苏科版-数学-九年级上册-《圆的对称性》练习

合集下载

九年级数学苏科版上册随堂测试第2单元《 2.2 圆的对称性》 练习试题试卷 含答案

九年级数学苏科版上册随堂测试第2单元《 2.2 圆的对称性》 练习试题试卷 含答案

随堂测试2.2圆的对称性1.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C 为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.(4﹣)米C.2米D.(4+)米2.有下列说法:①直径是圆中最长的弦;②等弧所对的弦相等;③圆中90°的角所对的弦是直径;④相等的圆心角对的弧相等.其中正确的有()A.1个B.2个C.3个D.4个3.如图,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB的延长线上一点,BP=2cm,则OP等于()A.cm B.3cm C.cm D.cm4.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.25.如图,拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为150m,那么这些钢索中最长的一根的长度为()A.50m B.40m C.30m D.25m6.已知⊙O的直径CD=100cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=96cm,则AC的长为()A.36cm或64cm B.60cm或80cm C.80cm D.60cm7.如图是某个球放进盒子内的截面图,球的一部分露出盒子外,已知⊙O交矩形ABCD的边AD于点E,F,已知AB=EF=2,则球的半径长为()A.B.C.D.8.往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示.若水面宽AB=24cm,则水的最大深度为()A.4cm B.5cm C.8cm D.10cm9.一条排水管的截面如图所示,已知排水管的半径OA=2m,水面宽AB=2.4m,某天下雨后,水管水面上升了0.4m,则此时排水管水面宽CD等于m.10.如图,已知AB、CD是⊙O中的两条直径,且∠AOC=50°,过点A作AE∥CD交⊙O 于点E,则的度数为.11.如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=度.12.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是mm.13.如图,⊙O的半径OA垂直于弦BC,垂足是D,OA=5,AD:OD=1:4,则BC的长为.14.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.15.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF ⊥AD.(1)证明:点E是OB的中点;(2)若AE=8,求CD的长.16.如图,MN是⊙O的直径,MN=2,点A是半圆上一个三等分点,点B为的中点,点P是直径MN上的一个动点,求P A+PB的最小值.17.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.18.如图,点A、B、C在⊙O上,=.(1)若D、E分别是半径OA、OB的中点,如图1,求证:CD=CE.(2)如图2,⊙O的半径为4,∠AOB=90°,点P是线段OA上的一个动点(与点A、O 不重合),将射线CP绕点C逆时针旋转90°,与OB相交于点Q,连接PQ,求出PQ的最小值.19.如图1,点P表示我国古代水车的一个盛水筒.如图2,当水车工作时,盛水筒的运行路径是以轴心O为圆心,5m为半径的圆.若⊙O被水面截得的弦AB长为8m,求水车工作时,盛水筒在水面以下的最大深度.20.某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?参考答案1.B.2.B.3.D.4.C.5.D.6.B.7.C.8.C.9.3.2.10.80°.11.60.12.200.13.6.14..15.(1)证明:连接AC,如图,∵直径AB垂直于弦CD于点E,∴=,∴AC=AD,∵过圆心O的线段CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即△ACD是等边三角形,∴∠FCD=30°,在Rt△COE中,OE=OC,∴OE=OB,∴点E为OB的中点;(2)解:∵△ACD是等边三角形,AB⊥CD,∴∠CAE=30°,∴CE=,∵直径AB垂直于弦CD于点E,∴CD=2CE=.16.解:作B点关于MN的对称点B′,连接OB、OB′、AB′,AB′交MN于P′,如图,∵点A是半圆上一个三等分点,点B为的中点,∴∠AON=60°,∠BON=30°,∵B点和B′关于MN的对称,∴∠B′ON=30°,∴∠AOB′=90°,∴△OAB′为等腰直角三角形,∴AB′=OA=,∵P A+PB=P A+PB′≥AB′(点A、P、B′共线时取等号),∴P A+PB的最小值=AB′,即P A+PB的最小值为.17.解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.18.解:(1)连接CO.∵═,∴∠AOC=∠BOC,∵D、E分别是半径OA、OB的中点,∴,,∴OD=OE,在△ODC和△OEC中,∵OD=OE,∠AOC=∠BOC,OC=OC,∴△ODC≌△OEC(SAS)∴CD=CE;(2)当CP⊥OA时,∵∠AOB=90°,∠PCQ=90°,∴∠CQO=90°,即CQ⊥OB.∵∠AOC=∠BOC,∴CP=CQ,当CP与OA不垂直时,如图,过点C作CM⊥OA,CN⊥OB,M、N为垂足.∵∠AOC=∠BOC,∴CM=CN,又∵∠AOB=90°,∴∠MCN=90°,∴四边形CMON是正方形,∵∠PCQ=90°,∴∠PCM=∠QCN,∴△PCM≌△QCN(AAS)∴CP=CQ,∴,∴当CP取得最小值即CM的长时,PQ有最小值,∴,PQ的最小值为4.19.解:过O点作半径OD⊥AB于E,∴,在Rt△AEO中,,∴ED=OD﹣OE=5﹣3=2.答:水车工作时,盛水桶在水面以下的最大深度为2m.20.解:如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=7.2m,∴BD=AB=3.6m.又∵CD=2.4m,设OB=OC=ON=rm,则OD=(r﹣2.4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣2.4)2+3.62,解得r=3.9.∵CD=2.4m,船舱顶部为正方形并高出水面AB2m,∴CE=2.4﹣2=0.4m,∴OE=r﹣CE=3.9﹣0.4=3.5m,在Rt△OEN中,EN2=ON2﹣OE2=3.92﹣3.52=2.96(m2),∴EN=2.96(m).∴MN=2EN=2×≈3.44m>3m.∴此货船能顺利通过这座拱桥。

苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)

苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)

