磁法勘探的基本原理及应用

合集下载

磁法勘探-地球的磁场

磁法勘探-地球的磁场

磁法勘探的测量方法
地面磁测
在地面上设置测点,测量地磁场强度和 方向,适用于大面积区域勘探。
海洋磁测
在海洋调查船上安装磁力仪,测量海 底地磁场强度和方向,适用于海洋资
源勘探。
航空磁测
在空中飞行器上安装磁力仪,测量地 磁场强度和方向,适用于山区、沼泽 等复杂地形区域。
井中磁测
在钻孔中安装磁力仪,测量地磁场强 度和方向,适用于地质勘探和地下资 源调查。
01
02
03
磁力梯度测量
通过测量磁场的变化率, 提高对地下磁性体分辨能 力,能够探测更小的目标。
磁力扫描技术
采用多通道磁力仪,实现 大面积、快速、高精度的 磁场测量,提高勘探效率。
磁力成像技术
利用多分量磁力仪,获取 地下磁性体的三维形态和 分布特征,实现地下构造 的三维重建。
磁法勘探与其他地球物理方法的结合
04
磁法勘探的实际应用
资源勘探
铁矿
石油和天然气
磁法勘探能够通过测量地磁场的变化, 发现地下铁矿的磁异常,从而确定铁 矿的位置和规模。
磁法勘探可以通过测量地磁场的变化, 发现地下油气藏的磁异常,为石油和 天然气的勘探提供重要线索。
煤炭Leabharlann 煤炭是一种具有较强磁性的物质,磁 法勘探可以用来探测煤田,了解煤层 的分布和埋深。
磁法勘探-地球的磁场
contents
目录
• 磁法勘探概述 • 地球磁场的基本知识 • 磁法勘探的技术和方法 • 磁法勘探的实际应用 • 磁法勘探的未来发展
01
磁法勘探概述
磁法勘探的定义
磁法勘探:利用地球磁场的变化规律 来探测地下矿藏、地质构造和其他地 质体的地球物理方法。
磁法勘探通过测量地球磁场强度的变 化,推断出地下地质体的磁性差异, 进而确定其分布、形态和规模。

