Moldflow模流分析经典报告(简体版)
(完整版)MOLDFLOW分析报告
引言概述:MOLDFLOW分析是一种重要的工具,广泛应用于塑料制品设计和生产过程中。
它可以提供关于模具充填、冷却和固化的详细信息,帮助设计师优化模具设计,提高产品质量和生产效率。
本文将通过分析报告的方式,详细介绍MOLDFLOW分析的应用和意义。
正文内容:一、模具充填分析1. 熔体流动模拟:对熔体在模具中的流动进行模拟,可以分析熔体的充填情况、充填时间和充填压力等参数,以及可能出现的缺陷,如短充、气泡等。
2. 塑料充填模拟:通过模拟塑料在模具中的充填过程,可以评估模具的设计是否合理,以及可能存在的充填不良、厚薄不均等问题。
3. 充填时间分析:根据模具充填模拟的结果,可以计算出塑料充填的时间,从而优化生产周期和工艺参数。
二、冷却系统分析1. 冷却效果模拟:通过模拟冷却系统的布局和工艺参数,在模具充填结束后,对模具进行冷却效果的分析。
可以评估冷却系统的设计是否合理,以及可能存在的冷却不均、温度过高等问题。
2. 温度分布模拟:根据冷却系统分析结果,可以计算出模具内部的温度分布,帮助优化冷却系统的设计和工艺参数。
3. 冷却时间分析:根据冷却系统模拟的结果,可以计算出模具冷却的时间,从而优化生产周期和工艺参数。
三、固化模拟分析1. 熔体固化分析:通过模拟塑料在模具中的固化过程,可以评估模具冷却效果和固化时间,避免可能出现的缺陷,如收缩、变形等。
2. 温度变化分析:根据固化模拟分析结果,可以计算出模具内部的温度变化曲线,帮助优化冷却系统和固化参数的设计。
3. 固化时间分析:根据固化模拟分析的结果,可以计算出模具固化的时间,从而优化生产周期和工艺参数。
四、缺陷分析1. 模具缺陷预测:通过模拟模具充填、冷却和固化的过程,可以预测可能出现的缺陷,如短充、气泡、收缩等,并给出相应的解决方案。
2. 缺陷修复优化:根据缺陷分析结果,可以优化模具设计和工艺参数,减少缺陷的发生,并提高产品质量和生产效率。
五、效果验证与总结1. 效果验证:通过对MOLDFLOW分析结果与实际生产产品进行对比,验证分析的准确性和可靠性,并修正和改进分析模型。
Moldflow模流分析报告
Moldflow模流分析报告→↓←↓1.网格划分(如右图)节点3880柱体0连通区域 1网格体积269.066 cm^3网格面积1874.25 cm^2 边详细信息----------------------------------- 自由边0共用边11634交叉边0配向详细信息--------------------------------- 配向不正确的单元0相交详细信息---------------------------------完全重叠单元0复制柱体0三角形纵横比--------------------------------- 最小纵横比 1.161000最大纵横比14.951000平均纵横比 1.933000匹配百分比----------------------------------- 匹配百分比94.2%相互百分比91.5%2.最佳浇口的选定分析结果如下:流动正在使用存储的网格匹配和厚度数据匹配数据是使用最大球体算法计算的最大设计锁模力 = 5600.18 tonne 最大设计注射压力 = 144.00 MPa 建议的浇口位置有:靠近节点 = 31060由图看出最佳浇口选在底面蓝色部分,可信度较高,用侧浇口注射3.