2300 2500
3000
方案(a)的 方案(b)的
3500 深度(m)
3平均速度分布图
2正确解释方案
4.Q补偿剖面上的合成 地震记录解释 27
解决特殊地质问题
28
S1井气砂层改为含水砂岩和泥岩时 地震响应及与地震剖面的比较
29
VSP资料应用
7
时深曲线
地质 分层
声波曲线
反射系数 地震子波 合成记录 地震子波 合成记录 地震剖面
正极性
负极性
自然电位
地质 分层
8
单井标定—确定井中测量的地层与地震反射的对应关系
官11
Es1
T2
T3
T4
T6 T6’
9
具体制作和使用中需要考虑的因素
(1)制作前
目的,合成地震记录要作什么用,目的层范围
有所估计,有所预计
2、合成地震记录
1
合成地震记录史话:
始于褶积模型的概念,Norman Ricker 1940年, 1953年的经典著作中雏形。褶积模型和CVL的出 现,1950年Peterson用声波测井曲线和一套光电模 型装置首次实现了合成地震记录,示波仪显示, 令人鼓舞。其后,随着数字革命的开始,进行数 字运算。
了解地震剖面的类型,2D,3D,叠加或偏移,
波场类型,频率,井位,反射面貌,断层,要有
良好的反射,剖面质量较好,可能的子波估计,
排列长度,处理流程
测井曲线,AC,SP,井径,电阻率,感应等,
仪器类型,所关心的层位有没有界面,测井曲线
的编辑、取值、异常剔除、异常标记
处理模块

合成地震记录制作

合成地震记录制作

合成地震记录制作地震,地震勘探我们知道计算合成地震记录的基本原理是,合成地震记录=子波与反射系数的褶积所以需要子波和反射系数.但是用于计算的数据一般是深度域的,要转换到时间域来必须有时深关系.所以.需要的数据:时间/深度关系数据:checkshot或者DT,用于计算反射系数的数据,一般是DT和密度(RHO B).基本步骤:1, 加载数据:如果是斜井的话,加载井斜,计算出SSTVD,设置成Prefered DS(deviation survey);如果有来自VSP或者其他可信渠道的时深关系的话加载进来,叫checkshot,就是时间,深度关系对,用于提供时深关系;加载DT,RHOB曲线;2,数据质量检查:查看checkshot数据覆盖范围,和品质;查看DT,RHOB曲线的品质,如果不好需要用well-edit或者synthetics里带的一些功能进行编辑.DT,RHOB曲线应该是做过Depth match,需要拼接的话是splice好的.3,制作合成地震记录:点击Post,依次选择时深关系,声波曲线,密度曲线(如果没有密度曲线或者品质不好也可以使用经验公式来代替),声波阻抗,反射系数,子波,合成地震记录,地震数据.软件完全是根据原理走的,如果时深关系没选,后续工作无法开展,如果没有DT,密度,就无法生成声波阻抗和反射系数...软件自带有Ricker30经验子波.如果效果不好可以自己提取子波,也可以使用时变子波.4,对比合成地震记录和井旁道实际地震记录,通过bulkshift或者拉伸压缩来调整时深关系.有时需要用c heckshot来校正DT.一般可能先使用Ricker30子波试一下,看看大致情况,如果效果不好,再尝试提取子波.这是一个反复实验的过程.合成地震记录的品质和制作的数据来源的品质有关,对比的好坏和实际地震数据的品质也有关系.总是实际情况总是复杂的.。

合成地震记录

合成地震记录

应用合成地震记录来标定地震层位是地震资料解释中非常重要的手段,也是将地震资料与测井资料相结合的一条纽带。

它最终使抽象的地震数据与实际的地质模型连接起来,为地震资料解释的可靠性提供了依据。

合成记录的精度将直接影响到地震地质层位标定的准确性,因此,提高合成记录的精度就成了地震层位标定的首要问题。

1合成记录的方法原理1.1合成地震记录制作的一般方法一般而言,人工合成地震记录,是利用声波和密度测井资料求取一反射系数序列,再将这一反射系数序列与某一子波反褶积得到结果。

