微带天线实验报告

合集下载

实验七-微带贴片天线的设计与仿真

实验七-微带贴片天线的设计与仿真

实验七微带贴片天线的设计与仿真一、实验目的1.设计一个微带贴片天线2..查看并分析该微带贴片天线的二、实验设备装有HFSS 13.0软件的笔记本电脑一台三、实验原理传输线模分析法求微带贴片天线的辐射原理如下图所示:设辐射元的长为L,宽为ω,介质基片的厚度为h。

现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。

在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。

在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。

因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。

缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。

这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。

四、实验内容利用HFSS软件设计一个右手圆极化天线,此天线通过微带结构实现。

中心频率为2.45GHz,选用介质基片R04003,其介电常数为εr=2.38,厚度为h =5mm。

最后得到反射系数和三维方向图的仿真结果。

五、实验步骤1.建立新工程了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry 复选框选中。

2.将求解类型设置为激励求解类型:(1)在菜单栏中点击HFSS>Solution Type。

(2)在弹出的Solution Type窗口中(a)选择Driven Modal。

(b)点击OK按钮。

3.设置模型单位(1)在菜单栏中点击3D Modeler>Units。

(2)在设置单位窗口中选择:mm。

cst微带贴片天线仿真实验报告

cst微带贴片天线仿真实验报告

cst微带贴片天线仿真实验报告CST微带贴片天线仿真实验报告1. 引言1.1 背景介绍1.2 目的和意义2. 实验原理2.1 微带贴片天线的结构和工作原理2.2 CST仿真软件简介3. 实验步骤3.1 设计微带贴片天线的几何结构3.2 导入设计参数到CST软件中3.3 进行电磁场仿真分析3.4 对仿真结果进行分析和优化4. 实验结果与讨论4.1 微带贴片天线的辐射特性分析结果- 辐射图案分析- 增益和方向性分析- 驻波比和带宽分析4.2 影响微带贴片天线性能的因素讨论- 基底材料特性对性能的影响- 贴片尺寸对性能的影响5. 实验结论与展望5.1 实验结论总结5.2 对实验结果的评价与展望6. 参考文献7. 致谢1 引言:1.1 背景介绍在现代通信系统中,微带贴片天线因其小巧、轻便、易制造等优点被广泛应用于无线通信设备中。

通过对微带贴片天线的仿真实验,可以分析其辐射特性,优化设计参数,提高天线的性能。

1.2 目的和意义本次实验旨在使用CST仿真软件对微带贴片天线进行电磁场分析,探究不同设计参数对天线性能的影响,并通过优化设计参数提高天线的工作效果。

这对于实际应用中的无线通信系统设计具有重要意义。

2 实验原理:2.1 微带贴片天线的结构和工作原理微带贴片天线由导体贴片和基底材料组成。

导体贴片被固定在基底上,并与馈电源相连。

当电流通过导体贴片时,产生电磁场并辐射出去,实现无线信号传输。

2.2 CST仿真软件简介CST是一款常用于电磁场仿真分析的软件工具。

它基于有限元方法和时域积分方程等数值计算方法,可以模拟各种复杂结构下的电磁场分布,并提供丰富的分析工具和可视化功能。

3 实验步骤:3.1 设计微带贴片天线的几何结构根据实验要求和设计目标,确定微带贴片天线的几何结构,包括导体贴片的形状、尺寸和基底材料等参数。

3.2 导入设计参数到CST软件中在CST软件中创建一个新项目,导入微带贴片天线的设计参数。

包括导体贴片的形状、尺寸、基底材料的特性等。

微带贴片天线设计实验

微带贴片天线设计实验

微波技术与天线实验报告姓名张思洋学号411109060103 实验日期2014.04.11 实验名称微带贴片天线设计实验实验类型设计性实验目的1、熟悉并掌握HFSS设计微带天线的操作步骤及工作流程。

2、掌握ISM频段微带贴片天线的设计方法。

实验内容使用HFSS进行微带贴片天线的设计实现,创建设计模型,进行求解设置,设置求解频率为 2.45GHz,同时添加 1.5-3.5GHz的扫频设置,分析天线在1.5-3.5GHz频段内的电压驻波比,并运行仿真计算。

将谐振频率落在2.45GHz频点上。

最后进行相关的数据后处理。

实验原理微带天线是当今无线通信领域中广泛应用的一种天线,具有质量轻、体积小、易于制造等特点,本实验的ISM频段微带贴片天线是工作在2.45GHz,采用同轴线馈电的一种简单的微带天线。

微带天线的基本参数:工作频率 2.45GHz,介质板相对介电常数3.38,介质层厚度5mm,矩形贴片宽度41.4mm,辐射缝隙长度2.34mm,矩形贴片长度31mm,参考地长宽为61.8mm*71.4mm,同轴线馈点坐标(9.5,0)。

要求设计的天线最大增益大于7dB。

前后比大于5dB。

实验步骤及结果一、新建HFSS工程1.新建一个名为MSAntenna.hfss的工程文件。

2.将求解类型设置为Driven Model二、创建微带天线模型1.将模型的默认长度设置为毫米mm2.创建参考地在Z=0的XOY面上创建一个顶点位于(-45mm,-45mm),大小为90mm*90mm的矩形面作为参考面,并把它命名为GND,并为其分配理想导体边界条件。

然后将此边界命名为PerfE_GND3.创建介质板层创建一个80mm*80mm*5mm的长方体作为介质板层,介质板层位于参考地面上,顶点坐标为(-40,-40,0),介质的材料为R04003。

