组合数学 第四章7指数型母函数

合集下载

母函数与指数型母函数

母函数与指数型母函数

性质5:若bk=kak,则
B( x ) xA '( x ).
性质6:若bk=ak/(1+k),则 1 x B ( x ) A( x )dx. x 0 例7 已知 A( x ) 1 x x 2 x n 则
1 , 1 x
B( x) x 2 x 3 x
若信号输入的序列u0,u1,…的母函数为U(x),输出的 信号序列v0,v1,…的母函数为V(x),则
V ( x ) (1 x x 3 )U ( x ) P ( x )U ( x ),
其中
P ( x) 1 x x 3 被装置的特性所确定,称为该装置的传递函数。
例2 有红球两个,白球、黄球各一个,试求有多少种 不同的组合方案。 设r,w,y 分别代表红球,白球,黄球。
性质4:若bk=ak+ak+1+…,则 A(1) xA( x ) B( x) . 1 x 1: b0 a0 a1 a2 A(1) x: b1 a1 a2 a3 A(1) a0 x2: b2 a2 a3 a4 A(1) a0 a1 +)
类似还可以得到 2 C (n,1) 2 C(n, 2)
n C(n, n) n(n 1)2
2
n 2
.
还可以类似地推出一些等式,但通过上面一些例子 已可见函数(1+x)n在研究序列 C(n,0),C(n,1),…,C(n,n)的关系时所起的作用。 定义:对于序列a0,a1,a2,…,函数
a1 a3 a5 a7 0, a0 1, a2 C (8, 2) 28,
a4 C (8,4) 70, a6 C (8,6) 28, a8 1.

指数母函数

指数母函数

指数母函数指数母函数是概率论中一个重要的概念,它在组合学、统计学、以及算法设计中具有广泛的应用。

本文将介绍指数母函数的定义、性质以及一些典型的应用场景。

首先,让我们来了解一下指数母函数的定义。

在概率论中,我们通常通过概率分布来描述一个随机变量的性质。

指数母函数是一种生成函数,可以用来完整地描述一个非负随机变量的概率分布。

对于一个非负随机变量X,指数母函数定义为G_X(t) = E[t^X] = ∑_(k=0)^(∞) P(X=k)t^k其中,E[•]表示数学期望操作,P(X=k)表示随机变量X取值为k的概率。

通过指数母函数,我们可以方便地计算出随机变量的各种矩、生成函数以及其他相关特征。

指数母函数具有一些重要的性质。

首先,对于独立同分布的随机变量序列X_1, X_2, ... , X_n,它们的指数母函数的乘积等于它们各自的指数母函数的乘积。

也就是说,如果我们知道了每个随机变量的指数母函数,那么我们就可以得到它们共同的指数母函数。

其次,通过指数母函数的导数,我们可以计算出随机变量的矩。

具体来说,对于指数母函数G_X(t),它的k阶导数G_X^(k)(0)可以表示随机变量X的k阶矩。

这个性质在数理统计中经常被使用,特别是在估计参数、构造置信区间等问题中。

除了基本的性质之外,指数母函数还有一些典型的应用场景。

一个典型的例子是在组合学中的应用。

对于一个集合,我们可以用一个0-1序列来表示它的子集。

对于一个具有n个元素的集合,我们可以定义一个指数母函数,它的每一项表示集合的各个子集的个数。

这样,我们就可以通过指数母函数来计算出子集个数的期望值、方差等统计量。

指数母函数在算法设计中也有广泛的应用。

在某些问题中,我们需要计算出满足一定条件的排列或者子集的个数。

通过构造相应的指数母函数,我们可以很方便地计算出这些排列或者子集的个数。

这个方法在算法设计中被广泛使用,特别是在动态规划、组合优化等领域。

综上所述,指数母函数是概率论中一个重要的工具,它可以用来描述非负随机变量的概率分布。

母函数(生成函数)

母函数(生成函数)

母函数(⽣成函数)介绍母函数是组合数学中相当重要的⼀个知识点,可以⽤来解决⼀些排列组合问题,还有所有的常系数线性齐次递推问题。

如果系数不是常数,需要根据具体情况进⾏处理。

具体的内容可以看组合数学相关书籍或者,由于⼤佬总是想当然地把别⼈当成⼤佬,⼀些内容对(像我这种)蒟蒻来说不是很友好,在这⾥讲⼀下母函数的基础。

(研究母函数时,钦定|x|<1),这样,由等⽐数列求和公式有:11−x=∑∞i=0x i=1+x+ (x)11−kx=∑∞i=0k i x i=1+kx+...+k∞x∞1.普通型母函数。

假设有⼀个数列a,那么它的母函数其实就是⼀个关于x的多项式,x n的系数为a n,对于已知通项的数列,其母函数可以直接写出来。

⽽对于未知的数列,主要分为两类:递推型和组合型。

递推型就是利⽤错位相消,举个栗⼦:a n=3a n−1+10a n−2,a0=1,a1=2移项,得a n−3a n−1−10a n−2=0,设a n的母函数为G(x)G(x)=a0+a1x+a2x2+a3x3...−3xG(x)=−3a0x+(−3)a1x2+(−3)a2x3...−10x2G(x)=−10a0x2+(−10)a1x3三⾏相加,可以发现等式右侧除了第⼀⾏的第1,2项和第⼆⾏的第1项外全消掉了。

所以我们可以得到(1−3x−10x2)G(x)=a0+a1x−3a0x=1−x,即G(x)=1−x1−3x−10x2,⽣成函数就求出来了,那如果我们还要求an的通项呢?对于这种东西,我们可以把他化成k1x−A+k2x−B这种形式,其中A和B由分母的因式分解唯⼀确定,然后k1,k2可由待定系数法解得。

