空间直角坐标系

合集下载

空间直角坐标系PPT

空间直角坐标系PPT
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6,
M2M3 M3M1 , 原结论成立.
例 3 设 P 在 x 轴上,它到 P1 (0, 2,3)的距离为 到点 P2 (0,1,1)的距离的两倍,求点 P 的坐标.


x


例1、如图,在长方体OABC DABC中,OA 3,
OC 4,OD 2,写出D,C,A,B四点的坐标。
z
D'
C'
A'
2
B'
y
4
3o
C
xA
B
例2、在空间直角坐标系中标出下列各点
►A(0,2,4)、B(1,0,5)、 ►C(0,2,0)、D(1,3,4)
特殊位置的点的坐标
►原点 ►x轴上的点 ►y轴上的点 ►z轴上的点 ►xoy平面上的点 ►yoz平面上的点 ►xoz平面上的点
解 因为P 在x 轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
PP1 2 PP2 , x2 11 2 x2 2
x 1, 所求点为 (1,0,0), (1,0,0).
4. 3.1 空间直角坐标系
数轴上的点
B -2 -1 O 1
A 2 3x
数轴上的点可以用 一个实数表示
y y
O
平面坐标系中的点
P (x,y) xx
平面中的点可以用 有序实数对(x,y)
来表示
思考:
►空间中的点如何表示呢?

空间直角坐标系

空间直角坐标系

长度:使用直角坐标 系中的坐标值计算
面积:使用直角坐标 系中的坐标值计算
体积:使用直角坐标 系中的坐标值计算
角度:使用直角坐标 系中的坐标值计算
距离:使用直角坐标 系中的坐标值计算
相似性:使用直角坐 标系中的坐标值计算
平移:沿某个方向移动一定距 离不改变形状的大小和方向
旋转:绕某个轴旋转一定角 度改变形状的位置和方向
向量的坐标表示应用:向量的坐标表示方法在物理、工程、计算机科学等领域有着广泛的应 用。
向量的模:向量的长度表示为向量的平方和的平方根
向量的数量积:两个向量的点积表示为两个向量的坐标乘积的和
向量的坐标表示方法:用三个坐标值表示向量每个坐标值对应一个坐标轴
向量的数量积的坐标表示方法:用两个向量的坐标乘积的和表示向量的数量积每个坐标乘积 对应一个坐标轴
平移:沿坐标轴方 向移动保持原点位 置不变
旋转和平移的复合 :先旋转后平移或 先平移后旋转
旋转和平移的逆操 作:旋转和平移的 逆操作可以恢复原 坐标系
空间直角坐标系的 表示方法
空间直角坐标 系:由三个互 相垂直的坐标 轴组成通常用x、
y、z表示
点的坐标表示: 用三个数字表 示分别对应x、 y、z轴上的坐
感谢您的观看
汇报人:
示。
单位长度:平面直角坐标系中 的单位长度是固定的通常用1表
示。
空间直角坐标系是 三维的平面直角坐 标系是二维的
空间直角坐标系中的点 可以用三个坐标表示平 面直角坐标系中的点可 以用两个坐标表示
空间直角坐标系中 的点可以通过投影 变换转换为平面直 角坐标系中的点
平面直角坐标系中 的点可以通过升维 变换转换为空间直 角坐标系中的点
坐标轴:x轴、y轴、z 轴分别代表三个方向 的坐标。

空间直角坐标系PPT课件

空间直角坐标系PPT课件
通过透视变换将三维图形投影 到某一平面上,产生近大远小
的效果。
二面投影
将三维图形分别投影到两个互 相垂直的平面上,得到两个二
维图形。
三面投影
将三维图形分别投影到三个互 相垂直的平面上,得到三个二
维图形。
05
空间直角坐标系与向量代数
向量的线性运算
向量的加法
向量加法满足交换律和结合律,即向量a+b=b+a, (a+b)+c=a+(b+c)。
描述向量场中某点处场量旋转程度的大小和方向,其方向垂直于该 点处的场量。
06
空间直角坐标系与微积分
微分学在空间直角坐标系中的应用
空间直角坐标系中的导数
导数描述了函数在某一点处的切线斜率,在空间直角坐标 系中,导数可以用来研究函数在三维空间中的变化趋势。
空间曲线在某点的切线方向
通过求导数,可以得到空间曲线在某一点的切线方向向量, 从而确定该点处曲线的变化趋势。
曲线和曲面的长度
通过使用一重积分,可以计算三维空间中曲线和曲面的长度。
重积分在空间直角坐标系中的应用
01
重积分在解决实际问题中的应用
重积分在解决实际问题中有着广泛的应用,例如计算物体的质量、质心、
转动惯量等。
02 03
重积分的物理意义
重积分的结果具有明确的物理意义,例如三重积分的结果表示三维空间 的体积,二重积分的结果表示二维平面的面积,一重积分的结果表示一 维线段的长度。
性质
空间直角坐标系具有方向性、正 交性和无限延展性,是描述空间 中点位置的数学工具。
坐标系的建立
01
02
03
确定原点
选择一个点作为原点,该 点是空间直角坐标系的起 点。

空间直角坐标系

空间直角坐标系

空间直角坐标系空间直角坐标系是描述三维空间中物体位置、大小和方向的基本工具,也称为笛卡尔坐标系。

它由三个坐标轴组成,分别为X轴、Y轴和Z轴。

这三个轴互相垂直,并且有着确定的正方向。

在这个坐标系中,每个点都可以用一个三元组(x,y,z)来表示,其中x、y和z分别表示该点在X轴、Y轴和Z轴上的坐标值。

坐标轴在空间直角坐标系中,X轴、Y轴和Z轴互相垂直,并且有着确定的正方向。

通常情况下,我们用右手定则来确定它们的方向。

右手定则是指:用右手握住坐标轴,拇指指向轴正方向,则其余四指的方向依次为轴的负方向。

对于X轴来说,正方向是从左往右,负方向是从右往左。

对于Y轴来说,正方向是从下往上,负方向是从上往下。

对于Z轴来说,正方向是从里往外,负方向是从外往里。

坐标系在空间直角坐标系中,每个点都可以用一个三元组(x,y,z)来表示,其中x、y和z分别表示该点在X轴、Y轴和Z轴上的坐标值。

通过这三个坐标轴的交点,我们就可以确定一个坐标系。

其中,原点是三个坐标轴的交点,XOY平面是X轴和Y轴的交点,以及XOZ平面和YOZ平面。

在三维图形中,我们通常用灰色坐标轴或红色坐标轴来表示三维坐标系。

在计算机中,常常用右手坐标系来表示三维坐标系。

在右手坐标系中,我们用拇指、食指和中指来表示X、Y和Z轴(这三个手指的弹起方向分别为轴正方向),并且让它们呈互相垂直的状态。

这样,我们就可以向空间中标记点、向量等实体了。

空间直角坐标系的应用空间直角坐标系在数学、物理、工程等领域中都有着广泛的应用。

下面以机械加工中的坐标轴为例,介绍空间直角坐标系的应用。

在机械加工中,机床的操作基本上是在三维空间中进行的,因此空间直角坐标系被广泛应用于机械加工中。

在机械加工中,通常会遇到许多坐标系,例如车削中心点坐标系、雕铣中心点坐标系等。

在机械加工中,我们通常要计算刀具与工件的相对位置、切削速度、转速等参数,而这些参数都依赖于空间直角坐标系。

因此,熟练掌握空间直角坐标系是进行机械加工的一个基本要求。

空间直角坐标系(115)

空间直角坐标系(115)

与平面的位置关系,如平行、相交或垂直。
立体几何问题
确定点在空间中的位置
通过给定点在空间直角坐标系中的坐标,可以确定该点在空间中 的位置。
计算点到平面的距离
利用空间直角坐标系中的坐标,可以计算点到平面的距离。
判断两平面是否平行或相交
通过空间直角坐标系中的平面方程,可以判断两平面是否平行、相 交或垂直。
向量的数量积满足交换律、结合 律和分配律。
03
空间直角坐标系的应用
平面几何问题
确定点在平面上的位置
01
通过给定点在空间直角坐标系中的坐标,可以确定该点在平面
上的位置。
计算两点间的距离
02
利用空间直角坐标系中的坐标,可以计算两点间的距离。
判断直线与平面的关系
03
通过空间直角坐标系中的直线方程和平面方程,可以判断直线
性质
空间直角坐标系具有方向性和正交性 ,即三个轴的方向是固定的,且它们 之间相互垂直。此外,坐标系的单位 长度和方向也是确定的。
坐标系的建立
选择一个点作为原点 O,并确定三个相互 垂直的轴。
在坐标系中标记点的 位置,需要三个数值, 即点的x、y、z坐标 值。
确定各轴的方向和单 位长度,通常采用国 际单位制(米、千克 等)。
在计算机图形学中的应用
描述三维空间中的点、线、面等几何对象, 进行图形变换等。
向量场和梯度场的概念
向量场
由一组向量构成的集合,每个向量在 空间中定义一个点。
梯度场
与标量场相关联的向量场,表示标量 场中每一点的梯度方向和梯度值。
THANKS
感谢观看
解析几何问题
01
02
03
求解直线方程
通过空间直角坐标系中的 点或斜率,可以求解直线 的方程。