磁法勘探的基本原理及应用

磁法勘探的基本原理及应用

磁法勘探的基本原理及应用磁法勘探的概述磁法勘探是一种非破坏性地球物理勘探方法,通过测量地球磁场的变化来获取地下结构信息。

它基于地球的地磁场以及地下的磁性物质的相互作用,可以在地下发现磁性物质的存在、分布和性质。

磁法勘探的基本原理磁法勘探利用地球磁场和地下磁性物质之间的相互作用来获取地下情况。

磁法勘探的基本原理如下:1.地球磁场:地球本身具有一个磁场,也称为地球磁场。

地球磁场是由地球内部液体外核的流动所产生的,它在地表形成一个相对稳定的磁场。

2.地下磁性物质:地下存在各种不同类型的磁性物质,如矿石、岩石、土壤、岩层或地下水。

3.磁场异常:地下磁性物质与地球磁场相互作用会导致磁场异常。

当地下磁性物质的磁性与地球磁场不同或存在不均匀分布时,就会产生磁场异常。

4.磁场测量:磁法勘探使用磁力仪器来测量地磁场的强度和方向变化。

测量点位于地表或以人工井筒方式进入地下。

5.数据处理和解释:通过对测量数据的处理和解释,可以获得地下磁性物质的位置、形状、大小、磁性强度等信息。

这些信息可用于地质勘探、矿产资源评估、地下水资源管理等领域。

磁法勘探的应用领域磁法勘探在地质和工程勘探中有广泛的应用。

以下是一些常见的应用领域:•矿产勘探:磁法勘探可以用于寻找矿藏、判断矿石的性质和储量。

根据地下磁性物质的反应,可以识别出具有磁性的矿石,如铁矿、钴矿等。

•水资源管理:磁法勘探可以用于寻找地下水的分布和储量。

地下水和地下磁性物质之间存在一定的关系,通过对磁场异常的测量和分析,可以确定地下水的位置和深度,从而实现对地下水资源的科学利用。

•地下工程:磁法勘探可以用于地下隧道、地铁、坑道等地下工程的勘察和地质状况评估。

通过磁法勘探,可以探测出地下磁性物质的存在,并评估其对工程建设的影响。

•环境地质:磁法勘探可以用于环境地质调查和污染物监测。

地下沉积物中的磁性物质与环境污染物之间存在一定的关系,通过对磁性物质的测量和分析,可以识别出地下污染物的位置和分布情况。

磁法在地质构造解释评估中的应用

磁法在地质构造解释评估中的应用

磁场在地质构造解释评估中的应用磁场是一种重要的地球物理勘探方法,广泛应用于地质构造解释评估中。

通过测量地球磁场的强度和方向变化,可以获取有关地下岩石、矿产和地壳构造的相关信息。

本文将重点讨论磁场在地质构造解释评估中的应用。

1. 磁场原理及仪器磁场勘探利用地球磁场强度和方向的变化来推断地下物质的性质和分布情况。

其原理基于以下几个关键概念:地磁场、磁性物质、磁化强度以及磁化方位。

地磁场是地球表面附近的磁场,由地球内部的磁性物质所产生。

磁性物质包括铁矿石、铁镍合金等具有磁性的物质。

磁化强度是表征磁性物质的磁化程度,可用来推测地下岩石的性质。

磁化方位是磁性物质的磁化方向,可用来研究地下构造的走向和倾角。

磁场勘探一般采用磁导仪器进行测量。

常见的磁导仪器有全站仪、磁差计等。

全站仪可同时测量地磁场的强度和方向,提供详细的磁场数据。

磁差计则通过测量磁场的差值,进行简化的磁场测量。

这些仪器可以精确测量地球磁场的变化,为地质构造解释提供重要的数据支持。

2. 磁场在断裂带识别中的应用地质断裂带是地球表面裂缝、裂隙的集合,通常形成于地球构造活动中。

磁场可以通过测量地磁场的异常变化来识别断裂带的存在和分布。

断裂带一般具有磁场异常、磁性物质富集等特征。

通过分析地磁场数据,可以确定断裂带的走向、倾角和规模,进而揭示地质构造的演化过程。

磁性物质在地磁场中会产生磁异常,其中具有正异常和负异常。

正异常表示磁场强度增加,可能与含磁矿物质的富集有关;负异常表示磁场强度减小,可能与磁性物质稀少或被去除有关。

在断裂带附近,由于构造活动和断裂破坏,在地下磁性物质的分布会发生变化,从而引起磁场异常。

通过对磁场异常的测量、分析和处理,可以准确判定断裂带的位置和性质。

3. 磁场在岩石矿产评价中的应用岩石和矿产的磁性对地磁场也会产生不同的影响,磁场可以利用这一特点进行岩石矿产的评价。

比如,在铁矿勘探中,可以通过测量地磁场的异常变化,找出潜在的铁矿矿体。

磁法在地下矿山勘探中的应用

磁法在地下矿山勘探中的应用

磁场在地下矿山勘探中的应用地下矿山勘探一直是矿业领域中非常重要的一项工作。

为了更好地了解地下矿藏的分布和性质,科学家和工程师们不断寻求和发展各种有效的勘探技术。

其中,磁场勘探技术在地下矿山勘探中扮演着重要的角色。

本文将探讨磁场在地下矿山勘探中的应用。

磁场勘探技术是利用地球磁场的变化来探测地下物质的一种方法。

地球磁场在不同地点和不同时间都存在着微弱的变化,这些变化与地下物质的性质和分布有一定的关联。

通过在地下矿山勘探中使用磁场技术,我们可以获取到地下矿藏的一些重要信息,比如矿体的形状、大小、深度以及磁性特征等。

磁场勘探技术在地下矿山勘探中的应用非常广泛。

首先,通过磁场勘探可以帮助我们确定矿体的位置和形状。

不同类型的矿体在地球磁场中会表现出不同的特征。

通过测量地磁数据,并进行数据处理和分析,我们可以得到矿体的大致分布情况,进而有针对性地进行矿山勘探工作。

其次,磁场勘探技术可以帮助我们估计矿体的大小和深度。

根据地磁数据的变化规律,我们可以推断出矿体的上、下界面,并通过进一步的处理和分析确定矿体的大小和深度范围。

这对矿山勘探的规划和设计非常重要,可以帮助我们优化矿山的开采方案,提高矿产资源的综合利用率。

此外,磁场勘探技术还可以用来识别矿体的磁性特征。

磁性物质在地磁场中会表现出特定的磁异常,通过测量和分析地磁数据,我们可以检测出矿体中存在的磁性物质,并进一步判断矿体的类型和品位。

这对于矿产资源的开发和利用,及时发现高品位矿体,具有重要的经济意义。

然而,需要注意的是,磁场勘探技术在地下矿山勘探中也存在一些限制和挑战。

首先,地球磁场本身会受到各种干扰因素的影响,比如地质构造、大气磁场以及人为干扰等。

这些干扰因素可能会使地磁数据产生误差,影响勘探结果的准确性。

因此,在使用磁场技术进行地下矿山勘探时,需要对数据进行仔细的处理和分析,以排除干扰因素带来的误差。

其次,磁场勘探技术对于非磁性物质的探测能力有限。

磁场主要针对磁性物质的探测,对于非磁性物质的识别和勘探有一定的局限性。

重磁法探测地下含矿构造

重磁法探测地下含矿构造

重磁法探测地下含矿构造地下矿产资源的探测一直是地质勘探工作中重要的一环。

重磁法是一种常用的地球物理勘探方法,通过测量地球重力场和地磁场的变化,可以揭示地下的矿藏和构造特征。

本文将详细介绍重磁法探测地下含矿构造的原理、方法和应用。

一、重磁法原理重磁法利用地球的重力场和地磁场的变化,通过测量地表上的重力和磁场数据,来推断地下矿产资源的分布和构造特征。

地球的重力和磁场受到地下物质的分布和性质的影响,不同的矿藏和构造特征会产生不同的重力和磁场异常值。

利用这些异常值,可以确定地下矿藏的存在和规模。

二、重磁法方法1. 重力测量:重力测量是重磁法中的重要方法之一。

重力仪器可以测量地球的重力场强度,它的原理是利用重锤的重力作用在弹簧上产生一个位移,进而推算出重力场的数值。

重力测量可以测定地球重力场的强度,通过分析重力场的变化,可以确定地下矿产资源和构造特征的分布。

2. 磁力测量:磁力测量也是重磁法中的一种重要方法。

磁力仪器可以测量地球磁场的强度和方向,它的原理是利用磁感应强度的变化来推算出矿藏的存在和规模。

磁力测量可以测定地球磁场的变化,并通过分析磁场异常值,确定地下矿产资源和构造特征的位置。

三、重磁法应用1. 矿产勘探:重磁法是一种重要的矿产勘探方法。

通过对矿区进行重磁场测量,可以推断出地下的矿藏类型、规模和分布。

这对于矿产资源的发现和评估非常重要,可以为矿产勘探提供科学的依据。

2. 地质构造研究:地质构造是地球表面和地下岩石的形成和演化过程中产生的各种构造形态和特征。

重磁法可以提供地质构造的详细信息,通过分析和解释重力和磁场异常的特征,可以揭示地球的构造演化历史。

3. 水文地质调查:重磁法还可以应用于水文地质调查。

水文地质是研究地下水分布、地下水动态和地下水对地质环境的影响的一门科学。

通过重磁法测量地下水的分布和流动状况,可以为水资源的开发和管理提供重要的参考。

四、重磁法在勘探中的优势1. 高效性:重磁法具有高效的勘探速度和较低的成本,能够在较短的时间内获取大量的勘探数据。

磁法勘探毕业论文

磁法勘探毕业论文

磁法勘探毕业论文摘要:磁法勘探作为一种重要的地球物理勘探方法,在地质调查、矿产勘查、工程勘察等领域发挥着关键作用。

本文详细阐述了磁法勘探的基本原理、工作方法、数据处理与解释,通过实际案例分析展示了其应用效果,并探讨了该方法的局限性和未来发展趋势。

关键词:磁法勘探;地球物理;磁场;数据处理一、引言地球内部蕴藏着丰富的矿产资源和地质信息,为了有效地探寻和开发这些资源,了解地球内部的结构和性质,各种地球物理勘探方法应运而生。

