消声器设计计算

合集下载

风管消声器面积计算公式

风管消声器面积计算公式

风管消声器面积计算公式在工业生产和建筑设计中,风管消声器是一种常用的设备,用于降低风管系统中的噪音。

风管消声器的设计和选择需要考虑多种因素,其中之一就是消声器的面积。

消声器的面积直接影响其消声效果,因此正确计算消声器的面积是非常重要的。

本文将介绍风管消声器面积的计算公式及其相关内容。

首先,我们需要了解一下风管消声器的工作原理。

风管消声器通过其内部的吸音材料和特殊的结构设计,能够有效地吸收和减少风管系统中传播的噪音。

消声器的面积越大,其吸音材料的面积也就越大,从而能够提供更好的消声效果。

风管消声器的面积计算公式通常是基于其声学特性和工作原理推导得出的。

一般来说,可以使用以下的公式来计算风管消声器的面积:A = V / (α N L)。

其中,A代表消声器的面积,单位为平方米;V代表风管系统的体积,单位为立方米;α代表吸音材料的吸声系数,为无量纲值;N代表消声器的级数,为无量纲值;L代表消声器的长度,单位为米。

这个公式的推导是基于声学原理和消声器的工作原理的,其中吸音材料的吸声系数α是一个与材料本身相关的参数,通常需要通过实验或者参考相关文献来获取。

消声器的级数N是一个反映消声器内部结构的参数,一般取决于消声器的设计和制造工艺。

消声器的长度L则是一个可以通过设计来确定的参数。

在实际应用中,计算风管消声器的面积需要首先确定风管系统的体积V。

风管系统的体积可以通过测量风管的尺寸和长度来计算得出。

然后需要确定吸音材料的吸声系数α,这通常需要参考材料的技术参数或者进行实验测定。

接下来需要确定消声器的级数N和长度L,这通常需要根据具体的设计要求来确定。

通过以上的公式和参数计算,可以得到风管消声器的面积A。

在实际应用中,可以根据计算得出的面积来选择合适尺寸的消声器,并进行安装和调试。

除了上述的基本公式外,还有一些针对特定类型的风管消声器的面积计算公式。

例如,对于圆管型的消声器,可以使用以下的公式来计算其面积:A = (π D L) / (4 N)。

消声器背压值计算公式

消声器背压值计算公式

消声器背压值计算公式消声器是一种用于减少发动机排气噪音的装置,它通过利用声学原理来减少排气气流的噪音。

消声器的设计和性能对发动机的性能和效率有着重要的影响。

其中一个重要的参数就是消声器的背压值,它反映了消声器对排气气流的阻力。

在设计和选择消声器时,需要准确计算消声器的背压值,以确保发动机的性能和效率不受影响。

消声器的背压值计算公式可以通过以下公式来计算:ΔP = K (V^2 / 2g)。

其中,ΔP表示消声器的背压值,单位为帕斯卡(Pa);K为消声器的阻力系数;V为排气气流的速度,单位为米/秒(m/s);g为重力加速度,取9.81米/秒^2。

在实际应用中,消声器的阻力系数K是一个重要的参数,它反映了消声器对排气气流的阻力大小。

K的值取决于消声器的设计、材料和结构等因素。

一般来说,K的值越大,消声器对排气气流的阻力就越大,背压值也就越高。

排气气流的速度V是另一个影响背压值的重要因素。

排气气流的速度越大,消声器对排气气流的阻力也就越大,背压值也就越高。

因此,在计算消声器的背压值时,需要准确测量排气气流的速度,并将其代入计算公式中。

在实际应用中,消声器的背压值对发动机的性能和效率有着重要的影响。

过高的背压值会导致发动机的排气气流受阻,影响发动机的排气效率和性能;而过低的背压值则可能导致排气噪音无法有效减少。

因此,在设计和选择消声器时,需要综合考虑消声器的背压值、阻力系数和排气气流的速度等因素,以确保消声器能够有效减少排气噪音,同时不影响发动机的性能和效率。

除了计算消声器的背压值外,还需要对消声器的材料、结构和设计进行合理选择和优化。

消声器的材料和结构对其阻力系数K和背压值有着重要的影响。

合理选择消声器的材料和结构,可以有效降低消声器的阻力,减小背压值,从而最大限度地减少排气噪音,同时不影响发动机的性能和效率。

总的来说,消声器的背压值计算公式可以帮助工程师和设计师准确计算消声器的背压值,从而选择合适的消声器,确保发动机的性能和效率不受影响。

阻性消声器的设计与消声量计算方式

阻性消声器的设计与消声量计算方式

阻性消声器的设计(1)确定消声量根据法规、标准及声源确定消声器所需的消声量。

在大多数情况下,消声量是以A计权声级计算。

参照相应的NR曲线,确定各倍频带或1/3倍频带需要的消声量。

(2)选定消声器的结构形式根据消声器的流量和允许的流速大小(一般情况下,流速控制决定于阻力要求和消声器消声量要求),确定所需要的通流面积,然后根据通流面积的大小来选定消声器的结构形式。

按照一般的常规设计,通道的当量直径小于300mm 时,可选用单通道直管式;当通道当量直径大于300mm而小于500mm时,应在通道中加设吸声层或吸声芯,消声器的有效通流面积要扣除吸声层或吸声芯所占面积,以避免由于流速增加而引起的不良影响;当直径大于500mm时,当考虑采用片式、蜂窝式等其他形式的消声器。