填充选择材料PP+40%talc)以及注塑机250t锁模力,以及250g当量注射量,螺杆直径42mm进行填充,分析结果如下:充填阶段结果摘要 :最大注射压力 (在 1.463 s) = 20.2729 MPa充填阶段结束的结果摘要 :充填结束时间 = 1.5034 s总重量(制品 + 流道) = 217.8620 g最大锁模力 - 在充填期间 = 33.6416 tonne制品的充填阶段结束的结果摘要 :制品总重量(不包括流道) = 217.8620 g体积温度 - 最大值 = 231.2270 C体积温度 - 第 95 个百分数 = 229.7820 C体积温度 - 第 5 个百分数 = 216.7120 C体积温度 - 最小值 = 209.1650 C体积温度 - 平均值 = 225.1160 C体积温度 - 标准差 = 3.7478 C剪切应力 - 最大值 = 0.2002 MPa 剪切应力 - 第 95 个百分数 = 0.0766 MPa 剪切应力 - 平均值 = 0.0444 MPa 剪切应力 - 标准差 = 0.0223 MPa冻结层因子 - 最大值 = 0.2441冻结层因子 - 第 95 个百分数 = 0.1954冻结层因子 - 第 5 个百分数 = 0.0464冻结层因子 - 最小值 = 0.0000冻结层因子 - 平均值 = 0.1267冻结层因子 - 标准差 = 0.0480剪切速率 - 最大值 = 7059.0698 1/s 剪切速率 - 第 95 个百分数 = 473.1520 1/s 剪切速率 - 平均值 = 158.8660 1/s 剪切速率 - 标准差 = 209.9460 1/s4.冷却分析分析结果如图:水道布置可从图中看出冷却介质温度进水口冷却介质温度冷却介质温度升高节点范围在回路上128 25.0 - 25.5 0.5 C288 25.0 - 26.3 1.3 C162 25.0 - 25.4 0.4 C426 25.0 - 25.6 0.6 C最后的回路温度残余: 0.00000E+00型腔温度结果摘要=====================================型腔表面温度 - 最大值 = 84.9090 C 型腔表面温度 - 最小值 = 31.8350 C 型腔表面温度 - 平均值 = 50.0860 C 平均模具外部温度 = 30.0670 C 循环时间 = 35.0000 s。
moldflow模流分析
模流分析报告
单位:
作者:
学号:
日期:
一、模型修复及网格划分
二、浇口位置分析
材料:牌号为Hostacom M3 U42 L204110
推荐工艺:模具表面温度:55℃
熔体温度:230℃
最大剪切应力:0.25MPa
最大剪切速率:100000 1/s
模具温度范围(推荐):20-90℃
熔体温度范围(推荐):200-260℃
绝对最大熔体温度:300℃
顶出温度:112℃
浇口位置分析结果如下:
三、充填分析
分析总结
此次分析的模型需要极强的moldflow运用能力,分析耗时时间很长。
在纵横比修复过程中也遇到了很大的困难,但是在这期间同学们给予了我不少的帮助,使我猜能够顺利的完成这次分析。
虽然这次做的过程中出现了很多次的失败,但是我相信,在处理这些问题时所用到的和处理问题的方法在我以后的人生中会给予我很大的帮助。
Moldflow模流分析报告
体积收缩示意图
从上图可以看出此产品的收缩趋势明显,并且收缩的一致性较差. 因此推荐采用较大的保压压力及较长的保压时间
气孔
可能出现的气孔位置如上图所示的紫色区域
熔接线
图上可能看出熔接线的位置,但深度不足以影响产品的机械性能
翘曲变形, 所有的方向
可能发生的翘曲变形如 右图所示 X方向的变形 此变形结果包括了收缩 变形 可以根据图上数值进行 判断
Back ground
1. 2. 3. 4. 5. 6. 7. 使用软件: Moldflow plastics insight 6.1. 网格类型: fusion(表面网格). 塑胶材料: Zytel EMX 505A (PA66+20%GF, DuPont Engineering Polymers (Moldflow Verified)). 分析序列: 冷却->填充->-饱和->变形. 分析目的: a). 预测成型缺陷 b)预测变形趋势.
由上表可以看出,此材料较容易充填,并且对温度的变化不敏感..