S(t) = R(t) * W(t) (1)式中 S(t) —— 合成地震记录; R(t) —— 反射系数序列; W(t) —— 地震子波。

上式表明,合成记录的好坏与反射系数序列的求取和子波的选择有着密切的关系。

反射系数序列的准确性和精确程度又与测井资料(声波、密度)的采集、处理等过程密切相关;子波的选择,则要考虑子波的长度、相位、频率等诸多因素。

在实际工作中,所得到的结果往往不尽人意[1],主要表现在:(1) 合成地震记录与井旁地震道附近的地震剖面层位不吻合现象较多,或者说同相轴吻合的时窗长度有限;(2) 合成地震记录与井旁地震道附近的地震剖面能量不吻合现象较多,或者说同相轴“胖瘦”程度吻合有限;(3) 合成地震记录与井旁地震道附近的地震剖面存在一定的时移。

其原因主要在于:①子波受地质条件变化的影响,难以给得恰到好处;②深—时转换存在误差;③褶积模型并不能完全准确地反应地震记录;④实际地震记录存在噪声。

1.2实用优化方法1.2.1校正测井数据首先对测井数据进行校正,对反射系数序列进行非均匀采样[2,3]。

1.2.2选择合适的子波(1)子波的类型。

常用的子波有两类,一是典型子波,如Richer、Traperiod子波等;二是提取子波,提取子波一般有维纳—莱文森混相位子波提取法和自相关子波提取法两种[4,5]。

从剖面提取的实际子波制作的合成记录,虽然其合成地震记录层位精细标定应用研究*洪余刚 陈景山 代宗仰 李凌峰(西南石油学院资源与环境学院,四川省成都市610500)摘 要:通过对合成记录制作的一般方法进行分析,结合研究区实际地质、地震资料,提出合成记录的制作在层位标定中的实用优化方法,强调了子波的提取方法和子波相位引起的偏差。

第七章地震薄层一

第七章地震薄层一

二、薄层的地震响应为子波的一阶导数
子波与薄夹层的反射系数序列相褶积时,实际上变成子波与薄层顶和底两处反射系数值相乘积后 再求和,即
S (t) W (t)• R T W (t)• R B
此处S(t)为合成的波形,W(t)为地震子波,τ为薄层的时间厚度,RT和RB分别为薄层顶和底的反 射系数。
因为是均匀夹层,故反射系数符号相反、绝对值相等,若取其绝对值为R,且RT为正时,存在下 式:
三、合成地震记录
4、合成记录的作用 (1)是一维地震正演模型——模式作用 (2)建立井孔与地震剖面的联系
——地震标定作用
张海9井
地震标定作用 标定层位
张海6井
地震标定作用 标定层位
标定层位
T2 T3 T4 T5 T6
张海 9
庄海5
标定层位
标定层位
张参1
标定层位
第七章 地震薄层分析
第二节 薄层地震响应的基本特征
S(t)0ta()R(t)d
合成的地震记录波形与野外地震记录波形十分相近
第一节 合成地震记录
三、合成地震记录
3、基本特征 (1)与地面地震记录非常相似 (2)与地面地震记录不完全相同
第一节 合成地震记录 (1)与地面地震记录非常相似 (2)与地面地震记录不完全相同
合成地震记录与井旁道对比图
第一节 合成地震记录
时差保持不变
时差单调递减
一、楔状夹层地震响应特征
3、时差曲线变化特征 (1)当地层厚度相当大时
测量出的峰到谷双程时间与模型的实际厚度 (真厚度)非常吻合,因此位于图中的 45°线上。
(2)当厚度开始减小时 测量的时差先是慢慢偏离这条45°线。
(3)当厚度变得很小时 在某个点以后渐进地趋向于一个常数值。

