22谓词公式与解释讲解

合集下载

谓词公式与翻译(精)

谓词公式与翻译(精)

(4)谓词
P(x)为P(a)= 0,P(b)= 1;
Q(x,y)为Q(a,a)= 0,Q(a,b)= Q(b,a)= Q(b,b)
= 1;
L(x,y)为L(a,b)=L(b,a)= 0,L(a,a)= L(b,b)=
1。
求下列公式在解释I下的真值
2)x( P(f(x))∧Q(x,f(x)));
在解释I下
5
2.3 谓词公式与翻译
由例可知,对于命题翻译成谓词公式时,机动性很大,由于对个 体描述性质的刻划深度不同,就可翻译成不同形式的谓词公式。

例如:这只大红书柜摆满了那些古书
解法1:
解法2:
设:F(x,y): x摆满了y
设:F(x,y): x摆满了y

R(x): x是大红书柜
x( P(f(x))∧Q(x,f(x)))
=( P(f(a))∧Q(a,f(a)))∨( P(f(b))∧Q(b,f
(b)))
=( P(b)∧Q(a,b))∨( P(a)∧Q(b,a))
=( 1∧1)∨( 0∧1)
= 1∨0
= 1 2019/6/3
10
【例2.2.1】给定解释I如下
(1)U ={a,b};
人总是要犯错误的。
解:设F(x):x犯错误,M(x):x是人。则上句符
号化为:
(a) ┒(x)(M(x)⋀┒F(x)) (b) x(M(x)→F(x)) 【例2】尽管有人聪明但未必一切人都聪明。
解:设P(x):x聪明,M(x):x是人。则上句符号 化为:
2019/6/3 x(M(x)⋀P(x))⋀┒(x(M(x)→P(x)))
2019/6/3
7
2.3 谓词公式与翻译

最新2.2谓词公式与解释

最新2.2谓词公式与解释

四、谓词公式的类型
西
设A是公式。如果A在任何的解释下都

大 是真的,则A是永真式;如果A在任何的
学 解释下都是假的,则A是永假式;如果A
在一些解释下为假,一些解释下为真,
则A是非永真的可满足式。
例如: x A(x) x A(x)是永真式; x A(x)∧x A(x)是永假式。
代换实例
西华设A0是含命题变元p1, p2, …, pn的命题逻辑公式,
2.2谓词公式与解释
一、合式公式的定义:
原子公式: f(x1,x2,,xn) 为n元谓词符号,t1,t2,…,tn 是
项,则 f(t1,t2,,tn) 是原子公式;
西 合式公式的归纳定义:
华 大
1、任意的原子公式是公式
学 2、若A是公式,则xA、xA是公式;
3、若A、B是公式,则 A、A∧ B、A∨B、A → B、A B是 公式;
2. 对于某些简单的公式,特别对于简单的闭式,
西 华
可在假定给定任意解释的前提下该公式的真值
大 学
都为真(或者为假)来证明该公式是永真式
(或矛盾式)。
3. 要证明一个公式是可满足式,只要找到一个 解释,使得该公式的真值为真即可。同时为了 证明它不是永真式,只要找一个解释,使得该 公式的真值为假即可。
解释的说明
(1) 一个谓词公式如果不含自由变元,则在一个解释下, 可以得到确定的真值,不同的解释下可能得到不同的 真值。
(2) 公式的解释并不对变元进行指定,如果公式中含有自 由变元,即使对公式进行了一个指派,也得不到确定的 真值,其仅是个命题函数,但约束变元不受此限制。
3)有公式的解释定义可以看出,公式的解释有许多的解 释,当D为无限集时,公式有无限多个解释,根本不可能 将其一一列出,因而谓词逻辑的公式不可能有真值表 可列。

谓词 基本推理公式

谓词 基本推理公式

谓词基本推理公式
谓词逻辑是逻辑学中的一种形式系统,它使用谓词来表达命题的性质和关系。

基本推理公式是谓词逻辑中的一些基本规则,用于推导命题的真假。

以下是几个常用的谓词逻辑基本推理公式:
1. 交换律:A→B ↔ B→A
2. 结合律:(A→B)→C ↔ A→(B→C)
3. 吸收律:A→(B∧C) ↔ (A→B)∧(A→C)
4. 分配律:(A∧B)→C ↔ A→(B→C)
5. 重写律:A→B ↔ ¬B→¬A
6. 否定引入律:¬(A∧B) ↔ (¬A∧¬B)
7. 否定消去律:¬¬A ↔ A
8. 双条件引入律:A↔B ↔ (A→B)∧(B→A)
9. 双条件消去律:A↔B ↔ (A∧B)∨(¬A∧¬B)
10. 全称量词引入律:∀x(P(x)) ↔ P(y)/y (y属于某个集合)
11. 存在量词引入律:∃x(P(x)) ↔ P(y)/y (y属于某个集合)
这些基本推理公式是谓词逻辑的基础,可以用于推导其他命题的真假。

