2014中考数学规律试题
2014年福州市中考数学规律性试题汇总与解析(一)
2014年全国中考数学试题----规律试题(一)1. (2014•安徽)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×( )2= ( );(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【解析】解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.2. (2014•漳州)已知一列数2,8,26,80.…,按此规律,则第n个数是( ) .(用含n的代数式表示).【解析】解;已知一列数2,8,26,80.…,按此规律,则第n个数是3n﹣1,故答案为:3n﹣1.3. (2014•白银)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=( ).分析:13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.4. (2014•兰州)为了求1+2+22+23+...+2100的值,可令S=1+2+22+23+...+2100,则2S=2+22+23+24+ (2101)因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是_______________ .【解析】解:设M=1+3+32+33+…+32014 ①,①式两边都乘以3,得3M=3+32+33+…+32015 ②.②﹣①得2M=32015﹣1,两边都除以2,得M=,故答案为:.5. (2014•天水)如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为().【解析】解:y=﹣x(x﹣1)(0≤x≤1),OA1=A1A2=1,P2P4=P1P3=2,P2(2.5,﹣0.25)P10的横坐标是2.5+2×[(10﹣2)÷2]=10.5,p10的纵坐标是﹣0.25,故答案为(10.5,﹣0.25).6. (2014•梅州)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,则点P3的坐标是( );点P2014的坐标是( )【解析】解:如图,经过6次反弹后动点回到出发点(0,3),当点P第3次碰到矩形的边时,点P3的坐标为:(8,3);∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P2014的坐标为(5,0).故答案为:(8,3),(5,0).7. (2014年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有( ).【解析】解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.8. (2014•珠海)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为.【解析】解:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=OA=;∵△OA 1A2为等腰直角三角形,∴A1A2=OA1=,OA2=OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=OA2=2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2,OA4=OA3=8.故答案为:8.9. (2014•贵港)已知点A1(a1,a2),A2(a2,a3),A3(a3,a4)…,A n(a n,a n+1)(n为正整数)都在一次函数y=x+3的图象上.若a1=2,则a2014=_________________.【解析】解:将a1=2代入a2=x+3,得a2=5,同理可求得,a3=8,a4=11,a5=14,a6=17,a n=2+3(n﹣1),a2014=2+3(2014﹣1)=2+3×2013=2+6039=6041,故答案为6041.10. (2014年广西钦州)甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是()分.【解析】解:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1)=3n﹣2,3n﹣2=2014,则n=672,甲报出了672个数,一奇一偶,所以偶数有672÷2=336个,得336分.故答案为:336.11. (2014年贵州安顺)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,…的点作OA 的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是Sn=().【解析】解:∵∠AOB=45°,∴图形中三角形都是等腰直角三角形,从图中可以看出,黑色梯形的高都是2,第一个黑色梯形的上底为:1,下底为:3,第2个黑色梯形的上底为:5=1+4,下底为:7=1+4+2,第3个黑色梯形的上底为:9=1+2×4,下底为:11=1+2×4+2,则第n个黑色梯形的上底为:1+(n﹣1)×4,下底为:1+(n﹣1)×4+2,故第n个黑色梯形的面积为:×2×[1+(n﹣1)×4+1+(n﹣1)×4+2]=8n﹣4.故答案为:8n﹣4.12. (2014•毕节地区)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是____________________.【解析】解:根据题意得:这一组数的第n个数是.故答案为:.13. (2014•黔南州)已知= = 3,= = 10,= = 15,…观察以上计算过程,寻找规律计算=().【解析】解:∵==3,==10,==15,∴==56.故答案为56.14. (2014•遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.【解析】解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.15. (2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为.【解析】解:M1表示的数为0.1×=10﹣3,N1表示的数为×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.16. (2014年黑龙江龙东地区)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.【解析】解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣761)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.17. (2014年黑龙江牡丹江)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0).B1C1∥B2C2∥B3C3,以此继续下去,则点A 2014到x 轴的距离是( ).【解析】解:如图,∵点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上,B 1C 1∥B 2C 2∥B 3C 3, ∴△B 1OC 1∽△B 2E 2C 2∽B 3E 4C 3…,△B 1OC 1≌△C 1E 1D 1,…, ∴B 2E 2=1,B 3E 4=,B 4E 6=,B 5E 8=…, ∴B 2014E 4016 =,作A 1E ⊥x 轴,延长A 1D 1交x 轴于F , 则△C 1D 1F ∽△C 1D 1E 1,∴=,在Rt △OB 1C 1中,OB 1=2,OC 1=1, 正方形A 1B 1C 1D 1的边长为为=,∴D 1F=,∴A 1F=, ∵A 1E ∥D 1E 1, ∴=,∴A 1E=3,∴=,∴点A 2014到x 轴的距离是×=.18. (20104.齐齐哈尔)如图,在平面直角坐标系xoy 中,有一个等腰直 角三角形AOB ,∠OAB=90°,直角边AO 在x 轴上,且AO=1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O=2AO , 再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰直角三角形A 2OB 2,且A 2O=2A 1O ,……,依此规律,得到等腰直角三角形A 2014OB 2014,则点A 2014的坐标为________________.【解析】解:∵将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O=2AO , 再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O=2A 1O …,依此规律, ∴每4次循环一周,A 1(0,-2),A 2(-4,0),A 3(0,8),A 4(16,0), ∵2014÷4=503…2,∴点A 2014的坐标与A 2所在同一象限, ∵-4=-22,8=23,16=24, ∴点A 2014(-22014,0).B 1A 2B 2A 1B A x yo 第20题图故答案为:(-22014,0).19. (2014•绥化)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是().【解析】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).20. (2014•莆田)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是()【解析】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2014(2014,2016).故答案为:(2014,2016).。
2014年中考数学试题分类 猜想、规律与探索
猜想、规律与探索一 、选择题1. (浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )A .28B .56C .60D . 1243. (广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 .4. (内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)5. (湖南益阳,16,8分)观察下列算式:① 1 × 3 - 22= 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1④……(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.6.(广东汕头,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有个数;(3)求第n 行各数之和.二、填空题1. (四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。
2. (广东东莞,10,4分)如图(1) ,将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1,取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△1D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2F 2,如图(3) 中阴影部分;如此下去…,则正六角星形A n F n B n D n C n E n F n 的面积为.第1个图形第 2 个图形 第3个图形第 4 个图形第 18题3. (湖南常德,8,3分)先找规律,再填数: 1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 4. (广东湛江20,4分)已知:23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”)三 解答题1. (山东济宁,18,6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论;(3)求和:211⨯+321⨯+431⨯+…+201020091⨯ .2. (湖南邵阳,23,8分)数学课堂上,徐老师出示了一道试题:如图(十)所示,在正三角形ABC 中,M 是BC 边(不含端点B ,C )上任意一点,P 是BC 延长线上一点,N 是∠ACP 的平分线上一点,若∠AMN=60°,求证:AM=MN 。
2014中考数学 第四部分 专题二 规律探究题
题的关键.
是85.
另解,供参考.观察对角线上数字的规律,1,5,13,25,…, 后一项比前一项依次多 4,8,12,…, ∴x=25+16+20+24=85,即 x=85. 答案:85 名师点评:本题考查了数字的变化,是一道找规律的题目, 要求学生通过观察,分析、归纳发现其中的规律,并应用发现
的规律解决问题.解决本题的关键是得到每一行中前一列与后
∵2013÷3=671,∴△2013 的直角顶点是第671个循环组的 最后一个三角形的直角顶点.
∵671×12=8052, ∴△2013 的直角顶点的坐标为(8052,0).
答案:(8052,0)
名师点评:本题是对点的坐标变化规律的考查,难度不大, 仔细观察图形,得到每 3 个三角形为一个循环组依次循环是解
一列的关系.
几何图形中的猜想 例2:(2013 年甘肃兰州)如图 Z2-2,在下面直角坐标系中, 已知点 A(-3,0),B(0,4),对△OAB 连续作旋转变换,依次得到
△1,△2,△3,△4,…,则△2013的直角顶点的坐标为_______.
图 Z2-2
解析:∵点 A(-3,0),B(0,4),∴AB= 32 42 =5. 由图可知,每3 个三角形为 1 个循环组依次循环,每个循 环组前进的长度为探究问题是指给出一定条件(可以是有规律的算式、图
形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,
得出结论,进而加以验证的数学探索题. 其解题思维过程是:从特殊情况入手→探索发现规律→综 合归纳→猜想得出结论→验证结论,这类问题有利于培养学生 思维的深刻性和创造性.
数字或代数式的猜想 例 1:(2013 年浙江湖州)如图Z2-1将连续正整数按以下规 律排列,则位于第 7 行第 7 列的数 x 是__________.