合成地震记录

合成地震记录
%
for i = 1:n-1
v(i) = V(i);
end
Vav = sum(h) / sum(h/v);
h0 = sum(h);
reply = input('请输入偏移距deltX(Defalt = 400):','s');
if isempty(reply)
deltX = 400;
else
clear a;
a = sscanf(reply,'%f',[1 1]);
deltX = a;
end
%
%计算延迟时间delay完全不知道算的啥意思!!!!!@
%
ntrace = 10;
t(1) = sqrt(deltX^2 + 4*h0^2) / Vav;
deltT(1) = 0;
for i = 2:ntrace
t(i) = sqrt((deltX*i)^2 + 4*h0^2) / Vav;
f = a(1);
dt = a(2);
end
%
%计算各反射界面所对应的采样点数nR
%
nsample = floor(tlength(n-1)/dt);
for ilayer = 1:n-1
nR(ilayer) = floor(tlength(ilayer)/dt);
end
%
%形成反射系数序列RR
%
RR(1:2*nsample) = 0;%?这个地方反射系数的长度应该是nsample/2
Ts(i) = i*dt;
end
%subplot(2,2,3);
plot(S,Ts);
set(gca,'XAxisLocation','top');

地震子波波形显示及一维地震合成记录

地震子波波形显示及一维地震合成记录

地震勘探原理实验一地震子波波形显示及一维地震合成记录姓名:学号:专业:地球物理勘察技术与工程 级 一、实验目的1. 认识子波,对子波的波形有直观的认识。

(名词:零相位子波,混合相位子波,最小相位子波;了解子波的分辨率与频宽的关系;) 2. 利用褶积公式合成一维地震记录。

二、实验步骤 1. 雷克子波()()))(21(22t f et r m t f m ππ-=- 零相位子波())2sin()ln(222t f et w m n t f m π-=(最小相位子波)n= m1/m2为最大波峰m1和最大波谷m2之比()())2cos(log *22xw t f et w m mt f m +=-π钟型子波 xw 为初相m 为时间域主波峰与次波峰之比w(t)=exp(-2*Fm^2*t^2*ln(n))*sin(T-2*pi*Fm*t) n=m1/m2 最大相位子波(最大相位子波请同学们自己查找相关文献完成,非必须完成)其中f代表子波的中心频率, t =i*dt,dt为时间采样间隔,i为时间m离散点序号; 这里可以为f = 10,25,40,100 Hz等,采样间隔dt=0.002m秒,i为0~256;2.根据公式编程实现不同频率的零相位子波的波形显示;不同中心频率的零相位子波图f = 25:mf = 100:m3.其地质模型为:设计反射系数)(n r (n=512),n 为地层深度,其中0.1)100(=r ,为第一层介质深度;7.0)200(-=r ,为第二层介质深度;5.0)300(=r ,为第三层介质深度;4.0)400(=r ,为第四层介质深度;6.0)450(=r ,为第五层介质深度;其它为0。