在具体使用时,需要根据命题的具体情况进行选择和应用。

谓词逻辑I 谓词、量词与谓词公式

谓词逻辑I 谓词、量词与谓词公式
如 F(x)G(x), xF(x)yG(y)是pq的代换实例 定理 重言式的代换实例都是重言式,矛盾式的代 换实例都是矛盾式.
26
实例
例 判断下列公式的类型 (1) ∀xF(x)→∃xF(x);
设I为任意的解释,若∀xF(x)为假,则 ∀xF(x)→∃xF(x)为真. 若∀xF(x)为真,则∃xF(x)也为 真,所以∀xF(x)→∃xF(x)恒为真. 是逻辑有效式. (2) ∀xF(x)→(∀x∃yG(x,y)→∀xF(x)); 重言式p→(q→p) 的代换实例,是逻辑有效式.

7
基本概念 —谓词:0元谓词
例 将命题“2是素数且是偶数”用0元谓词 符号化 设F(x):x是素数; G(x):x是偶数;a: 2 则F(a)G(a)表示“2是素数且是偶数” F(a)和G(a)都是0元谓词,不仅如此 F(a)G(a)也是0元谓词, F(x)G(x)是一个1 元谓词,表示x既是素数又是偶数这一性质. 以个体常元a代入x,从而消去个体变元,便 得到0元谓词F(a)G(a)
10
例 (续 )
(2) 2 是无理数仅当 3是有理数 在命题逻辑中, 设 p: 2 是无理数,q: 3 是有理数. 符号化为 p q 在谓词逻辑中, 设F(x): x是无理数, G(x): x是有理数 符号化为 F ( 2 ) G( 3 ) (3) 如果2>3,则3<4 在命题逻辑中, 设 p:2>3,q:3<4. 符号化为 pq 在谓词逻辑中, 设 F(x,y):x>y,G(x,y):x<y, 符号化为 F(2,3)G(3,4)
基本概念 ——谓词:元数
谓词的元数: 谓词中包含的个体的个数, 例如 F(x,y,z)含有三个个体,其元数为3 一元谓词: 表示事物的性质或状态,如F(苏) 多元谓词 (n元谓词, n2): 表示事物之间的 关系. 例如 L(x,y)表示x与y有L关系, 若L表示…大于…,则L(x,y)表示x>y, 若 L 表示 …是 … 的妻子,则 L( 圆 , 又 ) 表示 高圆圆是赵又廷的妻子. n 元谓词规定了 n个个体的顺序,不可随意颠 倒 . 例如 L(圆,又)不能写L(又,圆)

第7章谓词

第7章谓词
谓词变元有理数质数量词金子第7章谓词更多
第7章 谓词逻辑
§7.1 一阶谓词基本概念 §7.2 谓词公式及其解释
§7.3 谓词公式之间的关系与范式表示
§7.4 谓词演算的推理理论
§7.1 一阶谓词基本概念
7.1.1 谓词、个体词和个体域
一个命题是一个陈述句。陈述句的组成结构?
组 成 主语+谓语 主语+谓语+宾语
(∃x (J(x) ∧ S(x) )) ∧ (∀x ( S(x) → J(x))
翻译: 1. 有些金子不闪光。 2. 不闪光的都不是金子。 3. 金子未必都闪光。
多重量化
例10. 有些人对一些食物过敏。 设:Q(x,y): x 对 y 过敏。 M(x): x 是人。 P(y): y 是食物。 x ( M(x) ∧ y ( P(y) ∧ Q(x,y) ) ) 例11. 每个人都有一些朋友。 设:P(x,y): x是y的朋友。 M(x): x是人。 x ( M(x) → y ( M(y) ∧ P(y,x) ) )
4. 如果7是质数,那么8是奇数。 5. 小王和小丁是好朋友。
7.1.2 量词
定义7.4 量词 —— 表示数量的词
量词
•∀x 表示对个体域内的任意的个体x ; •∀xA(x)表示个体域内任意的个体x都具有性质A,A(x)称为全称量词的辖域; •∃x 表示在个体域内存在着个体x; •∃xA(x)表示在个体域内存在着个体x具有性质A,A(x)称为存在量词的辖域
令:P(x):x是质数。
注意: 翻译时的个体域说明是不可少的。 所有的人都是要死的。<=> 对所有的x, 只要x是人, 那么x就是要死的。 令:D(x):x是要死的。
M(x):x是人。