磁法勘探作为其中的一种重要手段,凭借其独特的优势在地质勘探领域占据着重要地位。

二、磁法勘探的基本原理磁法勘探的基础是地球磁场以及地质体的磁性差异。

地球本身存在着磁场,称为地磁场。

地质体如岩石、矿石等,由于其成分、结构和形成过程的不同,往往具有不同的磁性。

有些地质体具有较强的磁性,能够引起局部磁场的变化;而有些则磁性较弱或无磁性。

通过测量地球表面磁场的强度和分布,可以发现这些由于地质体磁性差异引起的磁场异常。

根据磁场异常的特征和规律,结合地质资料和其他地球物理方法的成果,可以推断地质体的分布、形态、埋深等信息。

三、磁法勘探的工作方法(一)野外测量在野外进行磁法测量时,通常使用磁力仪来测量磁场的强度。

常见的磁力仪有质子磁力仪、光泵磁力仪等。

测量点的布置需要根据勘探目标和地质条件进行合理规划,一般采用规则的测网或沿特定的剖面进行测量。

(二)数据采集在数据采集过程中,要严格按照操作规程进行,确保测量数据的准确性和可靠性。

同时,要记录测量的时间、地点、环境等相关信息,以便后续的数据处理和解释。

(三)质量控制为了保证数据质量,需要进行质量控制。

这包括在测量前对磁力仪进行校准和检查,在测量过程中进行重复观测和对比观测,以及在测量后对数据进行初步的整理和分析,剔除异常和错误的数据。

四、磁法勘探的数据处理(一)日变改正由于地磁场会随着时间发生变化,因此需要对测量数据进行日变改正,以消除这种时间因素的影响。

地球物理探测技术在资源勘探中的应用

地球物理探测技术在资源勘探中的应用

地球物理探测技术在资源勘探中的应用地球物理勘探技术是一种通过测量和分析地球物理现象,来推断地下构造、物质分布和性质等信息的技术。

它不仅可以用于勘探矿产、石油和天然气等资源,还可用于地质灾害预测、地下水资源评价、环境地质调查和工程地质勘察等方面。

在资源勘探中,地球物理勘探技术作为一项主要技术手段,具有非常重要的应用价值。

本文将重点介绍地球物理勘探技术在资源勘探中的应用。

一、地球电磁勘探技术在资源勘探中的应用地球电磁勘探技术是利用地球表面自然电磁场对地下异常物体进行非接触式探测的一种地球物理勘探方法。

其基本原理是地球表面某一区域的自然电磁场,会被地下各种导电或非导电物体所影响,形成一定的电磁响应。

通过对这种电磁响应的特征进行分析,可以反演地下结构、物质类型、含油气性质、含水性质以及区域性土壤和地质构造的情况。

地球电磁勘探技术在资源勘探中有着广泛的应用,特别是在石油和天然气勘探领域。

利用电磁勘探技术可以快速确定油田和天然气藏的位置、面积和深度,并评估油气资源的勘探潜力,为进一步采油提供重要的信息。

此外,电磁勘探技术还可用于矿产勘探、地下水资源勘探和工程地质勘察等方面。

二、地震勘探技术在资源勘探中的应用地震勘探技术是一种通过分析地震波在地下物质中的传播和反射情况,来推断地下物质构造和性质等信息的一种探测方法。

其基本原理是利用物质介质中声波的传播、反射、折射和干涉等现象来获取地下构造和物质信息。

地震勘探技术是资源勘探中应用最广泛的勘探方法之一,主要用于石油和天然气勘探领域。

利用地震勘探技术可以推断地下构造情况、物质分布、地层厚度、岩性、含油气性质等信息,对于油气藏的勘探具有非常重要的意义。

通过选取适当的地震勘探方法和数据处理技术,可以准确识别油气藏的储层情况、预测油气藏的面积、厚度、储量,为进一步的钻探和生产提供了重要的信息。

三、重力勘探技术在资源勘探中的应用重力勘探技术是一种通过测量地球重力场变化,推断地下物质分布和性质等信息的一种勘探方法。

磁法在地下水源勘探中的应用

磁法在地下水源勘探中的应用

磁场在地下水源勘探中的应用地下水是人类生活中不可或缺的重要水资源之一,对于合理利用和保护地下水资源,地下水勘探显得极为重要。

而磁场作为一种地球物理勘探方法,在地下水勘探中具有独特的应用优势。

本文将对磁场在地下水源勘探中的应用进行探讨。

一、磁场原理简介磁场勘探是利用地下岩石或土壤中的磁性物质对地磁场的扰动作出响应,通过测量这种响应来推断地下的物质分布。

其原理基于地球的磁场和被勘探区域中的磁性物质之间的相互作用。

一般而言,地磁场是一个稳定的磁场,而地下磁性物质的存在会引起地磁场的扰动,进而被磁场仪器测量和记录。

二、磁场在地下水源勘探中的应用2.1 水源区域划分利用磁场进行地下水源勘探,可以帮助我们划定水源的范围和边界。

通过对磁场数据分析和解释,可以确定差异较大的地下磁性物质的分布情况,并进一步判断地下水源的位置和规模。

这对于制定地下水资源的合理开发和保护方案至关重要。

2.2 地下水储层评价磁场勘探可以提供地下水储层的一些基本特性参数,如储层的厚度、磁性物质含量和分布等。

通过测量和解释磁场数据,可以对地下水储层进行初步评价和筛选,为后续的勘探工作提供有效的参考依据。

同时,地下水储层的评价也对地下水的开采和管理具有重要的实际意义。

2.3 地下水运动模式研究磁场勘探可以帮助我们研究地下水的运动模式,了解地下水的流向和渗漏途径等。

通过对地下磁性物质的分布情况进行分析,可以推测地下水的运动路径和流量大小,进而为地下水资源的整体调控提供科学依据。

2.4 地下水源保护在地下水源保护方面,磁场勘探可以帮助我们识别潜在的地下水污染源,如废物填埋场、化工厂等。

通过对磁性物质分布的测量和分析,可以确保地下水源的安全和可持续利用。

三、磁场在地下水源勘探中的挑战和展望尽管磁场在地下水源勘探中有着广泛的应用前景,但也存在一些挑战需要克服。

例如,地下水勘探区域可能存在复杂的地质构造和岩性,这会影响到磁场数据的解释和处理。

同时,磁场测量的深度也受到限制,对于深部地下水的勘探存在一定的限制性。

磁法勘探在铁多金属矿勘查中的应用

磁法勘探在铁多金属矿勘查中的应用

世界有色金属 2023年 7月上100地质勘探G eological prospecting磁法勘探在铁多金属矿勘查中的应用卜永宁(甘肃省地质调查院,甘肃 兰州 730000)摘 要:铁多金属矿勘查的过程中岩石矿石可能会发生磁异常问题,导致勘查工作的难度增加,而磁法勘探技术的应用,能够全面分析磁异常原因情况,利用专业性的技术对地质结构进行分析,反映出地下矿产资源分布规律,属于地球物理勘探的技术,可按照金属对磁场的影响变化规律等进行铁多金属矿的金属储存位置推测,明确金属的种类和存储数量,具有一定的推广应用价值。

基于此,本文分析磁法勘探的原理及其在铁多金属矿勘查中的应用价值,提出铁多金属矿勘查过程中磁法勘探技术的应用措施,旨在为增强整体的勘查工作效果而提供帮助。

关键词:磁法勘探;铁多金属矿;勘查;应用中图分类号:P618.2 文献标识码:A 文章编号:1002-5065(2023)13-0100-3Application of magnetic prospecting in iron polymetallic ore explorationBU Yong-ning(Geological Survey of Gansu Province,Lanzhou 730000,China)Abstract: During the exploration of iron polymetallic ores, magnetic anomalies may occur to rocks and ores, which will increase the difficulty of exploration. The application of magnetic exploration technology can comprehensively analyze the causes of magnetic anomalies, analyze the geological structure with professional technology, and reflect the distribution law of underground mineral resources, which belongs to the geophysical exploration technology, The metal storage location of iron polymetallic ore can be inferred according to the influence of metal on the magnetic field, so as to determine the type and storage quantity of metal, which has certain popularization and application value. Based on this, this paper analyzes the principle of magnetic exploration and its application value in the exploration of iron polymetallic ores, and puts forward the application measures of magnetic exploration technology in the exploration of iron polymetallic ores, aiming to provide help for enhancing the overall exploration effect.Keywords: magnetic prospecting; Iron polymetallic ore; prospecting; application收稿日期:2023-04作者简介:卜永宁,男,汉族,宁夏隆德人,本科,工程师,研究方向:地球物理的电磁法和重力勘探。