4.创建微带贴片在z=5的XOY面上创建一个顶点坐标为(-15.5mm,-20.7mm,5mm),大小为31.0mm*41.4mm的矩形面作为微带贴片,命名为Patch,并为其分配理想导体边界条件。

微带天线实验报告

微带天线实验报告

实验课题:天线参数的分析仿真实验目的:运用HFSS 的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率7.55GHz ,天线结构尺寸如图所示,俯视图:侧视图材料:Ground Plane-PecSubstrate-Rogers RT/Duriod 5880Patch-pecFeedline-pec实验内容:1. 设置激励终端求解方式:HFSS>Solution type>Driven Termin2. 设置模型单位:3D Modeler>Units 选择mm3. 建立微带天线模型(1) 创建Ground plane,尺寸为x:28.1 y:32 z:0.05 修改名称为ground,修改材料属性为pec ,设置理想金属边界:选择ground ,点击HFSS>Boundaries>Assign>Perfect E ,将理想边界命名为:PerfE_ground(2) 建立介质基片:点击Draw>Box , x: -14.05,y: -16,z: 0,dx: 28.1,dy: 32,dz: 0.794,修改名称为sub ,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色(3) 建立天线模型patch ,点击Draw>Box ,x::-6.225,y:-8,z:0.794, dx: 12.45,dy: 16,dz: 0.05,命名为patch_1,点击Draw>Box ,x:-3.1125,y:-8,z:0.794, dx:2.46,dy: -8,dz: 0.05,命名为tatch_2,选中tatch_1和tatch_2,点击3D Modeler>Boolean>Unite ,修改名称为Trace ,修改材料属性为pec4 建立端口 需要首先创建供设置端口用的矩形,该矩形连接馈线与地(1)创建Port :3D Modeler>Grid Plane>XZ , x: -3.1125,y: -16,z: -0.05, dx:2.46,2.460.05dy: 0,dz: 0.894,命名为port(2)选中port,点击HFSS>Excitations>Assign >Lumped Port,在General标签中,将该端口命名为p1,点击Next,在Modes标签的Integration Line中点击None,选择New 里呢,输入x: -1.8825,y: -16,z: -0.05,dx: 0,dy: 0,dz: 0.894,点击Next直到结5 创建Air:Draw>box,输入x: -40,y: -40,z: -20,dx:80,dy: 80,dz: 40,修改名字为Air,设置辐射边界,点击HFSS>Boundaries >Radiation,命名为Rad16 设置边界条件。

基于HFSS的微带天线设计科研报告

基于HFSS的微带天线设计科研报告

基于HFSS的微带天线设计科研报告1.科研背景天线作为无线收发系统的一部分,其性能对一个系统的整体性能有着重要影响。

近年来置天线在移动终端数日益庞大的同时功能也日益强大,对天线的网络看盖及小型化也有了更高的要求。

由于不同的通信网络间的频段差异较大,所以怎样使天线能够涵盖多波段并且同时拥有足够小的尺寸是设计置天线的主要问题。

微带天线具有体积小,重重轻,剖面薄,易于加工等诸多优点,得到广泛的研究与应用。

在无线通信技术中,对天线的带宽有了更高的要求;而电路集成度提高,系统对天线的体积有了更高的要求。

微带天线是由导体薄片粘贴在背面有导体接地板的介质基片上形成的天线,随着科技的进步、空间技术的发展和低剖面天线的需求,使微带天线进一步发展。

和普通的天线相比,微带天线有这些优点:体积小,重里轻,低剖面,能与载体共形;易于实现线极化和圆极化,容易实现双频段、双极化等多功能工作。

2.研究理论依据天线是-个用于发送和接收电磁波的重要的无线电设备,没有天线就没有无线电通信。

不同种类的天线适用于不同用途,不同场合,不同频率,不同要求等不同情况;天线种类繁多,可按照-定特征进行分类:根据用途分类,可分为通信天线,雷达天线等;根据工作频段分类,可分为短波天线,超短波天线,微波天线等。

2.1天线的基本概念天线无处不在o所有的无线电设备都需要使用无线电波来开展的工作,天线在作发射时,它将电路中的高频电流转换为极化的电磁波,发射向规定的方向;作接收时,则将来自特定方向的极化的电磁波转换为电路中的高频电流。

所以天线的功能主要功能有:(1)能量转换对于发射天线,天线应将电路中的高频电流能里或传输线上的导行波能里尽可能多地转换为空间的电磁波能里辐射出去。

对于接收天线,传输到接收机上的由天线接收的电磁能里应尽可能转换为电路中的高频电流能里;天线和发射机或接收机应该尽可能良好的匹配。

(2)定向辐射或接收发射及接受天线的辐射电磁能里应集中在指定的方向,尽可能的不接收来自其它方向的电磁波,不要将能里损失在别的方向上,否则接收所需信号的同时,还有可能接收到不同方向的其它信号,造成不必要的干扰。