空间直角坐标系

空间直角坐标系

空间直角坐标系空间直角坐标系是一种用来描述物体在三维空间中位置的坐标系统。

它是一种常见且重要的坐标系,被广泛应用于数学、物理、工程等各个领域。

本文将详细介绍空间直角坐标系的定义、特点和使用方法。

一、空间直角坐标系的定义空间直角坐标系是由三个相互垂直的坐标轴构成的,通常用x、y、z表示。

x轴和y轴在水平平面上,z轴垂直于水平平面向上延伸。

在这个坐标系中,每个点可以由一个有序的三元组(x, y, z)唯一确定。

其中,x表示点在x轴上的坐标值,y表示点在y轴上的坐标值,z表示点在z轴上的坐标值。

二、空间直角坐标系的特点1. 三维描述:空间直角坐标系能够准确描述物体在三维空间中的位置。

通过确定点在x、y、z轴上的坐标值,可以得知物体在坐标系中的具体位置。

2. 直角关系:空间直角坐标系中的三个坐标轴彼此垂直。

这意味着任意两个轴的夹角为直角,使得坐标系的描述更加简洁明了。

3. 正负号:在空间直角坐标系中,每个坐标轴都有正负号之分。

通过正负号的不同,可以识别出点在轴的正方向还是负方向上。

三、空间直角坐标系的使用方法1. 坐标表示:在空间直角坐标系中,可以通过坐标表示物体的位置。

例如,一个点的坐标为(2, 3, 4),表示该点在x轴上的坐标值为2,在y轴上的坐标值为3,在z轴上的坐标值为4。

2. 图形表示:使用空间直角坐标系,可以绘制出物体在三维空间中的图形。

例如,通过连接多个点可以绘制直线、曲线,通过连接多个面可以绘制立方体、圆柱体等。

3. 距离计算:在空间直角坐标系中,可以计算物体之间的距离。

根据勾股定理,可以计算出两点之间的直线距离。

例如,两点A(x1, y1,z1)和B(x2, y2, z2)之间的距离可以用以下公式表示:AB = √[(x2-x1)² + (y2-y1)² + (z2-z1)²]。

四、应用举例空间直角坐标系在许多领域有着广泛的应用。

以下是一些例子:1. 建筑设计:在建筑设计中,使用空间直角坐标系可以准确描述建筑物的位置、大小和形状,方便施工和规划工作。

空间直角坐标系ppt课件

空间直角坐标系ppt课件
坐标系 Oxyz 中 x 轴、y 轴、z 轴的正方向
上的单位向量,且O→B=-i+j-k,则点 B 的坐标是
√A.(-1,1,-1)
B.(-i,j,-k)
C.(1,-1,-1)
D.不确定
由空间直角坐标系中点的坐标的定义可知点B的坐标为(-1,1,-1).
D.5,23,2
由题图知,点 P 在 x 轴、y 轴、z 轴上的射影分别为 P1,P2,P3, 它们在坐标轴上的坐标分别是32,5,4,故点 P 的坐标是32,5,4.
3.已知点 B 的坐标是(-1,2,1),则|O→B|=
√A. 6
B.6
C. 5
D.5
由 B 点坐标是(-1,2,1),得O→B=-i+2j+k,故|O→B|2=1+4+1=6, 故|O→B|= 6.
特别提醒
空间点对称问题的解题策略 (1)空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对 称点的变化规律,才能准确求解. (2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反” 这个结论.
训练3.已知点P(2,3,-1)关于坐标平面Oxy的对称点为P1,点P1关于坐标平面 Oyz 的 对 称 点 为 P2 , 点 P2 关 于 z 轴 的 对 称 点 为 P3 , 则 (点2,P-3 的3,坐1)标 为 ______________.
则p=a+2b+3c=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,
x+y=1,
x=23,
所以xz=-3y,=2,解得yz==3-,12,
故 p 在基底{a+b,a-b,c}下的坐标为32,-21,3.
二、空间点及向量的坐标表示
探究 2 在平面直角坐标系中,{i,j}为一个单位正交基底,O→A=xi+yj,那么向 量O→A的坐标为(x,y),点 A 的坐标为(x,y);如果设{i,j,k}为空间的单位正交 基底,O→A=xi+yj+zk,猜想空间向量O→A的坐标是什么?点 A 的坐标是什么? 提示 (x,y,z);(x,y,z).

空间直角坐标系课件

空间直角坐标系课件

空间直角坐标系课件空间直角坐标系课件空间直角坐标系是数学中的一个重要概念,它在几何学、物理学等领域都有广泛的应用。

本文将通过介绍空间直角坐标系的定义、特点以及应用等方面,来探讨这一主题。

一、定义与特点空间直角坐标系是由三个相互垂直的坐标轴构成的,分别是x轴、y轴和z轴。

这三个轴构成了一个三维的坐标系,用来描述空间中的点的位置。

在空间直角坐标系中,每个点都可以用一个有序的三元组(x, y, z)来表示,其中x表示点在x 轴上的坐标,y表示点在y轴上的坐标,z表示点在z轴上的坐标。

空间直角坐标系具有以下特点:1. 三个坐标轴相互垂直:x轴与y轴、x轴与z轴、y轴与z轴两两垂直。

2. 坐标轴上的单位长度相等:在空间直角坐标系中,每个坐标轴上的单位长度相等,通常表示为1。

3. 坐标轴上的正方向:x轴正方向为从左向右,y轴正方向为从下向上,z轴正方向为从里向外。

二、应用领域空间直角坐标系在几何学、物理学等领域都有广泛的应用。

1. 几何学中的应用空间直角坐标系在几何学中被用来描述点、直线、平面等几何图形。

通过坐标系中的点的位置关系,可以计算两点之间的距离、直线的斜率、平面的方程等。

同时,空间直角坐标系还可以用来表示和计算向量的坐标。

2. 物理学中的应用在物理学中,空间直角坐标系常被用来描述物体的运动、力的作用等。

通过坐标系中的点的位置变化,可以计算物体的位移、速度、加速度等物理量。

同时,空间直角坐标系还可以用来表示和计算力的分解、合成等问题。

3. 工程学中的应用在工程学中,空间直角坐标系被广泛应用于建筑、机械、电子等领域。

通过坐标系中的点的位置关系,可以计算建筑物的结构、机械零件的尺寸、电子元器件的布局等。

同时,空间直角坐标系还可以用来表示和计算工程中的力、力矩等问题。

三、坐标系的转换在实际应用中,有时需要将一个空间直角坐标系转换为另一个空间直角坐标系。

坐标系的转换可以通过旋转、平移等方式进行。

通过坐标系的转换,可以方便地进行坐标的变换和计算。

空间直角坐标系

空间直角坐标系

空间直角坐标系在数学和物理学中,空间直角坐标系是一种常用的坐标系统,用于描述三维空间中的点、向量和物体的位置。

它由三个互相垂直的坐标轴(x轴、y轴和z轴)组成,构成了一个三维的直角坐标系。

一、空间直角坐标系的定义空间直角坐标系以原点为起点,通过选定的单位长度建立了三个相互垂直的坐标轴。

x轴代表水平方向,y轴代表垂直于x轴的水平方向,z轴代表竖直方向垂直于x、y轴。

这样,每一个点都可以用三个数字(x,y,z)表示其在空间直角坐标系中的位置。

二、坐标轴的性质和方向在空间直角坐标系中,每个坐标轴都具有以下性质:1. x轴:位于水平方向,从负无穷到正无穷延伸。

正方向为从左往右。

2. y轴:位于垂直于x轴的水平方向,从负无穷到正无穷延伸。

正方向为从前往后。

3. z轴:位于竖直方向,从负无穷到正无穷延伸。

正方向为从下往上。

空间直角坐标系中,x轴和y轴的交点称为原点(O),z轴的正方向与x轴和y轴的正方向形成右手螺旋规则关系。

三、点的表示和距离计算在空间直角坐标系中,任意一点P的坐标为(x,y,z)。

这意味着点P在x轴上的坐标为x,在y轴上的坐标为y,在z轴上的坐标为z。

点P到原点的距离可以由勾股定理计算:距离= √(x² + y² + z²)四、向量和运算在空间直角坐标系中,向量可以用其起点和终点的坐标差来表示。

例如,向量V可以表示为V = (x2 - x1, y2 - y1, z2 - z1),其中(x1, y1, z1)为起点坐标,(x2, y2, z2)为终点坐标。

向量的加法和减法可以分别通过坐标的相加和相减进行计算。

例如,向量A = (x1, y1, z1)和向量B = (x2, y2, z2)的加法结果为A + B = (x1 +x2, y1 + y2, z1 + z2)。