然后对于kx−A,总可以化成k′∗11−Nx,就是k′∑∞i=0N i x i,找出x k的系数就是a n,如果母函数拆开成多个该类分式的话各部分相加就好。

具体计算就不算了。

PS:⼀部分⾮齐次线性递推其实也可以这样解,⽐如a n−3a n−1−10a n−2=f(n),按照上述⽅法错项后会剩下⼀个等⽐数列和前⼏项余项。

组合数学第四篇

组合数学第四篇

证 (1)C1(2) C…2 (n) C即n
1个 2个
n个
_∧_
_∧_
____∧____
/\
/\
/
\
(·)…(·)(··)…(··)… (·…·)…(·…·)
\______ ______/ \/
C1个
\________ ________/ \/
C2个
\________ ________/ \/
Cn个
令 P={p1,p2,…,pm},(是集合不一定是群.)
令解G)ii=≠Zj,kGpi∩i,i=G1j=,2Φ,…. G,m1+.GG2i包+…含·+G于m·G包(G含·关于于GZ.k的陪集分
-1
另一方面,任意P∈G. k→Paj→Pkj
PPj ∈-1 Zk,
P∈ZkPj=Gj.
4.4 Burnside引理
(2)k不动置换类 设G是[1,n]上的一个置换群。G≤Sn.
K∈[1,n]G中使k保持不变的置换全体,称 为k不动置换类,记做Zk.
4.4 Burnside引理
定理 置换群G的k不动置换类Zk是G的一个
子群。
封闭
性:k→k→k,k P1 P2 k. P1P2 结合性:自
然。
有单位元:G的
单位元属于Zk.
含目标集元素k的在G作用下的等价类也 称为含k的轨道。
4.4 Burnside引理
定理 设G是[1,n]上的一个置换群,Ek是[1,n]在G 的作用下包含k的等价类(轨道),Zk是k不动置换 类。有|Ek||Zk|=|G|.
证 设|Ek|=m,Ek={a1(=k),a2,…,am},于是存在pi满足 a1→pi ai,i=1,2,…,m.

母函数

母函数

母函数
定义对给定序列构造一个函数,称为序列的母函数。

其中,序列只作为标志用,称为标志函数。

派生1:普通型母函数
当标志函数为时,即母函数为,称这类母函数为普通型母函数,可记作。

定理1:
设从元集合中取个元素组合,若限定元素出现次数的集合为,则该组合数序列的母函数为:
常用到的普通型母函数有:
例题:求位十进制正数中出现偶数个的数的个数
设表示位十进制正数中出现偶数个的数的个数,表示位十进制正数中出现奇数个的数的个数,不难得出:设序列,的母函数分别为:
由得:
再由得:
由、可得:
更进一步的,
即:
派生2:指数型母函数
当标志函数为时,即母函数为,称此类母函数为指数型母函数,可记作。

定理2:
从多重集中选区个元素排列,若元素出现的次数集合为,则该排列数序列的母函数为:
所谓多重集(multiset)之于集合(set),英文写出来差不多就懂了。

函数中,除以是因为排列中这个相同元素的先后是不考虑的。

常见的指数型母函数(的Tylor展开式):
例题:求由这个数字组成的位数字的个数(每个数字出现次数可以为,且出现的次数为偶数)。

设满足条件的位数字的数目为(特别地,规定),则序列的母函数为:
故。

附录:
推荐的文档组合数学--母函数与递推朱全民。

组合数学课件_lcq

组合数学课件_lcq
习题
第3章 容斥原理
3.1 容斥原理 3.2 重集r-组合 3.3 错排问题 3.4 有限制排列 3.5* 一般有限制排列 3.6* 广义容斥原理 本章小结 习题
第4章 母函数
4.1 4.2 4.3 4.4 母函数的基本概念 母函数的基本运算 在排列组合中的应用 在组合恒等式中的应用
第2章 鸽笼原理
例6、求出从8个计算机系的学生、 9 个数学系的学生和10个经济系的学生 中选出两个不同专业的学生的方法数。
1.1.2 乘法法则
例 题
解:由乘法法则有 选一个计算机系和一个数学系的方法数为8×9=72 选一个数学系和一个经济系的方法数为9×10=90 选一个经济系和一个计算机系的方法数为10×8=80 由加法法则,符合要求的方法数为 72+90+80=242
例 题
所有数字互不相同的四位偶数?
解:所求的是四位偶数,故个位只能选2或4,有两种选 择方法;又由于要求四位数字互不相同,故个位选中后, 十位只有四种选择方法;同理,百位、千位分别有三种、 两种选择方法,根据乘法法则,四位数互不相同的偶数 个数为 2×4×3×2=48
§1.1 乘法法则例6
§1.1 加法法则和乘法法则
§1.1 重集的概念
§1.1 加法法则和乘法法则
重集的概念
1.1.3 计数问题的分类
• 有序安排或有序选择 ——允许重复/不允许重复 • 无序安排或无序选择 ——允许重复/不允许重复
• 标准集的特性:确定、无序、 相异等。 • 重集:B={k *b , k *b ,…,
1 1 2 2
kn*bn},其中:bi为n个互不相 同的元素,称 ki为bi的重数, i=1,2,…,n,n=1,2,…,∞, ki=1,2,…,∞。

组合数学之母函数形式Polya定理及其应用

组合数学之母函数形式Polya定理及其应用

母函数形式Polya定理的应用场景
排列组合问题
母函数形式Polya定理可以应用于 排列和组合问题的计数,通过求 解代数方程得到组合数的通Polya定理可以应用于 生成函数的研究,通过求解代数 方程得到序列的通项公式。
离散概率论
母函数形式Polya定理可以应用于 离散概率论的研究,通过求解代 数方程得到概率分布的通项公式。
后续研究
自Polya定理提出以来,许多数学家对其进行了深入研究 和完善,进一步拓展了其在组合数学中的应用。
Polya定理的重要性
组合计数问题的解决
Polya定理为解决复杂的组合计数问题提供了一种有效的方法。通过使用该定理,可以快 速计算出满足一组约束条件的解的个数。
数学其他领域的应用
Polya定理不仅在组合数学中有广泛应用,还涉及到其他数学领域,如概率论、统计学和 图论等。该定理在这些领域中的应用有助于解决一系列复杂的问题。
04
Polya定理的应用
在组合数学中的应用
1 2
组合计数
Polya定理可以用于解决组合计数问题,例如计 算给定集合的所有子集的数量或排列的数量。
组合优化
在组合优化问题中,Polya定理可以用于寻找最 优解,例如在旅行商问题中寻找最短路径。
3
组合概率
在概率论中,Polya定理可以用于计算事件的概 率,例如计算多项式系数或排列组合的概率。
计数问题
组合数学中的计数问题通常涉及到在给定条件下,计算满足特定要求的元素个数。
Polya定理的历史背景
母函数的发展
母函数理论的发展可以追溯到18世纪,当时数学家开始研 究组合计数问题。随着时间的推移,母函数逐渐成为组合 数学中一个重要的分支。
Polya定理的提出