(3)选用吸声材料吸声材料声学性能的好坏是决定消声器声学性能的重要因素。

除首先考虑其声学性能外,还需考虑消声器的实际使用条件。

在高温、潮湿、有腐蚀气体等特殊环境中使用的消声器,应考虑吸声材料的耐热、防潮、抗腐蚀性能。

(4)决定消声器长度在通道截面确定后,增加消声器的长度可以提高消声量。

消声器的长度主要根据声源强度和具体的降噪要求决定,还应注意现场有限空间所允许的安装尺寸。

(5)选择吸声材料的护面结构由于消声器中一般要通过具有一定流速的气流,所以必须采用护面结构固定和保护吸声材料。

XW-Ⅲ型.Ⅳ型微穿孔板消声器 XW-Ⅲ型.Ⅳ型微穿孔板消声器为圆形。

其中XW-Ⅲ型是单空腔结构,XW-Ⅳ型是双空腔结构。

XW-Ⅲ型消声量为15-20dB(A), XW-Ⅳ型消声量为20-25dB(A)。

XW-Ⅲ型.Ⅳ型消声器压力损失10-40Pa(风速5-15m/s)。

有效长度L=2m,安装长度L1=2.16m。

XW-Ⅲ型微穿孔板消声器结构外形图XW-Ⅳ型微穿孔板消声器结构外形图XW-Ⅲ型.Ⅳ型微穿孔板消声器系列规格表序号法兰内径d(mm)外形尺寸D(mm)风量m3/h XW-ⅢXW-Ⅳ1 100 300 400 2202 150 350 450 5403 200 400 500 8904 250 450 550 14005 300 540 640 18506 350 620 720 28807 400 700 800 35908 450 750 850 45509 500 820 920 562010 550 870 970 711011 600 1000 1100 810012 650 1080 1180 900013 700 1140 1240 1102014 750 1190 1290 1250015 800 1240 1340 1440016 850 1290 1390 1380017 900 1400 1500 1824018 950 1450 1550 19900Z型轴流风机消声器主要用于降低轴流风机噪声,在各类工业、民用、公共建筑工程的进风、排风及矿井通风降噪工程中有广泛应用。

放空消声器计算书

放空消声器计算书

一、已知参数:0.101MPa 3Mpa 339K 0.584m 3/kg 质量流量1618
Nm3/h 2087.22kg/h
450mm 气体密度ρ:
1.29kg/m3二、放空口噪声声压级
162.072783429.7029703
三、消声器参数和消声量计算0.5284.61306076851.584
0.8363520.4415940.2331620.123109P2
P3
P4P5P6633.846971200.4677452273.6134306.0868155.465S1
S2S3S4S5最后一级节流孔板的消声量
24.93191dB(A)
节流板的孔心距取5~1O倍孔径以上,以避免蒸汽扩散后再汇合成大的喷注而产生混合喷注噪声。

最后一层孔板的节流孔直径不宜大于4mm。

2、放空阀前压力接近大气压时,宜选用阻性消声结构;
压降比
所需的节流降压级数N
取整数每一级节流孔板后的压力(Mpa)每一级节流孔板的流通面积(cm2)1、放空阀前压力较高时,宜选用小孔喷注抗性消声和阻性消声复合结构, 消声器的出口压力须在0.185MPa以下;
排气就成为阻塞排空,这时排放口流速达到声速,放空噪声的声功率级符合著名的八次方定律,可得在喷射口90。

方向,离喷口l米处的声压级为:R=P 1/P B
放空阀后气体比容V:
气体流量Q:
放空管直径D:
当放气阀的背压,即消声器的人口压力高于临界压力(P L /P B ≥ 1.893)时,放空消声器计算书
大气压力P B :
消声器入口压力P 1:
气体温度T:。

【精品】消声器设计

【精品】消声器设计

噪声污染控制工程设计说明1.0原始资料1.1环境噪声的基本情况某厂一大型离心风机位于工业厂场附近、距风机出口左侧100m处有一座办公楼,右侧及前方为菜地。

由于出气口噪声很高,影响工程技术人员及人们的工作效率;另外,风机房内噪声也很高,但操作者经常呆在隔声间内,故机壳和电机的噪声危害不大,可以不予考虑。

鉴于上述情况,可对排气噪声采取控制措施。

风机、办公楼的平面布置图如图1-0。

图1-0:风机、办公楼的平面布置图在办公楼窗前1m处测得的环境噪声如下表所示:1.2离心风机的基本情况大型离心风机K2-73-02No32F风机的性能参数:功率为2500kw,风量为9500 m3/h,风机叶片数=12,转数n为600r/min。

出风口为直角扩散弯头,出口呈3 m×3 m的正方形。

在风机排风口左侧45°方向1m处,测得A声级为109dB,其倍频带声压级如下表所示。

1.3有关标准和设计规范说明本设计重所参考的标准同设计规范均以《工业企业噪声设计规范》GBJ87-85、《城市区域环境噪声标准》GB3069-2008为基准。

1.4设计任务1)设计一消声器使得风机排风口左侧45°方向1m 处的A 声级降为75dB 。

2)根据环境标准的要求,检验在办公楼窗前1m 处,根据所采用的消声器能否满足该功能区的声环境要求。

2.0消声器的设计计算2.1消声器的选择阻性消声器是利用气流管道内的不同结构形式的多孔吸声材料吸收声能来降低噪声的消声器。

片式消声器适用风量大,结构简单,中高频消声性能优良,气流阻力也小。

从本设计的风量Q=9500m 3/h 、频率来看,可选定片式的阻性消声器。

2. 2消声量的计算根据ISO 提出的用A 声级作为噪声评价标准,当A 声级Lp 大于75dB (A )时:5575570Lp NR NR Lp dB=+=-=-=因为 所以根据NR =70查NR 曲线,找各倍频处的声压级,将结果写于噪声设计表的第二行 2.3消声器的面积与通道结构的确定根据设计数据气流速度宜小于8m/s,所以本设计选取V=6m/s 消声器的总面积:m V Q S 44.0636009500=⨯==设计选用3个通道,则单个气流通道面积S 1:m 147.0344.0n S S 1===2 根据经验片式消声器的片距宜取100~200mm ,片厚宜取100~150mm,在本设计中设片距b 1=110mm 、片厚b 2=150mm 。