2014年数学中考二轮专题复习检测:规律探索型问题
2014年数学中考二轮专题复习检测:规律探索型问题一、选择题:1、(2013·泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.72、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)3、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A. 502 B. 503 C.504, D. 5054、(2013·武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点 B.18个交点 C.15个交点 D.10个交点5、(2013•呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A. 156 B. 157 C.158 D. 1596、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A.8 B. 9 C.16 D. 17二、填空题:1、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是.2、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是.3、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是.4、(2013•益阳)下表中的数字是按一定规律填写的,表中a的值应是.5、(2013·潍坊)当白色小正方形个数n等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n表示,n是正整数)6、(2013山西,15,3分)一组按规律排列的式子:a2,43a,65a,87a,….则第n个式子是________7、(2013•黔东南州)观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是.8、(2013•娄底)如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.三、解答题:(2013•绍兴)如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n C n D n(n>2).(1)求AB1和AB2的长.(2)若AB n的长为56,求n.参考答案一、选择题:1.C 2.D 3.B 4.C 5.B 6.C 二、填空题:1、1712、513、102004、215、n2+4n6、2 21n an-7、1014049 8、2n+1三、解答题:解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;(2)∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.。
2014年安徽省中考数学试卷解析版
2014年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2014•安徽)(﹣2)×3的结果是()A .﹣5 B.1 C.﹣6 D.6考点:有理数的乘法.专题:计算题.分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2.(4分)(2014•安徽)x2•x3=()A .x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n 计算即可.解答:解:x2•x3=x2+3=x5.故选:A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.(4分)(2014•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2014•安徽)下列四个多项式中,能因式分解的是()A .a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.专题:因式分解.分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评: 本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2014•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm )的数据分布如下表所示,则棉花纤维长度的数据在8≤x <32这个范围的频率为( )棉花纤维长度x 频数0≤x <8 18≤x <16 216≤x <24 824≤x <32 632≤x <40 3A . 0.8B . 0.7C . 0.4D .0.2考点: 频数(率)分布表.专题: 图表型.分析: 求得在8≤x <32这个范围的频数,根据频率的计算公式即可求解.解答: 解:在8≤x <32这个范围的频数是:2+8+6=16,则在8≤x <32这个范围的频率是:2016=0.8. 故选;A .点评: 本题考查了频数分布表,用到的知识点是:频率=频数÷总数.6.(4分)(2014•安徽)设n 为正整数,且n <<n+1,则n 的值为( )A . 5B . 6C . 7D . 8考点: 估算无理数的大小.分析: 首先得出<<,进而求出的取值范围,即可得出n 的值. 解答: 解:∵<<,∴8<<9,∵n <<n+1,∴n=8,故选;D .点评: 此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2014•安徽)已知x 2﹣2x ﹣3=0,则2x 2﹣4x 的值为( )A . ﹣6B . 6C . ﹣2或6D .﹣2或30考点: 代数式求值.专题: 整体思想.分析: 方程两边同时乘以2,再化出2x 2﹣4x 求值.解答: 解:x 2﹣2x ﹣3=02×(x 2﹣2x ﹣3)=02×(x 2﹣2x )﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2014•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A .B.C.4 D.5考点:翻折变换(折叠问题).菁优网版权所有专题:几何图形问题.分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2014•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C 的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象专题:动点型.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°∴∠APB=∠PAD,又∵∠B=∠DEA=90°∴△ABP∽△DEA,∴=,即=,∴y=纵观各选项,只有B选项图形符合.故选:B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.10.(4分)(2014•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A .1 B.2 C.3 D.4考点:正方形的性质.专题:几何图形问题.分析:连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为22,∴OD=2,∴直线l∥AC并且到D的距离为2,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选:B.点评:本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O 的距离小于2是本题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2014•安徽)据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2014•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:根据实际问题列二次函数关系式.专题:计算题.分析:由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2014•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.(5分)(2014•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.专题:几何图形问题分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案解答:解:①∵F是AD的中点∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2014•安徽)计算:﹣|﹣3|﹣(﹣π)0+2013.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2013=2014.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(8分)(2014•安徽)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.菁优网版权所有专题:规律型.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=4n+1.左边=右边∴(2n+1)2﹣4n2=4n+1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2014•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.考点:作图—相似变换;作图-平移变换.菁优网版权所有专题:作图题.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相似图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相似变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2014•安徽)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).考点:解直角三角形的应用.菁优网版权所有专题:几何图形问题.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解.解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2014•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O 的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:计算题;几何图形问题.分析:由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF中,根据勾股定理可计算出C=35,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=65.解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.20.(10分)(2014•安徽)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.菁优网版权所有专题:应用题.分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2014•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.菁优网版权所有专题:计算题;分类讨论.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出所有等可能的情况数,找出这三根绳子能连结成一根长绳的情况数,即可求出所求概率.解:(1)三种等可能的情况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,则P==此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比七、(本题满分12分)22.(12分)(2014•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.菁优网版权所有专题:代数综合题;新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.八、(本题满分14分)23.(14分)(2014•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.考点:四边形综合题.菁优网版权所有专题:几何综合题;压轴题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN 求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解:(1)①∵六边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵六边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,∵∠MAO=∠OEN=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GOE=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.。
2014年全国各地中考数学压轴题及答案解析(一)
A
F
B
BE8 tBF (8 t)10 t
BP5(t4)PFBFBP10 t5(t4)30 t
C
POFBEF90�POBEOPFB
l
QE O
A
FP B
Rt POF sinB t t t PEQF 4S S
5 ABCD ABCDAB10CD6ADBC4 P
B BA A 2 P BC
ACCBBA P ACCBBA 345
l AC CB
lAC CBAB EF P l t
P A P l
1 t
P E t
P F
2 P AC PEF E P P
EF F F EFAB t 3 P EF Q PEQF t 4PEF S S t S
3DPB90� BPB60�DPA30�
B
A
B
D
A D
C B
E
P
B
B
FC E
A
P
B
B
DG
D K
AP
A
H
E C
C
B EB
PB
A60�ADP90�
AP2AD102t8t1
PDB90�
DMAB MDNBB N ቤተ መጻሕፍቲ ባይዱAM2DM2NC3DN3
PE E P t
1A
�
2PBE PE PBEPBE ABCD S
S t S
3 DPB
t
D
C
B
D
C
E
A
P
160� 2AB60�PBPB PBB PBPBBB2tBEBEtPEt 0t2 SSPBE BE�PE t�t t2 2t4 SSPBESFBC t2 (2t4)2 t 24t4 4t5 PBPE DC GH GKPH K PBB BPB60�A PGAD DGAP APGD PGAD4 ABCDGHPBPH GPHBPH BPB30� GHPGPH30�PGGH4 GK PG2PKKHPG�cos30�2 PH2PK4 SSPGH PH�GK �4�24 S t S
2014年中考数学解析版试卷分类汇编专题36:规律探索
32
63 32 确得到点的坐标
题 要考查了一次函数 象 点的坐标性质和坐标的变 规律 的规律是解题的 键
6.
2014•滨
第 18 题 4 分
计算 列各式的值
察所得结果 总结 在的规律
用得到的规律 得
= 102014
考点 题 分析
算术 方根 完全 方 式 规律型 先计算得到 =10=101 =1000=103 是 10 的整数次幂 这个指 =100=102 =1000=104 计算的结果都
二.填空题 1. 2014•珠海 第 10 题 4 分 如 直角边作等腰 Rt△OA1A2 OA2 在等腰 Rt△OAA1 中 ∠OAA1=90° OA=1 直角边作等腰 Rt△OA2A3 …则 OA4 的长度 OA1 8
考点 等腰直角 角形 题 规律型 分析 利用等腰直角 角形的性质 解答 解 △OAA1 及勾股定理分 求出各边长 进而得出答案
2
+ a2+1
2
得到 a12+a22+…+a20142+2152 然后设
有 x 个 1 y 个﹣1
z 个 0 得到方程
解方程
即 解答 解
确定 确的答案 a1+1
2
+ a2+1
2
+…+ a2014+1
2
=a12+a22+…+a20142+2 a1+a2+…+a2014 +2014
﹣1
A3 的横坐标是 1+2=3=22﹣1 A4 的横坐标是 1+2+4=7=23﹣1
即点 A4 的坐标 据
2014年全国中考数学试卷解析分类汇编(第四期)专题38 规律探索