地震波在介质中传播,当到达介质分界面时,发生反射和透射,反射波被检波器接受,生成地震记录。

反射系数表示地震波在两层介质分界面的能量重新分配,如r(100)=1.0,表示地震波入射到分界面时,只有一种波,反射纵波(或反射横波)。

合成地震记录业务流程

合成地震记录业务流程

合成地震记录业务流程一、准备工作。

咱得先把相关的数据都找齐喽。

比如说,测井数据那是相当重要的。

就像我们找宝藏得有个地图一样,测井数据就是我们合成地震记录的地图。

这里面包括声波测井曲线、密度测井曲线等。

这些数据就像是一个个小零件,缺了哪个都不行。

而且呀,我们还得确保这些数据的准确性,如果数据错了,那就好比做菜的时候盐当成了糖,做出来的东西肯定不对味。

另外呢,我们还需要有一些地质分层信息,这个就像是房子的框架结构,能让我们清楚地知道不同地层的情况,知道在哪个地层该怎么操作。

二、选择合适的子波。

子波就像是合成地震记录的画笔。

有好多不同类型的子波可以选呢。

我们得根据实际的地质情况和研究目的来挑。

如果是比较简单的地层结构,可能选个简单点的子波就够用啦。

但要是地层情况很复杂,就像一个超级复杂的迷宫一样,那我们就得找个功能强大、能适应复杂情况的子波。

这时候就得花点心思去对比不同的子波,看看哪个画出来的“画”(也就是合成的地震记录)最符合我们对这个地下情况的预期。

三、计算反射系数。

这一步就像是在做数学题,不过是很有趣的那种。

我们要根据前面准备好的测井数据,像声波和密度这些,来计算反射系数。

反射系数就像是镜子的反射率一样,它能告诉我们地震波在不同地层界面上反射的情况。

这个计算可不能马虎,要是算错了,那合成出来的地震记录就会像一个歪歪扭扭的积木塔,一点都不稳定也不准确。

我们得仔仔细细地按照公式来算,就像小心翼翼地搭积木一样,一块都不能搭错。

四、合成地震记录。

好啦,前面的工作都做好了,就到了最激动人心的合成地震记录这一步啦。

我们把选好的子波和计算好的反射系数放在一起,就像把颜料和画笔放在一起准备画画一样。

然后通过一些算法,让它们相互作用,就像魔法一样,一个地震记录就慢慢合成出来了。

这时候我们就像一个小魔法师,看着自己的作品一点点呈现出来。

不过呢,这时候还不能掉以轻心,我们还得检查这个合成出来的地震记录是不是合理。

五、验证与调整。

地震合成记录

地震合成记录

地震合成记录1. 引言地震合成记录是地震学领域中一项重要的技术手段,用于模拟地震波传播过程。

通过地震合成记录,我们可以了解地震波在地下介质中的传播规律,从而对地震灾害的预测和评估提供有力支持。

本文将详细介绍地震合成记录的基本原理、方法和应用,并探讨其在地震学研究和工程应用中的重要性。

2. 地震合成记录的基本原理地震合成记录是根据已知地震事件的震源信息和地下介质模型,计算出相应的地震波记录。

其基本原理是基于弹性波方程,并考虑地面条件、震源机制、地下介质参数等因素。

具体步骤如下:2.1 确定震源信息首先,需要确定地震事件的震源信息,包括震级、震源深度、震源机制等。

这些信息可以通过地震台网的监测数据、地震目录和震源机制研究等手段获取。

2.2 建立地下介质模型其次,需要建立地下介质模型,包括地震波速度、密度、各向异性等参数。

地下介质模型可通过地震勘探、钻探、地震资料分析等方法得到。

对于复杂地下介质,可以采用层状模型、体积模型等。

2.3 计算地震波传播接下来,利用弹性波方程对地震波进行数值计算。

弹性波方程是描述地震波传播的基本方程,通常采用有限差分法、边界元法、有限单元法等数值方法进行求解。

通过迭代计算,可以得到地震波在不同地点的振幅和到时。

2.4 合成地震记录最后,利用合成地震波的振幅和到时,综合考虑地面条件和观测点的位置,计算出合成地震记录。

合成地震记录通常以地震波形、功率谱、互相关函数等形式呈现。

3. 地震合成记录的方法和工具地震合成记录的方法和工具多种多样。

根据模型的复杂程度和计算效率的要求,可以选择不同的方法和工具。

下面列举一些常见的地震合成记录方法和工具:3.1 时域有限差分法时域有限差分法是地震波数值模拟的一种常用方法。

它基于地震波方程的差分形式,通过迭代求解差分方程,得到地震波的时变分布。

该方法适用于规则和不规则地震波传播模拟,并可考虑各向异性和非线性等效应。

3.2 频域边界元法频域边界元法是利用边界元法求解地震波传播问题的一种方法。

地震子波波形显示

地震子波波形显示

地震子波波形显示及一维地震记录合成一、实验目的1、认识地震子波(以雷克子波为例),对子波有直观的认识。

2、利用线性褶积公式合成一维地震记录。

二、实验内容1、雷克子波:零相位子波源:()()t f e t w m t f m πγπ2cos 22/2-= 程序:fm=30;r=3;t=0.002;for n=1:200w(n)=exp(-(2*pi*fm/r)^2*(t*n)^2)*cos(2*pi*fm*t*n);endfigure(1),plot(w);图像(1):图(1)最小相位子波:()()t f e t w m t f m πγπ2sin 22/2-= 程序:fm=10;r=3;t=0.002;for n=1:200w(n)=exp(-(2*pi*fm/r)^2*(t*n)^2)*sin(2*pi*fm*t*n);endfigure(1),plot(w);图像:图(2)其中m f 代表子波的中心频率,γ代表子波宽度,随着γ的增大,子波能量后移,当γ=7时,最小相位子波可视为混合相位子波。