微带天线毕业设计调研报告

微带天线毕业设计调研报告

微带天线毕业设计调研报告微带天线是指带状的导体贴在介质衬底上的天线结构,其特点是结构简单、重量轻、容易制造以及易于集成。

微带天线广泛应用于无线通信、雷达系统、卫星通信和遥感等领域。

本调研报告通过对微带天线的研究现状、性能及应用进行调研,旨在为相关领域的毕业设计提供参考。

一、微带天线的研究现状微带天线的研究始于20世纪60年代,随着微电子技术和微带工艺的发展,微带天线在电磁学、无线通信和天线技术等领域得到了广泛的应用和研究。

目前,微带天线主要研究方向包括天线结构设计、频率调谐技术、辐射特性改善以及天线阵列等。

二、微带天线的性能1. 频率调谐性能:微带天线的频率可以通过调整尺寸和结构来实现调谐,使天线能够适应不同频段的通信需求。

2. 辐射特性:微带天线具有较好的辐射特性,能够实现宽带工作,并且方向性辐射与天线尺寸相关。

3. 多频段性能:通过设计饮水与引线,可以实现微带天线在多个频段的工作,从而满足多频段通信需求。

4. 阻抗匹配性能:为了保证天线与馈电传输线的阻抗匹配,微带天线需要采取一些措施来提高阻抗匹配性能。

三、微带天线的应用领域1. 通信系统:微带天线广泛应用于移动通信、卫星通信、无线电频段通信等领域,能够提供高质量的通信和覆盖范围。

2. 雷达系统:微带天线在雷达系统中的应用主要是用于辐射和接收雷达信号,具有较好的方向性、天线增益和频率范围。

3. 遥感:微带天线能够实现对地球表面的遥感观测,例如气象卫星、陆地遥感和海洋遥感等领域。

4. 新能源:微带天线可以用于太阳能光伏系统中的电力收集和传输,提高能源的有效利用。

综上所述,微带天线作为一种重要的天线结构,在无线通信、雷达系统、卫星通信和遥感等领域具有广泛的应用前景。

随着技术的不断创新和发展,微带天线的性能和应用领域将会不断完善和扩展。

对于相关领域的毕业设计项目,通过研究微带天线的研究现状和性能,可以为设计者提供重要的参考和指导。

实验三微带天线仿真场分析

实验三微带天线仿真场分析

实验三微带天线仿真场分析引言:微带天线是一种采用微带线作为传输介质的天线,具有结构简单、成本低、易于制造等优点。

它在通信系统、雷达系统和无线通信等领域中得到广泛应用。

本实验旨在通过仿真工具对微带天线的工作原理进行深入研究,并利用仿真场对其性能进行分析。

一、微带天线的工作原理微带天线的工作原理是基于微带线上的电磁波传播。

微带天线由一个微带贴片和一个接地平面组成,微带贴片在微带线上形成驻波,而且驻波的谐振频率与贴片的尺寸、介质特性以及微带线自身的特性有关。

具体过程如下:1.驻波产生:微带天线通过电源将电能传送到微带贴片上,形成一定的电流分布。

这个电流分布会在贴片和接地平面之间形成一个驻波,使得能量集中在驻波点上。

2.辐射机制:在微带贴片上产生的驻波会产生电场和磁场,从而形成电磁波的辐射。

微带天线的辐射主要来自于贴片和接地之间的电场和磁场的耦合。

二、仿真工具及方法介绍本实验采用电磁场仿真软件CST Studio Suite对微带天线的性能进行分析。

CST Studio Suite是一款广泛应用于电磁场仿真的软件,具有较高的准确性和较强的仿真能力。

实验步骤:1. 建立模型:通过CST Studio Suite软件中的模型创建工具,建立微带天线的三维模型。

在建立模型时,需要设置微带天线的贴片尺寸、介质参数以及微带线的参数等。

2.引入激励:设置微带天线的激励方式,如电流激励或者电压激励。

在仿真中,可以选择合适的激励方式以及频率,对微带天线进行激励。

3.开启仿真:设置仿真场的参数,如频率范围、网格划分等。

通过点击仿真按钮,即可开始仿真过程。

仿真后,软件会给出微带天线的各种性能参数,如辐射远场图、辐射功率等。

4.结果分析与优化:根据仿真结果进行分析和优化。

如根据辐射远场图分析微带天线的辐射方向、辐射范围等。

根据辐射功率进行性能优化。

实验结果与分析:通过CST Studio Suite软件进行微带天线的仿真,可以得到以下结果:1.辐射远场图:通过仿真结果可以得到微带天线的辐射远场图,从而分析微带天线的辐射方向、辐射范围等信息。

同轴馈电矩形微带天线

同轴馈电矩形微带天线

同轴馈电矩形微带天线一、实验目的1.熟悉同轴馈电矩形微带天线的辐射机理2.学会估算馈电点的位置二、实验原理同轴线馈电的矩形微带天线结构下图所示,其辐射贴片尺寸和微带线馈电的辐射贴片尺寸一致。

在阻抗匹配方面,使用同轴线馈电时,在主模TM10工作模式下,馈电点在矩形辐射贴片长度L方向边缘处〔X= ±L/2>的输入阻抗最高,约为 100Ω-400Ω。

馈电点在宽度w方向的位移对输入阻抗的影响很小,但在宽度方向上偏离中心位置时,会激发了TM1n模式,增加天线的交叉极化辐射,因此,宽度方向上馈电点的位置一般取在中心点〔y=0>;而在辐射贴片的几何中心点〔x=0,y=0>处的输入阻抗则为0,亦即此时无法激发TM10模式。

在y=0时,x轴上的阻抗分布下式可以直接近似计算出输入阻抗为50n时的馈电点的置为:式中:本次设计为中心频率为2.45GHz的矩形微带天线,并给出其天线参数。

介质基片采用厚度为1.6mm的FR4环氧树脂〔FR4 Epoxy板,天线馈电方式选择50Ω同轴线馈电。

天线尺寸的估算:辐射贴片宽度:w=37.26mm辐射贴片长度:L=28mm50Ω匹配点初始位置:L1=7mm模型的中心位于坐标原点,辐射贴片的长度方向是沿着x轴方向,宽度方向是沿着y轴方向。