2.2 圆的对称性圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心. 【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合. 弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)注意关系中不能忽视“同圆或等圆”这一前提. (3)圆心角的度数与它所对的弧的度数相等. 垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O 中弦AB CD .求证:AD=BC .看例题,涨知识教材知识总结【例题2】如图,在⊙O 中,弧AB =弧AC ,∠A =120°,求∠ABC 的度数.【例题3】如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若BE =5,CD =6,求AE 的长.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF 的中点P ;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接OP 交EF 于点Q ,10AB =,6EF =,求PQ 的长度.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等4.如图,CD为⊙O的直径,弦AB CD⊥,垂足为E,1CE=,10AB=,则CD的长为()A.20 B.24 C.25 D.265.如图,在O中,⊥OD AB于点D,AD的长为3cm,则弦AB的长为()A.4cm B.6cm C.8cm D.10cm课后习题巩固一下6.如图,AB是O的直径,弦CD AB⊥于点E,如果20CD=,那么线段OE的长为()AB=,16A.4 B.6 C.8 D.97.如图,AB为圆O的一弦,且C点在AB上.若6BC=,AB的弦心距为3,则OC的长度为何?AC=,2()A.3 B.4 C11D138.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42DE=,AC=4则BC的长是()A.1 B2C.2 D.49.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A 41B 34C .4D .3二、填空题11.在⊙O 中,弦AB =16cm ,弦心距OC =6cm ,那么该圆的半径为__cm .12.如图,AB 为⊙O 的弦,半径OC ⊥AB 于E ,AB =8,CE =2,则⊙O 的半径为_____.13.已知⊙O 的半径为6cm ,弦AB =6cm ,则弦AB 所对的圆心角是________度.14.如图,在O 中,AB BC CD ==,连接AC ,CD ,则AC __2CD (填“>”,“ <”或“=” ).15.如图,AB ,CD 是O 的直径,弦CE AB ,CE 所对的圆心角为40°,则AOC ∠的度数为______.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.三、解答题17.如图,O的弦AB、CD相交于点E,且AB CD=.求证:BE DE=.18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.∠,求19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD 证:劣弧BC与劣弧BD相等.20.如图,已知弓形的弦长AB=8,弓高CD=2(CD⊥AB并经过圆心O).求弓形所在⊙O的半径r的长.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .22.如图,AB 为圆O 的直径,点C 在圆O 上.(1)尺规作图:在BC 上求作一点E ,使OE AC ∥(不写作法,只保留作图痕迹); (2)探究OE 与AC 的数量关系.23.如图,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E . (1)求证:四边形ADOE 是正方形; (2)若AC=2cm ,求⊙O 的半径.24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点. (1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA ①求OGC ∠;②请比较GE 和BE 的大小.2.2 圆的对称性解析教材知识总结圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心.【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.(3)圆心角的度数与它所对的弧的度数相等.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(4)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(5)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(6)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O中弦AB CD=.求证:AD=BC.【答案】见解析【分析】先根据等弦所对的劣弧相等得到AB CD=,从而得到AD AB BD CD BD BC=-=-=,再由等弧所对的弦相等即可得到AD BC=.【解析】证明:∵AB=CD,∴AB CD=,∴AD AB BD CD BD BC=-=-=,∴AD BC=.【例题2】如图,在⊙O中,弧AB=弧AC,∠A=120°,求∠ABC的度数.【答案】30°【分析】根据同圆中,相等的弧所对的弦相等,再根据等腰三角形的性质即可求解.【解析】解:∵在⊙O中,弧AB=弧AC,∴AB=AC,∵∠A=120°,∴∠ABC=()1801203012⨯︒-︒=︒.【例题3】如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE的长.看例题,涨知识【答案】95【分析】如图,连接OC ,设OE x =,由垂径定理知132CE CD ==,5OC BE OE x =-=-,在Rt OCE 中,由勾股定理知222CE OC OE =-,解出x 的值,由2AE BE OE =-,计算求解即可. 【解析】解:如图,连接OC ,设OE x =由垂径定理知132CE CD ==5OC BE OE x =-=-在Rt OCE 中,由勾股定理知222CE OC OE =- ∴()22235x x =-- 解得85x =92525AE BE OE x =-=-=∴AE 的长为95.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接OP交EF于点Q,10AB=,6EF=,求PQ的长度.【答案】(1)见解析;(2)1【分析】(1)如图,连接BE,AF,BE交AF于C,作直线OC交EF于点P,点P即为所求.(2)利用垂径定理结合勾股定理求得OQ=4,进一步计算即可求解.【解析】(1)解:如图中,点P即为所求.(2)解:连接OF,由作图知OP⊥EF,EQ=QF=12EF=3,∵AB=10,∴OF=OP=12AB=5,∴OQ222254OF QF-=-,∴PQ= OP-OQ=1,∴PQ的长度为1.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦课后习题巩固一下②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④【答案】D【分析】根据垂径定理及其推论进行判断.【解析】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm【答案】B【分析】根据垂线段最短知,当OM⊥AB时,OM有最小值.根据垂径定理和勾股定理求解.【解析】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,AB=4,连接OA,AM=12由勾股定理知,OA2=OM2+AM2.即OA2=42+32,解得:OA=5.所以⊙O的半径是5cm.故选:B.3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等【答案】C【分析】利用圆的有关性质、垂径定理、平行四边形的判定方法及平行线的性质分别判断后即可确定正确的选项.【解析】A 、在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧不一定相等,故原命题错误,是假命题,不符合题意;B 、平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,不符合题意;C 、如图,四边形ABCD ,AB ∥CD ,∠A=∠C ,∵AB ∥CD ,∴∠A +∠D =180°,又∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形,故一组对边平行且一组对角相等的四边形是平行四边形,正确,是真命题,符合题意;D 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意.故选:C .4.如图,CD 为⊙O 的直径,弦AB CD ⊥,垂足为E ,1CE =,10AB =,则CD 的长为( )A .20B .24C .25D .26【答案】D 【分析】连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =5,Rt △OAE 中由勾股定理建立方程求解即可;【解析】如图,连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =BE =12AB =5,Rt △OAE 中,OA 2=AE 2+OE 2,x 2=25+(x -1)2,解得:x =13,,∴CD =26, 故选: D .5.如图,在O 中,⊥OD AB 于点D ,AD 的长为3cm ,则弦AB 的长为( )A .4cmB .6cmC .8cmD .10cm【答案】B 【分析】根据垂径定理求出AD =BD =3cm 即可.【解析】解:∵AB 为非直径的弦,⊥OD AB ,∴AD =BD =3cm ,∴AB =AD +BD =6cm .故选B .6.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .4B .6C .8D .9【答案】B 【分析】连接OD ,那么OD =OA =12AB ,根据垂径定理得出DE =12CD ,然后在Rt △ODE 中,根据勾股定理求出OE .【解析】解:如图,∵弦CD ⊥AB ,垂足为E∴CE =DE =1116822CD =⨯=, ∵OA 是半径∴OA =11201022AB =⨯=, 在Rt △ODE 中,OD =OA =10,DE =8,22221086OE OD DE =--=,故选:B .7.如图,AB 为圆O 的一弦,且C 点在AB 上.若6AC =,2BC =,AB 的弦心距为3,则OC 的长度为何?( )A .3B .4C 11D 13【答案】D 【分析】作⊥OD AB 于点D ,由垂径定理得4AD BD ==,Rt OCD △中勾股定理即可求解.