五、空间坐标系的应用空间直角坐标系在几何学、物理学、工程学等领域中都有广泛的应用。

它可以用来描述点、线、面和三维物体的位置关系和运动状态。

知识要点空间直角坐标系

知识要点空间直角坐标系

知识要点空间直角坐标系空间直角坐标系是用来描述三维空间中点位置的一种坐标系统。

它由三个坐标轴x、y、z构成,且彼此互相垂直,并在相交点处成为原点O。

在空间直角坐标系中,每个点的位置可由它在每个坐标轴上的投影来确定。

假设特定点P的坐标为(x,y,z),则在x轴上的投影为x,y轴上的投影为y,z轴上的投影为z。

空间直角坐标系的特点是可以将任意三维空间中的点表示为有序的数对(x,y,z),并且任意两点之间的距离可以用直线段来表示。

其基本特征有以下几点:1.原点O:空间直角坐标系的交点即为原点O,它的坐标为(0,0,0)。

2.坐标轴:空间直角坐标系有三个互相垂直的坐标轴,分别为x轴、y轴和z轴。

它们分别与三个方向对应:x轴正向为向右,y轴正向为向上,z轴正向为向外。

3. 坐标面:由三个坐标轴所确定的平面称为坐标面。

分别为xoy平面(z = 0)、xoz平面(y = 0)和yoz平面(x = 0)。

4.坐标轴方向:坐标轴方向有正负之分,规定沿着轴线正向的方向为正方向,反向则为负方向。

5.坐标轴长度:不同坐标轴的长度可以任选,但通常选择相等长度,方便计算。

在空间直角坐标系中,我们可以通过以下方法进行基本的空间点运算:1.点的移动:在坐标轴上,点的移动相当于坐标值的变化。

向右移动,坐标值加;向左移动,坐标值减;向上移动,坐标值加;向下移动,坐标值减;向外移动(离原点越来越远),坐标值加;向内移动(离原点越来越近),坐标值减。

2.点的关系:可以通过对比坐标值来判断两个点的相对位置。

若两点的x、y、z坐标值分别相等,则它们重合;若只有一个坐标值相等,则它们在同一坐标轴上;若有两个坐标轴的坐标值相等,则它们在同一平面上;若没有坐标值相等,则它们位于不同的坐标平面中。

3.点的中点坐标:求两点的中点坐标,可以将两个点的对应坐标分别相加然后除以24. 点的距离:可以根据勾股定理来求两点之间的距离。

设两点分别为P(x1, y1, z1)和Q(x2, y2, z2),则它们之间的距离d为:d =sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)。

空间直角坐标系(70)

空间直角坐标系(70)
• 若直线的方向向量与平面的法向量不平行且直线上一点在 平面上,则直线与平面相交。
直线与平面位置关系判断方法
01
判断两平面的位置关系
02
若两平面的法向量平行,则两平面平行或重 合。
03
若两平面的法向量垂直,则两平面垂直。
04
若两平面的法向量既不平行也不垂直,则两 平面相交但不垂直。
04
空间曲线与曲面方程
如坐标原点O(0,0,0)、各坐标轴 上的点(其两个坐标为零)、各 坐标平面上的点(其一个坐标为
零)等。
02
空间向量及其运算
空间向量概念及性质
空间向量定义
空间向量是空间中既有大小又有方向的量,通常用有向线 段表示。
空间向量性质
空间向量具有大小、方向、起点和终点四个要素,满足向 量加法的交换律和结合律,以及数量乘法的分配律。
空间曲线方程形式及求解方法
空间曲线方程形式
空间曲线方程一般表示为参数方程形 式,即$x = x(t), y = y(t), z = z(t)$, 其中$t$为参数。
求解方法
求解空间曲线方程,通常需要先消去 参数$t$,得到曲线在坐标平面上的投 影方程,再结合初始条件或边界条件 求解。
空间曲面方程形式及求解方法
03
空间向量加减法运算性质
空间向量的加减法满足交换律和结合律,即$vec{a} + vec{b} = vec{b}
+ vec{a}$,$(vec{a} + vec{b}) + vec{c} = vec{a} + (vec{b} +
vec{c})$。
空间向量数量积运算规则
空间向量数量积定义
设两个非零向量$vec{a}$和$vec{b}$的夹角为$theta$,则$vec{a} cdot vec{b} = |vec{a}| cdot |vec{b}| cdot costheta$,其中$|vec{a}|$和$|vec{b}|$分别表示向量$vec{a}$和 $vec{b}$的模长。

1.3.1 空间直角坐标系(解析版)..

1.3.1 空间直角坐标系(解析版)..