谓词公式与翻译(精)

谓词公式与翻译(精)

xP(x)→x Q(x)) ┒(x)P(x) ⋁x Q(x)
定义2:
设A为谓词公式,若在任何解释下,A的真值都为真,则 称A为永真式;
若至少存在一种解释,使A的真值为真,则称A为可满足 式;
若在任何解释下,A的真值都为假,则称A为矛盾式,矛 盾式也称不可满足式。
2019/6显/3 然,永真式是可满足式。
2019/6/3
7
2.3 谓词公式与翻译
2.谓词公式的解释 定义 谓词公式的一个解释I,由下面4部分组成 1)非空的论域U; 2)U中的特定的个体常项; 3)U上特定的函数; 4)U上特定的谓词。
若将谓词公式中的个体常项,函数和谓词分别指定 为U中的特定个体常项,U上特定的函数和U上特定的谓 词,即为该公式在解释I下的真值。
彐x(P(z)∧R(x,z)) 但是彐x(P(x)∧R(x,x))与彐x(P(z)∧R(x,y))这两种代入都是与
规则不符的。
2019/6/3
15
2.5谓词公式的等价与蕴涵
1、谓词逻辑中常见的等价与蕴含关系 谓词公式的赋值:
在谓词公式中常包含命题变元和客体变元,当客体 变元由确定的客体所取代,命题变元用确定的命题 所取代时,就称作对谓词公式的赋值。一个谓词公 式经过赋值以后,就成为具有确定真值T或F的命 题。
17
(1)命题逻辑中等价和蕴含的推广
在命题演算中,任一永真公式,其中同一命题变元, 用同一公式取代时,其结果也是永真公式。我们可以 把这个情况推广到谓词公式之中,当谓词演算中的公 式代替命题演算中永真公式的变元时,所得的谓词公 式即为有效公式,故命题演算中的等价公式表和蕴含 式表都可推广到谓词演算中使用。
例题 2 对x(P(x)→R(x,y))∧Q(x,y)换名。 解 可换名为: z(P(z)→R(z,y))∧Q(x,y), 但不能改名为: y(P(y)→R(y,y))∧Q(x,y) 以及 z(P(z)→R(x,y))∧Q(x,y)。

2.2--谓词逻辑表示法

2.2--谓词逻辑表示法
2013-7-9源自智能信息处理联合实验室制作
29
人工智能
7. 谓词逻辑表示知识的举例
例1:用谓词逻辑表示下列知识: 武汉是一个美丽的城市,但她不是一个沿海城市。 如果马亮是男孩,张红是女孩,则马亮比张红长得 高。 解:按照知识表示步骤,用谓词公式表示上述知识。 第一步:定义谓词如下: BCity(x):x是一个美丽的城市 HCity(x):x是一个沿海城市 Boy(x):x是男孩 Girl(x):x是女孩 High(x,y):x比y长得高
标点符号、括号、逻辑联结词、常量符 号集、变量符号集、n元函数符号集、n 元谓词符号集、量词
·谓词演算
合法表达式 (原子公式、合式公式), 表达式的演算化简方法,标准式 (合取 的前束范式或析取的前束范式)
2013-7-9
智能信息处理联合实验室制作
14
人工智能
·语法元素
常量符号。
变量符号。
函数符号。
谓词符号。
联结词: ┐、∧、∨、→、 。
量词: 全称量词、 存在量词。和 后面跟着的x叫做量词的指导变元。
2013-7-9
智能信息处理联合实验室制作
15
人工智能
2 基本概念
函数符号与谓词符号 · 若函数符号f中包含的个体数目为n,则称f
为n元函数符号。 若谓词符号P中包含的个体数目为n,则称P为 n元谓词符号。 如:father(x)是一元函数,less(x,y)是二 元谓词. 一般一元谓词表达了个体的性质,而多元谓 词表达了个体之间的关系.
2013-7-9
智能信息处理联合实验室制作
8
人工智能
注意:
在命题逻辑中,每个表达式都是句 子,表示事实。 在谓词逻辑中,有句子,但是也有 项,表示对象。常量符号、变量和 函数符号用于表示项,量词和谓词 符号用于构造句子。