组合数学(第二版)母函数及其应用

组合数学(第二版)母函数及其应用

考虑座位号),其中,甲、乙两 班最少1张,甲班最多5张,乙班最
多6张;丙班最少2张,最多7张;丁班最少4张,最 多10张.可有多
少种不同的分配方案?
母函数及其应用
母函数及其应用
【例 2.1.5】 从n 双互相不同的鞋中取出r 只(r≤n),要求
其中没有任何两只是成对 的,共有多少种不同的取法?
母函数及其应用
(1+x)n .
【例 2.1.2】 无限数列{1,1,…,1,…}的普母函数是
母函数及其应用
说明
(1)an 的非零值可以为有限个或无限个;
(2)数列{an}与母函数一一对应,即给定数列便得知它的
母函数;反之,求得母函数则数列也随之而定;
(3)这里将母函数只看作一个形式函数,目的是利用其有
关运算性质完成计数问题, 故不考虑“收敛问题”,即始终认
红红、黄黄、蓝蓝、红黄、黄红、红蓝、蓝红、黄蓝、 蓝
黄.其它情形依此类推.
母函数及其应用
这里需要说明的是:
(1)在例2.1.3中,利用普母函数可以将组合的每一种情况
都枚举出来,但是对排列问 题,指母函数却做不到,只能对排列
进行分类枚举.正如例2.3.1这样,项ryb 的系数6说 明红、蓝、
黄球各取一个时,有6种排列方案,但每一种方案具体是什么,
(每个数字可重复出现), 要求其中3,7出现的次数为偶数,1,5,9
出现的次数不加限制.
母函数及其应用
【例 2.3.4】 把上例的条件改为要求1、3、7出现的次数
一样多,5和9出现的次数不 加限制.求这样的n 位数的个数.
解 设满足条件的数有bn 个,与例2.1.6的分配问题类似,即
将n 个不同的球放入标号 为1、3、5、7、9的5个盒子,其中

07母函数介绍

07母函数介绍

解:由定义4.2,有
特别地:若 =1,则序列(1,1,…,1,…)的指数母函数为ex 。 例8、求序列(1, 1×4, 1×4×7,…, 1×4×7×…×(3n+1),…)的指数母函数。


§4.1 指数母函数例8
§4.1 母函数的基本概念
4.1.2 指数母函数
解:由定义4.2和二项式定理,有
x x2 xn f e ( x ) 1 (1 4) (1 4 7) ... 1 4 7 ... (3 n 1) ... n! 1! 2! 1 4 7 ... (3 n 1) n x n! n0 4 7 ... 3 n 1 3 3 3n x n 1 3 n! n 1 4 4 1 ... 4 n 1 3 3 3 1 ( 3 x )n n! n 1 4 1 3 ( 3 x ) n n n 1
第4章 母函数
回顾前一章——容斥原理:
基本原理 重集的r-组合 错排、有限制排列
本章重点介绍母函数(普通母函数、指数母 函数)的基本概念及其在排列组合中的应用 : 母函数的基本概念 母函数的基本运算 母函数在排列、组合中的应用 整数拆分 母函数在组合恒等式中的应用
• • • • •
§4.1 普通母函数概念
(1-4x)-1/2 是 序 列 (C(0,0), C(2,1), C(4,2), … , C(2n,n),…)的普通母函数。
§4.1 普通母函数例3 证明:由牛顿二项式定理有 §4.1 母函数的基本概念 (1 4 x )1 2 1 1 2 ( 4 x )k k k 1 1 2 1 2 1 1 2 2 ... 1 2 k 1 1+ ( 4 x )k k! k 1 4 k 1 3 ... (2k 1) k x 1+ 2k k ! k 1 2 k k ! 1 3 ... (2k 1) xk 1 k !k ! k 1 2 4 ... (2k ) 1 3 ... (2k 1) k 1 x k !k ! k 1 (2k )! k 1 x 1 2k x k k k 1 k ! k ! k 1 0 2 x 4 x 2 ... 2k x k ... 0 1 2 k 由定义知,(1-4x)-1/2是序列(C(0,0), C(2,1), C(4,2), … , C(2n,n),…) 的普通母函数。

指数型母函数的应用

指数型母函数的应用

1. 应用背景指数型母函数(exponential generating function)是一个用于描述组合数学中的一类问题的工具。

在实际应用中,指数型母函数常常用于计算和分析离散结构中的各种组合问题,如排列、组合、划分等。

它的应用范围非常广泛,涵盖了数学、计算机科学、统计学等多个领域。

指数型母函数的应用可以帮助我们解决许多实际问题,例如计算某种组合的总数、计算组合的期望值、计算组合的方差等。

通过建立和操作指数型母函数,我们可以更加方便地进行组合问题的分析和计算,提高问题求解的效率。

2. 应用过程指数型母函数的应用过程通常包括以下几个步骤:步骤一:确定问题的数学模型在应用指数型母函数解决实际问题之前,首先需要确定问题的数学模型。

数学模型是问题的抽象表示,它将实际问题转化为数学符号和公式的形式,方便进行分析和计算。

步骤二:定义指数型母函数在确定数学模型后,接下来需要定义指数型母函数。

指数型母函数是一个形式幂级数,用于表示组合对象的各种性质。

根据问题的不同,指数型母函数的定义也会有所不同。

指数型母函数的一般形式为:G(x)=∑a n∞n=0x n n!其中,a n为组合对象的计数项,n为组合对象的大小。

步骤三:建立关系方程在定义指数型母函数后,接下来需要建立关系方程。

关系方程描述了组合对象之间的关系,可以通过运算和代数运算来表示。

关系方程的建立通常涉及组合对象的组合性质,如排列、组合、划分等。

根据具体问题的不同,关系方程的形式也会有所不同。

步骤四:求解问题在建立关系方程后,接下来需要求解问题。

求解问题的过程通常涉及对关系方程进行求解、计算和分析。

通过对关系方程的求解,可以得到组合对象的计数项、期望值、方差等重要信息。

这些信息可以帮助我们更好地理解和分析问题,为问题的实际应用提供支持。

3. 应用效果指数型母函数的应用可以带来多方面的效果,包括:提高问题求解效率指数型母函数提供了一种统一的框架,可以方便地描述和求解各种组合问题。

卢开澄组合数学--组合数学第四章(共12张PPT)

卢开澄组合数学--组合数学第四章(共12张PPT)
TbTa= cosb sinb cosa sina -sinb cosb -sina cosa
2021/10/21
第三页,共12页。
4.1 群的概念
= cosacosb-sinasinb sinacosb+cosasinb
-sinacosb-cosasinb cosacosb-sinasinb
= cos(a+b) sin(a+b) =Ta+b
绕中心转动120,不动,
绕对称轴翻转。
2
3
P1=(
1 1
2 2
3 3
),P2=(
1
2
23
31
),P3=(
1
3
2
1
3
2
),P4=(
1
1
2
3
32),
P5=(
1
3
23
21
),P6=(
1
2
23
13
)。
[1,n]上的所有置换(共n!个)构成一个
群,称为对称群,记做Sn.
• 注意:一般说[1,n]上的一个置换群,不 一定是指Sn.但一定是Sn的某一个子群。
2021/10/21
第六页,共12页。
4.1 群的概念
(e) G有限,a∈G,则存在最小正整数r,使
得ar = e.且a -1= a r-1.