有限元模型分析
Entity counts-------------------------------Surface triangles 28290 Nodes Connectivity regions 7 Mesh volume 19.8781 cm^3 Mesh area 1549.36 cm^2
注塑参数设置(参考)
Temperature Settings -----------------------------------------------------------------------------Melt temperature: 280.0000 C Mold cavity_side temperature: 75.0000 C Mold core-side temperature: 75.0000 C -----------------------------------------------------------------------------Injection Settings -----------------------------------------------------------------------------Injection control method: Injection Time Injection Time: 1.5000 s Nominal Flow rate: 285.2910 cm^3/s Packing pressure profile Duration Pressure (s) (MPa) 0.0000 80.0000 5.0000 80.0000 1.9094 0.0000 Cooling time: 33.4732 s -----------------------------------------------------------------------------Results from Flow Analysis -----------------------------------------------------------------------------Total volume of the part and cold runners: 427.9370 cm^3 Switch-over Pressure: 53.0071 MPa Maximum clamp force required: 164.9420 tonne
Moldflow模流分析报告范例
14
Shear Stress at Wall 最大剪切应力
流道系统上最大剪切应力: 2.8MPa 产品上最大剪切应力:0.4MPa
一般产品上的最大剪切应力,不要超过成型材料所允许的数值(如第8页所示, 该材料允许最大剪切应力为0.5MPa )。剪切应力太大,产品易开裂。
通过加大最大剪切应处壁厚,降低注塑速度,采用低粘度的材料,提高料温,可 减小剪切速率。
一般,脱模时相邻区域的体积收缩值相差>2%,产品表面易出现缩水。
可通过优化产品壁厚、浇口放置在壁厚区域、加大保压等措施,来降低 体积收缩。
DESIGN SOLUTIONS
18
Frozen Layer Fraction 凝固层因子
6.3s 12.2s 30.9s
Frozen Layer Fraction反映的是产品的凝固顺序。该产品在6.3秒时,红色区 域已凝固,导致安装孔位保压不足,故体积收缩较大,易出现表面缩水。 当产品100%凝固,冷流道系统凝固50%以上。产品可脱模。从而确定该产 品成型周期31s(不包括开合模时间)。 可通过优化冷却水路排布、降低局部壁厚区域的厚度、优化冷流道尺寸,来 缩短成型周期。
DESIGN SOLUTIONS
19
Sink Mark Estimate 凹痕深度
一般,凹痕数值>0.03mm,表面缩水较明显。 可通过加大基本壁厚、减小加强筋和螺栓柱等壁厚、加大保压等方式,来降 低凹痕深度。
DESIGN SOLUTIONS
20
Sink Mark Shaded 凹痕阴影显示
阴影显示凹痕的分析结果。圈示区域,肉眼看起来较明显。
22
Temperature, Part 冷却结束时产品表面温度
Moldflow模流分析经典报告(简体版)
------------------------- 8
7.原始方案基本成型条件
-------------------------------------------------
------------------------- 9
8.原始方案分析结果
---------------------------------------------
Moldflow Analysis Report
Moldflow模流分析报告
Page 1
3.产品模型简介
------------------------------------------
4.分析模型简介
-------------------------------- 5
Moldflow Ana--l-y--s--i-s---R--e--p--o--r-t----------------------
Original1
左图表示产品公模侧表面温度分布,右图表示产品母模侧表面温度分布。从 图中可知,表面温度分布不太均匀,冷却效果不太理想。
Page 12
Moldflow Analysis Report 公母模侧表面温差
Original1
从图中可知,公母模侧 表面温差较大,会使产 品公母模侧收缩不均一 而导致翘曲变形问题。
Page 14
Moldflow Analysis Report 充填时间(点击Filltime图面即可播放动画)
Original1
充填时间约为2.2秒,充填流动不太平衡。箭头指示处为最后充填区域。圈示处的薄肋发 生严重滞流现象,导致产品短射。归因于此肋太薄(仅0.9mm左右),而浇口又距离此肋 太近,塑料流动到该处时受到极大阻力而停滞不前并迅速凝固了。实际试模中用GEPPE+PS +40%GF的塑料可能勉强填满,但成型窗口很窄,仍可能短射,对此应高度重视。
moldflow分析
我们采用MPI/FILL、MPI/PACK来进行分析计算。预测充填状 况、型腔压力分布、温度分布、锁模力大小、体积收缩率、熔接痕、 困气位置。
Jul 2001
Page 2
Moldflow China
制品材料
EE188AI(PP+T16) 1. 推荐注射温度 4. 推荐模具温度 240.0 degC 40.0 degC 5. 6. 7. 8. 顶出温度 不流动温度 许可剪切应力 许可剪切速率 108.0 deg.C 200.0 deg.C 0. 25Mpa 100,000 1/s
Jul 2001
Page 13
Moldflow China
小结
1. 2. 3. 4. 此方案注射较为均衡,成型压力适中,型腔压力分布较为均衡,体积收缩较 为均匀。 受投影面积影响及保压压力影响,锁模力较大,可通过调整保压压力降低锁 模力。 在制品边角处形成困气,熔料包合容易烧焦或熔接痕明显,需调整浇口位置 及顺序阀开关时间。 可采用6点顺序阀式热流道方案,建议调整下面两点喷嘴及浇口位置,减小两 喷嘴间距,调整开阀注射时间,以改善充填状况及困气情况,优化保压工艺。
剪切速率—黏度曲线
Jul 2001