消声器消声量计算公式

消声器消声量计算公式

消声器消声量计算公式在汽车或其他机械设备中使用消声器可以有效降低噪音产生的频率和强度,提供更为安静的工作环境。

消声量即为消声器所能降低噪音的能力,下面介绍一种常用的计算公式。

消声器的消声量通常使用声学功率来衡量,单位为分贝(dB)。

声学功率是指单位时间内噪音产生的能量或功率,消声器的功率降低可以通过比较入口和出口处的声音强度来计算。

一种常见的消声量计算公式如下:L = 10 * log10 (P1 / P2)其中,L表示消声量,P1表示入口处的声音功率,P2表示出口处的声音功率。

这个公式是根据声音功率的比例关系推导出来的。

上述公式中,log10是以10为底的对数函数。

由于实际应用中声音功率值往往是很小的数,为了将结果表达得更为直观,一般将计算结果乘以10,得到的数值称为消声量的分贝值。

为了更好地理解消声量计算公式,我们以一个具体的例子进行说明。

假设入口处的声音功率为1000瓦(W),出口处的声音功率为100瓦,则消声量的计算如下:L = 10 * log10 (1000 / 100)= 10 * log10 (10)=10*1=10dB这意味着消声器将声音功率降低了10dB,即消声量为10dB。

需要注意的是,消声量的大小与消声器的设计、材料以及工作状态等因素有关。

不同类型的消声器具有不同的消声效果,消声体积和结构的改变也将影响消声量。

因此,在实际应用中,需要进行更为详细的测试和计算,才能准确评估消声器的消声效果。

总之,消声量的计算公式为L = 10 * log10 (P1 / P2),通过比较入口和出口处的声音功率来评估消声器的消声效果。

具体的消声量取决于多个因素,需要综合考虑设计、材料和工作状态等因素。

消音器计算说明书

消音器计算说明书

消音器计算说明书位号:HX-6465计算书一、以知数据以知设计参数名称流量(kg/hr)温度(℃)压力(kg/cm2g)蒸汽消声器41371170.1以知声频率带功率级二、设计计算结果1、根据声率级表格数据可知;该噪音源八个倍频带总声压级为90dB(A)。

根据相关环保卫士标准,我们需要将消声器后A声级降到85dB(A)以下。

所需消音量如下:△LA=90-85=5dB(A);及消声器最低消音量不得小于5dB(A)。

消声片长度我们设计为L=1.0m;根据△LAo=ψ×a o×(P/S)×L△LAo=1.2×0.8×(1.33/0.085)×1=18.4dB(A)>5dB(A)。

消声后:△Lo=90-18.4=71.6dB(A)故消音量满足设计要求。

2、消声器外筒钢板采用5mm厚的钢板;根据质量定理可以计算出隔音量为28dB(A);28dB(A)>5dB(A)满足消声器设计要求。

3、消声器上限频率:消声器通道宽度我们设计为0.15m,经计算消声器上限截止频率为3594H Z。

倍频带为4000~8000的声功率为80dB(A)<85dB(A);故消声器宽度符合设计要求。

4、消声器下限频率:吸声片宽度我们设计为0.1m,经计算消声器下限截止频率为78H Z。

计算发现消声器对频率低于78H Z倍频带消音效果稍差;但是我们可以通过提高消声器的整体消音量(18.4dB(A))来满足低频消音量的要求。

5、气体流速对消声量影响:消声器总流通面积为0.17m2,计算流速为10.8m/s。

△Lo"=△Lo(1+M)-2△Lo"=71.6(1+0..032)-2=72.8dB(A)。

△Lo"<85dB(A)故消声器满足设计要求。

位号:HX-6402计算书一、以知数据以知设计参数名称流量(kg/hr)温度(℃)压力(kg/cm2g)蒸汽消声器63406229.60.5以知声频率带功率级二、设计计算结果1、根据声率级表格数据可知;该噪音源八个倍频带总声压级为90dB(A)。

浅谈消声器的设计与计算

浅谈消声器的设计与计算

图2
表1
倍频程 中心 频率 H z 15 2 20 5 50 0 i0 00 2 o 0o 40 00
降噪前 声压 级 7 6
( B d)
7 9
6, 3l
8 5
5. 84
7 8
5 5
7 2
5 23
6 2
5 . O3
N 5曲线 R
( B d)
中国科技信息 zo  ̄第2 期 os 2
卧c IE
TCN L G 厝 f A l N v20 EH OO Y l: I T N o 08 卜o M 0


频范围内降噪幅度较大 ,低频 降噪幅度较 小 ,采用此法后测点上的平均降噪量可达
到 1d ( 0 B A)左右 。

降 噪 方 案
( 每台风机为独立的出风管 ) ,每个班次 引 风机至少运行 3 小时以_ , 卜 每次为2 台同时
运 行 , 引风 机开 机 后 对 住 宅 楼 内 的居 民构 成 了严 重干 扰 ,在 夜 晚 多 数 居 民 经常 在 风 机开机后被吵醒而不能继续入睡 ,影 响了
3 1改变引风机排风管指 向 . 从 图1 中可看出 , 引风机排风 出口正对 着居民住宅楼 ,我们把排风管走向变为图 中虚线位置 , 让其从屋顶穿出, 排风 口指向 上空 。 从理论上知道改变声传播指向性 , 高
6. 98
所 需降噪量
( B) d
62 .
l. 59
2. 66
2 3
l . g7
l 7 l
噪 声治理后
6 . 55
6 0
5 5
5 6
5 l
4 ' 4
图1