设|G|=g,则a,a ,2…,a
g
,a
g+∈1 G,由鸽巢原理其
中必有相同项。设a =am,1≤ml <l≤g+1, e=a
,1≤l-l-mm ≤g,令l-m=r.则有a =a a=e.即r a r=-1a .既 然有-1正r整-1 数r使得a =e,其中必有r最小者,不妨

指数母函数

指数母函数

指数母函数一、概述指数母函数是组合数学中的一种重要工具,在组合计数、概率论、随机过程等领域有广泛的应用。

它是一种形式为幂级数的母函数,其中每一项的指数和对应着某个组合对象的特性。

二、定义2.1 母函数的基本概念在组合数学中,母函数是用来描述组合对象的一种工具。

对于一个组合对象,我们可以根据其某种特性,将其抽象为一个序列,其中每一项表示该特性出现的次数。

母函数则是用来表示这个序列的生成函数。

2.2 指数母函数的定义指数母函数是一类特殊的母函数。

对于一个序列(a0,a1,a2,…),其指数母函数定义为:E(z)=∑a i i!∞i=0z i其中,z是一个复数。

三、性质指数母函数具有许多有用的性质,使得它在计算组合对象的计数问题时非常方便和高效。

3.1 复合性指数母函数具有复合性的性质。

设 A (z )=∑a i i!∞i=0z i 和 B (z )=∑bj j!∞j=0z j 是两个指数母函数,它们对应的序列分别为 (a 0,a 1,a 2,…) 和 (b 0,b 1,b 2,…)。

则它们的复合 C (z )=A(B (z )) 的指数母函数为C (z )=∑c k k!∞k=0z k其中 c k 表示序列 (c 0,c 1,c 2,…) 的第 k 项,c k =∑a i i!k i=0bk−i(k−i )!。

3.2 乘法性指数母函数具有乘法性的性质。

设 A (z )=∑a i i!∞i=0z i 和 B (z )=∑bj j!∞j=0z j 是两个指数母函数,它们对应的序列分别为 (a 0,a 1,a 2,…) 和 (b 0,b 1,b 2,…)。

则它们的乘积 C (z )=A (z )⋅B (z ) 的指数母函数为C (z )=∑c k k!∞k=0z k其中 c k 表示序列 (c 0,c 1,c 2,…) 的第 k 项,c k =∑a i i!k i=0bk−i(k−i )!。

四、应用指数母函数在多个领域都有广泛的应用,以下介绍几个常见的应用。

递归与母函数

递归与母函数
m
= [C(m+ n,0) + C(m+ n,1)x ++ C(m+ n, m+ n)xm+n
比较等号两端项对应系数, 比较等号两端项对应系数,可得一等式 C(m + n, r) = C(m,0)C(n, r) +
C(m,1)C(n, r 1) ++ C(m, r)C(n,0)
相关公式
令r=n,则, ,
解的分析
从x4的系数可知,这8个元素中取4个组合,其组合数为 10.这10个组合可从下面展开式中得到
2 3 2 2 3 (1+ x1 + x1 + x1 )(1+ x2 + x2 )(1+ x3 + x3 + x3 ) 2 2 3 2 2 3 2 2 3 2 = [1+ (x1 + x2 ) + (x1 + x1x2 + x2 ) + (x1 + x1 x2 + x1x2 ) + (x1 x2 + x1 x2 ) + x1 x2 ] 2 3 (1+ x3 + x3 + x3 )
母函数
x2项的系数 1a2+a1a3+…+ an-1an 中所有的项包括 个 项的系数a 中所有的项包括n个 元素a 两个组合的全体 元素 1 , a2 , …,an中取两个组合的全体;同理项系 中取两个组合的全体; 数包含了从n个元素 个元素a 中取3个元素组合 数包含了从 个元素 1 , a2 , …,an 中取 个元素组合 的全体.以此类推. 的全体.以此类推. 若令a 项系数a 若令 1=a2= …=an=1,在 x2项系数 1a2+a1a3+…+ an1 中每一个组合有1个贡献,其他各项以此类推. 1an中每一个组合有1个贡献,其他各项以此类推. 故有: 故有:

组合数学_2011_C07

组合数学_2011_C07

G ( x) = (1 + x + x + ⋯)(1 + x + x + ⋯)
2 2 4
⋯ (1 + x m−1 + x 2 m−2 + ⋯)( x m + x 2 m + ⋯)
1 1 1 x = ⋯ 2 1− x 1− x 1 − x m−1 1 − x m
m
m
= x m ∏ (1 + x i ) −1
分配问题
分配问题
将n个球放入m个盒子中,有多少种方案? 1. 问题:1. 球是否可以区分? 2. 盒子是否可以区分? 3. 是否允许出现空盒?
分配问题
球可分?








盒可分?








空盒?








方案数
m n 第二类Stirling Cnn+ m−1 Cnm−−1 Stirling Stirling数 1
B(n, m)
§9 第二类Stirling数
定义:n个有区别的球,放入m个无区别的盒子 中,没有空盒,其可能的方案数记为 S (n, m) ,称为第二类Stirling Stirling Stirling数。
S 注意: (n, m) 可以视为将n个元素拆分为m个非 空子集的方案数,与拆分正整数 n不同!
G ( x) = (1 + x + x 2 + ⋯)(1 + x 2 + x 4 + ⋯)⋯
∞ 1 1 1 = ⋯ = ∏ (1 − x i ) −1 1 − x 1 − x 2 1 − x3 i =1