规律探索一选择题二填空题1.(2014•浙江台州,第16题5分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).考点:分式的混合运算.专题:图表型;规律型.分析:将y1代入y2计算表示出y2,将y2代入y3计算表示出y3,归纳总结得到一般性规律即可得到结果.解答:解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:点评:此题考查了分式的混合运算,找出题中的规律是解本题的关键.2. (2014•湖北潜江仙桃,第15题3分)将相同的矩形卡片,按如图方式摆放在一个直角上,每个矩形卡片长为2,宽为1,依此类推,摆放2014个时,实线部分长为5035.考点:规律型:图形的变化类.分析:根据图形得出实线部分长度的变化规律,进而求出答案.解答:解:由图形可得出:摆放一个矩形实线长为3,摆放2个矩形实线长为5,摆放3个矩形实线长为8,摆放4个矩形实线长为10,摆放5个矩形实线长为13,即第偶数个矩形实线部分在前一个的基础上加2,第奇数个矩形实线部分在前一个的基础上加3,∵摆放2014个时,相等于在第1个的基础上加1006个2,1007个3,∴摆放2014个时,实线部分长为:3+1006×2+1007×3=5035.故答案为:5035.点评:此题主要考查了图形变化类,得出实线部分按第奇数与偶数个长度变化规律是解题关键.3. (2014•江苏淮安,第18题3分)如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为.,则周长是原来的,则周长是原来的;面积的一半,即,则周长是原来的,则周长是原来的,周长是原来的,的周长为,故答案为:.4. (2014•常德,第16题3分)已知:=;=;计算:=;猜想:=.;+…+11+7+3=.6. (2014•铜仁,第18题4分)一列数:0,﹣1,3,﹣6,10,﹣15,21,…,按此规律第n的数为(﹣1)n﹣1.,由此得出答案即可.1.17. (2014•内蒙古赤峰,第16题,3分)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是800个.考点:规律型:图形的变化类.分析:仔细观察图形发现第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;由此规律得到通项公式,然后代入n=20即可求得答案.解答:解:第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;…第n个图形有2n2个小菱形;第20个图形有2×202=800个小菱形;故答案为:800.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,并找到图形的变化规律.8.(2014•广东深圳,第16题3分)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.9.(2014•福建漳州,第16题4分)已知一列数2,8,26,80.…,按此规律,则第n个数是.(用含n的代数式表示)考点:规律型:数字的变化类.分析:根据观察等式,可发现规律,根据规律,可得答案.解答:解;已知一列数2,8,26,80.…,按此规律,则第n个数是3n﹣1,故答案为:3n﹣1.点评:本题考查了数字的变化类,规律是第几个数就是3的几次方减1.10.(2014•北京,第12题4分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P (﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为.,,11.(2014•甘肃天水,第18题4分)如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为().12.(2014•齐齐哈尔,20题3分)如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为(﹣22014,0).考点:规律型:点的坐标.分析:根据题意得出A点坐标变化规律,进而得出点A2014的坐标位置,进而得出答案.解答:解:∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,A1(0,﹣2),A2(﹣4,0),A3(0,8),A4(16,0),∵2014÷4=503…2,∴点A2014的坐标与A2所在同一象限,∵﹣4=﹣22,8=23,16=24,∴点A2014(﹣22014,0).故答案为:(﹣22014,0).点评:此题主要考查了点的坐标变化规律,得出A点坐标变化规律是解题关键.13.(2014•莆田,第16题4分)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是(2014,2016).x的横坐标为:的横坐标为:=×,,2,,20142014三解答题。
2014中考数学试题及答案
2014中考数学试题及答案2014年的中考数学试题是中考考试中很重要的一部分,通过解答这些试题,考生可以展示他们对数学知识的掌握和运用能力。
本文将为大家提供2014中考数学试题及答案的全面解析。
一、选择题1. 下列各选项中,能够构成等差数列的是:A) 1,2,3,5B) 2,4,8,16C) 1,3,5,7D) 1,4,9,16答案:B解析:等差数列是指数列中的每两个相邻的数之间的差值都相等。
选项B中,每两个相邻的数之间的差值是2,因此选项B构成等差数列。
2. 设n是一个正整数,若n的各位数字之和等于8,那么n的可能取值是:A) 17B) 26C) 35D) 53答案:C解析:题目中要求n的各位数字之和等于8,只有选项C中的3+5=8,因此选项C是符合条件的。
二、填空题1. 若三角形的三条边长分别为a,b,c,且满足a<b<c,那么相应的三个角A,B,C的大小关系是:_____。
A) A<B<CB) A>B<CC) A<B>CD) A<C<B答案:D解析:由三角形的性质可知,两边之和大于第三边,即a+b>c,所以角C是最大的,即A<C。
又由于a<b<c,所以角B对应的边是最长边,即A<C<B。
2. 若对于一元二次方程ax^2+bx+c=0,其判别式Δ=b^2-4ac<0,那么方程的解为____。
A) 两个虚数根B) 两个实数根C) 一个实数根D) 没有实数根答案:A解析:对于判别式Δ=b^2-4ac<0的情况,方程的解为两个虚数根。
三、解答题1. 小明在做一道数学题时,他将一个数字x加到应该加到另一个数字的前后,结果变成15。
那么,这个数字x是多少?答案:假设原本的数字是n,根据题目所给条件,可以得到以下方程:n + x = 15解这个方程可以得到:x = 15 - n所以,这个数字x是15减去原本的数字n。
2. 某公司在2014年的销售额比上一年增长了20%,如果该公司在2013年的销售额为100万,那么2014年的销售额是多少?答案:假设2014年的销售额为x万,根据题目所给条件,可以得到以下方程:x = 100 + 100 × 20%解这个方程可以得到:x = 100 + 20所以,2014年的销售额为120万元。
人教版九年数学中考规律专题练习及参考答案
人教版九年数学中考规律专题练习学习数学很重要的一个目的,就是要善于捕捉事物的规律,用数学形式和数学方法表示出来.规律与猜想类试题选材一般来源于学生熟悉的生活,有一定的趣味性,呈现形式多样,便于学生观察,侧重考查学生观察和归纳能力,让学生从不同角度,利用不同方法探索并发现数学规律,同时利用发现的规律,让学生学会自我验证,真正考查了学生的数学思考能力.类型之一数式的变化规律例1 (2014·安徽)观察下列关于自然数的等式:32-4×12=552-4×22=972-4×32=13……根据上述规律解决下列问题:(1)完成第四个等式:92-4×( )2=( );(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【思路点拨】(1)从等式的结构看,等于号的左边第一项的底数依次增大2,第二项的底数依次增大1,等于号的右边依次增大4.依次规律就可写出第四个等式;(2)先根据分析的规律用含n的等式表示出第n个等式,然后将等号的一边经过整理与另一边相同.【解答】(1)4,17.(2)(2n+1)2-4×n2=4n+1.验证:∵左边=4n2+4n+1-4n2=4n+1=右边,∴等式成立.方法归纳:探究等式变化规律的题目,关键把握两点:一是找出等式中“变”与“不变”的部分;二是分析出“变”的规律即等式的个数之间存在的规律.1.(2014·东营)将自然数按以下规律排列:表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2 014对应的有序数对为.2.(2014·菏泽)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n行(n是整数,且n≥3)从左至右数第n-2个数是(用含n的代数式表示).3.(2014·滨州)计算下列各式的值:2919+;299199+;2999 1 999+;29 99919 999+.观察所得结果,总结存在的规律,运用得到的规律可得22 01492 01499991999⋯+⋯个个= .4.(2014·巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n (n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如,(a+b)2=a 2+2ab+b 2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a 3+3a 2b+3ab 2+b 3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a-b)4的展开式为 .5.(2014·黄石)观察下列等式:第一个等式:a 1=23122⨯⨯=112⨯-2122⨯第二个等式:a 2=34232⨯⨯=2122⨯-3132⨯ 第三个等式:a 3=45342⨯⨯=3132⨯-4142⨯ 第四个等式:a 4=56452⨯⨯=14142⨯-5152⨯按上述规律,回答以下问题:用含n 的代数式表示第n 个等式:a n = = ;式子a 1+a 2+a 3+…+a 20= .6.(2014·烟台)将一组数3,6,3,23,15,…,310,按下面的方法进行排列:若23的位置记为(1,4),26的位置记为(2,3),则这组数中最大的有理数的位置记为( ) A.(5,2) B.(5,3) C.(6,2) D.(6,5)类型之二 图形的变化规律例2 (2014·金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接. (1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若有餐的人数有90人,则这样的餐桌需要多少张?【思路点拨】由拼图可知,每多拼一张餐桌,可坐的人数就增多4人,依次规律可探究出餐桌的个数与可坐人数之间的关系.从而就可解决问题.【解答】(1)根据图中的规律我们可以发现,每多拼接一张餐桌,可坐的人数就增多4人.即:拼接x张餐桌可以就餐的人数为:6+4(x-1)=4x+2(人).所以,拼4张可以坐4×4+2=18(人),拼8张可以坐4×8+2=34(人).(2)由题意可知4x+2=90.解得x=22.答:这样的餐桌需要拼接22张.方法归纳:当图形在变换时,图形的个数与对应的另一个变换的量的关系很难直接观察出规律时,可以通过建立这两个变量之间的函数关系,利用已知的几对对应值求出函数关系式,然后去论证.1.(2014·重庆A卷)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A.20B.27C.35D.402.(2014·武汉)观察下列一组图形中点的个数,其中第1个图片共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是( )A.31B.46C.51D.663.(2014·重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,……,依此规律,第五个图形中三角形的个数是( )A.22B.24C.26D.284.(2014·宜宾)如图,将n个边长都为2的正方形按照如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A.nB.n-1C.(14)n-1 D.14n5.(2014·鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是( )①四边形A 4B 4C 4D 4是菱形;②四边形A 3B 3C 3D 3是矩形;③四边形A 7B 7C 7D 7周长为8a b+;④四边形A n B n C n D n 面积为·2na b . A.①②③ B.②③④ C.①③④ D.①②③④6.(2014·内江)如图,已知A 1、A 2、……、A n 、A n +1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=……=A n A n +1=1,分别过点A 1、A 2、……、A n 、A n +1作x 轴的垂线交直线y =2x 于点B 1、B 2、……、B n 、B n +1,连接A 1B 2、B 1A 2、A 2B 3、B 2A 3、……、A n B n +1、B n A n +1,依次相交于点P 1、P 2、P 3、……、P n ,△A 1B 1P 1、△A 2B 2P 2、……、△A n B n P n 的面积依次为S 1、S 2、……、S n ,则S n 为( )A.121n n ++ B.231n n - C.221n n - D.22+1n n7.(2014·内江)如图所示,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第 2 014个图形是 .△△□□□△○○□□□△○○□□□△○○□……8.(2014·娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n 为正整数)个图案由 个▲组成.9.(2014·盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1,S 2,S 3,…,S n ,则S n 的值为 .(用含n 的代数式表示,n 为正整数)类型之三 点的坐标的变化规律例3 (2014·泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(53,0),B(0,4),则点B2 014的横坐标为.【思路点拨】先根据勾股定理求出AB的长度,再根据第4个图形与第1个图形的位置相同,可知每三个三角形为一个循环依次循环,然后求出每个循环组中B点坐标的变化规律即可.【解答】由题意可得:∵AO=53,BO=4,∴AB=133,∴OA+AB1+B1C2=53+133+4=6+4=10,∴B2的横坐标为10,B4的横坐标为2×10=20,∴点B2 014的横坐标为:20142×10=10 070.故答案为:10 070.方法归纳:由于图形在坐标系中的运动而导致的点的坐标的变化情况,先应该分析图形的运动规律,然后结合点在图形中的位置找出点的坐标的变化规律.1.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……,都是斜边在x轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2 014的坐标为.2.(2013·湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4、…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A22的坐标是.3.(2014·孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.4.(2014·德州)如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…A n ,….将抛物线y =x 2沿直线l :y =x 向上平移,得一系列抛物线,且满足下列条件: ①抛物线的顶点M 1,M 2,M 3,…M n ,…都在直线l :y =x 上; ②抛物线依次经过点A 1,A 2,A 3,…A n ,…. 则顶点M 2 014的坐标为 .参考答案类型之一 数式的变化规律1.(45,12) 22n - 3.102 0142919+1299199+229 99 1 999+3,29 99919 999+4,2201492014999...9199...9+个个=102 014.故答案为102 014.4.a 4-4a 3b+6a 2b 2-4ab 3+b 45.()1212n n n n +++;1·2n n -()1112n n ++;12-211212⨯ 6.C类型之二 图形的变化规律1.B2.B3.C提示:每一次操作三角形个数增加6个. 4.B提示:每两个之间重叠部分的面积都等于正方形面积的14,正方形的面积为4,所以重叠部分的面积为1,n 个正方形有(n-1)个重叠部分,故重叠部分的面积之和为(n-1). 5.A 6.D提示:A n B n当底,利用函数y=2x即可求得,利用黑白三角形相似如△A1B1P1∽△B2A2P1等求得P n到A n B n的距离,从而得△A n B n P n的面积.7.正方形8.3n+19.24n-5提示:根据A点的坐标为(8,4)即可得出正方形的边长依次为20、21、22、23、…,第n个正方形的边长为2n-1计算,第n个阴影部分是在第2n-1和2n个正方形中,与求S2的方法一样,第n个阴影部分的面积是第2n-1个正方形面积的一半,∴S n=12×(22n-1-1)2=24n-5.类型之三点的坐标的变化规律1.(1,-1 007)2.(0,3-1) (-8,-8)提示:由于22÷3=7……1,而A1的坐标为(-1,-1);A4的坐标为(-2,-2);A7的坐标为(-3,-3);……;A22的坐标为(-8,-8).3.(63,32)提示:A1(0,1),B1(1,1);A2(1,2)B2(3,2),A3(3,4),B3(7,4);依次类推A n(2n-1,2n-1),所以B6(63,32).4.(4 027,4 027)提示:M1(a1,a1)是抛物线y1=(x-a1)2+a1的顶点,抛物线y=x2与抛物线y1=(x-a1)2+a1相交于A1,得x2=(x-a1)2+a1,即2a1x=a21+a1,x=12(a1+1).∵x为整数点,∴a1=1,M1(1,1);同理M2(3,3),M3(5,5),……,∴M2 014(2 014×2-1,2014×2-1),即M2014(4 027,4 027).。
2014中考规律题汇总