介质基片的大小是辐射贴片的2倍,参考地和辐射贴片使用理想薄导体来代替,在HFSS中通过给一个二维平面模型分配理想导体边界条件的方式来模拟理想薄导体。

因为使用50Ω同轴线馈电,所以这里使用半径为0.6mm、材质为理想导体〔pec>的圆柱体模型来模拟同轴馈线的内芯。

圆柱体与z轴平行放置,其底面圆心坐标为〔L1,0,0>。

圆柱体顶部与辐射贴片相接,底部与参考地相接,则其高度为H。

在与圆柱体相接的参考地面上需要挖出一个半径为1. 5mm的圆孔,将其作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50Ω。

微带天线设计实验报告hsff

微带天线设计实验报告hsff

微带天线设计实验报告hsff1. 引言微带天线是指一种在非导体衬底上,厚度远小于工作波长的金属片片状天线。

由于其结构简单、易于实现和与尺寸成正比的频率调谐特性,微带天线在无线通信系统、雷达系统、卫星通信系统等领域都有广泛应用。

本实验旨在设计一种基于微带天线的无线通信系统。

2. 设计原理微带天线的设计基于微带线的传输线理论和天线理论,通过调整微带天线的几何结构,可以实现对特定频率信号的发送和接收。

在本实验中,我们需要设计一种工作频率为2.4 GHz的微带天线。

微带天线主要由导体衬底、金属贴片和喇叭线组成。

导体衬底可以是介电材料,如玻璃纤维板、陶瓷板等,也可以是金属材料。

金属贴片是微带天线的辐射元件,其几何形状和尺寸决定了天线的频率特性。

喇叭线用于连接导体衬底和金属贴片,起到提供电信号的功能。

3. 设计步骤根据微带天线的设计原理和工作频率要求,我们可以按照以下步骤来设计微带天线:步骤一:确定导体衬底材料和尺寸根据设计要求选择合适的导体衬底材料,一般可选用介电常数在2到12之间的材料。

确定导体衬底的尺寸,以便适应工作频率。

步骤二:计算金属贴片的尺寸根据所选导体衬底的材料和尺寸,计算金属贴片的尺寸。

一般来说,金属贴片的长度和宽度与工作波长有关,且与导体衬底的介电常数相关。

步骤三:确定喇叭线的结构根据所选导体衬底的材料和尺寸,设计合适的喇叭线结构。

喇叭线的长度、宽度和厚度都会影响微带天线的频率调谐特性。

步骤四:制作微带天线样品根据设计得到的尺寸参数,使用相应的工艺方法制作微带天线样品。

常用的制作方法包括化学腐蚀、电镀等。

步骤五:测试天线性能通过天线测试仪器对微带天线进行性能测试,包括频率响应、增益、辐射图形等参数的测量。

4. 实验结果与分析经过设计和制作,在实验中成功制作了一种工作频率为2.4 GHz的微带天线样品。

经测试,该微带天线样品的频率响应符合设计要求,在工作频率范围内具有良好的增益和辐射特性。

为了进一步优化微带天线的性能,我们对设计参数进行了微调,得到了更好的工作频率和辐射特性。

微带天线实验报告

微带天线实验报告

微波与天线实验报告实验名称:微带天线(Microstrip Antenna)实验指导:黎鹏老师学院:信息学院专业:通信国防一、实验目的:1.了解天线之基原理与微带天线的设计方法。

2.利用实验模组的实际测量得以了解微带天线的特性。

二、预习内容:1.熟悉天线的理论知识。

2.熟悉天线设计的理论知识。

三、实验设备:四、理论分析:天线基本原理:天线的主要功能是将电磁波发射至空气中或从空气中接收电磁波。

所以天线亦可视为射频发收电路与空气的信号耦合器。

在射频应用上,天线的类型与结构有许多种类。

就波长特性分有八分之一波长、四分之一波长、半波天线;就结构分,常见有单极型(Monopole )、双极型(Dipole )、喇叭型(Horn )、抛物型(Parabolic Disc )、角型(Corrner )、螺旋型(Helix )、介电质平面型(Dielectric Patch )及阵列型(Array )天线。

(一)天线特性参数1. 天线增益(Antenna Gain ’G ):isotropicP P G =其中 G ——天线增益P ——与测量天线距离R 处所接收到的功率密度,Watt / m 2Pisotropic —— 与全向性天线距离R 处所接收到的功率密度,Watt / m 22. 天线输入阻抗(Antenna Input Impedance ’Zin ):IV Z in =其中 Z in ——天线输入阻抗V ——在馈入点上的射频电压 I ——在馈入点上的射频电流以偶极天线为例,其阻抗由中心处73Ω变化到末端为2500Ω。

3. 辐射阻抗(Radiation Resistance ’Rrad ):2iP R avrad= 其中Pav ——天线平均辐射功率,Wi ——馈入天线的有效电流,A I ——在馈入点上的射频电流对一半波长天线而言,其辐射阻抗为73Ω。

4. 辐射效率(Radiation Efficiency ’ ηr ):input radiated r P P =η其中P radiated ——由天线幅射出的功率,WP input ——由馈入天线的功率,W5. 辐射场型(Radiation Pattern )天线的电场强度与辐射功率的分布可利用一极坐标图来表示。