母函数的概念与性质

母函数的概念与性质

1绪论母函数又可译为发生函数或生成函数.母函数方法是现代离散数学领域中的重要方法.它是联结离散数学与连续数学的桥梁.它是解决组合计数问题的一个重要工具之一.母函数方法是一种既简单又有用的数学方法,是一个古老方法.他源于De Moivre 在1720前后的工作,1748年欧拉在研究关于划分的问题中发展了这一方法.拉普拉期于18世纪末及19世纪初期对其进行了广泛的论述.其探究主要与概率论相关.尽管这一方法有其悠久的历史,但是正如我们将要看到的那样,这一方法有着广泛的应用.当代计算机科学家克努特(D.E.Knuth)在其名著《The art of computer programming,voll》中作了这样的论述:“…当运用母函数时,通常无需担心级数的收敛性,因为我们只是在探求得到某个问题的解的可能途径,一旦当我们用任何手段发现了解,尽管这些手段也许不严格,就有可能独立的验证这个解…例如有时很容易用数学归纳法来证明,我们甚至不必提到它是利用母函数发现的.此外,可以证明我们对母函数所做的绝大多数——如果不是所有的话——运算都能严格论证其可行而无须顾及级数的收敛性.”这段引文最后的断言是通过把母函数作为形式幂级数而得以实现的.一般情况下,母函数中的x只是一个抽象符号,并不需要对它赋予具体数值.因而不需要考虑它的收敛性.此时的变量x只是一种形式变元.对这种级数可以把它看成形式幂级数,可以按通常方式定义其加法、乘法、形式微分等运算,从而构成一个代数体系.母函数有多种类型,这里仅讨论最常见的两种:普通母函数和指数母函数.下面分别进行讨论.2母函数基本概念定义2.1. 对于数列{}0n n a ≥,称函数 120120()k k k f x a x a a x a x ≥==+++∑为数列{}0n n a ≥的普通型母函数(简称普母函数).定义2.2. 对于数列{}0n n a ≥,称函数120120()!1!2!k kk x x x f x a a a a k ≥==+++∑为数列{}0n n a ≥的指数型母函数(简称指母函数).数列与母函数可以互求.已知母函数,可求出其对应的数列;已知数列,可求出其对应的母函数.R 上的母函数的全体记为[]R x ⎡⎤⎣⎦.在集合[]R x ⎡⎤⎣⎦中适当定义加法和乘法运算,可使它成为一个整环,任何一个母函数都是这个环中的元素.定义2.3. 设0()kk k A x a x ∞==∑与0()k k k B x b x ∞==∑是R 上的两个母函数.若对任意0k ≥,有k k a b =.则称()A x 与()B x 相等.记作()()A x B x =.定义 2.4. 设α为任意实数. []0()kk k A x a x R x ∞=⎡⎤=∈⎣⎦∑,则()0()kk k A x a x αα∞==∑称作α与()A x 的数乘积.定义2.5. 设0()kk k A x a x ∞==∑与0()k k k B x b x ∞==∑是R 上的两个母函数.(1)将()A x 与()B x 相加定义为0()()()k k k k A x B x a b x ∞=+=+∑,并称()()A x B x +为()A x 与()B x 的和,把运算“+”称作加法.(2)将()A x 与()B x 相乘定义为01100()()()k k k k k A x B x a b a b a b x ∞-=⋅=+++∑,并称()()A x B x ⋅为()A x 与()B x 的积,把运算“⋅”称作乘法.3母函数的性质母函数与数列之间是一一对应的,因此,若两个母函数之间存在某种关系,那么相应的两个数列之间也必然存在一定的关系;反过来说当然也能成立.设数列{}0n n a ≥的母函数为()A x ,数列{}0n n b ≥的母函数为()B x ,我们可以得到下面的一些性质:性质3.1. 若0n n kn k b a n k-<⎧=⎨≥⎩ , 则 ()()k B x x A x =.证明: 由假设条件,有 21101211()k k k k k k B x b b x b x b x b x b x -+-+=+++++++11k k k k b x b x ++=++ 101k k a x a x +=++()01k x a a x =++()k x A x =.例3.1. 2()11!2!xx x A x e =+++= 且()B x 满足0n n kn k b a n k-<⎧=⎨≥⎩,则求()B x .解:利用性质1,()()k B x x A x =k x x e =⋅性质3.2. 若n n k b a +=,10()()k n k n n B x A x a x x -=⎡⎤=-⎢⎥⎣⎦∑.证明: 又假设条件,有2012()B x b b x b x =+++212k k k a a x a x ++=+++()12121k k k k k k k a x a x a x x ++++=+++ ()10111()k k k A x a a x a x x--=----10()k n k n n A x a x x -=⎡⎤=-⎢⎥⎣⎦∑.例3.2. 35()sin 3!5!x x A x x x ==+++,且6k k b a +=,求()B x .解: 6160()()n n n B x A x a x x -=⎡⎤=-⎢⎥⎣⎦∑356()3!5!x x A x x x ⎡⎤=---⎢⎥⎣⎦.性质3.3. 若0nn k k b a ==∑,则()()1A x B x x=-. 证明: 有假设条件,有 00b a =, 101b x a x a x =+, 22222012b x a x a x a x =++, …,012n n n n n n n b x a x a x a x a x =++++…, 把以上两边分别相加,得2222012()(1)(1)(1)B x a x x a x x x a x x x =++++++++++++22012()(1)a a x a x x x =++++++()1A x x=-. 例3.3. 21()11A x x x x =+++=- ,且0nn k k b a ==∑,则 ()2()1()11A x B x x x ==-- . 性质3.4. 若n k k nb a ∞==∑,则(1)()()1A xA x B x x -=-.这里0k n a ≥∑是收敛的.证明: 因为0k n a ≥∑是收敛的,所以n k k nb a ∞==∑是存在的.于是有0012(1)b a a a A =+++= 1120[(1)]b x a x a x A a x =++=-, 222222301[(1)]b x a x a x A a a x =++=--,…, 1011[(1)]k k k k k k k k b x a x a x A a a a x +-=++=----,….把以上各式的两边分别相加,得0()(1)[(1)]B x A A a x =+-201[(1)]A a a x +--+01[(1)]k k A a a x -+--+2(1)(1)A x x =+++20(1)a x x x -+++221(1)a x x x -+++- 21(1)k k a x x x --+++-2012[(1)()]A x a a x a x =-+++2(1)x x +++(1)()1A xA x x-=-.性质3.5. 若n n na b =, 则'()()B x xA x =.证明: 由'()A x 的定义知'11()n n n na xxA x x ∞-==∑0n n n na x ∞==∑n n n b x ∞==∑()B x =.例3.4. 已知21()11A x x x x =+++=- ,n n na b =,则()21()11x B x x x x '⎛⎫== ⎪-⎝⎭-. 性质3.6. 若1nn a b n =+, 则1()()xB x A t dt x =⎰.证明: 由假设条件,有0()xxn n n A t dt a t dt ∞==∑⎰⎰(1)xn n n b n t dt ∞==+∑⎰1n n n b x ∞+==∑=()xB x .性质3.7. 若0112200nn n n n n k n k k c a b a b a b a b a b ---==++++=∑.则2012()()()C x c c x c x A x B x =+++=证: 000c a b =()10110c x a b a b x =+ ()222021120c x a b a b a b x =++ …()()()2222001210122012()c x a b b x b x a x bb x b x a x bb x b x =++++++++++++()()22012012a a x a x bb x b x =++++++()()A x B x =.例3.5. 已知21()11n A x x x x x=+++++=- ()22()21n xB x x x nx x =++++=-()11232n n n c n +=++++=则 ()3()1xG x x =-.性质3.8. 若k k k c a b αβ=+ ,则()()()0k k k c x c x A x B x αβ∞===+∑.证明:有假设条件,有()()00kkk k k k k c x c x a b x αβ∞∞====+∑∑0kk k k k k a x b x αβ∞∞===+∑∑kk k k k k a x b x αβ∞∞===+∑∑()()A x B x αβ=+.4性质的应用利用这些性质,可以求某些数列的母函数,也可以计算数列的和.下面列出几个常见的简单数列的母函数.(1) {}111G x=- (2) {}11k G a ak=-(3) {}()21xG k x =-(4) (){}()3211xG k k x +=-(5) {}()()2311x x G k x +=-(6) ()(){}()46121xG k k k x ++=-(7) 1!x G e k ⎧⎫=⎨⎬⎩⎭(8) ()1aa G x k ⎧⎫⎛⎫=+⎨⎬ ⎪⎝⎭⎩⎭(9) ()111n n k G k x +⎧+⎫⎛⎫=⎨⎬ ⎪-⎝⎭⎩⎭ 例4.1.求序列{}5,6,7,,5,n +的母函数.解:()()25675n A x x x n x =++++++()()2235123x x x xx =+++++++(){}51G G k =+ ()()221545111x xx x x -=⋅+=---. 母函数的应用很多.求解递推关系,排列组合中,计数问题中的应用等等.利用母函数的性质,可以求某些数列的母函数,也可以计算数列的和.结束语母函数又称生成函数,是一种即简单又有用的数学方法,求解递推关系和组合计数问题中母函数是一种重要的数学方法.用母函数可以求解常系数线性齐次、非齐次递推关系、求解非线性递推关系、非常系数递推关系等等递推关系.这篇文章给出了母函数的基本知识,从最基本点开始讨论了母函数的性质.利用母函数的性质,可以求某些数列的母函数,也可以计算数列的和.参考文献【1】卢开澄,卢华明. 组合数学(第四版).北京:清华大学出版社,2006,12.【2】田秋成等编著. 组合数学. 电子工业出版社,2006,11.【3】李凡长,康宇,董海峰,段爱华编著.组合理论及其应用. 北京:清华大学出版社,2005,9.【4】冯速译. 应用组合学. 拉特格大学狄克森学院:机械工业出版社,2007,5.【5】李乔.组合学讲义(第二版).北京:高等教育出版社,2008,1.【6】孙淑玲许胤龙编著.组合数学引论.中国科学技术大学出版社,2004,1.【7】孙世新张先迪编著.组合原理及其应用.北京:国防工业出版社,2006,3.。