磁法在海洋地球物理勘探中的应用

磁法在海洋地球物理勘探中的应用

磁法在海洋地球物理勘探中的应用地球物理勘探是一种通过对地球内部物理性质进行观测和研究,以获取地下信息的科学方法。

在海洋地球物理勘探中,磁法是一种常用的方法。

本文将重点介绍磁法在海洋地球物理勘探中的应用。

一、磁法原理和方法磁法是利用地球的磁场和地下物质的磁性差异进行勘探的方法。

地球的磁场是由地下的大地构造和地壳内磁性物质的分布所决定的。

磁法勘探主要依靠测量地磁场的参数,如地磁强度和地磁倾角等,来推断地下物质的磁性性质和空间分布。

在海洋地球物理勘探中,常用的磁法测量设备是磁力计。

磁力计是一种用于测量磁场强度和倾角的仪器,通常由磁棒和指示装置组成。

磁法测量过程中,磁力计会通过船载设备或者浮标悬挂在海面上,沿着不同的航线进行测量,获取一系列地磁数据。

二、磁法在海洋地球物理勘探中的应用1. 海底地壳磁性差异的分析海洋地球物理勘探中的一项重要任务是研究海底地壳的形成和演化过程。

通过测量海底地壳的磁性差异,可以推断出地壳的岩性和构造。

磁性差异主要由海底火山活动和板块运动等地质过程所引起,这些过程会导致磁铁矿物的形成和沉积,从而改变地下岩层的磁性特征。

2. 海底断层和构造的研究海底断层是海洋地壳中的一种常见地质现象,它是海洋地壳板块运动的结果。

通过对海底断层的磁性差异进行测量和解释,可以研究板块运动和地震活动的机制。

磁法勘探能够提供关于海底断层的位置、走向、位移等信息,对研究地震和地壳运动具有重要意义。

3. 海底矿产资源的勘探海洋地球物理勘探中的另一个主要任务是寻找海底的矿产资源。

一些富含磁性矿物的矿床,如铁矿石和锰结壳等,常常通过磁法方法进行勘探。

通过测量海底的磁性异常情况,可以推测出矿床的类型、规模和分布范围,为矿产资源的开发提供依据。

4. 海洋地磁场变化的研究地球的磁场是一个动态的系统,它会随着时间和空间的变化而产生变化。

海洋地球物理勘探中的磁法方法,还可以用于研究海洋地磁场的变化规律和机制。

通过长期观测和分析磁场数据,可以了解海洋地磁场的季节性和年际性变化,以及地磁活动与太阳活动的关联。

电磁法勘探在地下矿产资源评价与开发中的应用

电磁法勘探在地下矿产资源评价与开发中的应用

电磁法勘探在地下矿产资源评价与开发中的应用地下矿产资源是人类社会发展的重要基础,而电磁法勘探作为一种非侵入式的地球物理勘探方法,在地下矿产资源评价与开发中发挥着重要作用。

本文将介绍电磁法勘探的基本原理、应用领域以及在地下矿产资源评价与开发中的具体应用案例。

一、电磁法勘探的基本原理电磁法勘探是利用地球物理方法研究地下介质的电磁性质,通过测量地下电磁场的变化来推断地下介质的性质和构造的一种方法。

它通过在地下采集电磁信号,进而分析和处理这些信号以获得地下介质的电磁参数和结构信息。

二、电磁法勘探的应用领域电磁法勘探广泛应用于地质勘探、地下水资源调查、矿产资源评价与开发等领域。

其中,本文将重点介绍它在地下矿产资源评价与开发中的应用。

三、电磁法勘探在地下矿产资源评价中的应用案例1. 煤炭资源评价电磁法勘探可以通过测量煤田中的电磁信号来推断煤层的厚度、分布和质量等信息,从而为煤炭资源的评价提供依据。

例如,在某煤矿的勘探中,利用电磁法勘探技术获得了煤层的精确分布信息,为后续的开采设计与矿井规划提供了重要参考。

2. 铁矿资源开发电磁法勘探可以根据地下的电导率和磁导率变化来推断地下铁矿体的分布和性质,因此在铁矿资源的开发中具有重要应用价值。

例如,某铁矿项目中,借助电磁法勘探技术确定了铁矿体的储量和分布,为矿山的开采方案提供了依据。

3. 钻石矿资源评价电磁法勘探可以通过测量地下的电磁响应信号来识别钻石矿体,对于钻石矿的评价和开发具有重要意义。

例如,在某钻石矿项目中,通过电磁法勘探技术获得了地下钻石矿体的精确位置和规模信息,为后续的开采工作提供了重要依据。

四、电磁法勘探在地下矿产资源开发中的优势和挑战电磁法勘探作为一种非侵入性、高分辨率、成本相对较低的勘探方法,具有以下优势:对不同矿产类型的适应性强、勘探效率高、勘探成本低等。