消声器消声量计算公式

消声器消声量计算公式

消声器消声量计算公式消声器的消声量是指消声器对声音的降噪效果程度,通常以分贝(dB)为单位进行测量。

消声量的计算公式可以通过衰减值和初始输入声音来计算。

在计算消声量之前,首先需要了解以下几个术语和概念:1. 声压级(Sound Pressure Level,SPL):指声音的强度或噪音的大小,以分贝(dB)为单位表示。

2. 声功率级(Sound Power Level,SWL):指噪声的实际能量或声源的总功率,以分贝(dB)为单位表示。

3. 初始声压级(Initial Sound Pressure Level,ISPL):指进入消声器之前的声音强度。

4. 出去声压级(Exited Sound Pressure Level,ESPL):指通过消声器之后的声音强度。

5. 声音衰减(Sound Attenuation):指声音通过消声器后的衰减程度,通常以分贝为单位表示。

消声器的消声量计算公式如下:消声量(Silencing Capacity,SC)= ISPL - ESPL其中,ISPL是进入消声器之前的声压级,ESPL是通过消声器之后的声压级。

消声量计算的一般步骤如下:1.确定初始声压级(ISPL):可以通过声级计等实验设备测量得到。

2.确定通过消声器后的声压级(ESPL):可以通过声级计等实验设备测量得到。

3.计算消声量(SC):使用上述公式计算出消声量。

需要注意的是,消声器的消声量与消声器的设计、材料、结构等因素有关。

不同类型的消声器对不同频率的声音有不同的衰减效果,因此在实际计算中可能需要考虑更多的细节和因素。

消声量的计算公式可以作为一个参考值,用于评估和比较不同消声器的效果,但在实际应用中需要综合考虑各种因素,并进行实际测试和评估来确定消声器的性能。

消声器计算

消声器计算

消音器设计计算书由于我国目前对消音器的设计,还没有统一的标准规范可以遵照执行,大多数厂家均根据自己的经验来设计制作,且技术又相对保密的。

因此本消音器的设计,经查阅大量资料,采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。

消音器的工艺参数为:蒸汽排放绝对压力:40 kg/ cm2,排汽温度:390℃,蒸汽比容ρ:0.0721m3/ kg,排汽流量Q:8t/h;噪声达到110dB以上,要求消音器的噪声小于85dB的环保要求。

一、设计原理。

复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压,预先消耗部分声能,再dB与小孔降噪相结合,达到较高的消声量;其原理是利用节流降压与小孔喷注两种消声机理,通过适当结构复合而成的。

1. 小孔喷注消音器小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,从发声机理上使它的干扰噪声减少,由于喷注噪声峰值频率与喷口直径成反比,若喷口直径变小,喷口辐射的噪声能量将丛低频移向高频,于是低频噪声被降低,高频噪声反而增高,当孔径小到一定值(达到mm级),实验表明,当孔径≤4mm时具有移频作用,喷注噪声将移到人耳不敏感的频率范围(听觉最敏感的区域250~5000赫兹);根据这一机理将一个大的喷口改为许多小孔来代替,便能达到降低可听声的目的。

从实用角度考虑,孔径不能选得过小,因为过小的孔径不仅难于加工,同时易于堵塞,影响排汽。

一般选用直径1~3mm的小孔为宜。

2.节流降压消音器节流降压消音器是利用节流降压原理而制成的。

根据排汽流量的大小,适当设计通流截面,使高压气体通过节流孔板时,压力都能最大限度地降低到临界值。

这样通过多级节流孔板串联,就能把排空的一次压降分散到若干个小的压降。

由于排汽噪声功率与压力降的高次方成正比例,所以把压力突变排空改为压力在消音器内就逐渐降下来再排空,这样能使消音器内流速控制在临界流速下,不致产生激波噪声,压力在最大限度地降到临界值,使消音器获得较好的消声效果。

消声器计算表

消声器计算表
105 4.2E+10 101.9 1.9E+10 91.3 1.5E+09 81.6 1.4E+08 77.3 4.2E+07 72.6 1E+07 68.1 2398833 62.4 380189
85.6 93
112.1 128.3 110.3 99.6 110.8 94.3 98.5 89.7
共振LIL
吸声 LTL
四分一 LTL
f
共振
LTL
1/3倍频程
30
10
50
12.5
75
0.0
0.0
0.0
0.0 16
100
0.0
0.0
0.0
0.0 20
110
-0.1
0.0
0.0
0.2 25
125
-0.1
0.0
0.0
0.3 31.5
150
-0.2
0.0
0.0
0.5 40
175
-0.3
0.2
0.0
8.1
-0.4 7.2
8.2
-0.4 8.7
5.3
A声级转换
计算 LIL总
换成LA (A声级)
变A声级 换算值
插入20* LOG(Z3Yf 扩插LIL
9.12E-08
-70.4
4.57E-07
2.14E-06 8.91E-06 115.3 11502423
113.3 24808071
-63.4
-56.7 -50.5 -44.7
0.0
4.9 100
100
0.0
5.7 125
150
0.0
7.7 160