用母函数求解排列问题

用母函数求解排列问题

用母函数求解排列问题作者:***来源:《数学教学通讯·高中版》2024年第06期[摘要]母函数是组合数学中的一个重要概念,用母函数来处理中学数学中的一些排列问题,其可操作性强,学生容易理解. 文章先介绍指数型母函数的相关内容和定理,然后结合实例给出其应用.[关键词]排列问题;母函数;指数型母函数;理解;应用计数问题在日常生活、生产中普遍存在. 计数问题属于组合问题,而组合中有一个重要概念——母函数(也叫发生函数、生成函数)[1]. 指数型母函数(简称指母函数)正是将复杂的计数问题简单化的一个工具,利用指母函数可以轻松求解排列问题.预备知识定义1 设a,a,…,a,…是一个给定的数列,我们称形式幂级数f(x)=xn=a+ax+x2+x3+…+xn+…①为这个数列的指数型母函数,简称指母函数[2].例如,数列1,1,1,…,1,…的指母函数是f(x)=xn=1+x++…++…. 这个指母函数非常重要,我們专门用f(x)=ex来记它,即f(x)=ex=1+x++…++….规定:在进行这些运算时,把形式幂级数看成幂级数,然后按照幂级数的运算法则去运算.定义2 设f(x)=xn和g(x)=xn是两个形式幂级数,则f(x)±g(x)=xn,f(x)·g(x)=xn(其中c=Cakbn-k).定理1 ex·ey=ex+y.在定理1中,取y=x,则(ex)2=e2x,即=xn.推论1 (ex)m=emx,即=xn.在定理1中,取y=-x,则ex·e-x=1,即=e-x. 由ex=1+x++…++…,e-x=1-x+-…+(-1)n+…,得到:推论2 ex+e-x=21+++…++…,ex-e-x=2x+++…++….注:对于指数幂ax(a>0,且a≠1),显然ax·ay=ax+y. 从定理1可以看出,ex·ey=ex+y具有指数幂的运算性质. 这就是称式①为指母函数的原因.用指母函数求解排列问题排列问题,困难在于对问题背景的理解,这是一个数学化过程,需要通过不同情境加强训练、加深理解.我们先来看看下列三类排列问题.问题1 (不许重复的排列)从n个不同的物体中,任意取出r个作排列,不许重复,问有多少种不同的排法?问题2 (允许无限重复的排列)从n个不同的物体中,任意取出r个作排列,允许重复,问有多少种不同的排法?问题3 (允许有限重复的排列)设n个物体中,有n个物体A,n个物体A,…,n个物体A,n+n+…+n=n,现从中任取r个作排列,问有多少种不同的排法?[3]分析问题1的解答很简单,不同的排列的总数为A=n(n-1)…(n-r+1). 特别地,当r=n 时,不同的排列的总数为A=n(n-1)…3×2×1=n!. 这在中学课本上已经很熟悉了.问题2的解答也不困难.因为允许重复,所以每个排列的r个位置上都有可能放n个不同物体中的任何一个,即每个位置都有n种可能,因此不同的排列的总数为nr[4].解答困难的是问题3,因为每个物体重复的次数是有限的,这给问题带来了复杂性.但如果考虑r=n的情形,问题还不算太难.定理2 设n个物体中,有n个物体A,n个物体A,…,n个物体A,n+n+…+n=n,则这n个物体不同的排列的总数为.证明由于对每个排列来说,n个物体A,n个物体A,…,n个物体A都出现在排列中,因此n个物体排列的总数为n!,而在这n!个排列中有很多的排列是一样的,例如n个物体A任意交换位置,若其他物体不动,这样得到的排列全是一样的,这种相同的排列有n!个. 同理,对物体A,A,…,A,也会有同类情况. 去掉这些相同的排列后,真正不同的排列的总数为.注:这是问题3中当r=n时的解答.最困难的是r<n的情形,这没有一般公式,而指母函数是解决这类问题的有力工具.定理3 设n个物体中,有n个物体A,n个物体A,…,n个物体A,n+n+…+n=n,从这n个物体中任取r(r<n)个物体,不同的排列的总数记为a,则数列{a}的指母函数为f(x)=1+x++…+1+x++…+…1+x++…+②.证明让第i个括号代表第i个物体A(i=1,2,…,k).从第一个括号中取出项,解释为“取出3个物体A”;从第二个括号中取出项,解释为“取出4个物体A”;其余类似.现在研究式②的展开式中的系数.合并同类项前,式②的展开式中的是由各个括号中的项相乘而来的:··…·=,这里0≤m≤n,0≤m≤n,…,0≤m≤n,而且m+m+…+m=r. 故··…·=·. 由此可知,的系数是③,而且m+m+…+m=r.根据定理2可知,式③恰好就是这r个物体不同的排列的总数:在这r个物体中有m个A,m个A,…,m个A,这说明乘积··…·就对应一种排列. 由于m(i=1,2,…,k)可以取遍0,1,2,…,n(i=1,2,…,k)中的所有整数,因此合并同类项后,的系数就表示从这n个物体中取出r个物体的不同的排列的总数.这就证明了式②就是数列{a}的指母函数.在此我们可以把定理3推广到更一般的情形:定理4 设A={a,a,…,a},M,M,…,M均为非负整数集的子集,从A中可重复地选取r个元素作排列. 如果a可重复选取的全部次数为M(k=1,2,…,n),记所有可能的排列数为er,则数列{er}(r≥0)的指母函数为f(x)=…. 将指母函数解析式展开,的系数就是所求的排列数e.证明留给读者完成.指母函数应用举例题1 将8个不同的球分发给4个不同的班级,要求每个班至少分得一个球,问有多少种不同的分法?解析将8个不同的球排成一列,4个班依次编号为1,2,3,4.对于一个满足条件的分法,若把某个球分给编号为i的班,就在该球所排的位置上填上i,则得到{1,2,3,4}的一个“8可重”排列(即从集合{1,2,3,4}中可重复地选取8个元素作成排列). 