微带天线报告

微带天线报告

目录一、微带天线简介 (2)1.1微带天线的概念与分类 (2)1.2微带天线的激励方法 (4)1.3微带天线的工作原理——辐射机理 (5)二、微带天线的分析方法 (8)2.1传输线模型 (8)2.2格林函数法 (10)2.3腔体模型 (11)2.4积分方程法 (11)三、微带天线宽频实现 (12)3.1采用厚介质基片 (12)3.2采用介电常数较小或有耗的介质基片 (12)3.3附加阻抗匹配网络 (12)3.4采用楔形或阶梯形基片 (12)3.5采用非线性基片材料 (13)四、微带天线的多频技术 (13)4.1开槽加载 (13)4.2销钉加载 (14)微带天线摘要:随着社会和经济的发展,通信技术在社会中变得越来越重要,人们的生活也越来越离不开通信。

与此同时,对于接受外来信号的天线的设计也越来越多样化。

移动通信技术的迅速发展和应用,有力地推动了现代通信天线向小型化、多功能的方向发展,设计小型化多功能天线已成为当前天线界研究的重点。

微带天线以其体积小,重量轻,低剖面,能与载体共形,易于制造,成本低,易于与有源器件和电路集成为单一的模件,便于实现圆极化、双极化和双频段等优点得到日益广泛的关注和应用。

本文应老师要求,对微带天线进行简单介绍。

关键字:分类激励工作原理分析方法宽频多频内容:一、微带天线简介1.1微带天线的概念与分类概念:微带天线(microstrip antenna)在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀方法制成一定形状的金属贴片,利用微带线或同轴探针对贴片馈电构成的天线。

分类:微带天线的特征之一就是相对于普通的微波天线有更多的物理参数,可以有任意的几何形状和尺寸。

微带天线可以分为三种基本类型:微带行波天线、微带缝隙天线和微带贴片天线。

Ⅰ、微带行波天线微带行波天线由基片、在基片一面上的链形周期结构或普通的长TEM波传输线(也维持一个TE模)和基片另一面上的接地板组成。

实验10:微带天线(MicrostripAntenna)

实验10:微带天线(MicrostripAntenna)

实验十: 微带天线(Microstrip Antenna ) **一、实验目的:1.了解天线之基原理与微带天线的设计方法。

2.利用实验模组的实际测量得以了解微带天线的特性。

二、预习内容:1.熟悉天线的理论知识。

2.熟悉天线设计的理论知识。

三、实验设备:四、理论分析:天线基本原理:天线的主要功能是将电磁波发射至空气中或从空气中接收电磁波。

所以天线亦可视为射频发收电路与空气的信号耦合器。

在射频应用上,天线的类型与结构有许多种类。

就波长特性分有八分之一波长、四分之一波长、半波天线;就结构分,常见有单极型(Monopole )、双极型(Dipole )、喇叭型(Horn )、抛物型(Parabolic Disc )、角型(Corrner )、螺旋型(Helix )、介电质平面型(Dielectric Patch )及阵列型(Array )天线,如图9-1所示。

就使用频宽来分别有窄频带型(Narrow-band,10%以下)及宽频带型(Broad-band,10%以上)。

(a)单极型(b)偶极型 (c)喇叭型λ/ 2图9-1 常见天线(一)天线特性参数1. 天线增益(Antenna Gain ’G ):isotropicP P G =其中 G ——天线增益P ——与测量天线距离R 处所接收到的功率密度,Watt / m 2Pisotropic —— 与全向性天线距离R 处所接收到的功率密度,Watt / m 2由此可推导出,与增益为G 的天线距离R 处的功率密度应为接收功率密度:24R P G P tx rec ⋅⋅=π其中 G ——天线增益P tx ——发射功率,Watt / m 2 R ——与天线的距离,m2. 天线输入阻抗(Antenna Input Impedance ’Zin ):IV Z in =其中 Z in ——天线输入阻抗V ——在馈入点上的射频电压 I ——在馈入点上的射频电流以偶极天线为例,其阻抗由中心处73Ω变化到末端为2500Ω。

设计实验 微带贴片天线设计

设计实验   微带贴片天线设计

设计实验微带贴片天线的设计一、实验目的Fig. 1 微带贴片天线设计思路1、通过HFSS仿真设计微带贴片天线,具体参数要求如下:✓工作频率为2.6GHz,使用材料为FR4(相对介电常数ε=4.4),厚度为1.6mm的双面覆铜板;✓辐射贴片采用夹角为180°的扇形贴片,利用50Ω的微带线进行馈电,用1/4波导微带匹配段对天线进行阻抗匹配;✓要求天线的血站频率在2.55GHz~2.65GHz范围内,且仿真参数S11在谐振频率出小于-13dB。

2、天线设计思路参考Fig.1,仿真成功后做出实物板。

二、实验原理1、HFSS仿真设计流程:建立模型→设置边界和激励(包括金属板、介质板和空气盒子)→建立优化→设置求解条件,并执行仿真→生成结果。

2、利用APPCAD计算微带线参数:介质板厚度为1.6mm,FR4材料的相对介电常数ε=4.4,中心频率为2.6GHz,根据APCAD计算,如图Fig.2所示,为使微带线馈电电阻为50.04Ω,微带线宽度应为W3=3.06mm,并且1/4波导微带匹配段的长度应为L=15.65mm.Fig. 2 扇形贴片天线参数计算同时,金属板尺寸为100mm×75mm,可初步估计扇形半径R=33mm,馈线长度L3=5mm,匹配段宽度W=1mm。

根据以上参数可绘制如图Fig.3所示。

Fig. 3 扇形贴片天线参数和设计示意图3、制板流程:导出图形→打印胶片→PCB板打孔穿线→将胶片固定在PCB板上进行曝光→显影→刻蚀→用酒精除去感光膜→焊接→测试。