1.3空间向量及其运算的坐标表示1.3.1空间直角坐标系知识梳理知识点一空间直角坐标系1.空间直角坐标系及相关概念(1)空间直角坐标系:在空间选定一点O 和一个单位正交基底{i ,j ,k },以O 为原点,分别以i ,j ,k 的方向为正方向,以它们的长为单位长度建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz .(2)相关概念:O 叫做原点,i ,j ,k 都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy 平面、Oyz 平面、Ozx 平面,它们把空间分成八个部分.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.知识点二空间一点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA →,且点A 的位置由向量OA →唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA →=x i +y j +z k .在单位正交基底{i ,j ,k }下与向量OA →对应的有序实数组(x ,y ,z )叫做点A 在此空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.知识点三空间向量的坐标在空间直角坐标系Oxyz 中,给定向量a ,作OA →=a .由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记作a =(x ,y ,z ).题型探究题型一、空间中点的位置及坐标特征1.若空间一点()21,1,11M a a +-+在z 轴上,则=a ()A .1B .0C .±1D .1-【答案】D【详解】因为空间一点()21,1,11M a a +-+在z 轴上,所以21010a a +=⎧⎨-=⎩,解得1a =-;故选:D2.在空间直角坐标系中,点()2,0,3P 位于()A .x 轴上B .y 轴上C .xOy 平面上D .xOz 平面上【答案】D【详解】在空间直角坐标系Oxyz 中,点()2,0,3P ,因为坐标中0y =,所以点()2,0,3P 位于xOz 平面上.故选:D.3.已知点A '是点(2,9,6)A 在坐标平面Oxy 内的射影,则点A '的坐标为()A .(2,0,0)B .(0,9,6)C .(2,0,6)D .(2,9,0)【答案】D【详解】因为点A '是点(2,9,6)A 在坐标平面Oxy 内的射影,所以A '的竖坐标为0,横、纵坐标与A 点的横、纵坐标相同,所以点A '的坐标为(2,9,0).故选:D4.已知点(),,P x y z ,若点P 在x 轴上,则点P 坐标为___________;若点P 在yOz 平面内,则点P 坐标为___________.若点P 在z 轴上,则点P 坐标为___________;若点P 在xOz 平面内,则点P 坐标为___________.【答案】(),0,0x ()0,,y z ()0,0,z (),0,x z 【详解】若点P 在x 轴上,则点P 坐标为(),0,0x ;若点P 在yOz 平面内,则点P 坐标为()0,,y z ;若点P 在z 轴上,则点P 坐标为()0,0,z ;若点P 在xOz 平面内,则点P 坐标为(),0,x z .故答案为:(),0,0x ;()0,,y z ;()0,0,z ;(),0,x z .题型二、求空间图形上的点的坐标1.如图,在长方体1111ABCD A B C D -中,3AB =,1AD =,12AA =,先建立空间直角坐标系,再求长方体各顶点的坐标.【详解】以点D 为原点,分别以射线DA 、DC 、1DD 为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则()0,0,0D 、()1,0,0A 、()1,3,0B 、()0,3,0C 、()10,0,2D 、()11,0,2A 、()11,3,2B 、()10,3,2C .2.如图所示,在空间直角坐标系中,2BC =,原点O 是BC 的中点,点D 在平面yOz 内,且90BDC ∠=,30DCB ∠=,则点D 的坐标为().A .13(0)22--,,B .13(0)22-,,C .13(0)22-,,D .13(0)22,,【答案】B【详解】过点D 作DE BC ⊥,垂足为E ,在Rt BDC 中,90BDC ∠=,30DCB ∠=,2BC =,得||1BD =、3CD =,所以3sin 302DE CD =⋅=,所以11cos 60122OE OB BE OB BD =-=-⋅=-=,所以点D 的坐标为13(0)22-,,,故选:B .3.如图,长方体ABCD A B C D ''''-中,底面ABCD 是边长为10的正方形,高AA '为12,点P 为体对角线BD '的中点,则P 点坐标为()A .()5,6,5B .()6,6,5C .()5,5,6D .()6,5,5【答案】C【详解】长方体ABCD A B C D ''''-中,底面ABCD 是边长为10的正方形,高AA '为12,所以()0,0,12D ',()10,10,0B ,所以对角线BD '的中点P 点坐标为010010012,,222P +++⎛⎫⎪⎝⎭即()5,5,6,故选:C.4.在如图所示的长方体1111ABCD A B C D -中,已知()10,2,2D ,()3,0,0B ,则点1C 的坐标为________.【答案】()3,2,2【详解】在长方体1111ABCD A B C D -中,已知()10,2,2D ,()3,0,0B ,所以3AB =,2AD =,12AA =,所以点1C 的坐标为()3,2,2,故答案为:()3,2,2题型三、关于坐标轴、坐标平面、原点对称的点的坐标1.如图,分别求点()2,3,4,()1,2,3-关于各个坐标平面、坐标轴、原点对称的点的坐标.【详解】根据空间直角坐标系的概念,可得:点()2,3,4关于坐标平面,,xOy xOz yOz 的对称点分别为()()()2,3,4,2,3,4,2,3,4---;点()1,2,3-关于坐标平面,,xOy xOz yOz 的对称点分别为()()()1,2,31,2,,,31,2,3----;点()2,3,4关于x 轴、y 轴和z 轴的对称点分别为()()()2,3,4,2,3,4,2,3,4------;点()1,2,3-关于x 轴、y 轴和z 轴的对称点分别为()()()1,2,31,2,,,31,2,3-----;点()2,3,4关于原点O 的对称点分别为()2,3,4---;点()1,2,3-关于原点O 的对称点分别为()1,2,3--.2.已知点(3,2,1)P -,分别写出它关于zOx 平面、x 轴、原点的对称点的坐标.【详解】根据空间直角坐标系的定义,可得:点(3,2,1)P -关于平面zOx 的对称点为1(3,2,1)P ;点(3,2,1)P -关于x 轴的对称点为2(3,2,1)P -;点(3,2,1)P -关于原点的对称点为3(3,2,1)P --.3.(多选)下列各命题正确的是()A .点()1,2,3-关于平面xOz 的对称点为()1,2,3B .点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭C .点()2,1,3-到平面yOz 的距离为1D .设{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,若324m i j k =-+,则()3,2,4m =-【答案】ABD【详解】对于A ,点()1,2,3-关于平面xOz 的对称点为()1,2,3,所以A 正确,对于B ,点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭,所以B 正确,对于C ,点()2,1,3-到平面yOz 的距离为2,所以C 错误,对于D ,由于{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,且324m i j k =-+,所以ۥ,所以D 正确,故选:ABD4.已知()2,3,1A v μ--+关于x 轴的对称点是(),7,6A λ'-,则,,v λμ的值为()A .2,4,5v λμ=-=-=-B .2,4,5v λμ==-=-C .2,10,8v λμ=-==D .2,10,7v λμ===【答案】D【详解】由题意得:()()27361v λμ⎧=⎪=--⎨⎪-=--+⎩,解得:2107v λμ=⎧⎪=⎨⎪=⎩.故选:D.题型四、求空间两点的中点坐标1.在空间直角坐标系中,已知点(1,0,1)A -,(5,2,1)B ,则线段AB 的中点坐标是()A .(1,1,0)B .(4,2,2)C .(2,2,0)D .(2,1,1)【答案】D【详解】因为点(1,0,1)A -,(5,2,1)B ,所以线段AB 的中点坐标是150211,,222-+++⎛⎫⎪⎝⎭,即()2,1,1.故选:D2.在空间直角坐标系中,记点(1,1,2)M -关于x 轴的对称点为N ,关于yOz 平面的对称点为P ,则线段NP 中点坐标为()A .(1,0,0)B .(1,1,0)--C .(1,0,1)D .(0,0,0)【答案】D【详解】依题意,点(1,1,2)M -关于x 轴的对称点的坐标为(1,1,2)N ---,关于yOz 平面的对称点为(1,1,2)P ,所以线段NP 中点坐标为(0,0,0).故选:D3.已知三角形ABC 的三个顶点()()()2,0,00,3,00,0,4A B C ,,,则三角形的重心的坐标为___________.【答案】24,1,33⎛⎫⎪⎝⎭【详解】设重心坐标为(),,x y z ,由重心坐标公式得200233x ++==,03000441,333y z ++++====.所以重心的坐标为24,1,33⎛⎫⎪⎝⎭.故答案为:24,1,33⎛⎫⎪⎝⎭.题型五、空间向量的坐标1.在空间直角坐标系中,已知点()4,3,5A -,()2,1,7B --,则AB =uu u r______.【答案】(6,4,12)--【详解】(24,1(3),75)(6,4,12)AB =------=--故答案为:(6,4,12)--2.如图,在直三棱柱ABC ­A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别为A 1B 1,A 1A 的中点,试建立恰当的坐标系求向量BN ,1BA ,1A B uuu r的坐标.【答案】BN =(1,-1,1),1BA =(1,-1,2),1A B uuu r=(-1,1,-2).【详解】由题意知CC 1⊥AC ,CC 1⊥BC ,AC ⊥BC ,以点C 为原点,分别以CA ,CB ,CC 1的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系C ­xyz ,如图所示.则B (0,1,0),A (1,0,0),A 1(1,0,2),N (1,0,1),∴BN =(1,-1,1),1BA =(1,-1,2),1A B uuu r=(-1,1,-2).跟踪训练1.设z 为任一实数,则点()2,2,z 表示的图形是()A .z 轴B .与平面xOy 平行的一直线C .平面xOyD .与平面xOy 垂直的一直线【答案】D【详解】在空间直角坐标系中画出动点()2,2,z 表示的图形如图所示:故点()2,2,z 表示的图形为与平面xOy 垂直的一直线,故选:D.2.在空间直角坐标系O xyz -中,已知点M 是点()3,4,5N 在坐标平面Oxy 内的射影,则的坐标是()A .()3,0,5B .()0,4,5C .()3,4,0D .()0,0,5【答案】C【详解】点()3,4,5N 在坐标平面Oxy 内的射影为()3,4,0,故点M 的坐标是()3,4,0故选:C3.判断正误(1)空间直角坐标系中,在x 轴上的点的坐标一定是()0,,b c 的形式.()(2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(),0,a c 的形式.()(3)空间直角坐标系中,点()1,3,2关于yOz 平面的对称点为()1,3,2-.()【答案】⨯√√【详解】(1)⨯.空间直角坐标系中,在x 轴上的点的坐标一定是(),0,0a 的形式.(2)√.在xOz 平面内的点,y 坐标必为0.(3)√.空间直角坐标系中,点(),,a b c 关于yOz 平面的对称点为(),,a b c -.4.(多选)在空间直角坐标系中,下列结论中正确的是()A .x 轴上的点坐标可以表示为()0,,b cB .y 轴上的点坐标可以表示为()0,,0bC .xOz 平面上的点坐标可以表示为(),0,a cD .yOz 平面上的点坐标可以表示为()0,,b c 【答案】BCD【详解】x 轴上的点坐标可以表示为(),0,0a ,故A 不正确;y 轴上的点坐标可以表示为()0,,0b 正确;xOz 平面上的点坐标可以表示为(),0,a c 正确;yOz 平面上的点坐标可以表示为()0,,b c 正确.故选:BCD .5.已知正方体ABCD A B C D ''''-的棱长为2,建立如图所示的空间直角坐标系,写出正方体各顶点的坐标.【详解】依题意得()()()()0,0,0,2,0,0,2,2,0,0,2,0A B C D ()()()()11110,0,2,2,0,2,2,2,2,0,2,2A B C D 6.如图,在长方体1111ABCD A B C D -中,4AB =,3AD =,15AA =,点N 为棱1CC 的中点,以点A 为原点,分别以AB ,AD ,1AA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.求点A ,B ,C ,D ,1A ,1B ,1C ,1D ,及N 的坐标.【详解】由题意,知()0,0,0A .由于点B 在x 轴上,且4AB =,则它的横坐标为4,又它的纵坐标和竖坐标都为0,所以点B 的坐标为()4,0,0.同理可得()0,3,0D ,()10,0,5A .由于点C 在xOy 平面内,则它的竖坐标为0,点C 在x 轴、y 轴上的投影依次为点B 、点D ,又4OB =,3OD =,所以点C 的横坐标和纵坐标依次为4,3,即点C 的坐标为()4,3,0.同理可得()14,0,5B ,()10,3,5D .点1C 在x 轴、y 轴和z 轴上的投影依次为点B 、点D 和点1A ,所以点1C 的坐标为()4,3,5.又N 为1CC 的中点,所以点N 的坐标为443305,,222+++⎛⎫ ⎪⎝⎭,即54,3,2N ⎛⎫ ⎪⎝⎭.7.在空间直角坐标系中,分别求点(2,1,4)P -关于x 轴、xOy 平面、坐标原点对称的点的坐标.【详解】点(2,1,4)P -关于x 轴对称的点的坐标为()2,1,4---,关于xOy 平面对称的点的坐标为()2,1,4--,关于坐标原点对称的点的坐标为()2,1,4--.8.在空间直角坐标系下,点()3,6,2M -关于y 轴对称的点的坐标为()A .()3,6,2-B .()3,6,2---C .()3,6,2-D .()3,6,2--【答案】C【详解】关于y 轴对称的点的y 坐标不变,,x z 坐标变为相反数,()3,6,2M ∴-关于y 轴对称的点为()3,6,2-.故选:C.9.空间直角坐标系中,已知点()1,1,1M 关于x 轴的对称点为N ,则点N 的坐标为()A .()1,1,1--B .()1,1,1-C .()1,1,1--D .()1,1,1--【答案】A【详解】因为点()1,1,1M 关于x 轴的对称点为N ,所以()1,1,1N --.故选:A10.在空间直角坐标系下,点()2,6,1M -关于平面yOz 对称的点的坐标为()A .()2,6,1B .()2,6,1-C .()2,6,1---D .()2,6,1--【答案】A【详解】点()2,6,1M -关于平面yOz 对称的点的坐标为()2,6,1.故选:A.11.在空间直角坐标系Oxyz 中,点P (1,2,3)关于xOy 平面的对称点坐标是()A .(1,2,)3-B .1,23(,)--C .(1,2,3)-D .(1,2,3)--【答案】A【详解】在空间直角坐标系O xyz -,关于xOy 平面的对称点只有竖坐标为原来的相反数,所以点P 关于平面xOy 对称点是()1,2,3-.故选:A12.在空间直角坐标系O-xyz 中,点(3,2,5)A -关于xoz 平面对称的点的坐标为()A .(3,2,5)-B .(3,2,5)--C .(3,2,5)D .(3,2,5)-【答案】C【详解】关于xoz 平面对称的点,y 坐标互为相反数,所以(3,2,5)A -关于xoz 平面对称的点的坐标为(3,2,5).故选:C13.(多选)在空间直角坐标系中,已知点(),,P x y z ,下列叙述正确的是()A .点P 关于x 轴对称的点()1,,P x y z --B .点P 关于y 轴对称的点()2,,P x y z --C .点P 关于原点对称的点()3,,P x y z ---D .