由于每个班至少分得一个球,所以每个数至少出现一次,即每个数出现的次数都属于集合{1,2,3,…}. 将n个不同的球分给4个不同的班且每个班至少分得一个球的分法数记为a,由定理4可知数列{a}(n≥1)的指母函数为f(x)=x+++…=(ex-1)4=e4x-4e3x+6e2x-4ex+1=xn-4xn+6xn-4xn+1=(4n-4×3n+6×2n-4)+1. 由此可得,的系數a=48-4×38+6×28-4=40824. 所以,共有40824种不同的分法.题2 用数字1,2,3,4作六位数,每个数字在六位数中出现的次数不得大于2,问可作出多少个不同的六位数?解析这是排列问题,每个数字出现的次数都属于集合{0,1,2}. 设所求为N,由定理4可知,N是指母函数f(x)=1+x+的展开式中的系数,而1+x+=[x2+(2x+2)]4=[x8+4x6(2x+2)+6x4(2x+2)2+4x2(2x+2)3+(2x+2)4],所以N=(4×2+6×22)=1440.题3 把n(n≥1)个彼此不同的球放到4个不同的盒子A,A,A,A中,要求A有奇数个球,A有偶数个球,问不同的放球方法有多少种?解析设不同的放球方法有a种.因为要求A有奇数个球,A有偶数个球,A,A中球的个数没有限制,所以A盒子出现的球的个数属于集合{1,3,5,…},A盒子出现的球的个数属于集合{0,2,4,…},A,A盒子出现的球的个数都属于集合{0,1,2,3,…}.由定理4可知,数列{a}的指母函数是f(x)=x+++…1+++…1+x+++….由推论1和推论2可得f(x)=··(ex)2=(e4x-1)=·=. 比较(n≥1)的系数,得a=4n-1.结束语母函数分为普通型母函数(简称普母函数)和指数型母函数(简称指母函数).普母函数主要应用于求解组合问题,而指母函数则主要应用于求解排列问题.高中阶段的排列问题,有些是难以处理的,这时可借助指母函数来求解. 利用指母函数求解排列问题,学生容易理解,而且可操作性强,是处理排列问题的好方法.参考文献:[1]李鸿昌,徐章韬. 用母函数理解组合问题[J]. 数学通讯,2023(10):59-61+66.[2]曹汝成. 组合数学[M]. 广州:华南理工大学出版社,2000.[3]刘会科. 母函数在组合计数中的应用[J]. 数理化解题研究,2016(13):16-17.[4]高仕学. 用母函数法统一解决三类排列与组合问题[J]. 课程教育研究,2017(07):161.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G(x) (1 x x2 x3)(1 x x2 )(1 x x2 x3) (1 2x 3x2 3x3 2x4 x5 ) (1 x x2 x3 ) 1 3x 6x2 9x3 10x4 9x5 6x6 3x7 x8
$4.7 解的分析
从 x的4 系数可知,这8个元素中取4个组
便比较复杂。先考虑n 个元素的全排列,若 n个元素没有完全一样的元素,则应有 n!种排 列。若考虑 ni 个元素 ai的全排列数为 ni! ,则真正不同的排列数为
n! n1!n2! nk !
$4.7 解的分析
先讨论一个具体问题:若有8个元素,其中
设 重a复1 3次, 重a复2 2次, 重复a33次。从中取r 个组合,其组合数为 ,则序cr列 c0 , c1, c2 , c3, c4 , 的c5,母c6函, c7数为
350 x6 560 x7 560 x8 (4 7 4)
6!
7!
8!
$4.7 指数型母函数
定义:对于序列p0, p1, p2, ,函数
Ge (x)
p0
p1 1!
x
p2 x2 2!
p3 x3 3!
pk xk k!
称为是序列p0, p1, p2, 的指数型母函数
$4.7 指数型母函数
x4 4!
)2 (1 x x2 x3 2! 3!
)3
$4.7 举例
由于
ex 1 x x2 x3 ), 2! 3!
1 x2 x4 1 (ex ex ).
2! 4!
2
Ge (x)
1 (ex 4
ex
)2 e3x
1 (e2x 2 e2x )e3x 4
$4.7 举例
1 (e5x 2e3x ex ) 4
x1x33 x2 x33 x12 x32 x1x2 x32 x22 x32 x13x3
$4.7 解的分析 x12 x2 x3 x1x22x3 x13x3 x12x22
即 a1a3a3a3, a3a1a3a3, a3a3a1a3, a以3a此3a类3a1推, 。
故解,其不同的排列数为
7!
8!
9!
10!
由此可见满足条件的5位数共215个。
$4.7 举例
例3: 求1,3,5,7,9五个数字组成的n位数
的个数,要求其中3,7出现的次数为偶数,
其他1,5,9出现次数不加限制。
设满足条件的r 位的个数为 ar ,则序列 a1, a2 , a3, 对应的指数型母函数为
Ge
(x)
(1
x2 2!
(1 x 1 x2 1 x3) 26
1 3x 9 x2 14 x3 35 x4 17 x5 2 3 12 12
35 x6 8 x7 1 x8 72 72 72
(4 7 3
1! 3 x 9 x2 28 x3 70 x4 170 x5 1! 2! 3! 4! 5!
350 x6 560 x7 560 x8 (4 7 4)
$4.7 举例
x 5 x2 3x3 8 x4 43 x5 43 x6
2
3 24 48
17 x7 1 x8 1 x9 1 x10 48 288 48 288