【解析】解:作⊥OD AB 于点D ,如图所示,由题意可知:6AC =,2BC =,3OD =, 8AB ∴=,4AD BD∴==,2CD∴=,在Rt OCD△中22223213OC OD CD∴+=+故选:D.8.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42AC=4DE=,则BC的长是()A.1 B2C.2 D.4【答案】C【分析】根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.【解析】设OD=x,则OE=OA=DE-OD=4-x.∵AB是O的直径,OD垂直于弦AC于点,42AC=∴1222AD DC AC===∴OD是△ABC的中位线∴BC=2OD∵222OA OD AD=+∴222(4)(22)x x-=+,解得1x=∴BC=2OD=2x=2故选:C9.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【答案】C【分析】过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,由于DE =FG =MN ,所以弦的弦心距也相等,所以OB 、OC 是角平分线,根据∠A =50°,先求出180130ABC ACB A ∠+∠=︒-∠=︒,再求出,进而可求出∠BOC .【解析】解:过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,∵DE =FG =MN ,∴OP =OK =OQ ,∴OB 、OC 平分∠ABC 和∠ACB , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠, ∵∠A =50°,∴180130ABC ACB A ∠+∠=︒-∠=︒,∴1122OBC OCB ABC ACB ∠+∠=∠+∠ ()12ABC ACB =∠+∠ 65=︒,∴∠BOC =()180OBC OCB ︒-∠+∠18065=-︒115=︒故选:C .10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A41B 34C.4 D.3【答案】D【分析】作AH⊥BC于H,作直径CF,连接BF,先利用等角的补角相等得到∠DAE=∠BAF,再利用圆心角、弧、弦的关系得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,则AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=3.【解析】作AH⊥BC于H,作直径CF,连接BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴DE BF=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=12BF=3,故选:D.二、填空题11.在⊙O中,弦AB=16cm,弦心距OC=6cm,那么该圆的半径为__cm.【答案】10【分析】根据题意画出相应的图形,由OC垂直于AB,利用垂径定理得到C为AB别的中点,由AB的长求出BC的长,再由弦心距OC的长,利用勾股定理求出OB的长,即为圆的半径.【解析】解:如图所示:过点O作OC AB⊥于点C,∵AB=16cm,OC⊥AB,∴BC=AC12=AB=8cm,6OC cm=,在Rt△BOC中,2210.OB OC BC cm∴=+故答案为:10.12.如图,AB为⊙O的弦,半径OC⊥AB于E,AB=8,CE=2,则⊙O的半径为_____.【答案】5【分析】如图,连接OA,设OA=r.在Rt△AOE中,根据OA2=OE2+AE2,构建方程即可解决问题;【解析】解:如图,连接OA,设OA=r.∵OC⊥AB,∴AE=EB=4,∠AEO=90°,在Rt△AOE中,∵OA2=OE2+AE2,∴r2=42+(r﹣2)2,∴r=5,故答案为:5.13.已知⊙O的半径为6cm,弦AB=6cm,则弦AB所对的圆心角是________度.【答案】60【分析】连接OA、OB,可证得△OAB是等边三角形,由此得解.【解析】如图,连接OA、OB,∵OA=OB=AB=6,∴△OAB是等边三角形∴∠AOB=60°故弦AB所对的圆心角的度数为60°.故答案为:60.14.如图,在O中,AB BC CD==,连接AC,CD,则AC__2CD(填“>”,“ <”或“=” ).【答案】<【分析】根据AB BC CD==推出AB=BC=CD,利用三角形三边关系得到答案【解析】解:∵AB BC CD==,AB BC CD∴==,<+,AC AB BCAC CD∴<,2故答案为:<.∠的度数为______.15.如图,AB,CD是O的直径,弦CE AB,CE所对的圆心角为40°,则AOC【答案】70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE ,根据平行线的性质即可得到∠AOC 的度数.【解析】解:连接OE ,如图,∵弧CE 所对的圆心角度数为40°,∴∠COE =40°,∵OC =OE ,∴∠OCE =∠OEC ,∴∠OCE =(180°-40°)÷2=70°,∵CE //AB ,∴∠AOC =∠OCE =70°,故答案为:70°.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.【答案】30【分析】先根据圆心角定理可得40AOB BOC COD ∠=∠=∠=︒,从而可得120AOD ∠=︒,再根据等腰三角形的性质即可得.【解析】解:∵AB BC CD ==,40COD ∠=︒,∴40AOB BOC COD ∠=∠=∠=︒,∴120AOD ∠=︒, 又OA OD =,∴1(180)302ADO OAD AOD ∠=∠=︒-∠=︒, 故答案为:30.三、解答题17.如图,O 的弦AB 、CD 相交于点E ,且AB CD =.求证:BE DE =.【答案】详见解析【分析】由弧、弦、圆心角的关系进行证明,结合等角对等边,即可得到结论成立.【解析】证明:AB CD=,CAB D∴=,AB AC CD AC∴-=-,即AD BC=,B D∴∠=∠,BE DE∴=;18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.【答案】(1)见解析;(2)10【分析】(1)过点O作OD⊥AC,交AC于点E,交⊙O于点D;(2)由题意可得OD=5,由(1)得:OE⊥AC,点E为AC中点,继而可得118422AE AC==⨯=,然后根据三角形的面积公式即可求得答案.【解析】(1)解:如图,点E即为所求;(2)解:如图,连接AD,∵⊙O的直径是10,∴OD=5,由(1)得:OE⊥AC,点E为AC中点,∴118422AE AC==⨯=,∴11541022OADS OD AE=⋅=⨯⨯=.19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD∠,求证:劣弧BC与劣弧BD相等.【答案】见详解【分析】过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,由题意易得OE=OF,然后可得BOC BOD∠=∠,进而问题可求证.【解析】证明:过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,如图所示:∵PB 平分CPD ∠,∴OE =OF ,∵OC =OD ,∴EOC FOD △≌△(HL ),∴C D ∠=∠,∴BOC BOD ∠=∠,∴BC BD =.20.如图,已知弓形的弦长AB =8,弓高CD =2(CD ⊥AB 并经过圆心O ).求弓形所在⊙O 的半径r 的长.【答案】r =5.【分析】先由垂径定理得AD =4,由于OD =r -2,则利用勾股定理得到62+(r -2)2=r 2,然后解方程即可.【解析】CD AB ⊥并经过圆心O ,∴118422AD BD AB ===⨯=,2OD OC CD r =-=-, 在Rt △OAD 中,2224(2)r r +-=,解得r =5.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .【答案】见解析【分析】根据圆心距、弦、弧之间的关系定理解答即可.【解析】证明:∵四边形ABCD是正方形,∴AB=CD,∴AB CD=,∵AM DM=,∴AB AM CD DM+=+,即BM CM=,∴BM=CM.22.如图,AB为圆O的直径,点C在圆O上.∥(不写作法,只保留作图痕迹);(1)尺规作图:在BC上求作一点E,使OE AC(2)探究OE与AC的数量关系.【答案】(1)见解析;(2)AC=2OE【分析】(1)过点O作OE⊥BC即可.(2)利用三角形中位线定理证明即可.【解析】(1)如图所示,点E即为所求的点.(2)结论:AC=2OE.理由:由作图得:OE⊥BC∴BE=CE,即点E为BC的中点,∴OE为△ABC的中位线,∴AC=2OC.23.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见解析;2cm【分析】(1)根据AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,可得四边形ADOE 是矩形,由垂径定理可得AD=AE ,根据邻边相等的矩形是正方形可证;(2)连接OA ,由勾股定理可得.【解析】(1)证明:∵AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,∴四边形ADOE 是矩形,12AD AB =,12AE AC =, 又∵AB=AC ,∴AD=AE ,∴四边形ADOE 是正方形.(2)解:如图,连接OA ,∵四边形ADOE 是正方形,∴112OE AE AC ===cm , 在Rt △OAE 中,由勾股定理可得:22+2OA OE AE , 即⊙O 2cm .24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点.(1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA①求OGC ∠; ②请比较GE 和BE 的大小.【答案】(1)证明见解析(2)①∠OGC=90°;②BE>GE【分析】(1)先由平行线得出∠COD=∠ODE,再用SAS证△OCF≌△DOE即可;(2)①先由C、D是AB的三等分点,∠AOB=90°,求得∠AOC=∠COD=∠BOD=30°,由(1)知△OCF≌△DOE,所以∠OCF=∠DOE=30°,即可由三角形内角和求解;②由①∠OGC=90°,∠OCF=∠DOE=30°,利用直角三角形的性质和勾股定理即可求得3OG OF=2,又∠OCF=∠COF=30°,所以CF=OF,又由△OCF≌△DOE,所以OE=CF=OF=2,即可求得23GE= 232BE=,再比较即可得出结论;=OC,【解析】(1)解:∵DE AB2AC∴∠COD=∠ODE,∵OC=OD,OF=DE,∴△OCF≌△DOE(SAS);(2)解:①∵C、D是AB的三等分点,∠AOB=90°,∴∠AOC=∠COD=∠BOD=30°,∵△OCF≌△DOE,∴∠OCF=∠DOE=30°,∵∠COG=∠COD+∠DOB=60°,∴∠OGC=90°.②∵23===,OA OC OB∴3OG又∵∠DOE=30°,∴OF=2,∵∠OCF=∠COF=30°,∴CF=OF,∵△OCF≌△DOE,∴OE=CF=OF=2,∴23GE OE OG=-=232=-=,BE OB OE∵3340-,BE GE=>∴BE>GE.。