消声器消音量计算

消声器消音量计算

1.《压气机放空消声器的研究与计算》:
A.消声器的入口压力高于临界压力时,离喷口1M 处的声压为:
Lp=80+lg(R-1) ²/(R-0.5)+20lgD(db)
式中R=P1/Pb=消声器入口压力/环境压力 D-排气口径
B.当节流降压的小孔直径≤4mm 时,喷注的降噪量可用下式计算:
△L=-101lg[2π (tg -1Xa-Xa 1-Xa )]
=-10lg 43π (0.165D)³
式中D-小孔直径
C .当驻压比大于临界压比P1/P B ≥1.893时,其节流孔的面积S 按下
式计算
S=13μG √V1/P1×100mm ²
式中:μ-流量系数取1-1.8
G-放空的空气流量(t/h )
P1-进入消声器前容器内的压力(kgf/cm ²)
V1-进入消声器前的容器内气体比容(m ³/kg )
D.阻性消声器消音量计算公式:
△L=1.3a o P S L
式中a o -正入射吸声系数,取0.85
P-消声器通道断面的周长m
S-消声器通道的断面积m ²
L-消声器的长度m。

消声器计算公式范文

消声器计算公式范文

消声器计算公式范文
1.为平板式消声器计算声学设计参数:
1.1根据需求确定消声器的尺寸和形状,如长度、宽度、高度等。

1.2计算消声器的等效孔隙率α:
α=(1-密度比)*(1-表面反射系数)
密度比是填充物的密度与工作介质(例如空气)的密度之比,表面反射系数是指声波碰撞墙壁后反射回来的比例。

1.3计算消声器表面的总面积A:
A=长度*宽度
1.4计算消声器的吸声系数αs:
αs=α*A
1.5计算消声器的噪声减弱量NR:
NR = 10 * log(1 / (1 - αs), 10)
2.为管道式消声器计算声学设计参数:
2.1根据需求确定消声器的尺寸和形状,如长度、直径等。

2.2计算消声器管道的等效长度Le:
Le=(4*长度*(介质密度/声速))/面积
声速是工作介质的声速,面积是管道横截面积。

2.3计算消声器的等效吸声面积S:
S=π*(直径/2)*Le
2.4计算消声器的等效孔隙率α:
α=S/(π*(直径/2)^2)
2.5计算消声器的吸声系数αs:
αs=α*S
2.6计算消声器的噪声减弱量NR:
NR = 10 * log(1 / (1 - αs), 10)
需要注意的是,以上计算公式仅为一种常用的方法,实际的消声器设
计会受到各种因素的影响,例如材料的声学性质、工作频率、填充物的密
度和类型等。

在实际应用中,建议进行更加详细和准确的声学计算和模拟,以确保消声器的设计和性能满足要求。

消声器估算公式

消声器估算公式
频带噪声值
倍频带 Hz 倍频带消声 dB 消声后噪声值 dB
63 1.1
57.9
125 1.2
61.8
250 4.0
62.0
500 8.5
73.5
1k 11.9 65.1
2k 10.8 67.2
4k 10.1 63.9
8k 8.3
55.7
3)风机选型A计权噪声值
A计权 dB(A):
83.9
4)消声器消声后A计权值
A计权 dB(A):
73.9
5)消声器消声量估算
-10.0 dB(A)
备注:本估算公式在消声器通道宽不大于0.2m的情况下可不考虑 由于上限失效频率带来的消声性能的影响,并且仅适用于120片厚, 容重为32kg/m3的阻性片式玻璃棉消声器!
1、输入项目
1)机型:
机型高 10
机型宽 13
2)消声片长:
3)消声器片距:
4)消声器片厚 4)风机选型噪声
倍频带 Hz 噪声 dB
0.7 m 0.25 m 0.12 m
备注:片距指的是消声器中心距,不是指消声片之间的通道宽度。
63
125
250
500
1k
2k
4k
8k
59
63
66
82
77
78
74
64
2、结果输出项