x 5 x2 18 x3 64 x4 215 x5 645 x6
1! 2! 3! 4!
5!
6!
1785 x7 140 x8 7650 x9 12600 x10
综合上述可得如下两个结论:
(a) 若元素 a1有 n1个,元素 a2有 n2个, ……,元素ak有nk 个,由此;组成的n个元素
的排列,不同的排列总数为
n! n1!n2! nk ! 其中 n n1 n2 nk
$4.7 指数型母函数
(b) 若元素 a有1 个n1 ,元素 a有2 n个2 ,
……,元素 a有k n个k ,由此;组成的n个元素
合,其组合数为10。这10个组合可从下面 展开式中得到
(1 x1 x12 x13 )(1 x2 x22 )(1 x3 x32 x33 ) [1 (x1 x2 ) (x12 x1x2 x22 )
(x13 x12 x2 x1x22 ) (x13x2 x12 x22 ) x13x22 ] (1 x3 x32 x33 )
$4.7 指数型母函数
为了便于计算,利用上述特点,形式地
引进函数
Ge
(x)
(1
x 1!
x2 2!
x3 )(1 3!
x 1!
x2 ) 2!
(1 x x2 x3 ) 1! 2! 3!
$4.7 指数型母函数
承上页
Ge (x)
(1 2x 2x2 7 x3 5 x4 1 x5 ) 6 12 12
$4.7 举例
设满足上述条件的r位数为 ,a序r 列
a1, a2 ,的a10指数型母函数为
Ge
(x)
(x 1!
x2 )(1 2!
x)(1
x 1!
x2 2!
x3 )
3!
(1 x2 x4 ) 2! 4!
(x 3 x2 1 x3 )(1 x x2 2 x3
22
3
7 x4 1 x5 x6 x7 ) 24 8 48 144
$4.7 举例
例1:求由两个a ,1个b ,2个c 组成的
不同排列总数。 根据结论一,不同的排列总数为
n 5! 30 2!四个数字组成的五 位数中,要求数1出现次数不超过2次,但 不能不出现; 2出现次数不超过1次; 3出 现次数可达3次,也可以不出现;4出现次 数为偶数。求满足上述条件的数的个数。
6!
7!
8!
$4.7 指数型母函数
从(4-7-3)式计算结果可以得出:取一个的
排列数为3,取两个的排列数为 2 9 /取2 3个9,
的排列数为
3!,1取4 /43个 的28排列数
为 4!3,5 /如12此等70等。把(4-7-3)式改写成
下面形式便一目了然了。
Ge (x)
1! 3 x 9 x2 28 x3 70 x4 170 x5 1! 2! 3! 4! 5!
4!( 1 1 1 1 1 1 1!3! 1!3! 2!2! 1!1!2! 2!2! 3!1!
1 1 1 1) 2!1!1! 1!2!1! 3!1! 2!2!
4!( 4 3 3 ) 4!4 2!2!3 3!3 2!3!
3! 2!2! 2!
2!2!3!
16 18 36 70
$4.7 解的分析
其中4次方项有
x1x33 x2 x33 x12 x32 x1x2 x32 x22 x32 x13x3 x12 x2 x3 x1x22 x3 x13x3 x12 x22
上式中 表达了从8个元素( a1,各a33个, a2 2个)中取4个的组合。例如 x1x为33 一个 ,a13个 的组a3合, 为两x12个x32 ,两个a1 的组合,a3 以此类
$4.7 指数型母函数
$4.7 问题提出
设有n个元素,其中元素a1 重复了n1 次,元 素 a2重复了 n2次,…,ak 重复了nk 次,
n n1 n2 nk
从中取r个排列,求不同的排列数
如果 n1 n2 nk 1 ,则是一般的
排列问题。
$4.7 问题提出
现在由于出现重复,故不同的排列计数
$4.7 解的分析
承前页
1 (1 x1 x2 x3 ) (x12 x1x2 x22 x1x3 x2 x3 x33 ) (x13 x12 x2 x1x22 x12 x3 x1x2 x3 x22 x3 x1x32 x2 x32 x33 ) (x1x33 x2 x33 x12 x32 x1x2 x32 x22 x32 x13x3 x12 x2 x3 x1x22 x3 x13x3 x12 x22 )
1 ( 5n xn 2 3n xn xn )
4 n0 n!
n0 n! n0 n!
1 (5n 2 3n 1) xn .
4 n0
n!
an
1 4
(5n
2 3n
1).
小测验
1. 在1到9999之间,有多少个每位上数字 全不同而且有奇数构成的整数。 2.在由n个0及n个1构成的字符串中,任意 前k个字符中,0的个数不少于1的个数的字 符串有多少? 3.设 n=pa11 pa22 …pamm ,p1、p2、…、pm是m个不 同的素数,试求能整除尽数n的正整数数目.
中取r个排列,设其不同的排列数为 p。r 则 序列 p0 , p1, p的n 指数型母函数为
Ge
(x)
(1
x 1!
x2 2!
x n1 )
n1!
(1 x x2 xn2 ) (1 x x2 xnk )
1! 2!
n2!
1! 2!
nk !
$4.7 指数型母函数
与(2)中所用的方法相比,可以看出指数 型母函数在解决有重复元素的排列时的优 越性。
推。
$4.7 解的分析
若研究从中取4个的不同排列总数,以
x12 x32 对应的两个两个的不同排列为例,其
不同排列数为
4! 6 2!2! 即 a1a1a3a3, a1a3a1a3, a3a1a3a1, a1a3a3a1, a3a3a1a1, a3a1a1a3, 六种。同样,1个a1 3个 a3 的不同排列数为4! 4 3!
相关文档
最新文档