点P 关于yOz 平面对称的点()4,,P x y z -【答案】ABC【详解】由点(),,P x y z ,对于A ,点P 关于x 轴对称的点()1,,P x y z --,故A 正确;对于B ,点P 关于y 轴对称的点()2,,P x y z --,故B 正确;对于C ,点P 关于原点对称的点()3,,P x y z ---,故C 正确;对于D ,点P 关于yOz 平面对称的点()4,,P x y z -,故D 错误.故选:ABC.14.空间直角坐标系中的两点()()1,2,3,1,0,1P Q -,则线段PQ 的中点M 的坐标为()A .()0,2,4B .()0,1,2C .()2,2,2D .()2,2,2---【答案】B【详解】设M 的坐标为(,,)x y z ,则1(1)022*******x y z +-⎧==⎪⎪+⎪==⎨⎪+⎪==⎪⎩即M 的坐标为(0,1,2),故选:B.15.已知()4,1,3A 、()2,4,3B --,则线段AB 中点的坐标是______.【答案】31,,32⎛⎫- ⎪⎝⎭【详解】已知()4,1,3A 、()2,4,3B --,则线段AB 中点的坐标是31,,32⎛⎫- ⎪⎝⎭.故答案为:31,,32⎛⎫- ⎪⎝⎭.16.如图PA 垂直于正方形ABCD 所在的平面,,M N 分别是,AB PC 的中点,并且1==PA AB .试建立适当的空间直角坐标系,求向量MN的坐标.【答案】11(0,,)22MN =【详解】因为1==PA AB ,PA ⊥平面ABCD ,AB AD ⊥,所以,,AB AD AP 是两两垂直的单位向量.设123e e AB AD AP e ===,,,以123{e e }e ,,为单位正交基底建立空间直角坐标系A xyz -,连接AC .如图所示,因为1111()2222MN MA AP PN AB AP PC AB AP PA AC ++=-++=-+=++23111111()e 222222AB AP PA AB AD AD AP e =-++++=+=+所以11(0)22MN =,,.17.如图所示,在正方体ABCD —A 1B 1C 1D 1中建立空间直角坐标系,若正方体的棱长为1,则AB 的坐标为____,1DC 的坐标为____,1B D 的坐标为_______.【答案】(1,0,0)(1,0,1)(1,1,1)--【详解】如题图示,11(0,0,0),(1,0,0),(0,1,0),(1,0,1),(1,1,1)A B D B C ,∴(1,0,0)(0,0,0)(1,0,0)AB =-=,1(1,1,1)(0,1,0)(1,0,1)DC =-=,1(0,1,0)(1,0,1)(1,1,1)B D =-=--.故答案为:(1,0,0),(1,0,1),(1,1,1)--.18.(多选)如图,在正三棱柱111ABC A B C -中,已知ABC 的边长为2,三棱柱的高为111,,BC B C 的中点分别为1,D D ,以D 为原点,分别以1,,DC DA DD 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则下列空间点及向量坐标表示正确的是()A .()10,3,1A B .()11,0,1CC .()10,3,1AD =-D .()13,3,1B A =-【答案】ABC【详解】在等边ABC 中,2,1AB BD ==,所以3AD =,则()()()1110,3,0,0,3,1,1,0,1,)(0,0,1A A C D ,()11,0,1B -,则()()110,3,1,1,3,1AD B A =-=-.故选:ABC高分突破1.点()1,2,3P -在坐标平面Oxy 内的射影的坐标为()A .()1,2,3B .()1,2,3---C .()1,2,0D .()0,0,3-【答案】C【详解】在空间直角坐标系中,可得点()1,2,3P -在坐标平面Oxy 内的射影的坐标为()1,2,0.故选:C.2.如图,在长方体1111ABCD A B C D -中,3AD =,4DC =,12DD =,以DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则点1B 的空间直角坐标为()A .()4,3,2B .()2,4,3C .()3,4,2D .()3,2,4【答案】C【详解】横坐标为点1B 到坐标面yDz 的距离,纵坐标为点1B 到坐标面xDz 的距离,竖坐标为点1B 到坐标面xDy 的距离,因为3AD =,4DC =,12DD =,所以点1B 的空间直角坐标为()3,4,2.故选:C.3.已知空间向量(1,2,3)a =-,则向量a 在坐标平面xOz 上的投影向量是()A .(0,1,2)-B .(1,2,0)-C .(0,2,3)D .(1,0,3)-【答案】D【详解】根据空间中点的坐标确定方法知,空间中点(1,2,3)A =-在坐标平面xOz 上的投影坐标,纵坐标为0,横坐标与竖坐标不变.所以空间向量(1,2,3)a =-在坐标平面xOz 上的投影向量是:(1,0,3)-,故选:D.4.在空间直角坐标系中,点()2,1,2M -和点()2,1,2N --的位置关系是()A .关于x 轴对称B .关于z 轴对称C .关于xOz 平面对称D .关于yOz 平面对称【答案】C【详解】在空间直角坐标系中,点()2,1,2M -和点()2,1,2N --两点x 坐标,z 坐标相同,y 坐标相反,所以()2,1,2M -和点()2,1,2N --关于xOz 平面对称,故选:C.5.若点()(),,0P x y z xyz ≠关于xOy 的对称点为A ,关于z 轴的对称点为B ,则A 、B 两点的对称是()A .关于xOy 平面对称B .关于x 轴对称C .关于y 轴对称D .关于坐标原点对称【答案】D【详解】点(),,P x y z 关于xOy 的对称点为(),,A x y z -,关于z 轴的对称点为(),,B x y z --,显然,A B 两点关于坐标原点对称.故选:D .6.笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是()A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---【答案】B【详解】由图可知,点(1,1,1)A --,所以点A 关于x 轴对称的点的坐标为(1,1,1).故选:B.7.在空间直角坐标系O xyz -,点()1,2,5A -关于平面yoz 对称的点B 为()A .()1,2,5--B .()1,2,5--C .()1,2,5---D .()1,2,5-【答案】B【详解】关于平面yoz 对称的点:横坐标互为相反数,纵坐标和竖坐标相同,故选:B8.向量(1,2,0),(1,0,6)OA OB ==-,其中C 为线段AB 的中点,则点C 的坐标为()A .(0,2,6)B .(2,2,6)--C .(0,1,3)D .(1,1,3)--【答案】C【详解】∵(1,2,0),(1,0,6)OA OB ==-,∴由中点坐标公式可得,线段AB 的中点C 的坐标为()0,1,3.故选:C .9.在空间直角坐标系中,点(1,4,3)P -与点Q (3,2,5)-关于点M 对称,则点M 的坐标为()A .(4,2,2)B .(2,1,2)-C .(2,1,1)D .(4,1,2)-【答案】C【详解】因为(1,4,3)P -与点Q (3,2,5)-,M 为PQ 的中点,所以由中点公式可知M 的坐标为()2,1,1.故选:C10.已知点1M ,2M 分别与点(1,2,3)M -关于x 轴和z 轴对称,则12M M =()A .(2,0,6)-B .(2,0,6)-C .(0,4,6)-D .(0,4,6)-【答案】A【详解】依题意,点(1,2,3)M -关于x 轴对称点1(1,2,3)M -,关于z 轴对称点2(1,2,3)M -,所以12(2,0,6)M M =-.故选:A11.(多选)已知正方体1111ABCD A B C D -的棱长为2,建立如图所示的空间直角坐标系Dxyz ,则()A .点1C 的坐标为(2,0,2)B .()12,2,2C A =--C .1BD 的中点坐标为(1,1,1)D .点1B 关于y 轴的对称点为(-2,2,-2)【答案】BCD【详解】根据题意可知点1C 的坐标为(0,2,2),故A 错误;由空间直角坐标系可知:1(2,0,0),(2,2,2)A C A =--,故B 正确;由空间直角坐标系可知:1(2,2,0),(0,0,2)B D ,故1BD 的中点坐标为(1,1,1),故C 正确;点1B 坐标为(2,2,2),关于于y 轴的对称点为(-2,2,-2),故D 正确,故选:BCD12.(多选)已知四边形ABCD 的顶点分别是()312A -,,,()121B -,,,()113C --,,,()353D -,,,那么以下说法中正确的是()A .()233AB =--,,B .A 点关于 x 轴的对称点为()312-,,C .AC 的中点坐标为()201--,,D .D 点关于xOy 面的对称点为()353--,,【答案】ABD【详解】由于四边形ABCD 的顶点分别是(3A ,1-,2),(1B ,2,1)-,(1C -,1,3)-,(3D ,5-,3),对于A :(2,3,3)AB =--,故A 正确;对于B :点A 关于x 轴对称的点的坐标为(3,1,2)-,故B 正确;对于C :AC 的中点坐标为(1,0,1)2-,故C 错误;对于D :点D 关于xOy 面的对称点为(3,5-,3)-,故D 正确;故选:ABD .13.点(),,P a b c 到坐标平面yOz 的距离是______.【答案】a【详解】由已知可得点(),,P a b c 到坐标平面yOz 的距离是a .故答案为:a .14.在空间直角坐标系中,点P 的坐标为()2,4,3-,过P 作xOz 平面的垂线,垂足为Q ,则Q 点的坐标为______.【答案】()2,0,3Q 【详解】由于垂足Q 在xOz 平面内,可设(),0,x z ,因为PQ ⊥平面xOz ,所以,P Q 两点的横坐标和竖坐标相等,故()2,0,3Q ,故答案为:()2,0,3Q .15.在空间直角坐标系中,点()1,4,2M --在xOz 平面上的射影的坐标是______,点M 关于原点对称的点的坐标是______.【答案】()1,0,2--()1,4,2-【详解】点()1,4,2M --在xOz 平面上的射影的坐标是()1,0,2--,点()1,4,2M --关于原点对称的点的坐标是()1,4,2-,故答案为:()1,0,2--,()1,4,2-16.若点()2,3,1A v μ--+关于x 轴的对称点为(),5,6A λ'-,则λ=___________,μ=___________,=v ___________.【答案】287【详解】点()2,3,1A v μ--+关于x 轴的对称点为()2,3,1v μ--,又其坐标为(),5,6λ-,故可得2,8,7v λμ===.故答案为:2;8;7.17.在空间直角坐标系中,已知点(,,)P x y z ,下列叙述中,正确的序号是_______.①点P 关于x 轴的对称点是1(,,)P x y z -②点P 关于yOz 平面的对称点是2(,,)P x y z --③点P 关于y 轴的对称点是3(,,)P x y z -④点P 关于原点的对称点是4(,,)P x y z ---【答案】④【详解】①点P 关于x 轴的对称点的坐标是(x ,y -,)z -,故①错误;②点P 关于yOz 平面的对称点的坐标是(x -,y ,)z ,则②错误;③点P 关于y 轴的对称点的坐标是(x -,y ,)z -,则③错误;④点P 关于原点的对称点的坐标是(x -,y -,)z -,故④正确,故正确的序号是④.故答案为:④.18.已知()3,1,2a =-,a 的起点坐标是()2,0,5-,则a 的终点坐标为______.【答案】()5,1,3--【详解】设a 的终点坐标为(),,x y z ,由题可得:()()2,,53,1,2x y z -+=-,故可得5,1,3x y z ==-=-,即a 的终点坐标为()5,1,3--.故答案为:()5,1,3--.19.已知(357)A -,,、(243)B -,,,设点A 、B 在yOz 平面上的射影分别为1A 、1B ,则向量11A B 的坐标为________.【答案】(0110)-,,【详解】点(357)A -,,、(243)B -,,在yOz 平面上的射影分别为1(057)A -,,、1(043)B ,,,∴向量11A B 的坐标为(0110)-,,.故答案为:(0110)-,,.20.已知三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,若3PA =,1AB =,2AC =,先建立空间直角坐标系.(1)求各顶点的坐标;(2)若点D 在线段PC 上靠近点P 的三等分点,求点D 的坐标.【详解】(1)因为PA ⊥平面ABC ,所以PA AC ⊥,PA AB ⊥,又因为AB AC ⊥,所以建立以点A 为原点,以射线AB 、AC 、AP 为x 轴、y 轴、z 轴的正半轴的空间直角坐标系,如图所示:因为3PA =,1AB =,2AC =,所以()0,0,0A 、()1,0,0B 、()0,2,0C 、()0,0,3P ;(2)若D 点在线段PC 上靠近P 点的三等分点,所以2CD DP =,设点D 的坐标为(),,x y z ,则020*******,1230232,12x y z +⋅⎧==⎪+⎪+⋅⎪==⎨+⎪+⋅⎪==⎪+⎩所以20,,23D ⎛⎫⎪⎝⎭.21.如图,在长方体1111ABCD A B C D -中,AB 4=,3AD =,15AA =,N 为棱1CC 的中点,分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z轴,建立空间直角坐标系.(1)求点1111,,,,,,,A B C D A B C D 的坐标;(2)求点N 的坐标.【详解】(1)D 为坐标原点,则()0,0,0D ,点A 在x 轴的正半轴上,且3AD =,()3,0,0A ∴,同理可得:()0,4,0C ,()10,0,5D .点B 在坐标平面xOy 内,BC CD ⊥,BA AD ⊥,()3,4,0B ∴,同理可得:()13,0,5A ,()10,4,5C ,与B 的坐标相比,点1B 的坐标中只有z 坐标不同,115BB AA ==,()13,4,5B ∴.综上所述:()3,0,0A ,()3,4,0B ,()0,4,0C ,()0,0,0D ,()13,0,5A ,()13,4,5B ,()10,4,5C ,()10,0,5D .(2)由(1)知:()0,4,0C ,()10,4,5C ,则1CC 的中点N 为004405,,222+++⎛⎫ ⎪⎝⎭,即50,4,2N ⎛⎫ ⎪⎝⎭.22.如图,正方体OABC D A B C ''''-的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C D '',D A '',A A ',AB ,BC ,CC '的中点,写出正六边形EFGHIJ 各顶点的坐标.【答案】0,,2a E a ⎛⎫ ⎪⎝⎭,,0,2a F a ⎛⎫ ⎪⎝⎭,,0,2a G a ⎛⎫ ⎪⎝⎭,,,02a H a ⎛⎫ ⎪⎝⎭,,,02a I a ⎛⎫ ⎪⎝⎭,0,,2a J a ⎛⎫ ⎪⎝⎭.【详解】因为正方体OABC D A B C ''''-的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C D '',D A '',A A ',AB ,BC ,CC '的中点所以0,,2a E a ⎛⎫ ⎪⎝⎭,,0,2a F a ⎛⎫ ⎪⎝⎭,,0,2a G a ⎛⎫ ⎪⎝⎭,,,02a H a ⎛⎫ ⎪⎝⎭,,,02a I a ⎛⎫ ⎪⎝⎭,0,,2a J a ⎛⎫ ⎪⎝⎭23.已知三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,若3PA =,2AB =,2AC =,建立空间直角坐标系.(1)求各顶点的坐标;(2)若点Q 是PC 的中点,求点Q 坐标;(3)若点M 在线段PC 上移动,写出点M 坐标.【详解】(1)在三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,则射线,,AB AC AP 两两垂直,以点A 为原点,射线,,AB AC AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,所以(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,3)P .(2)由(1)知,点Q 是PC 中点,则3(0,1,)2Q .(3)由(1)知,点M 在线段PC 上移动,则点M 的横坐标为0,设其纵坐标为t (02)t ≤≤,其竖坐标z ,当M 与A 不重合时,23,3322z t z t -==-,当M 与A 重合时,z =3满足上式,因此332z t =-,所以点3(0,,3)(02)2M t t t -≤≤.。