三、仿真过程与分析正面示意图背面示意图Fig. 4 微带贴片天线设计金属板示意图1、建立模型(Fig.4)。

打开HFSS,绘制介质板,第一个点(-10,0,0),第二个点相对坐标为(100,75,-1.6),建立尺寸为100mm×75mm×1.6mm的长方体。

●绘制正面图形:绘制馈线:第一个点(38.475,0,0),第二个点相对坐标(3.06,5,0),建立3.06mm×5mm的矩形馈线。

蛇形微带天线实验报告

蛇形微带天线实验报告

蛇形微带天线实验报告蛇形微带天线是一种常用于微波通信领域的天线,具有良好的性能和应用前景。

下面是一个可能的蛇形微带天线实验报告范本:1. 实验目的熟悉蛇形微带天线的结构和性能特点,掌握其设计和制作方法,了解其应用领域和实际应用效果。

2. 实验器材蛇形微带天线设计软件(如ADS、CST等)、印制电路板、导线、连接器、测试仪器等。

3. 实验原理蛇形微带天线是一种常用的微带天线,其主要特点是结构简单、厚度薄、重量轻、带宽宽、辐射方向可控等。

其结构由基底板、金属贴片、驻波衬底和连接器等组成,可以用软件仿真优化设计,并通过自动化制造流程实现高效生产。

4. 实验步骤(1)在设计软件中创建蛇形微带天线模型,定义其基本参数和特性。

(2)检查模型中各层的线宽、间距、长度等参数,根据电磁仿真结果进行优化调整,以得到最佳性能。

(3)输出蛇形微带天线的PCB制图文件,并使用印制电路板技术生产出实际天线。

(4)将制作好的天线和连接器、测试仪器等进行连接,并进行辐射、阻抗、方向图等测试。

(5)根据测试结果,分析优化天线的性能和设计参数,较好地完成蛇形微带天线制作实验。

5. 实验结果根据实验测试结果,我们成功地制作出一种工作频率为 2.4GHz的蛇形微带天线,其带宽(VSWR<2)达到了20MHz左右,增益约为1dB,辐射方向和波束变化也符合设计要求。

相比之下,在该频率段常用的其他天线中,蛇形微带天线具有较为卓越的性能表现。

同时,我们还可通过改变设计参数、布局方式和材料制备等策略,不断优化蛇形微带天线的性能和应用效果。

6. 实验结论蛇形微带天线是一种常用的微带天线,其具有良好的性能和应用前景。

在实验中,我们成功地掌握了其设计和制作方法,以及评估其性能和优化策略的能力。

但是,也需要指出,实验中可能存在的误差和限制因素,如电磁仿真的精度、制作过程的误差、测试仪器的精度等,均需要不断优化和完善,以实现更高质量的蛇形微带天线制作和应用。

实验一:微带天线的设计与仿真

实验一:微带天线的设计与仿真

实验一:微带天线的设计与仿真一、实验步骤、仿真结果分析及优化1、原理分析:本微带天线采用矩形微带贴片来进行设计。

假设要设计一个在2.5GHz 附近工作的微带天线。

我采用的介质基片,εr= 9.8, h=1.27mm 。

理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。

并且带宽相对较高。

由公式:2/1212-⎪⎭⎫ ⎝⎛+=r r f cW ε=25.82mm贴片宽度经计算为25.82mm 。

2/11212121-⎪⎭⎫ ⎝⎛+-++=w h r r e εεε=8.889;()()()()8.0/258.0264.0/3.0412.0+-++=∆h w h w hle e εε ∆l=0.543mm ;可以得到矩形贴片长度为:l f c L er ∆-=22ε=18.08mm馈电点距上边角的距离z 计算如下:)2(cos 2)(cos 2)(501022z R z Gz Y er in ⨯===λεπβ22090W R r λ=(0λ<<W 条件下)得到:z=8.5966mm利用ADS 自带的计算传输线的软件LineCalc 来计算传输线的宽度,设置如下:计算结果:在这类介质板上,2.5GHz 时候50Ω传输线的宽度为1.212mm 。

2、计算基于ADS 系统的一个比较大的弱点:计算仿真速度慢。

特别是在layout 下的速度令人 无法承受,所以先在sonnet 下来进行初步快速仿真。

判断计算值是否能符合事实。

sonnet 中的仿真电路图如下:S11图象如下:可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。

但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。

主要的近似是下面公式引起22090W R r λ=(0λ<<W 条件下)因为计算的时候没有符合0λ<<W 的条件(W=25.82mm ,而λ0=120mm ,相对之下,它们间的差距不是非常大),因此会引起和事实的不符。

cst微带贴片天线仿真实验报告

cst微带贴片天线仿真实验报告

cst微带贴片天线仿真实验报告介绍本实验旨在通过CST(Computer Simulation Technology)软件进行微带贴片天线的仿真实验。

微带贴片天线作为一种常见的天线类型,在无线通信和雷达系统中得到广泛应用。

本实验将对微带贴片天线进行设计、仿真和性能分析,为实际应用提供指导。

设计与建模1. 设计要求微带贴片天线作为一种通用天线,其设计要求取决于具体的应用场景。

本实验中,我们将设计一个工作频率为2.4GHz的微带贴片天线,用于无线局域网(WLAN)应用。

设计要求如下:•频率范围:2.4GHz±100MHz•阻抗匹配:输入阻抗为50Ω•带宽:达到-10dB带宽为100MHz以上•工作模式:偏振方向为垂直(竖直)2. 设计步骤步骤一:确定尺寸根据设计要求,我们选择基板材料为FR4,其相对介电常数为4.4。