第三章消声器的设计与计算17

第三章消声器的设计与计算17

第三章消声器的设计与计算17本章将详细介绍消声器的设计与计算方法。

消声器是用于降低噪音和减少振动的装置,广泛应用于各种场合。

正确设计与计算消声器是保证其有效性和可靠性的关键。

本章旨在通过介绍相关的理论知识和计算方法,帮助读者更好地理解和应用消声器。

消声器是一种能够减少或消除噪音的装置。

它通过一系列工艺和设计原理来降低噪音的传播或抑制噪音源的产生。

消声器被广泛应用于各个领域,包括工业设备、交通工具、建筑物等。

消声器可以根据其使用方式和结构特点进行分类。

下面介绍几种常见的消声器类型:隔声型消声器:隔声型消声器通过设置隔音屏障来隔离噪音源和环境,阻断噪音的传播路径。

常见的隔声型消声器有噪声围挡、隔音墙等。

吸声型消声器:吸声型消声器利用吸声材料吸收噪音的能量,将其转化为热能或其他形式的能量。

常见的吸声型消声器有吸音板、吸音棉等。

反射型消声器:反射型消声器通过改变噪音的传播方向和路径来减少噪音的传播。

常见的反射型消声器有声屏障、反射板等。

惰性型消声器:惰性型消声器利用惰性材料的高密度和刚性来阻止声波的传播。

常见的惰性型消声器有消声罩、消声罩壳体等。

这些消声器类型有着不同的适用场景和设计原则。

在实际应用中,根据具体的噪音问题和需求,选择合适的消声器类型可以达到最佳的噪音控制效果。

3.2 消声器的设计原理本节将详细介绍消声器的设计原理和关键要素。

消声器是一种能够降低噪音级别的装置。

其设计原理基于声学和工程学的理论,旨在减少噪音的传播和反射。

下面将介绍消声器设计的关键要素:噪音特性分析:在设计消声器之前,需要先了解噪音源的特性,例如频谱成分、声压级等。

通过分析噪音的特点,可以选择合适的消声器类型和参数。

声学吸声材料:消声器中常使用吸声材料来减少噪音的反射。

吸声材料的选择应考虑其吸声性能、耐久性和成本等因素。

腔体设计:消声器通常包含一个或多个腔体。

腔体的设计要考虑空间限制、噪音源位置和消声效果等因素。

合理的腔体设计可以使消声器更有效地消除噪音。

消音器

消音器
8.3 阻性消声器 8.3.1 阻性消声器的声衰减量
F 理论计算公式: L 0 l S 其中:F-消声器气流通道断面周长,m; S-消声器的气流通道截面积,m2; l-消声器的有效长度,m; Ψ(α0)-与材料的吸声系数有关的消声系数。
H.J. 赛宾 L 1.03 1.4 F l S 经验公式: 降噪量与材料吸声性能 和周长/截面比有关。
8.5.3 扩散消声器
通常还要求在后车轮轴线的前面的消音容积要达到发动机容积的两倍以上。
消音器越靠近发动机消音效果越好
低频噪声
高频噪声
旁支管的截面积与主管截面积的比值m 波长管的长度
8.4.2 共振式消声器
1. 消声原理:
利用共振吸声原理,在声波的作用下,管壁空气柱产生振动,振动时,气 柱与腔口壁摩擦使一部分声能转化为热能而耗散;同时由于声阻抗的突变 而使声波发生反射和干涉现象,导致声能衰减。当系统固有频率与声波频 率发生共振时,消耗声能最多,消声量最大。
2. 消声量的计算:
式中:c-声速ms-1; -消声器通道截面当量边长m(圆形管道为 D 直径;矩形管道为边长平均值,其他管道取面积的开方值 )。将大风量粗 管道应设计成多通道。 在直通管道消声器内气流再生噪声的估算公式为:
Lz 18 2 60lg
8.4.1 扩张室消声器(膨胀式消声器)
1. 消声原理:
8.3.2 阻性消声器的高频失效频率
在单通道直管消声器中,高频声随着通道面积的增大消声效果 显著下降。由于频率超过一定的数值,不符合平面波传播规律, 窄束传播的声波不与吸声材料接触,消声效果下降。 当声波波长小于通道截面尺寸一半时,消声效果下降,将这一 频率称为高频失效频率。其经验公式:
f c 1.85c / D

消声器消声量计算公式

消声器消声量计算公式

消声器消声量计算公式
消声器的消声量是指消音效果的强弱程度,通常用分贝(dB)单位来
表示。

消声器的消声量计算公式可以分为两种情况,一种是消声器对单一
声源的消声效果计算,另一种是消声器对多个声源的消声效果计算。

对单一声源的消声效果计算:
消声器的消声效果取决于声源的声级(L0),即声源产生的噪声水平。

消声器的消声量(Ld)可以通过以下公式计算:
Ld = L0 - 10 * log10(Σ(Ai / Ai0))
其中,Ai表示消声器在第i个频率上的消音效果,Ai0表示没有使用
消声器时的传声器在第i个频率上的响应。

Σ表示对所有频率求和。

对于多个声源的消声效果计算:
当存在多个声源时,每个声源的声级分别为L1、L2、…、Ln,消声
器对多个声源的消声效果可以通过以下公式计算:
Ld = 10 * log10(10^(L1/10) + 10^(L2/10) + … + 10^(Ln/10))
其中,L1、L2、…、Ln分别表示每个声源的声级。

需要注意的是,以上公式只计算了消声器对声级的衰减影响,没有考
虑到声源和消声器之间的距离、传声器灵敏度等因素,因此实际使用时还
需要根据具体情况进行修正。

此外,消声器的消音效果还会受到其自身的参数影响,如消声器的结构、材料、孔径大小等。

因此,在设计和选择消声器时,需要综合考虑声
源的特性、消声器的参数以及具体应用场景需求,才能获得最佳的消音效果。

消声器的设计计算

消声器的设计计算

计算并设计一消声器,用于频率为100Hz的发动机排气消声器,消声量不小于30dB,需选定已知内壁管壁厚,开孔个数,每个孔直径,扩张室直径,排气管道直径为5cm,用三维软件画出设计图。

噪声按声音的频率可分为:<400Hz的低频噪声、400~1000Hz的中频噪声及>1000Hz的高频噪声。

根据设计要求及各种消声器的适用范围,选用抗性消声器进行设计改进。

抗性消声器消声原理:通过控制声抗的大小来进行消声的。

与阻性消声器不同,它不使用吸声材料而是在管道上接截面积突变的管段或旁接共振腔,声波在管道截面的突然扩张(或收缩),造成通道内声阻抗突变,使声波传播方向发生改变,某些频率的声波在声阻抗突变的界面发生反射、干涉等现象,从而在消声器的外测,达到了消声的目的。

消声的频率特性:具有中、低频消声性能。

适用范围:消除空压机、内燃机、汽车排气噪声(气体流速较高气速的情况)抗性消声器具有的特点:(1)不需要使用多孔吸声材料(2)耐高温、抗潮(3)流速较大,洁净(4)对低频、窄带噪声有较好的效果。

常用抗性消声器的类型:(1)扩张室式消声器(2)共振腔消声器(3)干涉式消声器按共振腔消声器进行设计:(1)倍频带消声量不小于30dB,由式:KL+=∆lg10220)1(K+=302lg1020)1(查表不同频带下的消声量△L 与K值的关系得,K ≈8 (2)由KS f V 22c•=π有: 24222m 106.19cm 6.19544-⨯=≈⨯==ππd S 32-34m 107.1cm 107.16.1982100234000⨯=⨯=⨯⨯⨯⨯=πV (3)设计一个与管道同心圆形的共振腔消声器,其内径为5cm ,外径为20cm ,共振腔所需长度为:cm 7.575-20417000)(4222122==-=)(ππd d VL取L=58cmm108.5cm 8.517000)340001002()2(2220-⨯==⨯⨯=•=πV c πf G 选用管壁厚度t=0。