中考规律题Part 1 图形演变问题1.观察下列一组图形,根据其变化规律,可得第8个图形中所有正方形的个数为______个.1 / 252.已知:如图,互相全等的平行四边形按一定的规律排列.其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,第④个图形中一共_____个平行四边形.2 / 253 / 253. 观察下面一组图形,根据其变化规律,可得到第n个图形中三角形的个数为_________4.观察下列一组图形,根据其变化规律,可得第10个图形中三角形的_________个数为5. 下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图4 / 25形中一共有6个矩形,第②个图形中一共有11个矩形,第③个图形中一共有16个矩形,…,按此规律,第⑥个图形中矩形的个数为()A.30个B.25个C.28个5 / 25D.31个6. 下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有6个平行四边形,第②个图形中一共有18个平行四边形,第③个图形中一共有36个平行四边形,…,则第⑥个图形中平行四边形的个数为________6 / 25A.252 B.126 C.99 D.727 / 257. 下列图形是由同样大小的正方形按一定的规律组成,其中,第①个图形中一共有1个正方形,第②个图形中一共有5个正方形,第③个图形中一共有14个正方形,…则第⑦个图形中正方形的个数为________8 / 258. 下列图形都是由同样大小的正方形和正三角形按一定的规律组成,其中,第①个图形中一共有5个正多边形,第②个图形中一共有13个正多边形,第③个图形中一共有26个正多边形,…,则第⑥个图形中正多边形的个数为()9 / 25A.90 B.91 C.115 D.11610 / 259. 如图中的第一个图形为重庆南开中学校徽的一部分,由此规律,则第n个图形中直角三角形的个数是()A.4n+4 B.8n C.8n-411 / 25D.8n+810. 如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑥个图形中完整菱形的个数为()12 / 25A.60 B.61 C.62 D.63 11. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一13 / 25共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.72 12. 观察图形,则第n个图形中直角14 / 25三角形的个数是()13. 观察图形,则第n个图形中三角形的个数是()15 / 25A.2n B.2n-1C.4n-4D.4n14. 观察如图,第1个图形中有1个正方形,第2个图形中有3个小正方形,第3个图形中有6个小正方形,…依此规律,若第n个图形中小正方形的个数为66,则n等于()16 / 25A.8 B.9 C.10 D.11 15. 下列图形都是由同样大小的圆按一定的规律组成,其中,第(1)个图形中一共有2个圆;第(2)个图形中一共有7个圆;第(3)个图形17 / 25中一共有16个圆;第(4)个图形中一共有29个圆,…,则第(8)个图形中圆的个数为()A.121 B.113 C.92 D.19118 / 2516. 下图是按一定规律排列的一组图形,依照此规律,第n个图形中★的个数为_______.(n为正整数)17. 如图,第四个图形中三角形的个数为_______个.19 / 2518. 观察下面的点阵图形,根据圆点的变化,探究其规律,则第8个图形中圆点的个数为()20 / 25A.25 B.26 C.27 D.2919. 按如图所示规律摆放三角形:则第13个图形中三角形的个数是__________.21 / 2520. 观察右表,回答问题,第________个图形中“△”的个数是“○”的个数的5倍Part 2 双增长类1. 将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…依次规律,第10个图形中小圆的个数为_________22 / 2523 / 252. 观察下列图形:根据图形及相应圆点个数的变化规律,求第n (n 为正整数)个图形中有_________个圆点.3. (2009•武汉)观察下列各图中小圆点的摆放规律,按这样的规律继续摆放下去,则第7个图形中小圆点的个数为4. 观察下列各图中小圆圈摆放规律,则第7个图形小圆圈个数为_______个.Part 3 扣嵌类1. 下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第9个图案中基础图形个数为_________A .27B .28C .30D .362. 下列是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图形由10个基础图形组成…,第5个图形中基础图形的个数为()Part 4 火柴棍模型1. 如图,用火柴棍摆出一列正方形图案,第①个图案用火柴棍的个数为4根,第②个图案用火柴棍的个数为12根,第③个图案用火柴棍的个数为24根,若按这种方式摆下去,摆出第⑨个图案用火柴棍的个数为__________2. 如图所示,在下面由火柴棒拼出的一系列的图形中,第n个图形由n个正方形组成.(1)第2个图形中,火柴棒的根数是_________;(2)第3个图形中,火柴棒的根数是_________;(3)第4个图形中,火柴棒的根数是_________;(4)第n个图形中,火柴棒的根数是_________.3. 用火柴棒按下图的方式搭图形,第n个图形要_______根火柴.4. 下列图案是用长度相等的火柴按一定规律构成的图形,依此规律第6个图形中,共用火柴的根数是24 / 2525 / 25 __________.5. 用火柴棍按下列方式摆图形,依照此规律,第n 个图形用了88根火柴棍,则n 的值为()A .6B .7C .8D .9。
北京市2014年中考数学试题及答案(word解析版)
北京市2014年中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.(4分)(2014•北京)2的相反数是()D.A.2B.﹣2 C.﹣考点:相反数.分析:根据相反数的概念作答即可.解答:解:根据相反数的定义可知:2的相反数是﹣2.故选:B.点评:此题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(4分)(2014•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:300 000=3×105,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2014•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.考点:概率公式.分析:由有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.解答:解:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是:=.故选D.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)(2014•北京)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥考点:由三视图判断几何体.分析:如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.解答:解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选C.点评:本题是个简单题,主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.5.(4分)(2014•北京)某篮球队12名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5考点:众数;加权平均数.分析:根据众数及平均数的概念求解.解答:解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选A.点评:本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.6.(4分)(2014•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米考点:函数的图象.分析:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.解答:解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.点评:此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.7.(4分)(2014•北京)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.8考点:垂径定理;等腰直角三角形;圆周角定理.分析:根据圆周角定理得∠BOC=2∠A=45°,由于圆O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.解答:解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵圆O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.8.(4分)(2014•北京)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.考点:动点问题的函数图象.分析:根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.解答:解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选A.点评:本题考查了动点问题函数图象,熟练掌握等边三角形,菱形,正方形以及圆的性质,理清点P在各边时AP的长度的变化情况是解题的关键.二、填空题(本题共16分,每小题4分)9.(4分)(2014•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式进行分解即可.解答:解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).点评:此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.10.(4分)(2014•北京)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.考点:相似三角形的应用.分析:根据同时同地物高与影长成正比列式计算即可得解.解答:解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.点评:本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.(4分)(2014•北京)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为y=,y=(0<k≤4)(答案不唯一).考点:反比例函数图象上点的坐标特征.专题:开放型.分析:先根据正方形的性质得到B点坐标为(2,2),然后根据反比例函数图象上点的坐标特征求出过B 点的反比例函数解析式即可.解答:解:∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y=(k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k≤4)(答案不唯一).点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(4分)(2014•北京)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为(﹣3,1),点A2014的坐标为(0,4);若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b 应满足的条件为﹣1<a<1且0<b<2.考点:规律型:点的坐标.分析:根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2014除以4,根据商和余数的情况确定点A2014的坐标即可;再写出点A1(a,b)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.解答:解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503余2,∴点A2014的坐标与A2的坐标相同,为(0,4);∵点A1的坐标为(a,b),∴A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点A n均在x轴上方,∴,,解得﹣1<a<1,0<b<2.故答案为:(﹣3,1),(0,4);﹣1<a<1且0<b<2.点评:本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题(本题共30分,每小题5分)13.(5分)(2014•北京)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.考点:全等三角形的判定与性质.专题:证明题.分析:由全等三角形的判定定理SAS证得△ABC≌△EDB,则对应角相等:∠A=∠E.解答:证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.14.(5分)(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1﹣5﹣+=﹣4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(5分)(2014•北京)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母、去括号,移项、合并同类项,系数化成1即可求解.解答:解:去分母,得:3x﹣6≤4x﹣3,移项,得:3x﹣4x≤6﹣3,合并同类项,得:﹣x≤3,系数化成1得:x≥﹣3.则解集在数轴上表示出来为:.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(5分)(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.考点:整式的混合运算—化简求值.分析:先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.解答:解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.点评:此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.17.(5分)(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.考点:根的判别式.专题:计算题.分析:(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.解答:(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.(5分)(2014•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.考点:分式方程的应用.分析:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.解答:解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,由题意得=解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.点评:此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.四、解答题(本题共20分,每小题5分)19.(5分)(2014•北京)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD 于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.考点:菱形的判定;平行四边形的性质;解直角三角形.分析:(1)先证明四边形是平行四边形,再根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.点评:本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.20.(5分)(2014•北京)根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2009~2013年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为5本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为7500本.考点:扇形统计图;用样本估计总体;统计表.分析:(1)1直接减去个部分的百分数即可;(2)设从2009到2013年平均增长幅度为x,列方程求出x的值即可;(3)根据(2)的结果直接计算.解答:解:(1)m%=1﹣1.0%﹣15.6%﹣2.4%﹣15.0%=66%,∴m=66.(2)设从2009到2013年平均增长幅度为x,列方程得,3.88×(1+x)4=4.78,1+x≈1.05,x≈0.05,4.78×(1+0.05)≈5.(3)990÷0.66×5=7500,故2014年该小区成年国民阅读图书的总数量约为7500本.故答案为5,7500.点评:本题考查了扇形统计图,能从图表中找到相关信息并加以利用是解题的关键.21.(5分)(2014•北京)如图,AB是eO的直径,C是»AB的中点,eO的切线BD交AC的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.考点:切线的性质;全等三角形的判定与性质;勾股定理.分析:(1)连接OC,由C是的中点,AB是⊙O的直径,则OC⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC∥BD,即可证明AC=CD;(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF=,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.解答:(1)证明:连接OC,∵C是AB的中点,AB是⊙O的直径,∴O⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,,∴△COE≌△FBE(ASA),∴BF=CO,∴OB=2,∴BF=2,∴AF==2,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴=,∴AB•BF=AF•BH,∴BH===.点评:本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.22.(5分)(2014•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为75°,AC的长为3.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.考点:相似三角形的判定与性质;勾股定理;解直角三角形.分析:根据相似的三角形的判定与性质,可得=2,根据等腰三角形的判定,可得AD=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.解答:解:∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.点评:本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值.专题:计算题.分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC 解析式,令x=1求出y的值,即可确定出t的范围.解答:解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的范围为﹣4≤t≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键.24.(7分)(2014•北京)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.考点:四边形综合题.分析:(1)根据题意直接画出图形得出即可;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出答案.解答:解:(1)如图1所示:(2)如图2,连接AE,则∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(3)如图3,连接AE、BF、BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=2AB2.点评:此题主要考查了正方形的性质以及勾股定理和等腰三角形的性质等知识,利用轴对称的性质得出对应边相等是解题关键.25.(8分)(2014•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?考点:二次函数综合题.分析:(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.解答:解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t≥1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.点评:本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