PVT曲线
Page 3
Moldflow China
பைடு நூலகம்方案1
浇注系统
该模具一模一腔,采 用顺序阀式热流道系 统,6点顺序阀。
Jul 2001
Page 4
Moldflow China
工艺参数
1. 2. 3. 4. 模温 熔体温度 注射时间 保压压力 50 MPa 40 MPa 0 Mpa : 40.0 deg.C : 230.0 deg.C : 6.8sec 保压时间 6s 4s 4s
Moldflow模流分析报告范例
DESIGN SOLUTIONS
4
产品信息
DESIGN SOLUTIONS
产品体积 (cm^3) 产品尺寸 (mm) 投影面积 (cm^2) 基本壁厚 (mm)
5
810.2 592 ×492×74 1757.7 2.0
模具信息
DESIGN SOLUTIONS
两板模,四个侧浇口。 定模侧一条水路,动模侧两条水路。
DESIGN SOLUTIONS
13
Maximum Shear Rate 最大剪切速率
最大剪切速率: 43054 1/s
一般不要超过成型材料所允许的最大剪切速度(如第8页所示,该材料允许最大 剪切速度为60000 1/s。 非透明件可放宽至三倍。透明件最大剪切速率越小外观 质量越好)。剪切速度太大,材料易降解,产品易出现冲击纹等表面缺陷。
DESIGN SOLUTIONS
30
平衡 均匀 74.3 373.2 43.54 2.8 产品上0.4MPa 有,请加强排气 局部区域收缩较大 31s (不包括开合模时间) 2.6/均匀收缩/8.5
DESIGN SOLUTIONS
31
知识回顾 Knowledge Review
DESIGN SOLUTIONS
DESIGN SOLUTIONS
16
Air Traps 困气
困在型腔内气体不能被及时排出,易导致出现表面起泡,产品内部夹气,注塑不 满等现象。
请加强紫色小球区域的排气。如果困气发生在分型面处,可通过增开排气槽加强 排气;如果困气发生在产品中间,可通过顶针或滑块的间隙逃气。
DESIGN SOLUTIONS
通过加大浇口尺寸,降低通过浇口处的注塑速度,可减小剪切速率。
DESIGN SOLUTIONS
Moldflow模流分析报告
Original2在相同區域發生較嚴重的滯流現象,該處塑膠熔接性极差。大 部分縫合綫熔接溫度較高,應不會影響其使用強度。局部區域包風包在 塑膠内難以排除,可能會受高壓急劇升溫而燒焦產品。注入口尺寸太小 ,冷卻太快,成品將得不到有效保壓而發生縮水,有可見凹陷出現,而 試模時用105MPa的壓力持續保壓了5s之久,其實此時注入口早已凝固, 再加額外的壓力只能使產品出現負收縮(即膨脹),導致拉模現象。澆口設 計得太薄,凝固太快,即使注入口不先行凝固,產品也會有較嚴重的保 壓不良現象。另外循環周期過長,造成生産成本的浪費。
3. 產品模型介紹
-------------------------------------------------------------------------- 5
4. 原始方案澆注系統設計
-------------------------------------------------------------------------- 6
13. 最終改善方案基本成型條件 ----------------------------------------------------------------------- 29
14. 最終改善方案分析結果 --------------------------------------------------------------------30~43
冷卻凝固過程
Original2
這六個圖表示的是產品和流道的冷卻凝固過程,紅色區域表示最先凝固的區域,一般最薄處最先凝固。從 圖三可知,注入口已先行凝固(箭頭指示處),而此時產品大部分都沒凝固,説明注入口尺寸太小,成品將 得不到有效保壓而發生縮水現象。此外分析中也發現澆口亦太薄,凝固太快。
Moldflow模流分析报告样本
18.结论与建议 3
------------------------------------------------------------------------- 3 -------------------------------------------------------------------------- 4 -------------------------------------------------------------------------- 5 -------------------------------------------------------------------------- 6 -------------------------------------------------------------------------- 7 -------------------------------------------------------------------------- 8 -------------------------------------------------------------------------- 9 -------------------------------------------------------------------- 10~30 ------------------------------------------------------------------------ 31 ------------------------------------------------------------------------ 32 11. 12. 13. 14. ------------------------------------------------------------------------ 56 ------------------------------------------------------------------------ 57 14. 15. 16. 17. ------------------------------------------------------------------------ 81
MOLDFLOW模流分析报告
STEP 10-选择分析类型
填充
快速填充
流动 冷却 成型窗口 最佳浇口位置 流道平衡 冷却+流动+翘曲 流动+收缩 冷却+流动+收缩
常用分析类型
分析熔融塑胶在注塑段的填充行为 快速模拟熔融塑胶在注塑段的填充行为,分析的输出结果较正常 填充少 分析熔融塑胶在注塑段的填充行为和保压效果 分析保压结束后,运水管道的冷切效果 提供最佳成型参数和合理的成型工艺参数 产品上最佳进浇位置和产品上不同区域作为进浇口的合理性程度 从填充平衡的角度优化流道的尺寸 完整的模拟分析产品的成型过程和翘曲 分析熔融塑胶在型腔内的流动以及产品的收缩情况 分析熔融塑胶的流动和冷却管道的冷却效果得出产品收缩值
Mold flow 模流分析 介绍
珠海优特电力科技股份有限公司
引子
我们遇到了哪些问题?