空间直角坐标系级

空间直角坐标系级
z
R M
O
Qy
P
M’
x
三、空间点的坐标:
设点P、Q和R在x轴、y轴和z轴上的坐标分别
是x,y和z,这样空间一点M的坐标可以用有序实
数组(x,y,z)来表示, (x,y,z)叫做点M 在此
空间直角坐标系中的坐标,记作M(x,y,z).
z
其中x叫做点M的横坐标,
R
M
y叫做点M的纵坐标,
O
P
Q M’
y z叫做点M的竖坐标.
数轴上的点
B
A
-2 -1 O 1 2 3
x
数轴上的点可以用 唯一的一个实数表示
y y
O
平面坐标系中的点
P (x,y)
平面中的点可以用
x
x
有序实数对(x,y) 来表示点
如何确定空中飞行的飞机 的位置?
一、空间直角坐标系: z
以单位正方体 OABC DABC的 D'
C'
顶点O为原点,分别以射线OA, A'
B'
OC,OD 的方向为正方向,以
O
C
y
线段OA,OC, OD的长为单位 A
B
长度,建立三条数轴:x轴,y轴, x
z轴,这时我们建立了一个空间直角坐标系 O xy。z
点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴, 这三条坐标轴中每两条确定一个坐标平面,分别
称为xoy平面、 yoz平面、和 zox平面.
z
z • P3
1
•o
x
x