然而,由于地球的复杂性和地下介质的异质性,电磁法勘探在实际应用中也面临着一些挑战,如数据解释难度较大、勘探深度有限等。

磁法在地质勘探中的应用

磁法在地质勘探中的应用

磁法在地质勘探中的应用地质勘探是一项重要的工作,它有助于我们了解地球内部的构造和成分,为资源勘探和地质灾害预测提供指导。

在地质勘探中,磁法是一种常用的方法,它利用地球磁场的性质来研究地下物质的分布和性质。

本文将介绍磁法在地质勘探中的应用,并探讨其原理和相关技术。

一、磁法原理磁法是基于地球磁场的性质进行地质勘探的方法。

地球本身就具有磁场,地球磁场在地壳中受到地球内部岩石和矿石的干扰而发生变化。

磁法勘探利用了这种地磁场的变化来研究地下物质的存在和性质。

当地下存在磁性物质时,这些物质会对地磁场产生扰动,通过观测这种扰动,可以推断地下磁性物质的分布情况。

二、磁法应用领域1. 矿产资源勘探磁法在矿产资源勘探中具有广泛应用。

例如,磁法可以用于找到地下磁性矿石的分布,比如铁矿石和铁矿石矿床。

通过测量地磁场的变化,可以确定矿床的位置和规模。

此外,磁法还可以用于勘探其他磁性矿石,如铬、镍等。

2. 石油、天然气勘探磁法在石油、天然气勘探中也有重要的应用。

在地下埋藏的石油、天然气存在时,它们通常与含有磁性物质的岩石一同存在。

因此,磁法可以通过检测地磁场的变化来找到潜在的油气藏区。

这对于石油和天然气勘探具有重要的指导意义。

3. 地质灾害预测磁法在地质灾害预测中也发挥着重要作用。

地球上一些地区存在地质灾害的隐患,如地震、地滑、火山爆发等。

通过磁法勘探,可以观测到地下岩石和矿石的变异情况,进而判断地下是否存在隐患。

这对于提前预测地质灾害,采取避灾措施具有重要意义。

三、磁法勘探技术1. 磁力计测量磁力计是进行磁法测量的常用工具之一。

通过测量地磁场的矢量值,可以确定磁场的强度以及方向。

这对于判断地下不同磁性物质的存在和分布情况十分重要。

2. 偏差磁法勘探偏差磁法勘探是一种常见的磁法勘探方法,它利用地磁场的变异情况来推断地下磁性物质的分布情况。

通过不同位置的磁力计测量,可以计算出不同点的地磁场偏差,从而确定地下磁性物质的位置。

3. 磁梯度法勘探磁梯度法勘探是一种利用磁场的空间变化来推断地下物质性质的方法。

磁法勘探的基本原理

磁法勘探的基本原理

磁法勘探的基本原理
磁法勘探(Magnetic Exploration)它是一种常用地质探测技术,既利用
磁性物质和磁场进行调查,又利用物体内在磁场互动来获取信息。

磁法勘探的基本原理是:大部分的物体都有层状的内磁场,靠近地核的特
殊物质则有外部磁场,如磁铁、铁矿石等,而地球拥有一个巨大的磁场,该磁场能够施加到地表及地下物质中,而且存在着比较明显的差异,因此利用集成磁针、罗盘、地磁变和测距观测仪这些磁法仪器来测量磁场的强弱、照射强度和有效强度,从而可以获取探测的相关资料,从而建立出一个三维的地质构造模型。

内磁场是由物体内部分子的磁性元素而产生的,外磁场是受测物体内部磁
场的影响而反过来施加于测量物体的,因此内外磁场的综合变化被称为“磁波”,当磁波即测量物体附近的磁场发生变化时,就可以捕获到它产生的信号,从而使测量物体的磁场变化得以精确调查。

磁法勘探法不仅可以实现对地球形态的探测,也可以用于探测岩石的结构,由于岩石的结构在磁场变化的影响下会有所不同,因此,磁法勘测法可以准确调查岩石的结构与构造情况。

磁法勘探是一种实用性很强、成本低廉、安全性高的现代地质调查技术,
它已经成为现代地质勘探技术的主要手段,用于探测地表和地下特殊矿藏体及控制构造运动。

如今,在互联网的时代,提出了更为先进的磁法勘探方法和技术,例如远程测量和计算机辅助分析系统,这使得磁法勘探的应用更加广泛,从而成为地质勘探的重要工具。

磁法在矿产资源勘探中的应用

磁法在矿产资源勘探中的应用

磁法在矿产资源勘探中的应用矿业工程是勘探、开发、利用地下矿产资源的学科。

在矿业工程的实践中,使用各种手段和技术来寻找矿产资源是非常重要的。

磁法是一种常用的地球物理勘探技术,可广泛应用于矿产资源勘探中。

本文将介绍磁法在矿产资源勘探中的应用以及其原理和实施。

一、磁法原理磁法是通过测量地球磁场的变化来判断地下岩石结构、矿体、地质构造等信息的物理勘探方法。

地球本身具有磁场,矿体的存在会对地球磁场产生扰动。

利用磁法测量设备可以检测到这种磁场的变化,并通过数据处理和分析获得地下矿体和地质构造信息。

二、磁法在矿产资源勘探中的应用1. 矿产类型识别磁法可以用于识别不同类型的矿产资源,例如铁矿、铜矿和锰矿等。

不同矿石具有不同的磁性,通过测量磁场变化可以判断地下是否存在特定类型的矿体。

2. 矿体探测磁法可以用于定位矿体的位置、形状和大小。

矿体对地球磁场的影响会导致磁场异常,在磁法测量中可以通过探测磁场异常来确定矿体的存在和相关参数。

3. 地质构造分析磁法可以帮助分析地质构造,如断层、褶皱和岩浆岩体等。

这些地质构造对地球磁场的影响表现在磁场异常上,通过磁法测量可以获得地下地质构造的信息,为后续的勘探工作提供指导。

4. 地下水资源探测磁法不仅可以用于矿产资源的勘探,还可以应用于地下水资源的探测。

地下水含有溶解的矿物质,会对地球磁场产生影响。

利用磁法可以检测到这些磁场异常,从而确定地下水的存在和储量。

三、磁法勘探实施磁法勘探实施通常需要以下步骤:1. 设计勘探方案根据目标矿产类型和勘探区域的地质条件,确定磁法勘探的参数和设备选择。

包括测量仪器的类型、检测线网的布置方式和测量参数等。

2. 数据采集根据设计方案,使用磁法测量仪器进行数据采集。

测量仪器会记录磁场变化的数据,通过移动测量仪器的位置和测量方向,获得覆盖整个勘探区域的数据。

3. 数据处理与分析将采集到的数据进行处理与分析,包括数据拟合、异常提取和数据解释等。

通过与地质模型和现场观测的对比,得出合理的解释和结论。

第二章 磁法勘探

第二章 磁法勘探

4、磁偶极子、磁矩 磁偶极子:当两个等量异号的点磁极相距很近时, 将其看成一个整体。 磁矩:衡量磁偶极子磁性强弱的物理量。
M ml
5、磁化、磁化强度、磁化率 磁化:将原来不显磁性的物体,放入磁场中,由 于磁场的作用,该物体也能获得磁性,并产生附加 磁场。这种现象称为磁化。 磁化强度--衡量物体磁化强弱的物理量。
Z a ( )
x
第一节 磁法勘探的基础知识
一、有关磁学知识 1、磁性、磁性体 2、磁极、磁极强度 磁极:磁性体不同部位磁性不同,两端磁性强; 磁针指北---N(+)磁极 磁针指南---S(-)磁极 磁极强度(m) :衡量磁性体磁性强弱的物理量。 当两个点磁极相距1cm,如果其作用力为1达因, 则它们的磁极强度为1个CGSM单位。
4、应力作用: 应力作用会使岩石的磁性减弱,所以在构造破碎 带上往往出现低、负异常。 5、磁性地质体的形状: 不同形状的磁性体产生不同的消磁场,使不同形 状的磁性体显示出不同的磁性。
第三节 磁法勘探仪器及地面磁测资料整理
一、仪器 机械式磁力仪---相对测量; 电子式磁力仪: 磁通门式磁力仪; 核子旋进磁力仪; 光泵磁力仪; 超导磁力仪。
第二章 磁法勘探
以不同岩矿石间的磁性差异为基础,通过观测地 磁场的变化(磁异常)来找矿解决某些地质问题的 一种物探方法。 该方法应用最早,理论相对完善成熟。由于观测 天然存在的地磁场(天然场源法),不需人工场源, 因此仪器轻便工作方法简单,工作效率高成本低, 应用广泛。 1640年瑞典人开始用罗盘找磁铁矿,1870年泰 朗和铁贝尔制成找磁铁矿的万能磁力仪,是地球物 理勘探学科形成的标志。此后,新仪器不断出现, 灵敏度不断提高,磁法勘探的应用范围不断扩大。
地磁图及地磁要素在地球表面的分布规律: 1)等值线大致平行于地理纬线; 2)赤道附近Z=0;H达到最大(0.3—0.4Oe); 3)随纬度增加,Z增大,H减小;在两极附近H=0;Z达到 最大; 4)北半球Z,I为正值,南半球相反。 地磁场的基本磁场位于球心的磁偶极子磁场相当。