人教版苏科版初中数学—圆(经典例题)

人教版苏科版初中数学—圆(经典例题)

班级小组姓名成绩(满分120)一、圆(一)圆的定义及相关概念:(共4小题,每题3分,题组共计12分)例1.点A 在以O 为圆心,3为半径的☉O 内,则点A 到圆心O 的距离d 的范围是.例1.变式1.在△ABC 中,∠C=90°,AB=30cm,BC=20cm,以A 为圆心,20cm 为半径作圆,则点C 和☉A 的位置关系是.例1.变式2.圆心均为O 的甲、乙两圆,半径分别为1r 和2r ,且12r OA r <<,那么点A 在()A.甲圆内B.乙圆外C.甲圆外,乙圆内D.甲圆内,乙圆外例1.变式3.如图,已知△ABC,AC=3,BC=4,∠C=90°,以点C 为圆心作☉C,半径为r.(1)当r 取什么值时,点A,B 都在☉C 外?(2)当r 在什么范围内取值时,点A 在☉C 内,点B 在☉C 外?二、圆的对称性(共4小题,每题3分,题组共计12分)例2.圆既是对称图形,又是对称图形.例2.变式1.在☉O 中的两条弦AB 和CD,AB>CD,AB 和CD 的弦心距分别为OM 和ON,则OM ON.例2.变式2.下列说法中正确的有()①相等的圆心角所对的弧相等;②相等的弦所对的圆心角相等;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧.A.1个B.2个C.3个D.4个例2.变式3.下列说法中正确的有()①平分弦的直径,平分这条弦所对的弧;②在等圆中,如果弦相等,那么它们所对的弧也相等;③等弧所对的圆心角、弦、弦心距都分别相等;④过三点可以画一个圆.A.1个B.2个C.3个D.4个三、垂径定理(共4小题,每题3分,题组共计12分)例3.已知☉O的半径为13,一条弦AB的弦心距为5,则这条弦的长是.例3.变式1.已知:如图,线段AB与☉O交于C,D两点,且OA=OB.求证:AC=BD.例3.变式2.下列命题中正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心例3.变式3.如图,P为☉O内的一个定点,A为☉O上的一个动点,射线AP,AO分别与☉O交于B,C两点.若☉O的半径为3,则弦BC长的最大值为()A.3B.3C.6D.32四、圆周角和圆心角的关系(共4小题,每题3分,题组共计12分)例4.已知:如图,OA,OB是☉O的两条半径,且OA⊥OB,点C在☉O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°例4.变式1.如图,AB,CD是☉O的两条弦,连接AD,BC.若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°变式2.下列关于圆内接四边形叙述正确的有()①圆内接四边形的任何一个外角都等于它的内对角;②圆内接四边形的对角相等;③圆内接四边形中不相邻的两个内角互补;④在圆内部的四边形叫圆内接四边形.A.1个B.2个C.3个D.4个例4.变式3.如图,AB是☉O的直径,BD是☉O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?五、确定圆的条件(共4小题,每题3分,题组共计12分)例5.下列命题不正确的是()A.过一点有无数个圆B.过两点有无数个圆C.弦是圆的一部分D.过同一直线上三点不能画圆例5.变式1.三角形的外心一定具有的性质是()A.到三边的距离相等B.到三个顶点的距离相等C.外心在三角形的外部D.外心在三角形的内部例5.变式2.如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为cm 的圆形纸片所覆盖.例5.变式3.如图,☉O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=3O的半径.六、直线和圆的位置关系(一)切线的性质和判定(共4小题,每题3分,题组共计12分)例6.已知☉O的半径为2,直线l上有一点P满足PO=2,则直线l与☉O的位置关系是()A.相切B.相离C.相离或相切D.相切或相交例6.变式1.如图所示,PA,PB是☉O的切线,点A,B为切点,AC是☉O的直径,∠BAC=20°,则∠P的大小是度.例6.变式2.下列说法正确的是()A.与圆有公共点的直线是圆的切线B.和圆心距离等于圆的半径的直线是圆的切线C.垂直于圆的半径的直线是圆的切线D.过圆的半径的外端的直线是圆的切线例6.变式3.给出下列命题:①任一个三角形一定有一个外接圆,并且只有一个外接圆;②任一个圆一定有一个内接三角形,并且只有一个内接三角形;③任一个三角形一定有一个内切圆,并且只有一个内切圆;④任一个圆一定有一个外切三角形,并且只有一个外切三角形.其中真命题共有()A.1个B.2个C.3个D.4个(二)切线的性质和判定的综合应用(共4小题,每题3分,题组共计12分)例7.如图,AB为☉O的直径,PD切☉O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30°B.45°C.60°D.67.5°例7.变式1.已知△ABC中,∠C=90°,AB=5,△ABC的周长等于12,则它的内切圆的半径为.例7.变式2.如图,AB是☉O的直径,∠ABT=45°,AT=AB.求证:AT是☉O的切线.例7.变式3.如图,已知点E在直角△ABC的斜边AB上,以AE为直径的☉O与直角边BC相切于点D.(1)求证:AD平分∠BAC;(2)若BE=2,BD=4,求☉O的半径.七、切线长定理(共4小题,每题3分,题组共计12分)例8.如图,PA切☉O于A,PB切☉O于B,OP交☉O于C,下列结论中,错误的是()A.∠1=∠2B.PA=PBC.AB⊥OPD.PA²=PC·POBMC上例8.变式1.如图,AB,AC是☉O的切线,B,C为切点,∠A=50°,点P异于B,C,且在运动,则∠BPC的度数是()A.65°B.115°C.115°或65°D.130°或65°例8.变式2.如图,已知PA,PB切☉O于A,B,MN切☉O于C,交PA于M,交PB于N,PA=7.5cm,则△PMN的周长是()A.7.5cmB.10cmC.15cmD.12.5cm例8.变式3.如图,在△ABC中,已知∠ABC=90°,在AB上取一点E,以BE为直径的☉O恰与AC相切于点D,若AE=2,AD=4.(1)求☉O的直径BE的长;(2)计算△ABC的面积.八、圆内接正多边形(共4小题,每题3分,题组共计12分)例9.下列命题中,正确的是()A.正多边形都是轴对称图形B.正多边形一个内角的大小与边数成正比例C.正多边形一个外角的大小随边数的增加而增大D.正多边形都是中心对称图形例9.变式1.如图,☉O 是正方形ABCD 的外接圆,点P 在☉O 上,则∠APB 等于()A.30°B.45°C.55°D.60°例9.变式2.已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.2B.2:2C.2:122:4例9.变式3.判断图中正六边形ABCDEF 与正△FCG 的面积比为()A.2∶1B.4∶3C.3∶1D.3∶2九、弧长及扇形的面积(共4小题,每题3分,题组共计12分)例10.按如图的方法把圆锥的侧面展开,得到右图,其半径OA=3,圆心角∠AOB=120°,则 AB 的长为()A.πB.2πC.3πD.4π例10.变式1.如果一个扇形的半径是1,弧长是3π,那么此扇形的圆心角度数为()A.30°B.45°C.60°D.90°例10.变式2.已知扇形的面积为12π,半径是6,则它的圆心角是.例10.变式3.如图,点A,B,C 在直径为3O 上,∠BAC=45°,则图中阴影部分的面积为(结果中保留π).。