P1
1
1
•P
y
• P2 y
P点坐标为 (x,y,z)
方法二:过P点作xOy面的垂线,垂足为P0点。点P0

空间直角坐标系

空间直角坐标系

一、空间向量的基本概念
平面向量
空间向量
定义
具有大小和方向的量
表示法 几何表示:有向线段 AB 字母表示: a
向量的模
向量的大小 AB a
相等向量 相反向量 单位向量 零向量
长度相等且方向相同的向量 长度相等且方向相反的向量 模为1的向量,没有规定方向 模为0的向量,与任何向量共线
空间任意两个向量都可以平移到同一个平面内,
( x y z 1)
判断四点共面,或直线平行 于平面
1.下列命题中正确的有:B
(1) p xa yb p 与 a 、b 共面 ; (2) p 与 a 、b 共面 p xa yb ;
(3) MP x MA y MB P、M、A、B共面;
(4) P、M、A、B共面 MP xMA yMB ;
预备知识
数轴Ox上的点M
实数x
O
直角坐标平面上的点M
y
M
x
x
实数对(x,y)
y A(x,y)
Ox
x
一、空间直角坐标系 —Oxyz
z
竖轴
1
纵轴
o
1
1
y
x
右手直角坐标系
横轴
右手直角坐标系:在空间直角坐标系中,让 右手拇指指向 x 轴的正方向,食指指向 y 轴的 正方向,如果中指指向 z 轴的正方向,则称这 个坐标系为右手直角坐标系.
【温故知新】
平面向量基本定理:
如果e1,e2是同一平面内的两个不共线向量, 那么对于这一平面内的任一向量a,有且只有
一对实数1,2,使a=1e1+2 e2。
(e1、e2叫做表示这一平面内所有向量的一组基底。)
五、共面向量
2. 如果两个向量 a,不b 共线,

空间直角坐标系通用课件

空间直角坐标系通用课件
向量的数量积、向量积和混合积
通过向量的数量积、向量积和混合积,可以研究向量的长度、角度、向量的平行 与垂直等关系。
空间几何图形的表示与计算
平面几何图形
在空间直角坐标系中,可以表示平面几何图形,如三角形、 四边形、圆等,并研究其性质和计算面积、体积等。
立体几何图形
利用空间直角坐标系,可以表示三维几何图形,如长方体、 圆柱体、圆锥体等,并研究其性质和计算表面积、体积等。
各坐标轴的单位长度可以 根据实际需要设定,通常 为厘米或米等。
空间点的坐标表示
点P的坐标
在空间直角坐标系中,任意一点P可以用三个实数来表示,这三个实数分别是 点P在三个坐标轴上的投影点的坐标值。
坐标表示方法
设点P在x轴、y轴和z轴上的投影点分别为P₁、P₂和P₃,则点P的坐标可以表示为 (x, y, z),其中x=x₁, y=y₂, z=z₃。
柱面坐标系是以某一方向为轴线 ,以原点为中心,以一定长度为 范围的柱面来表示空间位置的坐
标系。
三个参数
柱面坐标系由三个参数确定,分别 是方位角、仰角和距离。
转换关系
柱面坐标系与直角坐标系之间可以 通过一系列的坐标变换进行转换。
任意曲线坐标系
定义
任意曲线坐标系是指以任意曲线为轴 线,以该曲线上某一点为中心,以一 定长度为范围的曲线来表示空间位置 的坐标系。
旋转变换可以用旋转变换矩阵来表示,该矩阵表示了每个点在旋转过程中 的角度和旋转轴的方向。
旋转变换在三维空间中也是可逆的,即可以通过旋转变换矩阵的逆矩阵来 恢复原始位置。
坐标变换的矩阵表示
坐标变换的矩阵表示是一种通用的方法,可以将平移变换和旋转变换等操作统一表示为 矩阵乘法运算。
通过坐标变换的矩阵表示,我们可以方便地实现三维空间中任意两个坐标系之间的转换 ,从而方便地描述三维空间中物体的位置和运动状态。

空间直角坐标系概念

空间直角坐标系概念

空间直角坐标系概念空间直角坐标系是描述三维空间中点位置的一种数学工具。

它由三条相互垂直的轴组成,分别称为x轴、y轴和z轴,并且它们的交点被定义为原点O。

坐标轴及取向空间直角坐标系的坐标轴分别沿着三个方向延伸,形成一个三维的直角坐标网格。

其中,x轴水平向右延伸,y轴垂直向上延伸,z轴从原点O垂直向外延伸。

三个坐标轴的正向取向约定如下:•x轴正向:由原点O指向右侧•y轴正向:由原点O指向上方•z轴正向:由原点O指向观察者坐标表示在空间直角坐标系中,点的位置可以通过坐标进行表示。

每个点的坐标由三个实数(x, y, z)表示,其中x代表点在x轴上的投影长度,y代表点在y轴上的投影长度,z代表点在z轴上的投影长度。

点的坐标表示可以用元组表示法:(x, y, z),例如点P的坐标为(3, 4, 5),表示P 在x轴上的投影长度为3,y轴上的投影长度为4,z轴上的投影长度为5。

坐标系与空间图形的关系空间直角坐标系为我们描述和研究三维空间中的几何和物理问题提供了方便。

通过坐标系,我们可以精确地描述和定位空间中的点、直线、平面以及各种立体图形。

对于在坐标系中给定的点P(x, y, z),我们可以通过确定其在每个坐标轴上的投影长度来准确地找到这个点。

同时,我们可以绘制平行于坐标轴的直线、平面和正多面体等图形,并通过坐标轴的刻度对它们进行测量。

坐标系转换在空间直角坐标系中,我们可以使用坐标系转换来完成不同坐标系之间的转换。

常见的坐标系转换包括:1.直角坐标系到柱坐标系的转换:给定点的直角坐标(x, y, z),可以通过计算极径r和极角θ来表示它在柱坐标系中的位置。

2.直角坐标系到球坐标系的转换:给定点的直角坐标(x, y, z),可以通过计算球心到该点的距离ρ,极角θ和方位角φ来表示它在球坐标系中的位置。

坐标系转换可以方便地在不同的坐标系中描述和研究问题,使问题的处理更加灵活和高效。

总结空间直角坐标系是描述三维空间中点位置的数学工具。

空间直角坐标系(98)

空间直角坐标系(98)

三个数轴分别称为x轴、y轴和z 轴,它们互相垂直并相交于原点
O。
空间直角坐标系具有三个基本性 质:坐标轴的正方向、单位长度
和原点位置。
坐标轴与坐标平面
x轴、y轴和z轴统称为坐标轴, 它们分别代表不同的方向。
由任意两个坐标轴确定的平面 称为坐标平面,共有三个:xy 平面、yz平面和zx平面。
坐标平面将空间分为八个象限, 每个象限内的点具有特定的坐 标符号组合。
通过已知点作给定直线的垂线,求出垂足坐标,再利用两点间
距离公式计算点到直线的距离。
两异面直线距离计算
公垂线法
找出两异面直线的公垂线,然后利用公垂线的长度计算两异面直 线的距离。
向量法
分别求出两异面直线上任意两点的向量,然后利用向量间的夹角 和模长计算两上的直线,然后利用平面几何知识 求解两直线的距离。
面。
点法式
$A(x-x_0)+B(y-y_0)+C(zz_0)=0$,其中$(x_0,y_0,z_0)$ 为平面上一点,$A,B,C$为平面
的法向量。
三点式
通过平面上不共线的三点 $(x_1,y_1,z_1),(x_2,y_2,z_2),(x_ 3,y_3,z_3)$可确定一个平面。
直线与平面位置关系判断
点在空间直角坐标系中表示
空间中的任意一点P可以用三个 实数x、y、z来表示,称为点P的
坐标,记作P(x,y,z)。
坐标x、y、z分别表示点P到x轴、 y轴和z轴的垂直距离,距离的正
负号由点P所在的象限确定。
原点O的坐标为(0,0,0),它是空 间中唯一一个三个坐标都为0的
点。
02 空间向量及其运算
几种常见的空间曲面
球面、柱面、旋转曲面等。例如,球 心在原点、半径为$R$的球面方程为 $x^2+y^2+z^2=R^2$。

空间直角坐标系

空间直角坐标系
一、空间直角坐标系
从空间某一点O引三条互相垂直的射线 从空间某一点 引三条互相垂直的射线Ox、Oy、Oz. 引三条互相垂直的射线 并取定长度单位和方向, 并取定长度单位和方向,就建立了空间直角坐标系 .其 其 点称为坐标原点 数轴Ox, Oy, Oz称为坐标轴,每两 坐标原点, 称为坐标轴 中O 点称为坐标原点,数轴 称为坐标轴, 个坐标轴所在的平面Oxy、Oyz、Ozx叫做坐标平面 叫做坐标平面 个坐标轴所在的平面 叫做坐标平面. 三个坐标轴的正方向符合右手系 右手系. 三个坐标轴的正方向符合右手系 z 竖轴
2
解得x = 9或x = −1.
所以点P的坐标为(9,0,0)或(-1,0,0)。
12
例3 在xoy平面内的直线x+y=1上确定一点M,使M到 点N(6,5,1)的距离最小。 解 由已知,可设M(x,1-x,0),则
MN = ( x − 6) 2 + (1 − x − 5) 2 + (0 − 1) 2
射线AB, 分别为x轴 轴的正半轴, 射线 ,AD,AA分别为 轴,Y轴,z轴的正半轴,建立空间 分别为 轴 轴的正半轴 直角坐标系,求各顶点坐标。 直角坐标系,求各顶点坐标。
z
A’ B’ O C’ D’
o A
D C
Cy
x
B
7
回顾与复习
长方体的对角线公式 已知长方体的长、宽、高分别为a,b,c
D1 A1 D C b A a B B1 C1 c
P (3,−2,5), P2 (6,0,−1) 两点间 1
11
例2 给定空间直角坐标系,在x轴上找一点P,
使它与点P0 (4,1,2)的距离为 30。
解 设点P的坐标是( x,0,0),由题意,0 P = 30 , P