因而若将最小相位子波中γ=7,则可以间接地得到混合相位子波的图形为:图(3)从图(3)中可以看出,经过改变 的值后,整个雷克子波的能量发生了明显的后移;从一定程度上可以反映最小能量子波、混合能量子波、最大能量子波的图像上的区别是能量集中区域上的不同。

2、利用线性褶积公式合成一维地震记录(1)利用零相位雷克子波作为震源合成一维地震记录:程序:fm=30;r=3;t=0.002;for n=1:200w(n)=exp(-(2*pi*fm/r)^2*(t*n)^2)*cos(2*pi*fm*t*n);endfor j=1:500r(j)=0;endr(100)=1.0;r(200)=-0.7;r(300)=0.5;r(400)=0.4;r(500)=0.6; 对地层界面的反射系数进行设定for j=1:699f(j)=0;for i=1:500if(j-i>0&&j-i<200)f(j)=f(j)+r(i)*w(j-i); 褶积的主要过程endendendfigure(2),plot(f);图像:图(4)在这个一维地震记录图像上可以看出,除了100、200、300、400、500这些存在反射系数的点上发生了变化,在这些点的周围也发生了些许的变化。

子波整形提高合成地震记录质量

子波整形提高合成地震记录质量

子波整形提高合成地震记录质量单刚义,韩立国,张丽华,潘保芝吉林大学地球探测科学与技术学院,长春 130026 摘要:阐述合成地震记录的制作原理,利用测井数据计算出反射系数。

根据地震波传播机制,通过三维地震数据统计得到子波,由此计算出原始合成记录。

再根据过井剖面建立褶积模型,对子波进行整形,得到一个随时间变化的地震子波,最终得到与地震数据的波组特征相吻合的合成地震记录。

为精细储层描述打下了坚实的基础。

关键词:合成地震记录;褶积模型;子波整形;反射系数;深时转换;子波提取中图分类号:P 631.4 文献标识码:A收稿日期:2006207211作者简介:单刚义(19702),男,山东莱阳人,硕士研究生,主要从事地震资料的处理和解释研究工作,E 2m ail :ganyi 2shan@yahoo .com .cn .Usi ng W avelet Shap i ng to I m prove Syn thetic Se is m ogram Qua l itySHAN Gang 2yi ,HAN L i 2guo ,ZHAN G L i 2hua ,PAN B ao 2zh iColleg e of GeoE xp lora tion S cience and T echnology ,J ilin U n iversity ,Chang chun 130026,Ch inaAbstract :Syn thetic seis m ogram is the b ridge that connects seis m o logic data w ith w ell logging data ,and is also the basis of the in terp retati on of structu re and reservo ir’s seis m ic litho logy .T he accu racy of syn thetic seis m ogram directly affects the accu rate calib rati on of seis m ic geo logic ho rizon and the accu racy of reservo ir’s litho logy in terp retati on .T h rough th is p aper illu strates the p rinci p le of syn thesizingseis m ogram .T he reflecti on cofficien ts are ob tained w ith the w ell logging data .B y the p rinci p le of seis m ic w aves ,the w avelet is ex tracted from the seis m ic data of th ree di m en si on ,and the raw syn thetic seis m ogram is fin ished .T h rough bu ilding convo lu ti on m odel ,th is paper shapes w avelet ex tracted from seis m ic data ,th is w avelet varies w ith the ti m e .A t last ,the seis m ic litho logy of it is as the sam e of seis m ic data .T hu s it lays a strong foundati on fo r reservo ir fine descri p ti on .Key words :syn thetic seis m ogram ;convo lu ti on m odel ;w avelet shap ing ;reflecti on coefficien t ;dep th -ti m e conversi on ;ex tracti on of w avelet0 引 言测井和地震等资料的有机结合与综合运用是油藏描述中研究地质构造、岩性、岩相、油藏类型及预测有利含油气区等问题的基础。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地震勘探原理实验一地震子波波形显示及一维地震合成记录姓名:学号:专业:地球物理勘察技术与工程 级 一、实验目的1. 认识子波,对子波的波形有直观的认识。