根据微带贴片天线的理论公式,我们可以计算出电磁波在介质中的传播速度,从而确定天线尺寸。

步骤二:确定基本参数根据设计要求,我们选择天线的工作频率为2.4GHz,那么根据传播速度和波长的关系,我们可以确定天线的波长,进而计算出天线的长度。

步骤三:确定天线结构在确定了天线的尺寸和基本参数后,我们需要选择一种合适的天线结构。

常见的微带贴片天线结构包括直缝贴片天线、T型贴片天线和L型贴片天线等。

根据实验要求,我们选择了直缝贴片天线。

步骤四:优化设计通过CST软件进行仿真实验,我们可以对天线进行优化设计。

在仿真实验中,我们可以调整天线的尺寸、形状和位置等因素,以达到更好的性能指标。

通过多次仿真和优化设计,我们可以找到最佳的天线参数。

3. 建模与仿真步骤一:建模在CST软件中,我们可以通过绘制几何结构来建模天线。

根据前面的设计步骤,我们可以绘制出直缝贴片天线的几何形状。

在建模过程中,需要注意几何结构的精度和尺寸的一致性,以确保仿真结果的准确性。

步骤二:设定边界条件和材料属性在进行仿真之前,我们需要设定边界条件和材料属性。

微带天线的报告

微带天线的报告

微带天线的综述卢宁摘要:移动通信技术的迅速发展和应用,有力地推动了现代通信天线向小型化、多功能(多频段、多极化和多用途)的方向发展,设计小型化多功能天线已成为当前天线界研究的重点。

微带天线以其体积小,重量轻,低剖面,能与载体共形,易于制造,成本低,易于与有源器件和电路集成为单一的模件,便于实现圆极化、双极化和双频段等优点得到日益广泛的关注和应用。

本文详细介绍了关于微带天线的基础知识。

1 微带天线的辐射机理微带天线的辐射是由微带天线导体边沿和地板之间的边缘场产生的。

以图1.1所示的矩形微带贴片天线为例,可以简单说明其辐射机理。

图1.1 微带天线辐射机理示意图矩形微带贴片天线由介质基片、在基片上面的矩形导电贴片(辐射器)和基片下面的接地板构成。

假定电场沿微带贴片的宽度与厚度方向没有变化,则辐射贴片上的电场仅沿贴片长度(λ/2)方向变化。

辐射基本上是由贴片开路边沿的边缘场引起的。

在两端的场相对于地板可以分解为法向分量和切向分量,因为贴片长为λ/2,所以,法向分量反相,由它们产生的远场区在正面方向上互相抵消。

平行于地板的切向分量同相,因此,合成场增强,从而使垂直于结构表面的方向上辐射场最强。

所以,贴片可表示为相距λ/2、同相激励并向接地板以上半空间辐射的两个缝隙。

微带天线的辐射场是由各种假定的电流及其沿天线结构的分布得来的。

为了求解微带天线辐射场中的远场值(方向图等),必须知道贴片表面精确的电流分布。

如果介质材料各向同性、均匀且无损耗,微带导体和地板导体的电导率为无限大,则面电流和面磁流可以分别用切向电场和切向磁场表示为:式中:ˆn-----面法向单位矢量图1.2就是微带天线辐射边沿的场态和电流密度分布(侧面图)。

由图中可以清晰地看出,微带天线的向外辐射是由边缘缝隙实现的。

实际应用中,为简单起见,可以认为贴片单元上、下表面的面电流和面磁流相同。

然后,就可以使用位函数由面电流和面磁流求解辐射场。

图1.2 微带天线辐射边沿场态和电流密度(侧面图)pγθϕ的电场和磁场为: 假定只有电流存在,则微带天线外部任意点(,,)式中:ε -----介质的介电常数,F/mμ -----磁导率,H/mω -----角频率,rad/s上标e 表示由电流产生的场,磁矢量位函数:式中:0k -----自由空间波数,1cm -()K r '-----距离原点为日的点上的面电流密度,2/A m同理,使用电矢量位函数F ,磁流产生的场为:上标m 表示磁流产生的场,电矢量位函数F 为:式中:()M r '-----距离原点为r '的点上的面磁流密度,2/H m为简单起见,所有场和电流的时间因子j t e ω均略去。

微带天线

微带天线

实验报告1、天线原理矩形贴片的长度有效长度eff L 等于g λ/2,其中g λ表示导波波长,有eff g ελλ/0=式中,0λ表示自由空间波长;eff ε表示有效介电常数,有211212121-⎪⎭⎫ ⎝⎛+-++=W h r r eff εεε 式中,r ε表示介质的相对常数,h 表示介质层的厚度,W 表示贴片的宽度。

由此,由此可计算出矩形贴片的实际长度L ,即L f c L L L L effeff eff ∆-=∆-=∆-=2122/200εελ 式中,c 为真空中的光速;0f 为天线的工作频率;L ∆为等效辐射缝隙的宽度,且有 ()()()()8.0/258.0264.0/3.0412.0+-++=∆h W h W h L eff effεε矩形贴片的宽度W 可以由下式计算,21021-⎪⎭⎫ ⎝⎛+=r f c W ε 对于同轴线馈电的微带天线,在确定了贴片的长度L 和宽度W 之后,还需要确定同轴线馈电的位置,馈点位置影响输入阻抗。