空间直角坐标系

空间直角坐标系

05
空间直角坐标系的发展 历程
空间直角坐标系的起源和发展
起源:古希腊时期, 欧几里得提出平面 直角坐标系
发展:16世纪, 笛卡尔将平面直角 坐标系推广到三维 空间
应用:17世纪, 牛顿和莱布尼茨使 用空间直角坐标系 进行科学研究
现代发展:20世 纪,空间直角坐标 系在物理学、工程 学等领域得到广泛 应用
04
空间直角坐标系与笛卡 尔坐标系的关系
笛卡尔坐标系的概念和性质
笛卡尔坐标系是 数学中常用的坐 标系之一,由法 国数学家笛卡尔 提出
笛卡尔坐标系由 三个相互垂直的 坐标轴组成,通 常用x、y、z表 示
笛卡尔坐标系中 的点可以用三个 坐标值(x、y、 z)来表示,这 三个坐标值分别 对应三个坐标轴 上的位置
空间直角坐标系
XXX,a click to unlimited possibilities
汇报人:XXX
目录 /目录
01
空间直角坐标 系的定义
02
空间直角坐标 系的性质
03
空间直角坐标 系的应用
04
空间直角坐标 系与笛卡尔坐 标系的关系
05
空间直角坐标 系的发展历程
01 空间直角坐标系的定义
空间直角坐标系的定义和概念
空间直角坐标系是 描述三维空间中点 的位置的一种方法
空间直角坐标系由 三个互相垂直的坐 标轴组成,通常用 x、y、z表示
空间直角坐标系中 的点可以用三个坐 标值(x、y、z) 来表示
空间直角坐标系中 的点可以用向量来 表示,向量的起点 是原点,终点是点 所在的位置
空间直角坐标系的构成
原点:空间直角坐标系的中心点 坐标轴:x轴、y轴、z轴,分别代表三个相互垂直的方向 单位长度:规定每个坐标轴上的单位长度 坐标值:表示点在空间中的位置,由三个坐标值组成,分别对应x轴、y轴、z轴上的位置
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z D
4
3
O
y
1
D`
x
P3(1, 1,1) z
o
x
P1(1, 1, 1)
P(1,1,1)
y
P2 (1,1, 1)
四、空间点的对称问题:
点M(x,y,z)是空间直角坐标系O-xyz中的一点
(1)与点M关于x轴对称的点: (x,-y,-z) (2)与点M关于y轴对称的点: (-x,y,-z) (3)与点M关于z轴对称的点: (-x,-y,z) (4)与点M关于原点对称的点: (-x,-y,-z)
的坐标.并指出哪些点在坐标轴上,哪些点在坐标平面上.
z
(0,0,1) D '
(1,0,1) A '
C '(0,1,1)
B '(1,1,1)
O(0,0,0) C(0,1,0) y
A(1,0,0) B(1,1,0)
x
三、特殊位置的点的坐标:
z
•C
1

E

F
B
O• 1 •
•1
A
•D
x
点P的位置
y
原点O
小提示:坐标轴
[答案] A
空间直角坐标系中任意 一点的位置如何表示?
二、空间点的坐标:
设点M是空间的一个定点,过点M分别作垂直 于x 轴、y 轴和z 轴的平面,依次交x 轴、y 轴 和z 轴于点P、Q和R.
z
R M
O
Qy
P
M’
x
二、空间点的坐标:
设点P、Q和R在x轴、y轴和z轴上的坐标分别
是x,y和z,这样空间一点M的坐标可以用有序实
上的点至少有两个
坐标等于0;坐标面
上的点至少有一个
坐标等于0。
X轴上A Y轴上B Z轴上C
坐标形式 (0,0,0) (x,0,0) (0,y,0) (0,0,z)
D E F 点P的位置 X Y面内
Y Z面内
Z X面内
坐标形式 (x,y,0) (0,y,z) (x,
•C
z
D` 3 P
C`
A`
B`
3O
A x
4
P` C y
B
练习
2、如图,棱长为a的正方体OABC-D`A`B`C`中,对 角线OB`于BD`相交于点Q.顶点O为坐标原点,OA, OC分别在x轴、y轴的正半轴上.试写出点Q的坐标.
z
D`
C`
A`
B`
Q
O Q`
C y
A
B
x
[拓展] 1.空间中两点 P1(x1,y1,z1),P2(x2,y2,z2),线段P1P2 的中点为P0(x0,y0,z0),则
规律:关于谁对称谁不变,其余的相反。
z
P1(1, 1,1)
o
x
P2 (1,1,1)
P(1,1,1)
y
P3(1,1, 1)
五、空间点的对称问题:
点M(x,y,z)是空间直角坐标系O-xyz中的一点
(5)与点M关于平面xOy的对称点: (x,y,-z) (6)与点M关于平面yOz的对称点: (-x,y,z) (7)与点M关于平面zOx的对称点: (x,-y,z)
在教室里同学们的位置坐标
z
y O
x
一、空间直角坐标系: z
以单位正方体 OABC DABC的 D'
C'
顶点O为原点,分别以射线OA,A'
B'
OC,OD 的方向为正方向,以 O
Cy
线段OA,OC, OD的长为单位 A
B
长度,建立三条数轴:x轴,y轴, x
z轴,这时我们建立了一个空间直角坐标系 Oxyz。
1

E
xoy平面上的点竖坐标为0 yoz平面上的点横坐标为0

F
O•
B
1•
xoz平面上的点纵坐标为0
y
•1
A
•D
(2)坐标轴上的点:
x
x轴上的点纵坐标和竖坐标都为0
y轴上的点横坐标和竖坐标都为0
z轴上的点横坐标和纵坐标都为0
例1: 在长方体OABC DABC中,
OA 3,OC 4,OD 2,
写出所有点的坐标.
z
2 D '(0,0,2)
C '0,4,2
3,0,2A '
B '(3,4,2)
O 0,0,0
4y
3
x A (3,0,0)
C (0,4,0) B (3,4,0)
练习
1、如下图,在长方体OABC-D`A`B`C`中, |OA|=3,|OC|=4,|OD`|=3,A`C`于B`D`相交于 点P.分别写出点C,B`,P的坐标.
点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,
这三条坐标轴中每两条确定一个坐标平面,分别
称为xoy平面、 yoz平面、和 zox平面.
在空间直角坐标系中 , 让右手拇指
指向 x 轴的正方向 , 食指指向 y 轴
的正方向 , 如果中指能指向 z 轴的
正方向 , 则称这个坐标系为
右手直角坐标系
zz
O
yy
xx
空间直角坐标系的画法:
1.x轴与y轴、x轴与z轴均成1350, z 而z轴垂直于y轴.
2.y轴和z轴的单位长度相同, 1350o
x轴上的单位长度为y轴
1350
y
(或z轴)的单位长度的一半. x
空间直角坐标系中,三条坐标轴 ( ) A.两两垂直且相交于一点 B.两两平行 C.仅有两条不垂直 D.仅有两条垂直
X
§4.3 空间直角坐标系
1、空间直角坐标系的建立 ; 2、空间点的坐标 ; 3、特殊位置的点的坐标 ; 4、空间点的对称问题。
数轴上的点
B
A
-2 -1 O 1 2 3
x
数轴上的点可以用 唯一的一个实数表示
y y
O
平面坐标系中的点
P (x,y)
平面中的点可以用
x x 有序实数对(x,y)
来表示点
数组(x,y,z)来表示, (x,y,z)叫做点M 在此
空间直角坐标系中的坐标,记作M(x,y,z).
z
R M
其中x叫做点M的横坐标, y叫做点M的纵坐标,
O
P
x
Q M’
y z叫做点M的竖坐标.
空间点的坐标(以正方体为例)
OABC—A’B’C’D’是单位正方体.以 O为原点,分别以射 线OA,OC, OD’的方向为正方向,以线段 OA,OC, OD’的长为单 位长,建立 空间直角坐标系O—xyz.试说出正方体的各个顶点
x0=x1+2 x2, y0=y1+2 y2, z0=z1+2 z2.
这个公式称为空间直角坐标系中的中点
坐标公式,是平面直角坐标系中中点坐标公式的拓展.
点P(1,4,-3)与点Q(3,-2,5)的中点坐标是( )
A.(4,2,2)
B.(2,-1,2)
C.(2,1,1)
D.(4,-1,2)
[答案] C
[解析] 根据空间中点坐标公式,可得中点坐标为 (1+2 3,4-2 2,-32+5),即(2,1,1).
想一想:
在空间直角坐标下,如何 找到给定坐标的空间位置?
D(1,3,4)
在空间直角坐标系中标出D点: D(1,3,4)
z
4
3
O
y
1
D`
x
在空间直角坐标系中标出D点: D(1,3,4)
相关文档
最新文档