2
引子
短射
3
引子
飞边
4
引子
银条纹
5
引子
流痕
6
引子
应力痕
7
引子
冲击纹
8
引子
缩水
9
引子
熔接痕
10
引子
发脆
11
引子
翘曲
12
引子
预避知 如何改变传统的依靠经验的
“试错”的设计模式?
13
目录
1 MOLDFLOW简介 23 MOLDFLOW分析流程介绍 43 产品缺陷判定及优化对策
MOLDFLOW简介
优化制品形 状和结构
优化模具结构
优化注塑工艺 参数
18
MOLDFLOW简介 功能1
最佳浇口位置分析
根据塑件的形状结构,分析出最佳的胶口位置。
Moldflow模流分析经典报告(简体版)幻灯片
Moldflow Analysis Report 原始方案基本成型条件
注射机设定:
保压曲线:
Machine maximum clamp force: 350 tonne Maximum pressure:216.00 MPa Maximum injection speed:422.52 cm^3/s Screw diameter:58.00 mm
Moldflow Analysis Report
Moldflow模流分析报告
Page 1
Moldflow Analysis Report 内容提要
1.分析说明一 2.塑料材料简介 3.产品模型简介 4.分析模型简介 5.原始方案浇注系统设计 6.原始方案冷却系统设计 7.原始方案基本成型条件 8.原始方案分析结果 9. 结论与建议 1 10.分析说明二 11.改善方案1浇注系统设计 12.改善方案1冷却系统设计 13.改善方案1基本成型条件 14.改善方案1分析结果 15.结论与建议 2 16.分析说明三 14.改善方案2浇注系统设计 15.改善方案2冷却系统设计 16.改善方案2基本成型条件 17.改善方案2分析结果 18.结论与建议 3
0
4.0
29.5t(s)
PRESSURE [%HP] STEP DURATION [sec]
Part Weight(Solid) :349g
28.0
0.0
Total projected area :390.4 cm^2
28.0
4.0
冷却条件:
0.0
0.0
0.0
25.5
Coolant Temperature(Cavity)60 deg.C
Page 13
Moldflow Analysis Report 产品凝固需要的时间
moldflow 注塑成型分析 模流分析报告
1. 熔体密度 2.实体密度 3.顶出温度 4.推荐模具温度 5.推荐熔料温度 6.材料失效温度
0.88 g/cu.cm 1.06 g/cu.cm
119 deg.C 45 deg.C 225 deg.C 290 deg.C
7. 熔料温度下限 8. 熔料温度上限 9. 模具温度上限 10.模具温度下限 11.最大剪切速率 12.最大剪切应力
Page 8
体积收缩
体积收缩结果用来判断产 品各处的体积收缩情况,收 缩不均匀会造成翘曲变形, 收缩较大则造成缩痕。 由图可见产品内部收缩较小, 且比较均匀。出现缩痕风险 小。
Page 9
困气位置
1
Air traps可提供模具的困气位 置。air traps产生在填充末端包 括高rib和boss柱位置、结合线、 流动包封位置。故而在这些位置 一般需要开设排入槽或排气入子。 另外在熔体温降较大处也应增加 排气,提高流动性。
pagepage1919尾部分子剪切作用较高故而分子取向度高并且分子结晶度高取向诱导结晶在取向方向上收缩较大故而收缩应力导致产品尾部收拉力而张开变形