磁法勘探设备的工作原理及原理解析

磁法勘探设备的工作原理及原理解析

磁法勘探设备的工作原理及原理解析磁法勘探是地球物理勘探中常用的一种方法,它利用地壳内部岩石矿物的磁性差异,通过测量地磁场的变化来推断藏矿构造及其地下分布情况。

磁法勘探设备的工作原理是基于磁场感应和磁矩与磁场的相互作用原理。

1. 磁场感应原理:根据法拉第电磁感应定律,当磁场的磁通量发生变化时,会在导体中产生感应电动势。

磁法勘探设备利用这一原理,在地表放置一组磁场源,通过电流激发产生一个人工磁场。

当人工磁场通过地下的岩石矿物时,磁场的磁通量就会发生变化,从而在地下产生感应电流和感应磁场。

2. 磁矩与磁场的相互作用:岩石矿物在磁场中会产生磁矩,即磁化强度的矢量表示。

不同种类的岩石矿物具有不同的磁性特性,包括磁化强度、磁化方向等。

通过测量磁矩与磁场之间的相互作用,可以推断出地下岩石矿物的类型和分布情况。

磁法勘探设备通常由以下几个主要部分组成:磁场源、磁场传感器以及数据采集和处理系统。

这些部分共同协作,以获得地下岩石矿物的相关信息。

1. 磁场源:磁场源是产生人工磁场的装置,通常使用直流电源来供电。

磁场源可以采用不同的形式,如磁滚轮、磁体或线圈。

其目的是在地下岩石矿物中产生足够强度和稳定的磁场,以便对地下结构进行磁化。

2. 磁场传感器:磁场传感器是测量地磁场变化的装置,常用的传感器有磁强计、磁力仪和磁敏电阻等。

它们可以测量地磁场的三个分量:X轴、Y轴和Z轴。

通过对这些分量的测量,可以确定地下岩石矿物的磁场特征,进而得到地下的构造信息。

3. 数据采集和处理系统:数据采集和处理系统是磁法勘探设备中重要的组成部分,主要用于获取、记录和处理测量得到的数据。

通常,磁场传感器的输出信号会通过模数转换器转换为数字信号,然后被存储在数据采集设备中。

后续的数据处理包括对数据的滤波、校正、插值等步骤,以获得更精确的地下结构信息。

磁法勘探设备的原理解析主要体现在以下两个方面:1. 磁性差异的探测:地壳中的岩石矿物具有不同的磁性特性,包括磁化强度、磁化方向等。

磁法勘探的基本原理与应用

磁法勘探的基本原理与应用

磁法勘探的基本原理与应用1. 什么是磁法勘探磁法勘探是一种地球物理勘探方法,通过测量地球表面或地下特定区域的磁场变化来了解地下的构造和物质分布。

它基于地球的磁场与地下物质的相互作用关系,可以用于矿产勘探、工程地质勘察、环境地质调查等领域。

2. 磁法勘探的基本原理磁法勘探的基本原理是通过测量地表或近地表磁场的强度和方向变化来推断地下物质的性质和分布。

地球的磁场是由地球内部的磁场产生的,地下的物质对磁场有吸引或排斥的作用,从而影响地表磁场的分布。

磁法勘探利用这种地下物质对磁场的作用来研究地下构造和物质分布。

2.1 磁场强度的测量磁法勘探的关键是测量地表或近地表的磁场强度。

可以使用磁感应计或磁场强度计等仪器进行测量。

通过在勘探区域的多个测点上进行磁场强度的测量,并绘制磁场强度分布图来了解磁场的变化规律。

2.2 磁场方向的测量除了测量磁场强度,磁法勘探还需要测量磁场的方向。

磁场的方向可以通过磁航向仪等仪器进行测量。

通过在勘探区域的多个测点上进行磁场方向的测量,并绘制磁场方向图来了解磁场的变化趋势。

3. 磁法勘探的应用磁法勘探具有非常广泛的应用领域,以下是一些常见的应用场景:3.1 矿产勘探磁法勘探在矿产勘探中有着重要的应用。

不同矿床的磁性特征各不相同,利用磁法勘探可以寻找矿床的位置、形态和规模,对于矿产资源的开发具有重要的指导意义。

3.2 工程地质勘察在工程建设中,需要对地下的地质情况进行勘察。

磁法勘探可以用于识别地下断层、隐患等地质结构,并提供关于地层、地质构造和地下水等信息,为工程设计和施工提供重要参考。

3.3 环境地质调查磁法勘探还可以用于环境地质调查。

通过对地下岩石、土壤和地下水等的磁性特征进行测量和分析,可以了解地下的地质环境特征,对环境评价和环境污染监测具有重要意义。

3.4 地质灾害预测磁法勘探可以应用于地质灾害的预测和监测。

地质灾害往往与地下的地质构造和物质分布有密切关系。

通过测量磁场的变化,可以提供关于地下构造和物质分布的信息,为地质灾害的预测和防范提供依据。

地球物理勘探之磁法勘

地球物理勘探之磁法勘
磁法勘探主要采用磁力仪进行测量, 包括绝对磁力和相对磁力两种测量方 法。
相对磁力测量则是通过比较不同地方 的磁场强度和方向的变化,来确定磁 力异常的分布和变化特征。
绝对磁力测量是通过测量地球磁场在 不同地方的磁场强度和方向,从而确 定磁力异常的分布和变化特征。
在实际应用中,通常采用高精度的磁 力仪进行测量,并采用计算机技术进 行数据处理和分析,以获得更准确和 可靠的地质信息。
地球物理勘探之磁法勘探
contents
目录
• 引言 • 磁法勘探的基本原理 • 磁法勘探的应用领域 • 磁法勘探的最新技术发展 • 磁法勘探的挑战与前景
01 引言
地球物理勘探的定义与重要性
地球物理勘探是通过研究地球物理场(如重力、电场、磁场等)的分布和变化规律,来推断地下地质 构造、矿产分布、工程地质条件等的方法。它在资源勘探、地质调查、工程地质等领域具有广泛的应 用价值。
加强国际合作与交流,共同推 动磁法勘探技术的发展和应用