2014陕西中考数学试题及解析(word)
2014陕西中考数学试题及解析一、选择题(每小题只有一个正确答案) 1.4的算术平方根是( ) A .2- B .2 C .21-D .21 考点:此题一般考查的内容简单,有相反数、倒数、绝对值、立方根、平方根及算术平方根、具有相反意义的量的表示及正负数的概念等简单的知识点,本题考查的是一个非负数的算术平方根。
解析:正数的正的平方根是这个数的算术平方根,因此易知4的算术平方根是2,此题故选B .2.如图,下图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )考点:常见的几何体的三视图的画法。
解析:此类题主要考查学生们的空间想象能力,一般考查常见的简单的几何体有圆柱,正方体及其组合体。
应注意看的见的轮廓线与看不见的轮廓线的画法与圆锥与圆柱的视图的区别是否有圆心,相对来说考查的较为简单,此题故选A . 3.若A (-2,m )在正比例函数x y 21-=的图象上,则m 的值是( ) A .41 B .41- C .1 D . 1- 考点:一般考查的是一次函数或者反比例函数的图象性质及待定系数法求函数的解析式。
解析:因为A 在函数的图象上,因此将点的坐标代入即可求解。
1)2(21=-⨯-=m 故选C ;如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小( ) A . 65° B . 55° C .45° D . 35° 考点:平行线的性质应用与互余的定义。
解析:此类题主要考查学生们的平面几何的性质应用的能力, 一般考查常见较为简单的两直线平行而同位角和内错角相等第2题图A B DC B CDAO第7题图的应用,而问题的设置也是求角度或者是找角的关系。
因为AB ∥CD ,所以∠D=∠BED ,因为∠CED=90°,∠AEC=35°所以∠BED=180°-90°-35°=55°,此题故选B4.不等式组⎪⎩⎪⎨⎧<->-321021x x 的解集为( ) A .21>x B .1-<x C .211<<-x D .21->x 考点:不等式的解法及不等式组的解集的选取。
2014年中考数学二轮复习专题(一)猜想规律(含答案)
2014年中考数学二轮复习系列(一)猜想规律专题一、中考要求能够根据题目中的图形或者数字直观地发现共同特征,或者发展变化的趋势,通过观察、归纳,探索发现这些图形或数字所蕴藏的数学本质,必要时可以进行验证或者证明,依此体现出规律的实际意义。
二、问题类型图1三、解题策略和解法精讲猜想规律型的问题难度相对较小,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。
其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。
相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。
由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。
四、考点分析1、猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
例1 ( 2013贵州省黔东南州,16,4分)观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是 .分析:根据已知数字变化规律,得出连续奇数之和为数字个数的平方,进而得出答案.解:∵1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,∴1+3+5+…+2013=()2=10072=1014049.故答案为:1014049.【即时检测1】(2013·山西)一组按一定规律排列的式子:个式子是则第n aa a a ,...,7,5,3,8642【方法指导】对于数字规律题,有如下的步骤: 1).计算前几项,一般算出四五项;2).找出几项的规律,这个规律或是循环,或是成一定的数列规律如等差,等比等。
2014年各地中考数学试卷解析版分类精品汇编开放性问题、规律探索
2014年各地中考数学试卷解析版分类汇编开放性问题、规律探索1. (2014•四川巴中)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.考点:矩形的判定.分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.解答:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).点评:本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.2. (2014•山东威海)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.考点:四边形综合题分析:猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,解答:猜想:DM=ME证明:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.(1)如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME,故答案为:DM=ME.(2)如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.点评:本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.3. (2014•山东枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.考点:全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定专题:计算题.分析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.解答:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,即OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.点评:此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.4. (2014•山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE 与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.考点:全等三角形,正方形的性质,勾股定理,运动与变化的思想.分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.解答:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.点评:本题主要考查了四边形的综合知识.综合性较强,特别是第(4)题要认真分析.5. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.考点:二次函数综合题分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最==﹣,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.点评:本题考查了二次函数的综合,立意新颖,结合考察了数学解题过程中经常用到的几种解题方法,同学们注意思考、理解,难度一般.规律探索一、选择题1. (2014•山东威海)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0B.﹣3×()2013C.(2)2014D.3×()2013考点:规律型:点的坐标专题:规律型.分析:根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2014=3×()2013,由于而2014=4×503+2,则可判断点A2014在y轴的正半轴上,所以点A2014的纵坐标为3×()2013.解答:解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为3×()2013.故选D.点评:本题考查了规律型:点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.2. (2014•山东潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014,2),即(-2012,2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.3. (2014•山东烟台)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)考点:规律探索.分析:根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解答:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.4.(2014•十堰)根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()A.B.C.D.考点:规律型:数字的变化类分析:观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2013÷4=503…1,∴2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选D.点评:本题是对数字变化规律的考查,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.5.(2014•四川宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n考点:正方形的性质;全等三角形的判定与性质专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.点评:此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.6.(2014•四川内江)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为()A.B.C.D.考点:一次函数图象上点的坐标特征.专题:规律型.分析:根据图象上点的坐标性质得出点B1、B2、B3、…、B n、B n+1各点坐标,进而利用相似三角形的判定与性质得出S1、S2、S3、…、S n,进而得出答案.解答:解:∵A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6)…∵A1B1∥A2B2,∴△A1B1P1∽△A2B2P1,∴=,∴△A1B1C1与△A2B2C2对应高的比为:1:2,∴A1B1边上的高为:,∴=××2==,同理可得出:=,=,∴S n=.故选;D.点评:此题主要考查了一次函数函数图象上点的坐标性质得出B点坐标变化规律进而得出S的变化规律,得出图形面积变化规律是解题关键.二、填空题1. (2014•上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则7×2﹣y=23解得y=﹣9.故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.2. (2014•四川巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=.考点:规律探索.分析:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.解答:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.点评:本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.3.(2014•遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.4.(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.考点:规律型:图形的变化类.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5. (2014年湖北咸宁)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6. (2014•江苏盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为24n﹣5.(用含n的代数式表示,n为正整数)考点:正方形的性质;一次函数图象上点的坐标特征.专题:规律型.分析:根据直线解析式判断出直线与x轴的夹角为45°,从而得到直线与正方形的边围成的三角形是等腰直角三角形,再根据点A的坐标求出正方形的边长并得到变化规律表示出第n个正方形的边长,然后根据阴影部分的面积等于一个等腰直角三角形的面积加上梯形的面积再减去一个直角三角形的面积列式求解并根据结果的规律解答即可.解答:解:∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n﹣1,由图可知,S1=×1×1+×(1+2)×2﹣×(1+2)×2=,S2=×4×4+×(2+4)×4﹣×(2+4)×4=8,…,S n为第2n与第2n﹣1个正方形中的阴影部分,第2n个正方形的边长为22n﹣1,第2n﹣1个正方形的边长为22n﹣2,S n=•22n﹣2•22n﹣2=24n﹣5.故答案为:24n﹣5.点评:本题考查了正方形的性质,三角形的面积,一次函数图象上点的坐标特征,依次求出各正方形的边长是解题的关键,难点在于求出阴影S n所在的正方形和正方形的边长.7. (2014•年山东东营)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.8.(2014•四川遂宁)已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△A n B n C n的周长为.考点:三角形中位线定理.专题:规律型.分析:由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,△A2B2C2∽△ABC的相似比为,依此类推△A n B n C n∽△ABC的相似比为,解答:解:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1B1、A1C1、B1C1是△ABC的中位线,∴△A1B1C1∽△ABC,且相似比为,∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,∴△A2B2C2∽△A1B1C1且相似比为,∴△A2B2C2∽△ABC的相似比为依此类推△A n B n C n∽△ABC的相似比为,∵△ABC的周长为1,∴△A n B n C n的周长为.故答案为.点评:本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用,解题的关键是有相似三角形的性质:9.(2014•四川内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2014个图形是□.考点:规律型:图形的变化类.分析:去掉开头的两个三角形,剩下的由三个正方形,一个三角形,两个圆6个图形为一组,依次不断循环出现,由此用(2014﹣2)÷6算出余数,余数是几,就与循环的第几个图形相同,由此解决问题.解答:解:由图形看出去掉开头的两个三角形,剩下的由三个正方形,一个三角形,两个圆6个图形为一组,不断循环出现,(2014﹣2)÷6=335 (2)所以第2014个图形是与循环的第二个图形相同是正方形.故答案为:□.点评:此题考查图形的变化规律,找出图形的循环规律,利用规律解决问题.10.(2014•四川南充)一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014=.分析:分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.解:a1=﹣1,a2==,a3==2,a4==﹣1,…,由此可以看出三个数字一循环,2004÷3=668,则a1+a2+a3+…+a2014=668×(﹣1++2)=1002.故答案为:1002.点评:此题考查了找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键.11.(2014•甘肃白银)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=.考点:规律型:数字的变化类.专题:压轴题;规律型.分析:13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.点评:本题的规律为:从1开始,连续n个数的立方和=(1+2+…+n)2.12.(2014•甘肃兰州)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.考点:有理数的乘方专题:整体思想.分析:根据等式的性质,可得和的3倍,根据两式相减,可得和的2倍,根据等式的性质,可得答案.解答:解:设M=1+3+32+33+…+32014 ①,①式两边都乘以3,得3M=3+32+33+…+32015 ②.②﹣①得2M=32015﹣1,两边都除以2,得M=,故答案为:.点评:本题考查了有理数的乘方,等式的性质是解题关键.13.(2014•广东梅州)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2014的坐标是.考点:规律型:点的坐标.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2014除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),当点P第3次碰到矩形的边时,点P的坐标为:(8,3);∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(8,3),(5,0).点评:此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.。