对于10TM 模式,在W 方向上馈点位置一般取在中心点,即0=f y在L 方向上电场有2/g λ的改变,因此从L 的中心点到两侧,阻抗逐渐变大,给天线输入阻抗为Ω50,L 方向上馈点位置可以由下式计算, ()L Lx re f ξ2= 式中,()211212121-⎪⎭⎫ ⎝⎛+-++=L h L r r re εεξ在上述计算中,都是基于参考面为无限大的平面,然而设计中,参考地是有限面积的,实验表明,当参考地面比微带贴片大出h 6的距离时,计算结果就可以达到足够精确,因此设计中参考地的长度GND L 和宽度GND W 只需满足以下两式即可,即h L L GND 6+≥h W W G ND 6+≥以上信息,为查阅到的资料,在此设计中,其中心频率为2.45GHz ,选用的介质板材相对介电常数为6.15,介质板的厚度为0.64mm ,根据以上的公式来计算微带天线的尺寸,包括贴片的长度L 和宽度W ,同轴线馈点的位置坐标f x ,以及参考地的长度GND L 和参考地的宽度GND W 。

微带天线报告

微带天线报告
(5)创建信号传输端口面
同轴馈线需要穿过参考地面,传输信号能量。因此,需要在参考地面GND上开一个圆孔允许能量传输,圆孔的半径为1.5mm,圆心坐标为(8.9mm,0, 0),并将其命名为Port。
(6)创建辐射边界表面
创建一个长方体,其顶点坐标为(-80,-80,-35),长方体的长宽高为160mm160mm75mm,长方形模拟自由空间,因此材质为真空,长方形命名为Air,创建好这样的一个长方形之后,设置其四周表面为辐射边界条件。
(1-5)
矩形贴片的宽度W可以由下式计算:
(1-6)
对于同轴线馈电的微带贴片天线,在确定了贴片长度L和宽度W之后,还需要确定同轴线馈电的位置,馈电的位置会影响天线的输入阻抗。在微波应用中通常会使用50 ,对于图1-3所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心,以( )表示馈电的位置坐标。
假设矩形贴片的有效长度设为 ,则有
(1-1)
式中, 表示导波波长,有
(1-2)
式中, 表示自由空间波长; 表示有效介电常数,且
= (1-3)
式中, 表示介质的相对介电常数;h表示介质层厚度;W表示微带贴片的厚度。
由此,可计算出矩形贴片的实际长度L,有
(1-4)
式中,c表示真空中的光速; 表示天线的工作频率; 表示图1-2(a)中所示的等效辐射缝隙的长度,且有
对于 模式,在W方向上电场长度不变,因此理论上W方向上的任一点都可以作为馈电,对于避免激发 模式,在W方向上馈电的位置一般取在中心点,即
(1-7)
在L方向上电场有 的改变,因此在长度L方向上,从中心点到两侧,阻抗逐渐变大,输入阻抗等于50 时的馈点位置可以由下式计算
(1-8)
式中,
= (1-9)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波与天线实验报告
实验名称:微带天线(Microstrip Antenna)实验指导:黎鹏老师
学院:信息学院
专业:通信国防
一、实验目的:
1.了解天线之基原理与微带天线的设计方法。

2.利用实验模组的实际测量得以了解微带天线的特性。

二、预习内容:
1.熟悉天线的理论知识。

2.熟悉天线设计的理论知识。

三、实验设备:
四、理论分析:
天线基本原理:
天线的主要功能是将电磁波发射至空气中或从空气中接收电磁波。

所以天线亦可视为射频发收电路与空气的信号耦合器。

在射频应用上,天线的类型与结构有许多种类。

就波长特性分有八分之一波长、四分之一波长、半波天线;就结构分,常见有单极型(Monopole )、双极型(Dipole )、喇叭型(Horn )、抛物型(Parabolic Disc )、角型(Corrner )、螺旋型(Helix )、介电质平面型(Dielectric Patch )及阵列型(Array )天线。

(一)天线特性参数
1. 天线增益(Antenna Gain ’G ):
其中 G ——天线增益
P ——与测量天线距离R 处所接收到的功率密度,Watt / m 2
Pisotropic —— 与全向性天线距离R 处所接收到的功率密度,Watt / m 2
2. 天线输入阻抗(Antenna Input Impedance ’Zin ):
其中 Z in ——天线输入阻抗
V ——在馈入点上的射频电压 I ——在馈入点上的射频电流
以偶极天线为例,其阻抗由中心处73Ω变化到末端为2500Ω。

3. 辐射阻抗(Radiation Resistance ’Rrad ): 2i
P R av
rad
= 其中Pav ——天线平均辐射功率,W
i ——馈入天线的有效电流,A I ——在馈入点上的射频电流
对一半波长天线而言,其辐射阻抗为73Ω。

4. 辐射效率(Radiation Efficiency ’ ηr ):
input radiated
r P P =
η
其中P radiated ——由天线幅射出的功率,W
P input ——由馈入天线的功率,W
5. 辐射场型(Radiation Pattern )
天线的电场强度与辐射功率的分布可利用一极坐标图来表示。

6. 半功率角(Radiation Beam Width )
7. 方向系数(Directivity ’D ):
av
P P D m ax =
其中P max ——最大功率密度,W/m 2
P input ——平均幅射功率密度,W/m 2
五、实验结果分析
1. 版图设计
2. S参数分析
频率设置 Sweep1 1-5GHz count 200 Sweep2 2.3-2.7GHz count 5
从S
3. Smith 原图分析
Freq 2.3-2.7GHz
从Smith原图可以看出输入主抗为1+1.5j - 1-1.5j Ohm。

4.Animation
yout 3D
实验总结
根据仿真结果看:基本满足了实验的性能要求,频率在2.10GHz处,达到了实验要求,但是性能并不是很好,从圆图上看,不匹配,还需要一步的匹配改进。

(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档