THANKS FOR WATCHING
感谢您的观看
03 磁法勘探的应用领域
矿产资源勘探
铁矿
磁法勘探是寻找和勘探铁矿的重 要手段,通过测量地磁场的变化,
可以确定铁矿的位置和分布。
稀土矿
稀土元素具有显著的磁性,磁法勘 探可以用来寻找稀土矿床,为稀土 资源开发和利用提供依据。
煤炭
煤炭是一种有机岩石,其形成过程 中会受到地磁场的影响,磁法勘探 可以用来确定煤田的范围和边界。
地球磁场在空间中呈现出一个磁力线分布图,磁力线的方向和强度在不同地点和高度均有所 差异。
地球磁场由主磁场、地壳磁场和磁异常等部分组成,其中主磁场是地球内部铁、镍等金属元 素产生的场,地壳磁场是由地壳中磁性岩石所引起的场,而磁异常则是由于地壳内部结构的 不均匀性所引起的场的变化。

磁法在考古勘探中的应用

磁法在考古勘探中的应用

磁法在考古勘探中的应用考古勘探是揭示过去文明的一项重要任务,其主要通过对地下遗址进行调查和发掘来获取相关信息。

而磁法作为一种非侵入性的地球物理探测方法,已经在考古领域中得到了广泛的应用。

本文将介绍磁法方法的基本原理、在考古勘探中的应用以及其带来的挑战和前景。

一、磁法的基本原理磁法是利用地球磁场与地下磁性物质相互作用的原理进行探测的方法。

地球磁场是地球的一个固有属性,而地下磁性物质则包括铁、镍、钴等具有磁性的物质。

当磁性物质存在于地下时,地球磁场将会发生变化,这种变化可以通过磁场探测仪器进行测量和记录。

二、在考古勘探中的应用磁法在考古勘探中有着广泛的应用,可以用于寻找地下的考古遗址、确定遗址的范围和结构,以及提供遗址特征的信息。

下面将介绍磁法在考古勘探中的几个重要应用方面:1. 寻找考古遗址磁法可以有效地帮助考古学家寻找地下的考古遗址。

由于地下遗址通常含有一定的磁性物质,如陶瓷、砖块或金属物品,这些物质会对地球磁场产生影响。

通过对地下磁场进行检测和分析,可以确定磁场异常点的位置,并初步判断是否存在考古遗址。

2. 确定遗址的范围和结构在确定考古遗址的范围和结构方面,磁法也能发挥重要作用。

通过对地下磁场的高分辨率测量,可以获取遗址下方的磁性物质分布情况和遗址结构特征。

这些信息有助于绘制遗址的图像和地下结构模型,为考古发掘提供重要依据。

3. 提供遗址特征的信息除了确定遗址的范围和结构外,磁法还能提供遗址特征的信息,如遗址内部的磁性物质类型、密度和分布等。

这些信息对于了解遗址历史、文化和经济活动等方面非常有价值,有助于绘制遗址的专题图和进一步研究。

三、挑战与前景虽然磁法在考古勘探中具有重要的应用价值,但也面临着一些挑战。

首先是在复杂地质环境下的数据解释和处理。

地下的地质构造和非磁性物质的干扰会对磁法数据产生影响,进而给解释和处理带来一定的困难。

其次是磁法探测深度受限,只能在浅层范围进行勘探。

最后是磁法仪器的精度和分辨率有限,对细节的探测能力还有待提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
一、磁场理论的一般介绍
• H、B、M之间关系 M=KH;B= μH;
内容 SI CGSM 换算 关系 B T(nT) G;γ 1G=10-4T 1γ=1nT H(M) A/M Oe 1Oe=1/4π× 103 A/m μ0 4π×10-7 H/m 无量纲 K 无量纲 无量纲 1CGSM=4πSI
三、磁法勘探的一般介绍
• 概念:利用岩石和矿物磁性差异进行找矿 或解决其他地质问题的方法。 • 高精度磁测:精度高于5nT • 适用范围:帮助寻找满足磁测前提的矿床、 地层、构造、蚀变岩等。 • 区调中配合填图、圈定靶区等 • 矿区及外围弱磁查证、寻找深部隐伏矿体 • 油气、煤田、管网、考古、打捞等
二、地磁场及岩石磁性
• • • • • 影响岩石磁性的因素: 铁磁性矿物含量越高,磁性越强 铁磁性矿物颗粒越大,磁性越强 铁磁性矿物胶结越紧密,磁性越强 压力、温度影响复杂
二、地磁场及岩石磁性
• 三大岩类磁性的一般特征: • 1、沉积岩:磁性较弱 • 2、火成岩:随基性增强而增强;喷发岩磁 化率变化大;热剩磁明显 • 3、变质岩:与原岩及生成条件有关
两侧异常特征明显 不同的分界线
(3)异常的错动
它们往往是平推断裂的反映,原来是一整体重磁异常,由于断 裂的作用,造成了异常的错动,异常轴错位。
异常轴线明显错动 的部位
(4)异常等值线的规则性扭曲
指在等值线趋势背景上的同向局部扰动,和等值线基本保持平 行的同向扭曲
等值线扭曲部位
(5)异常宽度突变带
沉积岩:
磁场微弱、平静、单调 常作为正常场
部分砂页岩或含磁铁矿的大理岩显示 磁性
五、异常特征的识别
不同地质体上的异常特征
火山岩: 基性→酸性 强→弱
起伏大、跳跃频繁、正负交替
五、异常特征的识别
不同地质体上的异常特征
变质岩:
取决于原岩磁性 含铁石英岩呈明显条带异常
五、异常特征的识别
不同地质体上的异常特征
构造: (1)线性梯度带; (2)异常特征的分界线; (3)异常的错动; (4)等值线的规则性扭曲; (5)异常宽度突变带; (6)串珠状异常。
(1)线性梯度带
这是有一定走向台阶和接触带异常的主要异常特征。表现为等 值线平行密集排列,狭长成带,呈线性延续或断续呈线性延伸 的梯度带。它反映了地下密度和磁性在水平方向的剧变。 一般等值线愈密,反映的构造变动愈剧烈
二、地磁场及岩石磁性
• 剩磁种类: • 1、热剩磁:岩浆冷却成岩时获得的磁性; 磁性最强 • 2、沉积剩磁:沉积成岩过程中,磁性矿物 定向排列获得的磁性 • 3、化学剩磁:因化学作用,使矿物颗粒增 大或产生新的矿物时获得的磁性
二、地磁场及岩石磁性
三、磁法勘探的一般介绍
• 利用岩矿石的不同磁性产生的不同磁场, 进行找矿或解决其他地质目的的勘探方法。 • 高精度磁测:误差小于等于5nT • 应用:矿床、地层、构造、填图 油气、煤田 环境、水文、工程地质 管线、考古、水上打捞
一、磁场理论的一般介绍
• 磁场:磁力作用的物质空间 • 磁力线:正极出发终止于负极的封闭曲线 • 磁场强度:单位磁荷在磁场中受到的力 用H表示,单位A/m