(名词:零相位子波,混合相位子波,最小相位子波;了解子波的分辨率与频宽的关系;) 2. 利用褶积公式合成一维地震记录。

二、实验步骤 1. 雷克子波()()))(21(22t f et r m t f m ππ-=- 零相位子波())2sin()ln(222t f et w m n t f m π-=(最小相位子波)n= m1/m2为最大波峰m1和最大波谷m2之比()())2cos(log *22xw t f et w m mt f m +=-π钟型子波 xw 为初相m 为时间域主波峰与次波峰之比w(t)=exp(-2*Fm^2*t^2*ln(n))*sin(T-2*pi*Fm*t) n=m1/m2 最大相位子波(最大相位子波请同学们自己查找相关文献完成,非必须完成)其中f代表子波的中心频率, t =i*dt,dt为时间采样间隔,i为时间m离散点序号; 这里可以为f = 10,25,40,100 Hz等,采样间隔dt=0.002m秒,i为0~256;2.根据公式编程实现不同频率的零相位子波的波形显示;不同中心频率的零相位子波图f = 25:mf = 100:m3.其地质模型为:设计反射系数)(n r (n=512),n 为地层深度,其中0.1)100(=r ,为第一层介质深度;7.0)200(-=r ,为第二层介质深度;5.0)300(=r ,为第三层介质深度;4.0)400(=r ,为第四层介质深度;6.0)450(=r ,为第五层介质深度;其它为0。

地震波在介质中传播,当到达介质分界面时,发生反射和透射,反射波被检波器接受,生成地震记录。

反射系数表示地震波在两层介质分界面的能量重新分配,如r(100)=1.0,表示地震波入射到分界面时,只有一种波,反射纵波(或反射横波)。

反射系数不为1.0时,表示当地震波入射到分界面时,产生两种反射波。

反射系数为正,表示反射波相位与入射波相位相差2π;反射系数为负,表示反射波相位与入射波相位相差π,存在半波损失。

4. 应用褶积公式∑=-=*=Nm m n w m r n w n r n f 1)()()()()(合成一维地震记录,并图形显示;应用褶积公式求f (n )的程序为:#include<stdio.h> #include<math.h> #define PI 3.1415926 #define FM 100 void main() {double fac(double x[],double y[],double z[],int m,int n);FILE *fp;int i,j,x;double W,dt=0.002,t,a[256];double b[512]={0};double r[512]={0};r[100]=1.0;r[200]=-0.7;r[300]=0.5;r[400]=0.4;r[450]=0.6;fp=fopen("Date.txt","w+");printf("please input x:\n");scanf("%d",&x);for(i=0;i<256;i++){t=i*dt;if(x==1)W=exp(-2*FM*FM*t*t*log(2))*sin(2*PI*FM*t);else if (x==2)W=(1-2*pow(PI*FM*t,2))*exp(-pow(PI*FM*t,2)); else if (x==3)W=exp(-FM*FM*t*t*log(2))*cos(2*PI*FM*t+PI/4); a[i]=W;}fac(r,a,b,512,256);for(j=0;j<512;k++){fprintf(fp,"%f\n",b[j]);}}double fac(double x[],double y[],double z[],int m,int n){int i,j;for(i=0;i<=m+n-1;i++){double sum=0.0;for(j=0;j<=m;j++){if(i-j>0&&i-j<=256)sum+=x[j]*y[i-j];}z[i]=sum;}}三、实验结果一维反射系数序列图形显示为:零相位子波与反射系数褶积后的地震记录图形显示:f = 25:mf = 100:m最小相位子波与反射系数褶积后的地震记录图形显示:f = 25:mf = 100:m混合相位子波与反射系数褶积后的地震记录图形显示:f = 25:mf = 100:m最大相位子波与反射系数褶积后的地震记录图形显示:f = 25:mf = 100:m零相位振幅图形显示:f = 25:mf = 100:m零相位幅角图形显示:f = 25:mf = 100:m最小相位振幅图形显示:f = 25:mf = 100:m最小相位幅角图形显示:f = 25:mf = 100:m混合相位幅角图形显示:f = 25:mf = 100:m混合相位振幅图形显示:f = 25:mf = 100:m最大相位幅角图形显示:f = 25:mf = 100:m最大相位振幅图形显示:f = 25:mf = 100:m四、实验分析根据所学知识对实验结果进行分析;地震子波由震源激发,在地层中传播,因为在沉积地层中,每层介质的物理性质不相同,从而使得地震波的传播速度也不相同。