2014年云南省中考数学试题与答案
2014 年云南省中考数学试卷一、选择题(本大题共8 小题,每小题只有一个正确选项,每小题 3 分,满分24 分)1.( 3 分)(2014年云南省) |﹣ |=()A .﹣B .C.﹣7D. 7考点:绝对值.菁优网版权所有分析:根据负数的绝对值是它的相反数,可得答案.解答:解: |﹣ |=,故选: B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.( 3 分)(2014年云南省)下列运算正确的是()A .3x2+2 x3=5x6B .50=0C. 2﹣ 3=D.( x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.菁优网版权所有分析:根据合并同类项,可判断A,根据非 0 的 0 次幂,可判断B,根据负整指数幂,可判断 C,根据幂的乘方,可判断D.解答:解: A、系数相加字母部分不变,故 A 错误;B、非 0 的 0 次幂等于1,故 B 错误;C、2,故C错误;D、底数不变指数相乘,故 D 正确;故选: D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.( 3 分)(2014年云南省)不等式组的解集是()A . x>B .﹣1≤x<C. x<D. x≥﹣ 1考点:解一元一次不等式组.菁优网版权所有分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.故选 A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.( 3 分)(2014年云南省)某几何体的三视图如图所示,则这个几何体是()A .圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.菁优网版权所有分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.( 3 分)(2014年云南省)一元二次方程2﹣x﹣ 2=0 的解是()xA . x1=1,x2=2B . x1=1,x2 =﹣ 2C. x1 =﹣1, x2=﹣ 2D. x1=﹣ 1, x2=2考点:解一元二次方程-因式分解法.菁优网版权所有分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解: x2﹣ x﹣ 2=0(x﹣ 2)( x+1) =0 ,解得: x1=﹣ 1,x2=2.故选: D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.6.( 3 分)(2014年云南省)据统计,2013 年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A . 1.394 ×107B . 13.94×107C. 1.394×106D. 13.94×105考点:科学记数法—表示较大的数.菁优网版权所有分析:科学记数法的表示形式为a×10n的形式,其中1≤|a< 10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n是正数;当原数的绝对值< 1 时, n 是负数.解答:解: 13 940 000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a< 10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.7.( 3 分)(2014年云南省)已知扇形的圆心角为 45°,半径长为12,则该扇形的弧长为()A .B . 2πC. 3πD. 12π考点:弧长的计算.菁优网版权所有分析:根据弧长公式 l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选: C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.8.( 3 分)(2014年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18 名同学入围,他们的决赛成绩如下表:成绩(分)9.409.509.609.709.809.90人数235431则入围同学决赛成绩的中位数和众数分别是()A . 9.70, 9.60B . 9.60, 9.60C. 9.60, 9.70D. 9.65,9.60考点:分析:众数;中位数.菁优网版权所有根据中位数和众数的概念求解.解答:解:∵共有18 名同学,则中位数为第9 名和第 10 名同学成绩的平均分,即中位数为:=9.60 ,众数为:故选 B.9.60.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本大题共 6 个小题,每小题 3 分,满分18 分)9.( 3 分)(2014年云南省)计算:﹣=.考点:二次根式的加减法.菁优网版权所有分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式 =2﹣ = .故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.10.( 3 分)(2014年云南省)如图,直线a∥ b,直线 a,b 被直线 c 所截,∠ 1=37 °,则∠ 2= 143° .考点:平行线的性质.菁优网版权所有分析:根据对顶角相等可得∠3= ∠ 1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠ 3= ∠1=37°(对顶角相等),∵a∥ b,∴∠ 2=180°﹣∠ 3=180°﹣ 37°=143°.故答案为: 143°.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.11.(3 分)(2014年云南省)写出一个图象经过一,三象限的正比例函数y=kx( k≠0)的解析式(关系式)y=2x .考点:正比例函数的性质.菁优网版权所有专题:开放型.分析:根据正比例函数y=kx 的图象经过一,三象限,可得k> 0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx 的图象经过一,三象限,∴k> 0,取k=2 可得函数关系式y=2x.故答案为: y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k> 0 时,图象经过一、三象限,y 随 x 的增大而增大;当k<0 时,图象经过二、四象限,y 随 x 的增大而减小.12.( 3 分)( 2014?天津)抛物线y=x2﹣ 2x+3 的顶点坐标是(1,2).考点:二次函数的性质.菁优网版权所有专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵ y=x2﹣ 2x+3=x2﹣2x+1﹣ 1+3=( x﹣ 1)2+2,∴抛物线y=x2﹣2x+3 的顶点坐标是(1, 2).点评:此题考查了二次函数的性质,二次函数2y=a( x﹣ h) +k 的顶点坐标为( h,k),对称轴为 x=h,此题还考查了配方法求顶点式.13.( 3 分)(2014年云南省)如图,在等腰△ ABC 中, AB=AC,∠ A=36 °,BD ⊥ AC 于点 D ,则∠ CBD = 18° .考点:等腰三角形的性质.菁优网版权所有分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC 的度数.解答:解:∵ AB=AC,∠ A=36°,∴∠ ABC=∠ ACB=72°.∵BD⊥AC 于点 D,∴∠ CBD =90°﹣ 72°=18°.故答案为: 18°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.( 3 分)(2014年云南省)观察规律并填空(1﹣)=?=;(1﹣)( 1﹣)=???==(1﹣)( 1﹣)( 1﹣)=?????=?=;(1﹣)( 1﹣)( 1﹣)( 1﹣)=???????=?=;⋯(1﹣)( 1﹣)( 1﹣)( 1﹣)⋯(1﹣) =.(用含 n 的代数式表示,n 是正整数,且 n≥2)考点:规律型:数字的变化类.菁优网版权所有分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的( 1﹣)和( 1+)相乘得出结果.解答:解:( 1﹣)( 1﹣)( 1﹣)( 1﹣)⋯(1﹣)=??????⋯=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共9 个小题,满分60 分)15.( 5 分)(2014年云南省)化简求值:?(),其中x=.考点:分式的化简求值.菁优网版权所有专题:计算题.x 分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将的值代入计算即可求出值.解答:解:原式 =?=x+1,当 x=时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.( 5 分)(2014年云南省)如图,在△ ABC 和△ ABD 中, AC 与 BD 相交于点E,AD =BC,∠DAB =∠ CBA,求证: AC =BD .考点:专题:分析:解答:全等三角形的判定与性质.菁优网版权所有证明题.根据“SAS”可证明△ ADB ≌△ BAC,由全等三角形的性质即可证明证明:在△ ADB 和△ BAC 中,AC=BD.,∴△ ADB ≌△ BAC( SAS),∴AC =BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.( 6 分)(2014年云南省)将油箱注满k 升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量 a(单位:升 /千米)之间是反比例函数关系 S= ( k 是常数, k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油 0.1 升的速度行驶,可行驶 700 千米.(1)求该轿车可行驶的总路程S 与平均耗油量 a 之间的函数解析式(关系式);(2)当平均耗油量为 0.08 升 /千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.菁优网版权所有分析:(1)将 a=0.1,s=700 代入到函数的关系S= 中即可求得 k 的值,从而确定解析式;(2)将 a=0.08 代入求得的函数的解析式即可求得s 的值.解答:解:( 1)由题意得: a=0.1, s=700,代入反比例函数关系S=中,解得: k=sa=70,所以函数关系式为:s=;(2)将 a=0.08 代入 s=得: s= ==875 千米,故该轿车可以行驶多875 米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.18.( 9 分)(2014年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B( 89~ 80 分)、C( 79~ 60 分)、D(59~0 分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生 1200 人,若分数为 80 分(含 80 分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.菁优网版权所有分析:(1)抽查人数可由 C 等所占的比例为 50%,根据总数 =某等人数÷比例来计算;(2)可由总数减去 A、 C、 D 的人数求得 B 等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200 乘以样本中测试成绩等级在80 分(含 80 分)以上的学生所占百分比即可.解答:解:( 1) 20÷50%=40 (人),答:这次随机抽取的学生共有40 人;(2) B 等级人数: 40﹣ 5﹣20﹣ 4=11(人)条形统计图如下:(3) 1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.( 7 分)(2014年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、 2、 3、 4 的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.菁优网版权所有分析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.解答:解:( 1)根据题意列表得:123412345234563456745678(2)由列表得:共16 种情况,其中奇数有8 种,偶数有8 种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20.( 6 分)(2014年云南省)“母亲节”前夕,某商店根据市场调查,用3000 元购进第一批盒装花,上市后很快售完,接着又用5000 元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的 2 倍,且每盒花的进价比第一批的进价少 5 元.求第一批盒装花每盒的进价是多少元?考点:分析:是:解答:2×分式方程的应用.菁优网版权所有设第一批盒装花的进价是x 元 /盒,则第一批进的数量是:,第二批进的数量,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解:设第一批盒装花的进价是x 元 /盒,则=,解得x=30经检验,x=30 是原方程的根.答:第一批盒装花每盒的进价是30 元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.21.( 6 分)(2014年云南省)如图,小明在AB 的顶端 B 的仰角为 30°,再向旗杆方向前进M 处用高10 米到1 米( DM=1 米)的测角仪测得旗杆F 处,又测得旗杆顶端 B 的仰角为60°,请求出旗杆AB 的高度(取≈ 1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.菁优网版权所有分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠ BDE=30°,∠ BCE=60°,∴∠ CBD =60°﹣∠ BDE =30°=∠ BDE ,∴BC =CD=10 米,在 Rt△ BCE 中, sin60°=,即=,∴BE =5,AB=BE+AE=5+1≈ 10米.答:旗杆 AB 的高度大约是10 米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.( 7 分)(2014年云南省)如图,在平行四边形ABCD 中,∠ C=60 °, M、N 分别是 AD、BC 的中点, BC=2CD .(1)求证:四边形MNCD 是平行四边形;(2)求证: BD=MN .考点:平行四边形的判定与性质.菁优网版权所有专题:证明题.分析:(1)根据平行四边形的性质,可得AD 与 BC 的关系,根据 MD 与 NC 的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC 的度数,根据三角形外角的性质,可得∠ DBC 的度数,根据正切函数,可得答案.解答:证明:( 1)∵ ABCD 是平行四边形,∴AD =BC, AD ∥ BC,∵M 、 N 分别是 AD 、 BC 的中点,∴MD =NC, MD∥ NC,∴MNCD 是平行四边形;(2)如图:连接ND ,∵MNCD 是平行四边形,∴MN =DC.∵N 是 BC 的中点,∴BN =CN,∵BC =2CD ,∠ C=60°,∴△ NVD 是等边三角形.∴ND =NC,∠ DNC=60°.∵∠ DNC 是△ BND 的外角,∴∠ NBD +∠NDB =∠DNC ,∵DN =NC=NB,∴∠ DBN =∠BDN =∠ DNC=30°,∴∠ BDC =90°.∵tan,∴DB= DC= MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.23.( 9 分)(2014年云南省)已知如图平面直角坐标系中,点O 是坐标原点,矩形ABCD 是顶点坐标分别为A( 3,0)、B( 3,4)、C( 0,4).点 D 在y 轴上,且点 D 的坐标为(0,﹣5),点P 是直线AC上的一动点.(1)当点 P 运动到线段AC 的中点时,求直线DP 的解析式(关系式);(2)当点 P 沿直线 AC 移动时,过点 D、 P 的直线与 x 轴交于点 M.问在 x 轴的正半轴上是否存在使△ DOM 与△ ABC 相似的点 M?若存在,请求出点 M 的坐标;若不存在,请说明理由;(3)当点 P 沿直线 AC 移动时,以点P 为圆心、 R( R> 0)为半径长画圆.得到的圆称为动圆 P.若设动圆P 的半径长为,过点D作动圆F.请探求在动圆P 中是否存在面积最小的四边形P 的两条切线与动圆P 分别相切于点E、DEPF ?若存在,请求出最小面积S 的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.菁优网版权所有专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC 中点 P 的坐标,然后用待定系数法即可求出直线DP 的解析式.(2)由于△ DOM 与△ ABC 相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出 OM 的长,即可求出点 M 的坐标.(3)易证 S△PED =S△PFD.从而有 S 四边形DEPF =2S△PED =DE .由∠ DEP =90 °得 DE2=DP 2﹣ PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当 DP⊥ AC 时,DP 最短,此时 DE 也最短,对应的四边形 DEPF 的面积最小.借助于三角形相似,即可求出 DP ⊥AC 时 DP 的值,就可求出四边形 DEPF 面积的最小值.解答:解:( 1)过点 P 作 PH ∥ OA,交 OC 于点 H,如图 1 所示.∵PH ∥ OA,∴△ CHP ∽△ COA .∴= = .∵点 P是AC中点,∴CP = CA.∴HP = OA,CH = CO.∵A( 3,0)、 C( 0, 4),∴OA=3, OC=4.∴HP =,CH=2.∴OH =2.∵PH ∥ OA,∠ COA=90°,∴∠ CHP =∠COA=90°.∴点 P 的坐标为(,2).设直线 DP 的解析式为y=kx+b,∵D ( 0,﹣ 5), P(,2)在直线DP 上,∴∴∴直线 DP 的解析式为y=x﹣5.(2)①若△ DOM ∽△ ABC,图 2( 1)所示,∵△ DOM ∽△ ABC,∴ = .∵点 B 坐标为( 3,4),点 D 的坐标为( 0.﹣ 5),∴BC =3, AB=4, OD=5.∴ =.∴OM =.∵点 M 在 x 轴的正半轴上,∴点 M 的坐标为(, 0)②若△ DOM ∽△ CBA,如图2( 2)所示,∵△ DOM ∽△ CBA,∴= .∵BC =3, AB=4, OD=5,∴ =.∴OM =.∵点 M 在 x 轴的正半轴上,∴点 M 的坐标为(, 0).综上所述:若△ DOM 与△ CBA 相似,则点 M 的坐标为(, 0)或(, 0).(3)∵OA=3,OC=4,∠AOC =90°,∴AC =5.∴PE =PF = AC= .∵DE 、 DF 都与⊙ P 相切,∴DE =DF ,∠ DEP =∠ DFP =90°.∴S△PED=S△PFD.∴S 四边形DEPF =2S△PED=2× PE?DE=PE?DE = DE.∵∠ DEP =90°,∴DE 2=DP 2﹣PE2. =DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥ AC 时, DP 最短,此时 DE 取到最小值,四边形DEPF 的面积最小.∵DP ⊥ AC,∴∠ DPC =90°.∴∠ AOC=∠DPC .∵∠ OCA=∠PCD ,∠ AOC =∠DPC ,∴△ AOC∽△ DPC .∴=.∵AO=3, AC=5,DC =4﹣(﹣ 5) =9,∴= .∴DP =.∴DE 2=DP 2﹣=() 2﹣=.∴DE =,∴S 四边形DEPF = DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3 小题的关键.另外,要注意“△ DOM 与△ ABC 相似”与“△ DOM ∽△ ABC“之间的区别.。