Moldflow注塑成型分析
For
滨海
Reporter : 孟栋梁 sduan@
2010-07-16
分析描述
▪ 产品描述 此是汽车用产品,使用热浇道系统注射成型。
200.0 deg.C 250.0 deg.C 30.0 deg.C 60.0 deg.C 100000.0 1/s
0.25 Mpa
PVT Plow材料数据库
Page 3
工艺条件
注塑机设定:
最大锁模力:
未限定
最大注塑压力:
未限定
最大注射速度:
结合线
Moldflow模流分析经典报告(简体版)
设置注射压力、注射速度、注射温度等边界条件。
塑化边界条件
设置塑化温度、塑化速度等边界条件。
模拟求解与结果分析
模拟求解
根据设置的边界条件进行模拟求解。
结果分析
对模拟结果进行分析,如压力分布、温度分布、流动行为等。
结果优化
根据分析结果对模型进行优化,提高成型质量和效率。
Moldflow模流分析
Moldflow模流分析是一种计算机模 拟技术,用于预测塑料模具填充、流 动、冷却和翘曲等行为,从而优化模 具设计和产品成型过程。
通过模拟分析,Moldflow可以帮助工 程师预测和解决模具制造和塑料产品 成型过程中可能出现的问题,减少试 模次数和缩短产品上市时间。
Moldflow模流分析的重要性
2. 翘曲变形分析不准确
翘曲变形是塑料成型过程中的常见问题,分析不准确可能导致模具优化措施失效。
3. 解决方案
加强Moldflow模流分析理论学习,深入理解流动前沿、翘曲变形等关键指标的含义和影 响。结合实际案例进行分析和总结,提高模拟结果解读能力。积极参与行业交流和技术培 训,不断更新知识和技能。
Moldflow模流分析的应用领域
汽车行业
01
Moldflow在汽车行业中广泛应用于汽车零部件的模具设计和产
品成型过程优化,如保险杠、仪表盘和座椅等。
电子产品
02
Moldflow模流分析可用于手机、电视、电脑等电子产品的模具
设计和产品成型过程优化。
包装行业
03
Moldflow可以帮助包装企业优化包装盒、瓶盖等产品的模具设
案例三:热流道系统模拟
总结词
热流道系统是塑料加工中常用的技术,通过加热模具流道来控制塑料熔体的温度和流动。 Moldflow模流分析可以用于热流道系统的模拟和优化。
MoldFlow典型分析报告
6
Moldflow Analysis Report
充填状况
充填分析结果显示填充时间为3.14(S)。
7
Moldflow Analysis Report
流动前沿处的温度
分析结果显示最高温充为301deg.C,最低温度为218deg.C。
8
Moldflow Analysis Report
注射压力曲线图
14
Moldflow Analysis Report
制品冷却时间
此区域冷却时间长达50s, 产品壁厚不均是主要原因。
产品部分区域冻结时间不均,可能引起缩水变形。
15
Moldflow Analysis Report 冷却水温变化
冷却运水大部分在29deg C,温度变化不大。
16
Moldflow Analysis Report 表层取向分析图
3
Moldflow Analysis Report
產品模型簡介
產品長寬高約403.01x451.45x89.22,大部分肉厚在2.9mm左右。
4
Moldflow Analysis Report
浇注系统设计
进胶设计为后模入水, 一个热咀进胶。
5
Moldflow Analysis Report
冷却系统设计 方案共17个冷却水路. 前模10条,后模7条. 黄色管道为隔板水路.