苏科版数学九上第二章轴对称图形--圆复习

苏科版数学九上第二章轴对称图形--圆复习
A.150°
B.130°
C.120°
D.60°
2.5.直线与圆的位置关系
一、直线与圆的位置关系
r
O
┐d

相交
r
O
┐d

相切
1、直线和圆相交
d < r.
2、直线和圆相切
d = r.
3、直线和圆相离
d > r.
r
O
d


相离
2.5 直线与圆的位置关系
二、切线的判定定理
经过半径的外端,并且垂直于这条半径的直线是圆的切线
线平分两条切线的夹角.
A
∵PA,PB切⊙O于A,B
∴PA=PB ∠1=∠2
P
1
2
O

B
练习
1、已知:如图1,△ABC中,AC=BC,以BC为直径 的⊙O交
AB于点D,过点D作DE⊥AC于点E,交 BC的延长线于点F.
求证:(1)AD=BD;(2)DF是⊙O的切线.
A
A
D
E
B
O
C
P
F
C
图1
B
图2
2、如图2,PA、PA是圆的切线,A、B为切点,AC为

练习
三、选择题:
下列命题正确的是( C )
A、三角形外心到三边距离相等
B、三角形的内心不一定在三角形的内部
C、等边三角形的内心、外心重合
D、三角形一定有一个外切圆
四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,则这个三
30
角形的面积为______.
2.5直线与圆的位置关系
七、圆线与圆的位置关系
⌒ ⌒

《2.2圆的对称性》作业设计方案-初中数学苏科版12九年级上册

《2.2圆的对称性》作业设计方案-初中数学苏科版12九年级上册

《圆的对称性》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《圆的对称性》的学习,使学生掌握圆的基本性质和对称性特点,能够运用所学知识解决实际问题,并培养学生的逻辑思维能力和空间想象能力。

二、作业内容1. 基础知识巩固(1)复习圆的基本概念,如圆心、半径、直径等。

(2)掌握圆的对称性质,包括对称轴和对称点等。

(3)理解并掌握圆的基本公式,如周长和面积的计算。

2. 技能训练(1)通过绘制圆形图案,观察并分析其对称性特点。

(2)通过实例练习,让学生应用圆的对称性知识解决实际问题。

(3)掌握使用尺规作图法作图技巧,在草稿纸上尝试完成作图。

3. 综合运用(1)以圆为基础元素设计几何图案,探讨图案中包含的数学关系。

(2)小组合作完成一份小课题报告,如“生活中的圆及其对称性应用”等。

三、作业要求1. 学生在完成作业过程中需认真思考、仔细分析,并确保答案的准确性。

2. 作业中涉及到的公式和计算过程需详细写出,不能出现大量省略步骤的情况。

3. 绘画和作图需使用尺规工具,保持图形的准确性和美观性。

4. 小组作业需确保每位成员都参与讨论和编写,最终由小组长汇总并提交完整的报告。

5. 作业需按时提交,不得拖延或提前完成。

四、作业评价1. 教师将根据学生的完成情况、答案的准确性和解题思路的清晰度进行评价。

2. 对于基础知识的掌握情况,教师将通过学生的答题过程和结果进行评估。

3. 对于技能训练部分,教师将关注学生的作图技巧和实际问题的解决能力。

4. 综合运用部分的评价将注重学生的创新思维和合作能力。

五、作业反馈1. 教师将对学生的作业进行批改,并及时反馈给学生,指出存在的问题和不足。

2. 对于学生的疑问和困惑,教师将提供指导和帮助,确保学生能够理解并改正错误。

3. 教师将根据学生的作业情况,调整教学进度和教学方法,以提高教学效果。

4. 对于表现优秀的学生,教师将给予表扬和鼓励,激发学生的学性和动力。

作业设计方案(第二课时)一、作业目标本作业设计旨在巩固学生在《圆的对称性》这一课中所学的知识,通过实际操作和思考,加深学生对圆的基本性质、对称性的理解,并能够灵活运用这些知识解决实际问题。

九年级数学上册 圆的对称性练习 试题

九年级数学上册  圆的对称性练习 试题

轧东卡州北占业市传业学校圆的对称性知识点:点在圆外,即这个点到圆心的距离 ________________半径; 点在圆上,即这个点到圆心的距离 ________________半径; 点在圆内,即这个点到圆心的距离 ________________半径; 反过来,也成立〔即判定位置关系的方法〕圆是 图形,其对称轴是 ,因此有 条对称轴。

定理一: 〔垂径定理〕定理二: 〔垂径定理逆定理〕 定理三: 定理四: 例一:⊙0的面积为25π。

(1)假设PO=,那么点P 在________;〔2〕假设PO=4,那么点P 在________; 〔3〕假设PO=________,那么点P 在⊙0上。

例二:设AB=3cm ,作图说明:到点A 的距离小于2cm ,且到点B 的距离大于2cm③、:如图,矩形ABCD 的对角线AC 和BD 相交于点0,它的四个顶点A、B 、C 、D 是否在以点0④、如图,在△ABC 中,BD 、CE 是高。