F0 1 Qm H 2 Qm 40 r
一、磁场理论的一般介绍
• 磁感应强度:恒定电流I的无限长直导线, 距离导线为a的各点的磁场。 • B=μH, SI制单位T (特斯拉),常用nT, CGSM制单位γ(伽马) • 1γ=1nT • 磁感应强度B即是测定的地磁场总强度T • μ 为磁导率
图1.1线性重力高 与重力低过渡带
(2)异常特征的分界线
规模较大的区域性断裂往往是不同构造单元的分界线,不同的构造 单元,在深部、基底和盖层的组成和结构,火成岩的活动以及地质 构造特征等方面也会有不同程度差异,这种差异也会反映到重磁异 常上来,造成断裂两侧重磁异常特征的明显差异。这种差异在磁力 异常平面等值线图上反映更为突出。
上延与下延对比
• 延拓工作要适度: 上延弱化异常;下延放大异常 上延与下延不可逆 下延可能出现假异常
插值切割法 分 离 区 域 场 与 局 部 场
实测数据
区域场
局部场
• 插值切割法可分离区域场和局部场 • 局部场的识别取决于切割半径 • 切割半径通常区局部场的平均半径
切割 半径
切割半径为1倍点距
一、磁场理论的一般介绍
• 磁化:在磁场作用下,没有磁性的物体获 得磁性的现象 • 磁化本质:物体内电子环流的定向排列 • 磁化强度:表征物体被磁化程度强弱的物 理量;单位体积内的磁矩M=m/V • 与磁场关系:M=kH;单位A/m • K为磁化率,表征物体被磁化难易程度 1 • 单位 1( SI ) (CGSM )
单独异常 模型反演 结果与实 际矿体对 比
埋深相差 50米
矿体正演曲线 与实测曲线对比
次异常 值偏高 主异常处 无显示
埋深 200米
矿体正演曲线 与实测曲线对比
次异常 值偏高 主异常处 无显示
埋深 100米
2条矿体模型 反演结果
引起异常的主 要矿体
钻探未 发现
ZK0-1
ZK1-1
ZK3-1
808
804
ZK3-2
ZK0-1
固定矿 体产状 参数 曲线拟合 获得磁化参数
改变磁化 参数,拟 合曲线
推测其他 矿体产状
已有实测曲线 和钻探资料
808线首次 反演
明显存在剩 余异常
2条薄矿 体模式
808线 再反演
曲线末端 难以拟合
矿体加厚
808线 最终反 演结果
物探808线 地质3号线
剖面反演对比
五、异常特征的识别
深源异常与浅源异常
异常幅值波动特征:
锯齿状、强度高、梯度大→浅层 圆滑、强度低、梯度小→深层
浅源异常
深源异常
深源异常
五、异常特征的识别
深源异常与浅源异常
与地形关系:
异常高低与地形起伏基本一致→浅层 基本与地形无关→深层
与地形相关的 浅源异常
五、异常特征的识别
不同地质体上的异常特征
四、数据处理的方法
• 意义:1、向上延拓→ 压制浅层(干扰), 突出深层(趋势) 2、水平导数→ 突出方向构造信息 3、垂直导数→突出浅层场源信息 4、化磁极→消磁斜磁化影响,简化 磁场形态
平 面 向 上 延 拓
剖 面 向 上 延 拓
向上延拓对比
20米 10米 0米
向下延拓对比
0米
-10米 -20米
高程改正→ △T
日变站选择弱磁性沉积岩区;
正常场利用国际地磁参考场
四、数据处理的方法
• 2、异常的处理与转换:
空间转换
分量转换
导数转换 不同磁化方向转化
四、数据处理的方法
• 目的:1、复杂→简化(曲面→平面;叠加 →孤立) 2、满足解释方法(某一分量→另一 分量;磁场值→频谱值) 3、突出某一方面的特点(上延→压 制浅部、突出深部;匹配滤波→可 突出深或浅的某个方面)
异常宽度的突变,表现为等值线在某一部位急剧收敛,反映了 两侧有垂向升降运动。
封闭等值线突 然变宽、变窄 的部位
(6)串珠状异常
一系列重磁异常有规律地间断线性 排列常称为串珠状异常,岩浆沿断 裂侵入和火山岩的充填往往形成了 串珠状火成岩带,造成了串珠状的 重磁异常,这在磁异常中更为常见。 对于重磁异常来说,主要断裂标志 重要性次序是不一的。 在重力异常中,重力梯度带、异常 特征分界线、显得更为重要; 而对磁力异常来讲,按重要性次序 应是异常特征分界线、磁力梯度带、 线性异常带、串珠状异常等等。
二、地磁场及岩石磁性
二、地磁场及岩石磁性
• 抗磁性:电子成对出现,自旋磁矩相互抵 消;磁化率为低的负值;磁性弱常忽略 • 顺磁性:有孤立电子存在,自旋磁矩不抵 消;磁化率为低的正值 • 铁磁性:内部有自发磁化区域,外磁场较 弱时即可获得饱和磁化;磁化率为很大的 正值
二、地磁场及岩石磁性
二、地磁场及岩石磁性
“干断裂”上的航 磁异常图
综合处理后的异常特征
综合处理
原始数据
构造划分实例
六、解释的方法
1、地质、物探资料对比方法
将各种地质、物探资料综合起来,进行详细的对比和研 究,按由已知到未知的原则,总结已知地质条件下的物 探异常的特征和规律,然后利用这些特征和规律,结合 解释地区的具体情况,对磁异常进行解释推断。 对比方法是区域调查和普、详查找矿工作中磁测资料解 释的基本方法。
串珠状异常的两侧或者轴部 所在的位置
沿断裂有磁性岩脉(岩体)充填,这时沿断裂方向会有高值带 状异常(或线型异常带)分布。若沿断裂方向因岩浆活动不均 匀,可能产生断续的串珠状异常。有些断裂破碎带范围较大, 构造应力比较复杂,既有垂直变化也有水平变化和扭转现象。
断裂带上的航磁 异常
另一种情况是,磁性岩石断裂无岩浆活动伴随,当其断裂破裂 现象显著时,因磁性变化会出现低值或负的异常带,这就是所 谓的“干断裂”异常
薄板(脉)模型: 直立、厚10米、延伸200米
埋深100 埋深200
埋深300
埋深500
埋深800
薄板(脉)模型: 直立、厚10米、延伸500米
埋深100
埋深200 埋深300
埋深500
埋深800
薄板(脉)模型: 直立、厚5米、延伸500米
埋深100
埋深200 埋深300
埋深500
埋深800
薄板(脉)模型: 直立、厚5米、延伸200米
三、磁法勘探的一般介绍
• 仪器:质子旋进磁力仪 • 原理:磁场中的通电线圈断电后测得频率 正比于外磁场 T=23.4872f • 优点:精度高、稳定性好、温度影响小、 自动化程度高
CZM-3
GSM-19T
相关文档
最新文档