11
Moldflow Analysis Report
熔接线
上图为可能产生熔接线的位置
12
Moldflow Analysis Report
制品最高温度
上图为产品表面温度分布状况
13
Moldflow Analysis Report
(完整版)MOLDFLOW分析报告
Moldflow Analysis Report 塑料材料簡介
PPE+PS+40%GF Xyron X1764 Asahi Kasei Corporation
1. Melt Density 1.2827 g/cu.cm 2. Solid Density 1.3645 g/cu.cm 3. Ejection Temperature 110.000000 deg.C 4. Recommended Mold Temperature 75 deg.C 5. Recommended Melt Temperature 275 deg.C 6. Absolute Max. Melt Temperature 340 deg.C
Moldflow Analysis Report
Moldflow模流分析報告
B039பைடு நூலகம்901
Page 1
Moldflow Analysis Report 内容提要
1. 分析说明一 2. 塑料材料简介 3. 产品模型简介 4. 分析模型简介 5. 原始方案浇注系统设计 6. 原始方案冷却系统设计 7. 原始方案基本成型条件 8. 原始方案分析结果 9. 结论与建议 1 10.分析说明二 11.改善方案1浇注系统设计 12.改善方案1冷却系统设计 13.改善方案1基本成型条件 14.改善方案1分析结果 15.结论与建议 2 16.分析说明三 14.改善方案2浇注系统设计 15.改善方案2冷却系统设计 16.改善方案2基本成型条件 17.改善方案2分析结果 18.结论与建议 3
Page 2
Moldflow Analysis Report 分析说明一
➢如下图的产品,为复印机上的零件,对尺寸精度要求较高。采用PPE+PS+40%GF的塑 料以热流道成型,产品结构与进浇位置均已确定,客户希望通过调整冷却水路或冷却条件 将整个周期时间缩短,因此藉以Moldflow模流分析验证是否可行。 ➢因Moldflow材料数据库内暂无客户使用的GE PPE+PS+40%GF塑料,故在分析中使用 物性较为相似的Asahi Kasei Corporation的PPE+PS+40%GF塑料来代替,在数值上会与 实际试模有差异,但趋势是一致的。此报告中以几种方案进行分析比较,其中Original n 为客户原始设计方案,Revised n为我们基于Moldflow上的改善方案。
面板件完整Moldflow分析报告
deg.C
deg.C 粘度曲线
PVT曲线
221.01X54.84X30.81mm,大部分肉厚在
(双层网格)或Midplane 分析,分析结果基本一致。
下图为双层网格,外表形状与3D产品模
型基本相同,处理时间较中间层网格短,但网格数是它的两倍以上,分析时间较长。
中间
冷却系統設計
方案共设计11条水路,其中脱料板2条水路,前模3条水路,行位2条水路能及后模4条水路,水路大小10mm
Moldflow Analysis Report Analysis Report
M oldflow Analysis Report Analysis Report
填时间:
冷却水温变化在2度内,非常合
左圖表示產品充填末端平均
考量冷却系统),從圖中可知,产品大部分温度在230度左右。
左圖表示的是從循環周期開始到產品完全凝固所需要的時間。
大部分區域在7.21s
变形量:
Moldflow Analysis Report Analysis Report
Page 31。
Moldflow模流分析经典报告简体版ppt课件
7. Melt Temperature Minimum 8. Melt Temperature Maximum 9. Mold Temperature Minimum 10.Mold Temperature Maximum 11.Maximum Shear Rate 12.Maximum Shear Stress
Page 14
Moldflow Analysis Report 充填流动过程
Original1
Page 15
Moldflow Analysis Report 波纤配向分布(点击图面即可播放动画)
Original1
此图表示的是从循环周期 开始到开模期间波纤的配 向状况。从图中可知,红 色线条分布区域代表波纤 配向较为严重,而蓝色线 条分布区域代表波纤配向 较弱。
由图中可知,水温升高较小 (进出口水温差在两度以 内),冷却水路的长度设计 是可以达成冷却要求的。成 型时不要为了省事而将水路 串联起来,否则会导致水路 过长水温持续升高而降低冷 却效果。
Page 10
Moldflow Analysis Report 公母模侧表面温度分布
Original1
左图表示产品公模侧表面温度分布,右图表示产品母模侧表面温度分布。从 图中可知,表面温度分布不太均匀,冷却效果不太理想。
Coolant Temperature(Core)60 deg.C
Page 8
Original1
Moldflow Analysis Report 原始方案分析结果
以下解析的包括冷却、充填、保压、翘曲分析的较为重要的结果。
Page 9
Moldflow Analysis Report 冷却水温变化
Original1
综合模流分析报告(中文)
季小蘭 2002/06/01
014202-3300 頁 2
MOLDFLOW 模流分析報告
塑膠材料介紹
PP NOVOLEN 1111 LX GB 30%GF BASF AG VI(240)156 BASF AG SEP92
1. 熱傳導率
0.118000 W/m/ deg.C
2. 比熱
2931.000000 J/kg/ deg.C
流 動 波 前 溫 度 Flow Front Temperature
波前溫度范圍﹕192~243º C﹐溫降較大。最低溫度位 于圖中標示處肋的端部(此 處較薄)。
CAD/CAE 工程中心
季小蘭 2002/06/01
014202-3300 頁 14
充 填 分 析 結 果 \ case1
MOLDFLOW 模流分析報告
包風分布如圖紫色小球所示, 基本上位于充填末端。較易 排除。
CAD/CAE 工程中心
季小蘭 2002/06/01
014202-3300 頁 16
MOLDFLOW 模流分析報告
保 壓 分 析 結 果 \ case1
57%
凝固層百分比
69%
% Frozen Time Series
73%
88%
CAD/CAE 工程中心
MOLDFLOW 模流分析報告
CAD/CAE 工程中心
季小蘭 2002/06/01
014202-3300 頁 1