求证:A 、B 、C 、D 、E 在同一个圆上。

⑤、设AB=3cm ,作图说明满足以下要求的图形:〔1〕到点A 和点B 的距离都等于2cm 的所有点组成的图形。

〔2〕到点A 和点B 的距离都小于2cm 的所有点组成的图形。

【例1】判断正误: 〔1〕直径是圆的对称轴.〔2〕平分弦的直径垂直于弦.B【例2】假设⊙O的半径为5,弦AB长为8,求拱高.【例3】如图,⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠CEA=30°,求CD的长.【例4】如图,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,求⊙O的半径长.【例5】如图1,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,EC和DF相等吗?说明理由.如图2,假设直线EF平移到与直径AB相交于点P〔P不与A、B重合〕,在其他条件不变的情况下,原结论是否改变?为什么?如图3,当EF∥AB时,情况又怎样?如图4,CD为弦,EC⊥CD,FD⊥CD,EC、FD分别交直径AB于E、F两点,你能说明AE和BF为什么相等吗?二、课内练习:1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.〔〕⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.〔〕⑶经过弦的中点的直径一定垂直于弦.〔〕⑷圆的两条弦所夹的弧相等,那么这两条弦平行. 〔〕⑸弦的垂直平分线一定平分这条弦所对的弧. 〔〕2、:如图,⊙O 中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有 .图中相等的劣弧有 .3、:如图,⊙O 中, AB为弦,C 为 AB 的中点,OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.5.储油罐的截面如图3-2-12所示,装入一些油后,假设油面宽AB=600mm,求油的最大深度.6.“五段彩虹展翅飞〞,我利用国债资金修建的,横跨南渡江的琼州大桥〔如图3-2-16〕已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图〔1〕.最高的圆拱的跨度为110米,拱高为22米,如图〔2〕那么这个圆拱所在圆的直径为米.三、课后练习:1、,如图在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,求证:AC=BD2、AB、CD为⊙O的弦,且AB⊥CD,AB将CD分成3cm和7cm两局部,求:圆心O到弦AB的距离3、:⊙O弦AB∥CD 求证:⋂=⋂BD AC4、:⊙O半径为6cm,弦AB与直径CD垂直,且将CD分成1∶3两局部,求:弦AB的长.5、:AB为⊙O的直径,CD为弦,CE⊥CD交AB于E DF⊥CD交AB于F求证:AE=BF6、:△ABC内接于⊙O,边AB过圆心O,OE是BC的垂直平分线,交⊙O于E、D两点,求证,⋂=⋂BC21 AE7、:AB为⊙O的直径,CD是弦,BE⊥CD于E,AF⊥CD于F,连结OE,OF求证:⑴OE=OF ⑵ CE=DF8、在⊙O中,弦AB∥EF,连结OE、OF交AB于C、D求证:AC=DB9、如图等腰三角形ABC中,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求ABC的长10、:⊙O与⊙O'相交于P、Q,过P点作直线交⊙O于A,交⊙O'于B使OO'与AB平行求证:AB=2OO'11、:AB为⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F求证:EC=DF【例1】A,B是⊙O上的两点,∠AOB=1200,C是的中点,试确定四边形OACB的形状,并说明理由.【例2】如图,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?【例3】如图,弦DC、FE的延长线交于⊙O外一点P,直线PAB经过圆心O,请你根据现有圆形,添加一个适当的条件:,使∠1=∠2.二、课内练习:1、判断题〔1〕相等的圆心角所对弦相等〔〕〔2〕相等的弦所对的弧相等〔〕2、填空题⊙O中,弦AB的长恰等于半径,那么弦AB所对圆心角是________度.3、选择题如图,O为两个同圆的圆心,大圆的弦AB交小圆于C、D两点,OE⊥AB,垂足为E,假设AC=2.5 cm,ED=1.5 cm ,OA =5 cm ,那么AB 长度是___________. A 、6 cm B 、8 cm C 、7 cm D 、7.5 cm 三、课后练习:1 〕A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴 2.以下说法中,正确的选项是〔 〕 A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等3 〕A .圆是轴对称图形B .圆是中心对称图形C .圆既是轴对称图形,又是中心对称图形D .以上都不对 4.半径为R 的圆中,垂直平分半径的弦长等于〔 〕A .43R B .23R C .3RD .23R5.如图1,半圆的直径AB=4,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,那么弦CD 的长为〔 〕 A .23B .3C .5D .256.:如图2,⊙O 的直径CD 垂直于弦AB ,垂足为P ,且AP=4cm ,PD=2cm ,那么⊙O 的半径为〔 〕 A .4cmB .5cmC .42cmD .23cm7.如图3,同心圆中,大圆的弦AB 交小圆于C 、D ,AB=4,CD=2,AB 的弦心距等于1,那么两个同心圆的半径之比为〔 〕 A .3:2B .5:2C .5:2D .5:48.半径为R 的⊙O 中,弦AB=2R ,弦CD=R ,假设两弦的弦心距分别为OE 、OF ,那么OE :OF=〔 〕 A .2:1B .3:2C .2:3D .09.在⊙O 中,圆心角∠AOB=90°,点O 到弦AB 的距离为4,那么⊙O 的直径的长为〔 〕 A .42B .82C .24D .1610.如果两条弦相等,那么〔 〕 A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对11.⊙O中假设直径为25cm,弦AB的弦心距为10cm,那么弦AB的长为.12.假设圆的半径为2cm,圆中的一条弦长23cm,那么此弦中点到此弦所对劣弧的中点的距离为.13.AB为圆O的直径,弦CD⊥AB于E,且CD=6cm,OE=4cm,那么AB= .14.半径为5的⊙O内有一点P,且OP=4,那么过点P的最短的弦长是,最长的弦长是.15.弓形的弦长6cm,高为1cm,那么弓形所在圆的半径为 cm.16.在半径为6cm的圆中,垂直平分半径的弦长为 cm.17.一条弦把圆分成1:3两局部,那么弦所对的圆心角为.18.弦心距是弦的一半时,弦与直径的比是,弦所对的圆心角是.19.如图4,AB、CD是⊙O的直径OE⊥AB,OF⊥CD,那么∠EOD ∠BOF,⌒AC⌒AE,AC AE.20.如图5,AB为⊙O的弦,P是AB上一点,AB=10cm,OP=5cm,PA=4cm,求⊙O的半径.21.如图6,以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.〔1〕求证:AC=DB;〔2〕如果AB=6cm,CD=4cm,求圆环的面积.22.⊙O的直径为50cm,弦AB∥CD,且AB=40cm,CD=48cm,求弦AB和CD之间的距离.23.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?24.一弓形的弦长为46,弓形所在的圆的半径为7,求弓形的高.25.如图,⊙O1和⊙O2是等圆,直线CF顺次交这两个圆于C、D、E、F,且CF交O1O2于点M,⌒⌒EFCD ,O1M和O2M相等吗?为什么?。

九年级数学苏科版上册课时练第2单元《 2.2 圆的对称性》(1) 练习试题试卷 含答案

九年级数学苏科版上册课时练第2单元《 2.2 圆的对称性》(1) 练习试题试卷 含答案

课时练2.2圆的对称性一、选择题1.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD长是()A.2B.3C.4D.52.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.83.如图,弦CD垂直于⊙O直径AB,垂足为H,且CD=,BD=,则AB长为()A.2B.3C.4D.54.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm5.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BDB.AD⊥OCC.△CEF≌△BEDD.AF=FD6.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.2B.4C.2D.4.87.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸8.如图所示,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度为().A.1cmB.2cmC.3cmD.4cm9.如图,在半径为13cm圆形铁片上切下一块高为8cm弓形铁片,则弓形弦AB长为().A.10cmB.16cmC.24cmD.26cm10.杭州市钱江新城,最有名的标志性建筑就是“日月同辉”,其中“日”指的是“杭州国际会议中心”,如图所示为它的主视图.已知这个球体的高度是85m,球的半径是50m,则杭州国际会议中心的占地面积是().A.1275πm2B.2550πm2C.3825πm2D.5100πm2二、填空题11.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.12.如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是.13.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为cm.14.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧ABC上,AB=8,BC=3,则DP=.15.如图所示为由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.16.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高CD为米.三、解答题17.如图,已知⊙O的直径AB垂直弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)求证:点E是OB的中点;(2)若AB=8,求CD的长.18.如图,在等腰直角三角形ABC中,∠BAC=90°,圆心O在△ABC内部,且⊙O经过B,C 两点,若BC=8,AO=1,求⊙O的半径.19.如图所示,残缺的圆形轮片上,弦AB的垂直平分线CD交圆形轮片于点C,垂足为点D,解答下列问题:(1)用尺规作图找出圆形轮片的圆心O的位置并将圆形轮片所在的圆补全;(要求:保留作图痕迹,不写作法)(2)若弦AB=8,CD=3,求圆形轮片所在圆的半径R.20.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.参考答案1.A.2.D.3.B4.B5.C.6. C.7.C.8.C.9.C.10.A.11.23.12.(2,0).13.40.14.5.5;15.50.16.8.17.解:(1)证明:连接AC.∵OB⊥CD,∴CE=ED,即OB是CD的垂直平分线.∴AC=AD.同理AC=CD.∴△ACD是等边三角形.∴∠ACD=60°,∠DCF=30°.在Rt△COE中,OE=12OC=12OB.∴点E是OB的中点.(2)∵AB=8,∴OC=12AB=4.又∵BE=OE,∴OE=2.∴CE=OC 2-OE 2=16-4=2 3.∴CD=2CE=4 3.18.解如答图所示,连结BO,CO,延长AO 交BC 于点D.∵△ABC 是等腰直角三角形,∠BAC=90°,∴AB=AC.∵点O 是圆心,∴OB=OC.∴直线OA 是线段BC 的垂直平分线.∴AD⊥BC,且D 是BC 的中点.在Rt△ABC 中,AD=BD=21BC,∵BC=8,∴BD=AD=4.∵AO=1,∴OD=AD-AO=3.∵AD⊥BC,∴∠BDO=90°.∴OB=22BD OD +=2243+=5.19.解:(1)图略.(2)连结OA.∵CD 是弦AB 的垂直平分线,AB=8,∴AD=12AB=4.在Rt△ADO 中,AO=R,AD=4,DO=R-3,根据勾股定理,得R 2=16+(R-3)2,解得R=256.20.(1)证明:∵AB 为⊙O 的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC 中,AC 2+BC 2=AB 2,∴(x﹣2)2+x 2=42,解得:x 1=1+,x 2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.。