2014年河北省中考数学试题及答案解析
河北省2014年中考数学试卷一、选择题(共16小题,1-6小题,每小题2分;7-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2分)(2014•河北)-2是2的( )A .倒数B .相反数C .绝对值D .平方根 【考 点】 M111相反数 【难易度】 容易题【分 析】 因为-2+2=0,根据相反数特性:若a ,b 互为相反数,则a+b=0,反之若a+b=0, 则a 、b 互为相反数. 知-2是2的相反数,故答案为B. 【解 答】 B【点 评】 本题属于概念题,考查了对相反数的理解,本质上我们称只有符号不同的两个 数互为相反数,正数的相反数是负数,负数的相反数是正数,0的相反数是0. 2.(2分)(2014•河北)如图,△ABC 中,D ,E 分别是边AB ,AC 的中点.若DE=2,则BC=( )A .2B .3C .4D .5 【考 点】 M323三角形的中位线 【难易度】 容易题【分 析】 ∵D ,E 分别是边AB ,AC 的中点,∴DE 是△ABC 的中位线, ∴BC=2DE=2×2=4(根据三角形中位线定理).故选C . 【解 答】 C【点 评】 本题比较基础,考查了三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半,这一定理极其重要,无论在填空选择,还是在几何证明中 都起着关键作用,因此熟记定理是解题的关键.3.(2分)(2014•河北)计算:852﹣152=( ) A .70 B .700 C .4900 D .7000 【考 点】 M11P 因式分解 【难易度】 容易题【分 析】 直接利用平方差公式进行求解.即原式=(85+15)(85-15)=100×70=7000.故答案为D. 【解 答】 D【点 评】 本题是比较简单的计算题,主要考查了利用公式法进行分解因式,掌握平方差公式:a 2﹣b 2=(a+b)(a-b )是解决本题的关键.4.(2分)(2014•河北)如图,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是( )A .20°B .30°C .70°D .80° 【考 点】 M321三角形内(外)角和 【难易度】 容易题【分 析】 根据三角形的一个外角等于与它不相邻的两个内角的和, 得:a ,b 相交所成的锐角=3070100=-.故答案选B.【解 答】 B【点 评】 本题比较容易,考查了三角形外角的性质:三角形的一个外角等于与它不相邻 的两个内角的和的性质,熟记此性质是解题的关键,5.(2分)(2014•河北)a ,b 是两个连续整数,若a <7<b ,则a ,b 分别是( ) A .2,3 B .3,2 C .3,4 D .6,8 【考 点】 M116无理数 【难易度】 容易题 【分 析】 因为()97742<=<,所以974<<,解得:372<<,故答案为A. 【解 答】 A【点 评】 本题比较基础,考查了估算无理数的大小,本题利用先平方再开方的方法进行 比较.6.(2分)(2014•河北)如图,直线l 经过第二、三、四象限,l 的解析式是y=(m-2)x+n ,则m 的取值范围在数轴上表示为( )A .B .C .D .【考 点】 M12M 一元一次不等式(组)解集的数轴表示 M142一次函数的图象、性质 【难易度】 容易题【分 析】 ∵直线y=(m ﹣2)x+n 经过第二、三、四象限, ∴m ﹣2<0且n <0,∴m <2且n <0.故选C . 【解 答】 C【点 评】 本题考查了一次函数图象与系数的关系:一次函数y=kx+b (k 、b 为常数,k ≠0) 是一条直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0, 图象经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0, b ).也考查了在数轴上表示不等式的解集,注意含等号的用实心圈,不含等号 的用空心圈.7.(3分)(2014•河北)化简:112---x xx x =( ) A .0 B .1 C .x D .1-x x 【考 点】 M11S 分式运算 【难易度】 容易题【分 析】 首先利用同分母分式的减法法则计算,再通过因式分解化简,进行约分即可得到结果,即:原式=()x x x x x x x =--=--1112.故答案为C. 【解 答】 C【点 评】 本题是最基本的计算题,非常简单,此题考查了分式的加减法,及提取公因式, 熟练掌握运算法则并运用因式分解法则是解本题的关键.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n 个三角形后,拼成面积为2的正方形,则n ≠( )A.2 B.3 C.4 D.5【考点】 M415图形的剪拼【难易度】中等题【分析】利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法,如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故答案为A.【解答】 A【点评】本题有一定难度,主要考查了图形的剪拼,利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法是解题关键.9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()A.6厘米 B.12厘米 C.24厘米 D.36厘米【考点】 M143求一次函数的关系式M144一次函数的应用【难易度】容易题【分析】由题意知:设y与x之间的函数关系式为y=kx2,根据待定系数法:把x=3,y=18代入上述函数关系式解得k=2,即y与x之间的函数关系式为y=2x2令y=72,解得x=6. 故答案为A.【解答】 A【点评】本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.2 D.3【考点】 M411图形的折叠、镶嵌【难易度】容易题【分析】根据展开图,折叠成几何体后可得正方体,而AB是正方体的边长,因此AB=1,故答案为B.【解答】 B【点评】本题通过展开图折叠成几何体考查了同学们的空间想象能力.比较简单. 11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是4 【考 点】 M224概率的意义、应用 M215频数、频率、方差 【难易度】 容易题【分 析】 根据统计图可知,试验结果在0.17附近波动,即其概率P ≈0.17, A 、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为31,故 此选项错误; B 、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率 是:415213 ;故此选项错误; C 、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄 球的概率为32,故此选项错误; D 、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为61≈0.17, 故此选项正确.故答案为D . 【解 答】 D【点 评】 此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知 识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式. 12.(3分)(2014•河北)如图,已知△ABC (AC <BC ),用尺规在BC 上确定一点P ,使PA+PC=BC ,则符合要求的作图痕迹是( )A .B . . .C. D.【考 点】 M313线段垂直平分线性质、判定 M318尺规作图 【难易度】 容易题【分 析】 要使PA+PC=BC ,必有PA=PB ,所以选项中只有作AB 的中垂线才能满足这个条 件,而D 选项中作的是AB 的中垂线,故答案为D . 【解 答】 D【点 评】 本题既考查了垂直平分线段的性质:垂直平分线上的点到线段 两端点的距离相等,又考查了如何做线段的垂直平分线,因此 熟练掌握是解题的关键.13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下: 甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是( ) A .两人都对 B .两人都不对 C .甲对,乙不对 D .甲不对,乙对 【考 点】 M32I 相似多边形的性质与判定 M32H 相似三角形性质与判定 【难易度】 容易题【分 析】 甲:根据题意得:AB ∥A ′B ′,AC ∥A ′C ′,BC ∥B ′C ′,即可证得∠A=∠A ′, ∠B=∠B ′,可得△ABC ∽△A ′B ′C ′,故甲说法正确; 乙:根据题意得:AB=CD=3,AD=BC=5,则A ′B ′=C ′D ′=3+2=5,A ′D ′=B ′C ′=5+2=7, 则可得DA ADB A AB ''=≠=''7553,即新矩形与原矩形不相似, 故乙说法正确;故答案为A【解 答】 A【点 评】 此题考查了相似三角形的判定方法:边边角、角角边,以及 相似多边形的判定:对应边成比例.熟练掌握相似图形的判 定方法是解答此题的关键.14.(3分)(2014•河北)定义新运算:a ⊕b=⎪⎪⎩⎪⎪⎨⎧<->)0()0(b ba b ba例如:4⊕5=54,4⊕(-5)=54.则函数y=2⊕x (x ≠0)的图象大致是( )A .B .C .D .【考 点】 M152反比例函数的图象、性质 M154反比例函数的应用【难易度】 容易题【分 析】 根据题意可得y=2⊕x=()⎪⎪⎩⎪⎪⎨⎧<->)0(202x xx x,根据反比例函数的性质可得函数图象的形状为双曲线及所在象限:当x >0时,反比例函数y=x 2在第一象限, 当x <0时,反比例函数y=x2-在第二象限,因此选D. 【解 答】 D【点 评】 本题型比较新颖,比较简单,通过给出新定义的形式,主要考查了反比例函数 ()0≠=x xky 的性质:当0>k 时,函数图像位于一、三象限,当0<k 时,函 数图像位于二、四象限;及反比例函数的图象是双曲线.15.(3分)(2014•河北)如图,边长为a 的正六边形内有两个三角形(数据如图),则空白阴影S S =( ) A .3 B .4 C .5 D .6 【考 点】 M325三角形的面积M32D 特殊角三角函数的值 【难易度】 中等题【分 析】 先求得两个三角形的面积,再求出正六边形的面积,求比值即可 【解 答】 解:如图,∵直角三角形的斜边长为a ,其中一锐角为60, ∴利用特殊角的三角函数值解得同一三角其余两条直角边 长为a a a a 2360sin ,2160cos =⋅=⋅, ∴24322321212a a a S S =⨯⋅⨯=⨯=)(三角形空白, ∵AB=a ,∴OC=a 23,∴223323216a a a S =⋅⨯=正六边形, ∴22243543233a a a S S S =-=-=空白正六边形阴影,∴54343522==a a S S 空白阴影,故选C . 【点 评】 本题难度适中,主要考查了利用特殊角的三角函数值解直角三角形,从而求出 三角形的面积,以及利用分割法将正六边形分成六个全等的三角形来求其面积, 灵活运用所学知识是解题的关键. 16.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是( )A .20B .28C .30D .31 【考 点】 M214中位数、众数 【难易度】 容易题【分 析】 根据中位数的定义:把数据按从小到大的顺序排列,位于最中间的一个数或两 个数的平均数为中位数,以及众数的定义:一组数据中出现次数最多的数据(注 意众数可以不止一个).则最大的三个数的和是:6+7+7=20,两个较小的数一 定是小于5的非负整数,且不相等(根据题目中众数的唯一性),则可求得五 个数的和的范围一定大于20且小于29.故答案为B. 【解 答】 B【点 评】 本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往 对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时 候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇 数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数 . 二、填空题(共4小题,每小题3分,满分12分) 17.(3分)(2014•河北)计算:218⨯= . 【考 点】 M11H 二次根式混合运算 【难易度】 容易题【分 析】 本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出 结果.具体过程如下解:222122218=⨯=⨯.故答案为:2. 【解 答】 2【点 评】 本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则: 两个因式的算术平方根的积,等于这两个因式积的算术平方根,是本题的关键.18.(3分)(2014•河北)若实数m ,n 满足|m ﹣2|+(n ﹣2014)2=0,则m ﹣1+n 0= . 【考 点】 M113绝对值M11O 整式运算(加、减、乘、除、乘方、开方) 【难易度】 容易题【分 析】 根据绝对值与平方运算的非负性知,要使|m ﹣2|+(n ﹣2014)2=0, 则⎩⎨⎧=-=-0201402n m ,求得⎩⎨⎧==20142n m因此根据负整数指数幂及零指数幂得23121201420101=+=+=+--n m . 故答案为23. 【解 答】23 【点 评】 本题比较基础,首先由绝对值与平方运算的非负性求出m 、n 的值,再根据负整 数指数幂及零指数幂求得结果,熟练掌握这些性质与运算法则是解答本题的关 键.19.(3分)(2014•河北)如图,将长为8cm 的铁丝尾相接围成半径为2cm 的扇形.则S 扇形= cm 2.【考 点】 M34B 圆的弧长和扇形的面积 【难易度】 容易题【分 析】 由题意知,弧长=cm cm cm 4228=⨯-,因此由扇形的面积公式得:扇形的面 积是242421cm cm cm =⨯⨯,故答案为:4. 【解 答】 4【点 评】 本题考查了扇形的面积公式的应用,r l S ⋅⋅=21扇主要考查学生能否正确运用 扇形的面积公式进行计算,题目比较好,难度不大.20.(3分)(2014•河北)如图,点O ,A 在数轴上表示的数分别是0,0.1.将线段OA 分成100等份,其分点由左向右依次为M 1,M 2,…,M 99;再将线段OM 1,分成100等份,其分点由左向右依次为N 1,N 2,…,N 99; 继续将线段ON 1分成100等份,其分点由左向右依次为P 1,P 2.…,P 99. 则点P 37所表示的数用科学记数法表示为 . 【考 点】 M11D 科学记数法 M513推理与证明 M414坐标与图形运动 【难易度】 容易题【分 析】 由题意可得M 1表示的数为0.1×1001=10﹣3,N 1表示的数为1001×10﹣3=10﹣5, P 1表示的数为10﹣5×1001=10﹣7,因此类推P 37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.【解 答】 3.7×10﹣6【点 评】 此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.并且考查了科学计数法.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax 2+bx+c=0(a ≠0)的求根公式时,对于b 2﹣4ac >0的情况,她是这样做的:由于a ≠0,方程ax 2+bx+c=0变形为:x 2+a b x=﹣ac,…第一步 x 2+a b x+(a b 2)2=﹣a c +(ab 2)2,…第二步(x+ab 2)2=2244a ac b -,…第三步x+a b 2=aac b 242-(b 2﹣4ac >0),…第四步 x=aac b b 242-+-,…第五步嘉淇的解法从第 步开始出错误;事实上,当b 2﹣4ac >0时,方程ax 2+bx+c=0(a ≠O )的求根公式是用配方法解方程:x 2﹣2x ﹣24=0. 【考 点】 M127解一元二次方程 【难易度】 容易题【分 析】 从第四步出现错误,开方时出错;注意找一个数的平方根有两个,一正一负; 在配方解方程中,按如上过程即可,把常数项24移项后,应该在左右两边同时 加上一次项系数﹣2的一半的平方.【解 答】 解:在第四步中,开方应该是x+a b 2=a acb 242-±.所以求根公式为:x=aacb b 242-±-.故答案是:四;x=aacb b 242-±-; ……5分用配方法解方程:x 2﹣2x ﹣24=0解:移项得x 2﹣2x=24,配方得x 2﹣2x+1=24+1,即(x ﹣1)2=25, 开方得x ﹣1=±5,∴x 1=6,x 2=﹣4. ……10分 【点 评】 本题考查了解一元二次方程﹣﹣配方法. 