1. 塑膠材料介紹(1) 2. 產品模型簡介 3. 冷卻水路設計 4. 澆注系統簡介 5. 分析說明 6. 基本成型條件(1) 7. case1分析結果列示 8. 分析小結(1) 9. 塑膠材料介紹(2) 10.基本成型條件(2) 11.case2分析結果列示 12.分析小結(2) 13.冷卻水路設計 14.基本成型條件(3) 15.case3分析結果列示 16.結果對比 17.結論與建議
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Moldflow模流分析报告
Page 1
3.产品模型简介
------------------------------------------
4.分析模型简介
-------------------------------- 5
Moldflow Ana--l-y--s--i-s---R--e--p--o--r-t----------------------
----------------------- 34
13.改善方案1基本成型条件
-------------------------------------------------
----------------------- 35
14.改善方案1分析结果
--------------------------------------------
如下图的产品,为复印机上的零件,对尺寸精度要求较高。采用PPE+PS+40%GF的塑料 以热流道成型,产品结构与进浇位置均已确定,客户希望通过调整冷却水路或冷却条件将 整个周期时间缩短,因此藉以Moldflow模流分析验证是否可行。 因Moldflow材料数据库内暂无客户使用的GEPPE+PS+40%GF塑料,故在分析中使用物性 较为相似的AsahiKaseiCorporation的PPE+PS+40%GF塑料来代替,在数值上会与实际试模 有差异,但趋势是一致的。此报告中以几种方案进行分析比较,其中Originaln为客户原 始设计方案,Revisedn为我们基于Moldflow上的改善方案。
-------------------------------- 6
5.原始方案浇注系统设计
内 容 提 要 -------------------------------------------------
------------------------- 7
6.原始方案冷却系统设计
-------------------------------------------------
----------------------- 36~55
15.结论与建议 2
---------------------------------------
--------------------------------- 56
16.分析说明三
--------------------------------------
0.4500000
Page 4
Moldflow Analysis Report 产品模型简介
产品长宽高约为303*189*58mm,大部分肉厚较为均匀,基本肉厚为2.6mm。但局部区域较 厚,达6.0mm以上(如左图),可能会发生严重缩水问题;局部大面积区域较薄,仅0.9mm 左右(如右图),可能会发生严重滞流问题。
肉厚分布
Page 5
Moldflow Analysis Report 分析模型简介
对此薄壳类产品,可使用Moldflow有限元分析网格中的Fusion(双层面网格)或Midplane (中性层网格)进行分析,分析结果一致。前者取外壳双层网格,外表形状与3D模型相同, 前பைடு நூலகம்理时间较短,但网格数目是后者的两倍以上,分析时间较长;后者取中间单层网格, 局部区域形状需做等效处理,前处理时间较长,但分析时间较短。本分析采用后者。
--------------------------------- 32
11.改善方案1浇注系统设计
-------------------------------------------------
----------------------- 33
12.改善方案1冷却系统设计
-------------------------------------------------
deg.C
3. Ejection Temperature 110.000000 deg.C 8. Melt Temperature Maximum
4. Recommended Mold Temperature 75 deg.C
deg.C
5. Recommended Melt Temperature 275 deg.C 9. Mold Temperature Minimum
------------------------- 8
7.原始方案基本成型条件
-------------------------------------------------
------------------------- 9
8.原始方案分析结果
---------------------------------------------
---------------------------------- 57
14.改善方案2浇注系统设计
-----------------------------------------------P-age 2
------------------------ 58
Moldflow Analysis Report 分析说明一
Page 3
Moldflow Analysis Report 塑料材料简介
PPE+PS+40%GFXyronX1764AsahiKaseiCorporation
1. Melt Density
1.2827 g/cu.cm
7. Melt Temperature Minimum
2. Solid Density 1.3645 g/cu.cm
6. Absolute Max. Melt Temperature 340 deg.C
deg.C
10.Mold Temperature Maximum
11.Maximum Shear Rate
50000.000000 1/s
12.Maximum Shear Stress
Mpa
250.000000 300.000000 50.000000 100.000000 deg.C
----------------------- 10~30
9. 结论与建议 1
----------------------------------------
-------------------------------- 31
10.分析说明二
---------------------------------------