当地震波传播到两层介质的分界面时,会发生反射,由于每层介质的反射系数不同,所以反射波的能量也不相同,检波器接收到不同时刻的、不同能量的反射波,形成一个地震记录。

由合成地震记录中可以看出,最小相位子波相对零相位子波来说是相位滞后的,能量延迟的,但两者为同一家族的子波。

合成地震记录中横坐标为时间,纵坐标为振幅。

每一时刻的值由m个值的和组成,m为反射系数r(n)的长度,整个地震记录由m+n-1个时刻的值组成。

对于零相位的地震记录来说,当r(m)=1.0时,即j=100时,i=100时,w(i-j)=1.0,是能量最大的,即w(0)=1.0。

同理,当n=200,、300、400、450时,能量也是最大的。

对于最小相位的地震记录来说,当r(m)=1.0时,即j=100时,但i=100时,w(i-j)不是最大能量的,即最大能量不是在w(0)出现,而是延迟出现。

同理,当n=200、300、400、450时,能量也不是最大的,而是要延迟出现。

由振幅图及幅角图可知,零相位子波能量聚集在首部,开始时就具有最大能量,无积累过程,当振幅最大时,相位为零,即此时波的振幅为实数,达到最大值;最小相位子波能量聚集在序列首部,是最小能量延迟的,信号随时间增大而减小,当振幅最大时,相位不为零,是非零相位的,相对零相位子波来说,最大能量是延迟的;混合相位子波的能量聚集在序列中部,是混合能量延迟的;最大相位子波能量聚集在后部。

最大相位子波和混合相位子波的信号信号不随时间增大而减小。

五、附:源程序代码#include<stdio.h>#include"13KFFT.C"#include<math.h>#define PI 3.1415926#define FM 100void main(){double fac(double x[],double y[],double z[],int m,int n);FILE *fp,*fpr,*fpre,*fpi,*fpamp,*fpha;int i,j,x;doubleW,dt=0.002,t,a[256],pr[512],pi[512]={0.0},fr[512],fi[512],amp[512],p ha[512];double b[512]={0};double r[512]={0};r[100]=1.0;r[200]=-0.7;r[300]=0.5;r[400]=0.4;r[450]=0.6;fp=fopen("褶积结果.txt","w+");fpr=fopen("反射系数.csv","w+");fpre=fopen("实部.txt","w+");fpi=fopen("虚部.txt","w+");fpamp=fopen("振幅.csv","w+");fpha=fopen("相位.csv","w+");for(i=0;i<512;i++){fprintf(fpr,"%f\n",r[i]);}fclose(fpr);printf("please input x:\n");scanf("%d",&x);for(i=0;i<256;i++){t=i*dt;if(x==1)W=(1-2*pow(PI*FM*t,2))*exp(-pow(PI*FM*t,2)); else if (x==2)W=exp(-2*FM*FM*t*t*log(2))*sin(2*PI*FM*t);else if (x==3)W=exp(-2*pow(FM*t,2)*log(2))*sin(0.512-2*PI*FM*t);else if(x==4)W=exp(-FM*FM*t*t*log(2))*cos(2*PI*FM*t+PI/4);a[i]=W;}fac(r,a,b,512,256);for(j=0;j<512;j++){fprintf(fp,"%f\n",b[j]);}for(i=0;i<512;i++){pr[i]=b[j];}for(i=0;i<512;i++){pr[i]=fr[i+127];}kfft(pr,pi,512,9,fr,fi,0,1);for(i=0;i<512;i++){fprintf(fpre,"%e\n",fr[i]);fprintf(fpi,"%e\n",fi[i]);fprintf(fpamp,"%e\n",pr[i]);fprintf(fpha,"%f\n",pi[i]);}fclose(fpre);fclose(fpi);fclose(fpamp);fclose(fpha);}double fac(double x[],double y[],double z[],int m,int n) {int i,j;for(i=0;i<=m+n-1;i++){double sum=0.0;for(j=0;j<=m;j++){if(i-j>0&&i-j<=256)sum+=x[j]*y[i-j];}z[i]=sum;}}。

相关文档
最新文档