消声设备计算公式

消声设备计算公式

消声设备计算公式消声设备是指用来减少噪声传播和噪声污染的装置或系统,它可以通过反射、吸音、隔声等方式实现噪声的控制。

消声设备的设计和计算需要考虑多个因素,包括噪声源的特性、周围环境的影响以及所需的噪声控制效果。

本文将介绍消声设备计算公式的主要内容。

首先,我们需要了解噪声的基本特性和参数。

噪声是指任何声音、声波或振动,对人的健康和舒适造成不良的影响。

噪声通常通过声压级(Sound Pressure Level,SPL)来表示,单位是分贝(Decibel,dB)。

SPL是指声波传播时的压力与一个参考值的比值,常用参考值为20微帕(20μPa)。

另外,噪声还具有频率分布和时间变化等特点,这些特点也需要考虑在消声设备的设计中。

消声设备的主要功能是降低噪声的声压级和能量。

为了实现这个目标,消声设备需要具备吸音、隔声和减振的功能。

吸音是指材料或结构对声波的吸收能力,吸收的声能会转化为其他形式的能量(如热能)。

隔声是指通过隔离噪声源和受音体,减少噪声的传播路径,从而达到降低噪声的效果。

减振是指通过减少结构的振动,从而减少声波的辐射和传播。

对于消声设备的计算,一个重要的参数是消声器的声学透过系数(Transmission Loss,TL)。

TL是指消声器的隔声性能,通过测量输入声能和输出声能的比值来表示。

TL可以通过以下公式计算:TL = 10log10(P1/P2)其中,P1是输入声能的声压级,P2是输出声能的声压级。

这个公式意味着,TL的单位是分贝(dB),是一个对数值。

TL越大,表示消声器的隔声效果越好。

对于一般的吸音材料,可以使用吸音系数(Absorption Coefficient,α)来表示其吸音特性。

吸音系数的范围是0到1之间,表示吸音材料对声波的吸收能力。

吸音系数α可以通过以下公式计算:α = (Pin - Pout) / Pin其中,Pin是音源与吸音材料之间的声能差值,Pout是音源与反射面之间的声能差值。

汽车消声器理论的分析计算与设计讲解

汽车消声器理论的分析计算与设计讲解

摘要噪声水平已成为衡量柴油机质量和性能的重要指标之一。

排气噪声在柴油机整机噪声中占重要比例,安装性能良好的排气消声器是控制排气噪声的有效途径,消声器的设计方法主要有声传递矩阵法和有限元法。

目前声传递矩阵法的使用范围仍限于一维平面波传播,无法考虑高次模式波效应。

由于实际的排气消声器一般具有复杂的结构,其内部的声波本质上是三维的,这时应采用精确的二维(或三维)理论来进行分析,本文利用有限元分析软件ANSYS的声学分析模块对扩张式抗性消声器进行声学分析,并且取得了以下研究成果。

本文讨论了运用ANSYS分析软件对抗性消声器性能进行二维有限元计算的方法,建立了消声器内部声学有限元方程的数学模型,推导了消声器插入损失和传递损失的计算公式。

在此基础上使用精度较高的声学单元FLUID29和FLUID129作为建模单元,在静态条件下建立了两种类型消声器的有限元模型,分别为简单消声器和复杂并联内插管双室扩张式消声器,由于简单消声器的有限元分析已比较完善,本文重点研究复杂并联内插管双室扩张式消声器的ANSYS 分析,得出消声器内部声压级分布图,然后利用声传递矩阵的理论对两种类型的消声器进行了直接模拟和间接模拟,计算出了消声器的四端网络参数、插入损失和传递损失。