用配方法解一元二次方程的步骤:(1)形如x 2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右 两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx+c=0型,方程两边同时除以二次项系数,即化成x 2+px+q=0, 然后配方.22.(10分)(2014•河北)如图1,A ,B ,C 是三个垃圾存放点,点B ,C 分别位于点A 的正北和正东方向,AC=100米.四人分别测得∠C 的度数如下表: 甲 乙 丙 丁 ∠C (单位:度) 34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C 度数的平均数x : (2)求A 处的垃圾量,并将图2补充完整;(3)用(1)中的x 作为∠C 的度数,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)【考 点】 M212(加权)平均数、方差和标准差 M211总体、个体、样本、容量 M216统计图(扇形、条形、折线) M32C 锐角三角函数的应用 【难易度】 容易题【分 析】(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C 处垃圾量以及所占百分比,进而 求出垃圾总量,从而得出A 处垃圾量;(3)利用锐角三角函数得出AB 的长,进而得出运垃圾所需的费用. 【解 答】 解:(1)37440383634=+++=x ; ……2分(2)∵C 处垃圾存放量为:320kg ,在扇形统计图中所占比例为:50%, ∴垃圾总量为:320÷50%=640(kg ),∴A 处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg ),占12.5%. ……4分 补全条形图如下:……6分(3)∵AC=100米,∠C=37°,又∵ 37tan =ACAB , ∴AB=ACtan37°=100×0.75=75(m ),∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元), ……10分 答:运垃圾所需的费用为30元.【点 评】 此题主要考查了平均数求法、锐角三角三角函数关系以及条形统计图与扇形 统计图的综合应用,利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)(2014•河北)如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ;(2)求∠ACE 的度数;(3)求证:四边形ABEF 是菱形.【考 点】 M32A 全等三角形性质与判定M332平行四边形的性质与判定M334菱形的性质与判定M327等腰三角形性质与判定M31B 平行线的判定及性质【难易度】 中等题【分 析】(1)根据旋转角求出∠BAD=∠CAE ,然后利用“边角边”证明△ABD 和△ACE 全 等.(中等题)(2)根据全等三角形对应角相等,得出∠ACE=∠ABD ,即可求得.(容易题)(3)根据对角相等的四边形是平行四边形,可证得四边形ABEF 是平行四边形, 然后依据邻边相等的平行四边形是菱形,即可证得.(中等题)【解 答】(1)证明:∵△ABC 绕点A 按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC ,∴AB=AC=AD=AE ,在△ABD 与△ACE 中⎪⎩⎪⎨⎧=∠=∠=AEAD CAE BAD AC AB∴△ABD ≌△ACE (SAS ). ……3分(2)解:∵∠CAE=100°,AC=AE ,∴()()401001802118021=-=∠-=∠CAE ACE ; ……6分 (3)证明:由(2)知:∠ABD=∠ADB=∠ACE=∠AEC=40°.又∵∠BAE=∠BAD+∠DAE=140°,∴∠BAE+∠ABD=140°+40°=180°,∠BAE+∠AEC=140°+40°=180° ∴AE//BF,AB//FE(同旁内角互补,两直线平行)∴四边形ABEF 是平行四边形,而又∵AB=AE ,∴平行四边形ABEF 是菱形(有一组邻边相等的平行四边形是菱形).……11分【点 评】 此题难度不大,考查了全等三角形的判定与性质,等腰三角形的性质以及菱形 的判定等基本知识点,熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A ,B ,C ,D ,E ,F ,G 、H ,O 九个格点.抛物线l 的解析式为y=(﹣1)n x 2+bx+c (n 为整数).(1)n 为奇数,且l 经过点H (0,1)和C (2,1),求b ,c 的值,并直接写出哪个格点是该抛物线的顶点;(2)n 为偶数,且l 经过点A (1,0)和B (2,0),通过计算说明点F (0,2)和H (0,1)是否在该抛物线上;(3)若l 经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.【考 点】 M163求二次函数的关系式M162二次函数的图象、性质M412图形的对称、平移、旋转【难易度】 中等题【分 析】(1)根据﹣1的奇数次方等于﹣1,再利用待定系数法把点H 、C 的坐标代入抛 物线解析式计算即可求出b 、c 的值,然后利用配方法把函数解析式整理成顶点 式形式,写出顶点坐标即可;(容易题)(2)根据﹣1的偶数次方等于1,再把点A 、B 的坐标代入抛物线解析式计算即 可求出b 、c 的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判 断;(中等题)(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数. (中等题)【解 答】 解:(1)n 为奇数时,y=﹣x 2+bx+c ,∵l 经过点H (0,1)和C (2,1),∴⎩⎨⎧=++-=1241c b c ,解得⎩⎨⎧==12c b ,∴抛物线解析式为y=﹣x 2+2x+1, ……2分配方得:y=﹣(x ﹣1)2+2,∴顶点为格点E (1,2); ……3分(2)n 为偶数时,y=x 2+bx+c ,∵l 经过点A (1,0)和B (2,0),∴⎩⎨⎧=++=++02401c b c b ,解得⎩⎨⎧=-=23c b ,∴抛物线解析式为y=x2﹣3x+2,……5分当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;……7分(3)所有满足条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.……11分【点评】本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意(3)抛物线有开口向上和开口向下两种情况.2.点P 25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=3为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′= °;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.【考点】 M32B勾股定理M347垂径定理及其推论M345切线的性质与判定M412图形的对称、平移、旋转M32C锐角三角函数的应用【难易度】中等题【分析】(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′;(容易题)(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.(中等题)(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点 A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段 BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.(中等题)【解 答】 解:(1)①过点O 作OH ⊥AB ,垂足为H ,连接OB ,如图1①所示. ∵OH ⊥AB ,AB=32,∴AH=BH=3(垂径定理).∵OB=2,∴OH=1322222=-=-HB OB (勾股定理). ∴点O 到AB 的距离为1. ……2分②当BP 经过点O 时,如图1②所示.∵OH=1,OB=2,OH ⊥AB ,∴21sin ==∠OB OH OBH . ∴∠OBH=30°.由折叠可得:∠A ′BP=∠ABP=30°.∴∠ABA ′=60°.故答案为:1、60. ……4分(2)过点O 作OG ⊥BP ,垂足为G ,如图2所示.∵BA ′与⊙O 相切,∴OB ⊥A ′B ,∴∠OBA ′=90°,∵∠OBH=30°,∴∠ABA ′=120°,∴∠A ′BP=∠ABP=60°,∴∠OBP=30°,∴OG=21OB=1,BG=3(锐角三角函数的应用). ∵OG ⊥BP ,∴BG=PG=3(垂径定理).∴BP=32,∴折痕的长为32. ……7分(3)若线段BA ′与优弧只有一个公共点B ,Ⅰ.当点A ′在⊙O 的内部时,此时α的范围是0°<α<30°. Ⅱ.当点A ′在⊙O 的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA ′与优弧只有一个公共点B 时,α的取值范围是0° <α<30°或60°≤α<120°. ……11分【点 评】 本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对 的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求α的取值范 围,有一定的综合性.第(3)题中α的范围可能考虑不够全面,需要注意.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD ,如图1和图2.现有1号、2号两游览车分别从出口A 和景点C 同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶吋间为t 分.(1)当0≤t ≤8时,分别写出1号车、2号车在左半环线离出口A 的路程y 1,y 2(米) 与t (分)的函数关系式,并求出当两车相距的路程是400米时t 的值;(2)t 为何值时,1号车第三次恰好经过景点C ?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图1,游客甲在BC 上的一点K (不与点B ,C 重合)处候车,准备乘车到出口A ,设CK=x 米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:己知游客乙在DA 上从D 向出口A 走去.步行的速度是50米/分.当行进到DA 上一点P (不与点D ,A 重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A 用时少,请你简要说明理由:(2)设PA=s (0<s <800)米.若他想尽快到达出口A ,根据s 的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?【考 点】 M611数学综合与实践M124一元一次方程的应用M143求一次函数的关系式【难易度】 较难题【分 析】 探究:(1)由路程=速度×时间就可以得出y 1,y 2(米) 与t (分)的函数关 系式,再由关系式就可以求出两车相距的路程是400米时t 的值;(中等题)(2)求出1号车3次经过A 的路程,进一步求出行驶的时间,由两车第一次相 遇后每相遇一次需要的时间就可以求出相遇次数;(中等题)发现:分别计算出情况一的用时和情况二的用时,在进行大小比较就可以求出 结论;(中等题)决策:(1)根据题意可以得出游客乙在AD 上等待乘1号车的距离小于2个边 长,而成2号车到A 出口的距离大于3个边长,进而得出结论;(中等题)(2)分类讨论,若步行比乘1号车的用时少,就有200280050s s -⨯<,得出s <320.就可以分情况得出结论.(较难题)【解 答】 解:探究:(1)由题意得y 1=200t ,y 2=﹣200t+1600; ……2分 ①当相遇前相距400米时,有﹣200t+1600﹣200t=400,解得:t=3,②当相遇后相距400米时,200t ﹣(﹣200t+1600)=400,解得:t=5. ……5分 答:当两车相距的路程是400米时t 的值为3分钟或5分钟;(2)由题意得1号车第三次恰好经过景点C 行驶的路程为:800×2+800×4×2=8000, ∴1号车第三次经过景点C 需要的时间为:8000÷200=40分钟, 两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8,∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意得 情况一需要时间为:200162004800x x -=-⨯, 情况二需要的时间为:200162004800x x +=+⨯ ∵2001620016x x +<-∴情况二用时较多. …… 9分决策:(1)∵游客乙在AD 边上与2号车相遇,∴此时1号车在CD 边上,∴乘1号车到达A 的路程小于2个边长,乘2号车的路程大于 3个边长,∴乘1号车的用时比2号车少. ……11分(2)若步行比乘1号车的用时少,200280050s s -⨯< ,∴s <320.∴当0<s <320时,选择步行.同理可得当320<s <800时,选择乘1号车,当s=320时,选择步行或乘1号车一样 ……13分 【点 评】本题考查了一次函数的解析式的运用,一元一次方程的运用,一元一次不等式的运用,分类讨论思想的运用,方案设计的运用,解答时求出函数的解析式是解答本题的关键.。
2014年全国各地中考数学汇编:规律探索
规律探索
一、选择题
1.(5分)(2014?毕节地区,第18题5分)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.
考点:规律型:数字的变化类
专题:规律型.
分析:观察已知一组数发现:分子为从1开始的连线奇数,分母为从2开始的连线正整数的平方,写出第n个数即可.
解答:
解:根据题意得:这一组数的第n个数是.
故答案为:.
点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.
2.(2014?武汉,第9题3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…
按此规律第5个图中共有点的个数是()
A.31 B.46 C.51 D.66
考点:规律型:图形的变化类
分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有
1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个
点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014中考数学规律题
1.现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:
▲▲△△▲△▲▲△△▲△▲▲……
则黑色三角形有个,白色三角形有个。
【解析】101;99. 周期问题,六个一周期,每个周期里黑色和白色三角形各3个。
200÷6=33…2.
2.仔细观察下列图形.当梯形的个数是n时,图形的周长是.
2
【解析】3
2
n+. 计算图形周长,内部的线段不计算在内. 观察增加规律,每次左右两边无变化,上下底每次增加的和为3. 是一个以5为首项,以3为公差的等差数列.
3.用火柴棒按如下方式搭三角形:
照这样的规律搭下去,搭n个这样的三角形需要______根火柴棒
【解析】21
n+. 是一个以3为首项,以2为公差的等差数列.
4.已知一列数:1,―2,3,―4,5,―6,7,…将这列数排成下列形式:
第1行 1
第2行-2 3
第3行-45-6
第4行7-89-10
第5行11 -1213-1415
… …
按照上述规律排下去,那么第10行从左边数第5个数等于.
【解析】50
-. 符号规律和每行的数字个数规律.
5.观察下列算式:23
4
5
1=
+
⨯,24
4
6
2=
+
⨯,25
4
7
3=
+
⨯,2
4846
⨯+=,请你在察规律之后并用你得到的规律填空:2
50
_____
___
___=
+
⨯,第n个式子呢?
___________________
【解析】2
4852450
⨯+=;()()2
442
n n n
++=+
.
6.一张长方形桌子可坐6人,按下列方式讲桌子拼在一起。
①2张桌子拼在一起可坐______人。
3张桌子拼在一起可坐____人,n 张桌子拼在一起可坐______人。
②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。
③若在②中,改成每8张桌子拼成1张大桌子,则共可坐_________人。
【解析】①8;10;24n +. ②112. ③100
7. 按一定规律排列的一串数:
112312345123
,,,,,,,,,,,, (133355555777)
------中,第98个数是_____________
【解析】17
19
-
. 符号规律、分子规律、分母规律. 8. 观察下列数据,按某种规律在横线上填上适当的数:
1,43-
,95,167
-,25
9, ,… 【解析】11
36-
8、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
A 、
618 B 、638 C 、65
8 D 、678
10、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.
11、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。
12、如下图是用棋子摆成的“上”字:
(1)
(2)
(3)
第4题
14题
第一个“上”字第二个“上”字第三个“上”字
如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子;(2)第n个“上”字需用枚棋子。
13、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时(即10
n)时,需要的火柴棒总数为根;
14、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n个三角形需要S支火柴棒,那么用n的式子表示S的式子是
_______ (n为正整数).
15、如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n
个图形中需用黑色瓷砖 ____ 块.(用含n的代数式表示)
16、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
⑵第n个图案中有白色地面砖块。