第2章第2讲圆的对称性-苏科版九年级数学上册练习

第2章第2讲圆的对称性-苏科版九年级数学上册练习

轴对称图形--圆:第二讲--圆的对称性1.下列说法中正确的是()A.直径是圆的对称轴B.经过圆心的直线是圆的对称轴C.与圆相交的直线是圆的对称轴D.与半径垂直的直线是圆的对称轴2.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,则下列结论中不一定成立的是()A.∠COE=∠DOEB.CE=DEC.OE=BED.BD BC3.如图所示,⊙O的弦AB垂直平分半径OC,则四边形OACB是()A.正方形B.长方形C.菱形D.以上答案都不对4.如图,AB是O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm,则DC的长为()A.5cm B.2.5cm C.2cm D.1cm5.如图所示,圆O的弦AB垂直平分半径OC,则四边形OACBA.是正方形 B.是长方形C.是菱形 D.以上答案都不对6.下列语句中,正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个7.如图,⊙O的直径为10,弦AB的长是8,P是AB上的一个动点,则_____≤OP≤_____.8.如图,以点O为圆心的两个同心圆,两圆半径分别为5 cm和9 cm,大圆的弦AB交小圆于点C、D,且CD=8 cm,求AC和BD的长.9.如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为_______.10.如图,AB、CD是⊙O的直径,弦CE∥AB,CE的度数为40°,则∠AOC=_______°.11.如图,工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,如图所示,则这个小孔的直径AB是多少毫米?12.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=2,BD=3,求AB的长.13.在半径为5cm的圆内有两条平行弦,一条弦长为8cm,另一条弦长为6cm,则两弦之间的距离为__________.14.在直径为650mm的圆柱形油桶内装进一些油后,其截面如图所示,若油面宽为600mm,求油的最大深度.15.有一座弧形的拱桥,桥下的水面宽度为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为长方形并高出水面2m的货船要经过这里,此货船能顺利通过这座拱形桥吗?2答案1.B 2.C3.C 由垂径定理知AB 也被OC 平分,所以AB 和OC 互相垂直平分,即四边形OACB 为菱形.4.D 5.C6.A7.3≤OP ≤48.-4) cm .9.72° 10.7012.313.1cm 或7cm14.故油的最大深度为200mm.15.货船能够顺利通过这座拱桥.。

苏科版九年级上5.2圆的对称性(二)课件

苏科版九年级上5.2圆的对称性(二)课件

M└

O
条件
CD为直径 CD⊥AB
D
B
CD平分弧ADB
基本图形:
C
A
M└

B O
D
例1 已知:如图,在以O为圆心的两个 同心 圆中,大圆的弦AB交小圆于C,D两点,AC与 BD相等吗?为什么?O ABiblioteka .D BC
P
例题解析
例2:如图,已知在圆O中,弦AB的长为8㎝, 圆心O到AB的距离为3 ㎝,求圆O的半径。
圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无 数条对称轴. 可利用折叠的方法即可解决上述问题.

O
探索规律
AB是⊙O的一条弦. 作直径CD,使CD⊥AB,垂足为M. 下图是轴对称图形吗?如果是,其对称轴是什么? 你能发现图中有哪些等量关系?与同伴说 说你的想法和理由.
C
A
M└

B O
O
D A B
C
【挑战自我】
画一画 如图,M为⊙O内的一点,利用尺规作一条弦AB, 使AB过点M.并且AM=BM.
C A

【相关概念】 B 【巩固训练】
最长弦与最短弦
O
如图,M为半径为5的⊙O内的一点, 且MO=3,在过点M的所有⊙O的弦中, 弦长为整数的弦共有 条,
D
思考题:如图,CD为圆O的直径,弦 AB交CD于E, ∠ CEB=30°, DE=9㎝,CE=3㎝,求弦AB的长。
A
F
D O E C
B
小结:
1:圆是轴对称图形 2:垂径定理及其运用
初中数学九年级上册 (苏科版)
5.2. 圆的对称性(2)
复习
如图,若AB=CD则( ⌒ ⌒ 若 AB=CD 则(

2.2圆的对称性(二)垂径定理(十一大题型)(原卷版)

2.2圆的对称性(二)垂径定理(十一大题型)(原卷版)
③过弦的中点的直径平分弦所对的两条弧;
④平分不是直径的弦的直径平分弦所对的两条弧.
A.1个B.2个C.3个D.4个
解题技巧提炼
1、垂直于弦的直径平分这条弦,并且平分弦所对的弧.
2、一条直线满足:①过圆心;②垂直于弦; ③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧.满足其中两个条件就可以推出其它三个结论(“知二推三”)
【变式61】(2023•涧西区校级二模)如图,AB是⊙O的弦,半径OC⊥AB于点D,连接AO并延长,交⊙O于点E,连接BE,DE.若DE=3DO, ,则△ODE的面积为( )
A.4B. C. D.
【变式62】(2022秋•玄武区校级月考)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为( )
【变式71】已知弓形的弦长为8cm,所在圆的半径为5cm,则弓形的高为.
【变式72】已知⊙O的直径AB=20,弦CD⊥AB于点E,且CD=16,则AE的长为.
【变式73】(2022•牡丹江)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=
3:5,则AC的长为.
【例题8】(2022秋•邹城市校级期末)如图,AB、CD为⊙O的两条弦,AB∥CD,经过AB中点E的直径MN与CD交于F点,求证:CF=DF.
A.5B.6C.7D.8
【变式52】(2022秋•桃城区校级期末)如图,已知⊙O的直径为26,弦AB=24,动点P、Q在⊙O上,弦PQ=10,若点M、N分别是弦AB、PQ的中点,则线段MN的取值范围是( )
A.7≤MN≤17B.14≤MN≤34C.7<MN<17D.6≤MN≤16
【变式53】如图,⊙O的直径为10,A、B、C、D是⊙O上的四个动点,且AB=6,CD=8,若点E、F分别是弦AB、CD的中点,则线段EF长度的取值范围是( )

苏科版九年级数学上册随堂练——2

苏科版九年级数学上册随堂练——2

2.2圆的对称性一、选择题1.下列判断中正确的是( )A.平分弦的直径垂直于弦B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦2.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等D.以上说法都不对3. 如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O 的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°4.下列说法正确的是()A. 相等的弦所对的弧相等B. 相等的圆心角所对的弧相等C. 相等的弧所对的弦相等D. 相等的弦所对的圆心角相等5.《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步6.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.507.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM 的长不可能为()A.2 B.3 C.4 D.58.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°9.如图,点A是半圆上的一个三等分点,点B为弧AD的中点,P是直+的最小值为()径CD上一动点,⊙O的半径是2,则PA PBA.2 B.C.1D.⌒的度数为50°,则∠OAB的度数10.如图,在⊙O中,弦AC∥半径OB,BC为()A.25°B.50°C.60°D.30°11. 如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A.3B.4C.5D.6二、填空题12.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=5,AD=4,则AE的长为.13.若一条弦把圆分成1:3两部分,则劣弧所对的圆心角为.14.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=.2cm,则∠A的度数15.△ABC是半径为2cm的圆内接三角形,若BC=3为 .16.如图,在⊙O中,点C是AB的中点,∠A=40°,则∠BOC等于_________.17. 如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,B C,若∠AOB=120°,则∠ACB=度.18.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD 约10米,则桥弧AB所在圆的半径R=____米.19.如图,石拱桥的桥顶到水面的距离CD为8 m,桥拱半径OC为5m,则水面宽AB为。