计算结果和试验结果进行比较,取得比较一致的良好结果。

从而表明ANSYS有限元分析软件计算消声器声学性能方便可行。

本文的研究内容,总结了消声器理论、有限元理论与计算、ANSYS软件应用等。

并且对许多关键性问题,如有限元单元网格的划分、有限元模型的建立、软件后处理的数据分析技巧与注意事项等进行了探讨。

因此本文为以后消声器的性能预测、计算提供了重要的理论参考和工程实例。

关键词:消声器,排气噪声,ANSYS有限元,四端网络Simulation and Analysis of Reactive Muffler Based onANSYS SoftwareSpeciality: Mechanical Manufacture and AutomationName: Yang JiangkunSupervisor: Associate Prof. Zhu CongyunAbstractThe noise level of diesel engine has become one of the important indicators on evaluation of its quality and performances. Exhaust noise is a large proportion in the overall noise of diesel engine, and the effective method of its control is the application of muffler with good performances. The important method in the design of mufflers is Four-pole network and FEM. Now the transfer matrix method is still limited in the one-dimensional plane wave, and can not consider high-wave effect. Owing to the actual muffler with complex structure, its internal sound waves are three-dimensional, now accurate two-dimensional (or three) should be used to analysis. In this paper, using ANSYS analysis software module, expansion-resistant muffler is analysis and gets the following results.In this paper, the performance of reactive muffler is calculated by the 2D FEM (Finite Element method) with the ANSYS. The mathematical model of inner acoustic equation is established and the calculation formulas of TL (transmission loss) and IL (insertion loss) of muffler are deduced. On this basis, the FE model of two kinds of mufflers are built under static condition, with highly-precise acoustic element FLUID29 and FLUID129.I design two mufflers, respectively simple and matrix. Owing to the simple muffler’s analysis has been fairly completed, I analysis especially the complex muffler and get the internal level figure. Using acoustic transmission matrix, the muffler is simulated directly and indirectly and the parameter of four-terminal network, TL and IL are calculated. In the end, comparing simulation results with experiment results, it shows that calculated values coincide measured values. The simulation method is proved to be correct. The analysis software of ANSYS is expedient.In the paper, muffler theory, FEM theory, ANSYS application are included. Some important factors such as FE mesh demarcation, establishment of FEM model and so on are discussed. So theory and project example of the performance prediction of muffler are provided.Key Word: Muffler, Exhaust noise, ANSYS FE, Four-pole network目录1. 绪论 (4)1.1引言 (4)1.1.1噪声的危害 (4)1.1.2对噪声的控制 (5)1.2 课题研究国内外现状 (6)1.3 课题的工作和目标 (9)2.排气消声器有限元法的数学模型 (10)2.1 抗性消声器的四端参数及消声器的性能评价 (10)2.1.1 消声器的四端参数 (10)2.1.2 消声器的评价指标 (12)2.2 有限元法数学模型的建立 (15)2.2.1 数学模型的建立 (16)2.2.2 消声器变分问题的推导 (17)2.3 本章小结 (19)3. 消声器的ANSYS有限元计算结果及分析 (21)3.1 有限元计算模型的建立 (21)3.1.1 单元和插值函数的选取 (21)3.1.2 有限元模型的建立 (22)3.2 简单扩张式消声器的计算 (25)3.2.1 简单扩张式消声器消声量的计算与分析 (25)3.2.2 简单扩张式消声器插入损失的直接模拟 (29)3.2.3 简单扩张式消声器内部声场分析 (30)3.3 复杂结构消声器的分析 (31)3.4 本章小结 (33)4. 消声器的设计 (34)5. 总结和展望 (36)5.1 课题研究结论 (36)5.2 课题展望 (36)参考文献 (37)致谢 (39)1.绪论1.1引言噪声是工业社会带来的副产品,它是一种物理污染,具有即时性,生源发声就形成污染,生源停止发声,污染随之消失,噪声能量在空中消散,因此,噪声没有污染物,不会积累,也无法再利用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算并设计一消声器,用于频率为100Hz的发动机排气消声器,消声量不小于30dB,需选定已知内壁管壁厚,开孔个数,每个孔直径,扩张室直径,排气管道直径为5cm,用三维软件画出设计图。

噪声按声音的频率可分为:<400Hz的低频噪声、400~1000Hz的中频噪声及>1000Hz的高频噪声。

根据设计要求及各种消声器的适用范围,选用抗性消声器进行设计改进。

抗性消声器
消声原理:通过控制声抗的大小来进行消声的。

与阻性消声器不同,它不使用吸声材料而是在管道上接截面积突变的管段或旁接共振腔,声波在管道截面的突然扩张(或收缩),造成通道内声阻抗突变,使声波传播方向发生改变,某些频率的声波在声阻抗突变的界面发生反射、干涉等现象,从而在消声器的外测,达到了消声的目的。

消声的频率特性:具有中、低频消声性能。

适用范围:消除空压机、内燃机、汽车排气噪声(气体流速较高气速的情况)
抗性消声器具有的特点:
(1)不需要使用多孔吸声材料
(2)耐高温、抗潮
(3)流速较大,洁净
(4)对低频、窄带噪声有较好的效果。

常用抗性消声器的类型:
(1)扩张室式消声器
(2)共振腔消声器
(3)干涉式消声器
按共振腔消声器进行设计:
(1)倍频带消声量不小于30dB,由式:
K
L+
=

lg
102
20
)
1(
K
+
=
302
lg
10
20
)
1(
查表
不同频带下的消声量△L 与K值的关系
得,K ≈8 (2)由KS f V 22c
•=
π有: 2
42
2
2m 106.19cm 6.1954
4-⨯=≈⨯==ππd S 3
2-34m 107.1cm 107.16
.1982100
234000
⨯=⨯=⨯⨯⨯⨯=
πV (3)设计一个与管道同心圆形的共振腔消声器,其内径为5cm ,外径为20cm ,共振腔所需长度为:
cm 7.575-204
17000
)
(4
22212
2==
-=
)(π
π
d d V
L
取L=58cm
m
108.5cm 8.517000)340001002()2(
22
20-⨯==⨯⨯=•=πV c πf G 选用管壁厚度t=0.2cm,孔径d=0.6cm,则由式d t nS G 8.00
+=
,求得开孔个
数:
个146.04
)
6.08.02.0(8.5)8.0(20
=⨯⨯+⨯=+=
πS d t G n
由上述计算结果,可设计共振腔消声器长为580mm ,外腔直径为200mm,腔的内径为50mm ,管壁厚2mm ,在气流通道的共振腔中部均匀排列开14个孔,孔径为6mm 。

(4)验算共振腔消声器的有关声学特性
Z 0H 10017000
8
.52340002===
ππV G c f Z H 2074203400022.1c 22
.1=⨯==D
f 上
由题意得,中心频率为100Hz 的倍频带包括89.8~112Hz ,不会出现高频失效问题。

共振频率的波长:
cm 1133
340
3cm 34010034000
c 0
00≈=
===λλf
上述设计的共振腔的长、宽、腔深尺寸都小于共振频率波长的1/3,故该设计方案可用,如图所示。

孔心距应大于孔径的5倍,设计中取孔距为40mm 。

穿孔范围246mm<mm 28312
=λ。

相关文档
最新文档