5.2圆的对称性1

5.2圆的对称性1
1. ∠AOB=∠A′O′B′

{AB=A′B′
A B =A′B′
2.
A B =A′B′

{
AB=A′B′
∠AOB=∠A′O′B′
3.
AB=A′B′
{
A B =A′B′ ∠AOB=∠A′O′B′
1的 圆 心 角
C D
1的 弧
O
n 的 圆 心 角
B A
n 的 弧
的 弧 ,n 的 弧 对 着 n 的 圆 心 角 。
B )
(D) 不 能 确 定
A C
B
O
D
总 结
1.圆是中心对称图形,圆心是它的对称中心。
2.在同圆或等圆中, 如果两个圆心角,两条弧,两条弦中有一组量相等, 那么它们所对应的其余各组都分别相等。
3. 圆 心 角 的 度 数 与 它 所 对 的 弧 的 度 数 相 等 。
回顾总结
通过本课的学习,你又有 什么收获?
n 的 圆 心 角 对 着 n
圆 心 角 的 度 数 与 它 所 对 的 弧 的 度 数 相 等 。
典型例题
例 1: 如 图 在 ABC 中 , C=90, B=28, 以 C为 圆 心 , 以 CA为 半 径 的 圆 交 AB于 点 D, 交 BC于 点 E, 求 AD, DE的 度 数 。
B
解:连接CD
∵∠C=90°,∠B=28° ∴∠A=62°
又∵CA=CD ∴∠ACD=56° ∴∠BCD=34° ∴ A D、 D E
D
E
的度数
A
C
分别为56°,34°
例 2: 如 图 ,AB,AC,BC 都 是 O的 弦 , AOC= BOC, ABC与 BAC相 等 吗 ? 为 什 么 ?

初中数学苏科版九年级上册2.2 圆的对称性

初中数学苏科版九年级上册2.2 圆的对称性


3.如图,在半径为13的⊙O中,OC垂直弦 AB于点B,交⊙O于点C,AB=24,则CD 的长为_7_____。
●O
A
D
B
C
4:如图, ⊙O的弦AB=8 ㎝ , DC=2㎝,直
径CE⊥AB于D, 则半径OC=_5_____。
E
O
x D x-2
A
4
B

2
C
如 图 , ⊙ O 的 半 径 为 5 , 弦 AB 的 长 为8,M是弦AB上的动点,则线段OM
垂径定理的应用
5.在横截面为圆形的油槽内装入一些油后,若油面宽 AB = 600mm,圆的直径为650mm,求油的最大深 度.
E
A
600
B
O
O ø650
A
C
B
E
D
600
F
D
谈谈你今天的收获是什么?
C
O
A
EB
D
图3
1.圆是轴对称图形.过圆心的任意一条 直线都是它的对称轴.
2.垂径定理:垂直于弦的直径平分 这条弦,并且平分弦所对的弧.
如图圆形纸片, CD是⊙O直 径.
1.在⊙O上任取一点A,过 A 点A作直径CD的垂线,交⊙O 于点B,点P为垂足.·
C
●O
P
B
D
2. 将圆沿着直径CD对折,你有什么发现呢? 发现:CP=DP,弧AD=弧BD,弧AC=弧BC。
垂直于弦的直径平分这条弦,并且平 分弦所对的弧.
∵在⊙O中 直径CD⊥AB ∴AP=BP,
米,求⊙O的半径。
A 4E
B
.3
5?
O
2.你知道赵州桥吗?它是1300多年前 我国隋代建造的石拱桥,是我国古代人民勤 劳和智慧的结晶.它的主桥拱是圆弧形,它 的跨度(弧所对的弦的长)为37.4米, 拱高(弧的中点到弦的距离)为7.2米, 你能求出赵州桥主桥拱的半径吗?(精确到 0.1) C

九年级数学上册 2.2 圆的对称性导学案(2)(无答案)(新版)苏科版

九年级数学上册 2.2 圆的对称性导学案(2)(无答案)(新版)苏科版
四、当堂检 测:补充习 题》第页的第题.
五、小结反 思
1.收获
2.困惑
六作业
必做;课本 第49页第5题,选做:;课本第 49页第6题.。
反思:
1、亮点:
2、不足 :
1、改进
你可以发现:_______________________ ____。
2、你能给出几何证明吗?(写出已知、求证并证明)
三、拓展提升
例1、如图,以O为圆心的两个同心圆中,大圆的弦AB交小圆于点C、D,AC与BD相等吗?为什么?
例2、如图,已知:在⊙O中,弦AB的长为8,圆心 O到 AB的距离为3。⑴求的半径;⑵若点P是AB上的一动点,试求OP的范围。
3、得出垂径定理:
_______________________ _____________________________.
4、注意:①条件中的“弦”可以是直径;
②结论中 的“平分弧”指平分弦所对的劣弧、优弧。
5、几何语言:
练习:
(1)判断下列图形是否具有对称性? 如果是中心对称图形,指出它的对称中心,如果是轴对称图形,指出它的对 称轴。
2.(1)将第一个图中的弦AB改为直径(AB与CD相互垂直的条件不变),结果如何?
(2)将第二个图中的直径A B改为怎样的一条弦,它将 变成轴 对称图形?
二、合作探究
1、对学:
任务1:①在圆形纸片上任画一条直径;
②沿直径将圆形纸片折叠,你发现了什么?
2、群学:
任务2:1、如图,CD是⊙O的弦,画直径AB⊥CD,垂足为P,将圆形纸片沿AB对折。 通过折叠活动,
圆的对称性
学习
目标
1、使 学生通过观察实验理解圆的轴对称性;
2、掌握垂径定理,理解垂径定理的推证过程;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的对称性(第二课时)
基础题:
一、判断题:
(1)相等的圆心角所对弦相等()
(2)相等的弦所对的弧相等()
二、选择题:
1.下列命题中,正确的有()
A.圆只有一条对称轴 B.圆的对称轴不止一条,但只有有限条
C.圆有无数条对称轴,每条直径都是它的对称轴
D.圆有无数条对称轴,经过圆心的每条直线都是它的对称轴
2.下列说法中,正确的是()
A.等弦所对的弧相等B.等弧所对的弦相等
C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等
3.下列命题中,不正确的是()
A.圆是轴对称图形B.圆是中心对称图形C.圆既是轴对称图形,又是中心对称图形D.以上都不对
三、填空题:
1.圆既是轴对称图形,又是_________对称图形,它的对称轴是_______, 对称中心是____.
2.⊙O中,弦AB的长恰等于半径,则弦AB所对圆心角是________度.
3. 圆的一条弦把圆分为5: 1 两部分, 如果圆的半径是2cm, 则这条弦的长是_____cm.
4.已知⊙O中,OC⊥弦AB于C,AB=8,OC=3,则⊙O的半径长等于________.
★发展题:
四、选择填空题
如图,过⊙O内一点P引两条弦AB、CD,使AB=CD,
求证:OP平分∠BPD.
证明:过O作OM⊥AB于M,ON⊥CD于N.
A、OM⊥PB
B、OM⊥AB
C、ON⊥CD
D、ON⊥PD
▲提高题:
五、解答题:
1.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?
2. 如图,已知⊙O1和⊙O2是等圆,直线CF顺次交这两个圆于C、D、E、F,且CF交O1O2于点M,
⌒⌒
EF
CD ,O1M和O2M相等吗?为什么?。

相关文档
最新文档