第二讲谓词公式及其性质

第二讲谓词公式及其性质

4、自由变元的代入
(1)对于谓词公式中的自由变元可以代入,代入时需对公 式中出现该自由变元的每一处进行; (2)用以代入的变元与原公式中所有变元名称不能相同。 (x)(F(x,y) P(y))∧(x)(Q(x,y) R(z) ) ∧(y)B(y) (x)(F(x,w) P(w))∧(x)(Q(x,w) R(z) ) ∧(y)B(y)
2. 相应概念

量词的指导变元 (x)P(x) (x)P(x) 量词作用域 (x)( …… (y)(……) )

量词的作用域是邻 接其后的公式,除 非作用域是个原子 公式,否则应在公 式的两侧插入圆括 号。

约束变元 (x)( …P(x)…) (x)(…Q(x)…)

自由变元 (y)( …P(x)…Q(x,y)…) (y)(…Q(x)…R(x,y)…)
说明下列各式的作用域和变元约束情况
1、(x)(A(x) ( y)(B(y) ∧ F(x,y))) 2、(x)(P(x) ( y)(Q(y) ∧ F(x,y,z))) 3、(x) (y)(P(x,y) ∧Q(y,z) 呈自由出现,又呈约束出现 设A(x):x是大学生 论域:我们班全体学生 (x)A(x) (y)A(y) (z)A(z)
5、量化断言与命题的关系
假设个体域D={a1, a2,…,an} (x) (P(x)) P(a1) ∧ P(a2) ∧ … ∧ P(an) ( x)(P(x)) P(a1) ∨ P(a2) ∨ … ∨ P(an)
如何由命题函数变成命题?

具体客体名称取代客体变元获得命题 用量化客体变元的方法获得命题
3、约束变元的换名
换名的目的: 避免由于变元的约束与自由同时出现而引起的混乱。

代数结构与数理逻辑-谓词公式语义解释

代数结构与数理逻辑-谓词公式语义解释
(fni(t1,,tn))= f'ni((t1),,(tn)), 这里f'ni为U中第i个n元运算。 定义19.9:X→U的映射0称为个体变元的
指派,I→U的同态映射称为项解释。
例 : P(Y) 中 的 个 体 常 元 集 C=, 函 数 词 集 合 为 {f11,f21,f22},谓词集合R={R21},P(Y)的解释域定义为: U={0,1,2,…,n,…};2(f11)=f'11, 使 得 f'11(n)=n+1; 2(f21)=f'21; 使 得 f'21(i,j)=i+j, 这 里 i,jU;2(f22)=f'22, 使得f'22(i,j)=i×j,i,jU; 3(R21)=R'21,使得R'21表示 “相等”关系。
对 于 P(Y) 中 只 含 有 闭 项 的 原 子 公 式 p=R21(c1,c2), 在 此 解 释 域 下 , p 解 释 为 “2与3是小于关系”,是真命题。
若把解释域中关系的解释R'21修改为“相 等”关系,则p解释为“2与3是相等关 系”,则是假命题。
有了解释域,就可以对只含有闭项的原子 公式讨论其真假值,但由于对个体变元并 没有赋值,因此一般的原子公式还是无法 确定其真假值。
是真命题。
三、P(Y)的赋值 首先引进两个记号:对给定解释域U和项
解释的原子公式集Y记为YU,,而谓词公 式集P(Y)则相应记为P(YU,).
定义19.10:谓词公式的赋值函数
v:P(YU,)→Z2分三步(a),(b)子公式p=Rni(t1,…,tn)YU,定义:
若╞p,则p就是重言式,简记为╞p。
ACon(A)
例:证明: {x(p(x)→q(x))}╞xp(x)→xq(x)

谓词公式的分类与解释

谓词公式的分类与解释

第二节 谓词公式的分类与解释为了给出谓词公式的定义,先给出项和原子公式的定义。

定义2.1 项:(1) 个体常项和个体变项是项;(2) 设),...,,(21n x x x ϕ是任意的n 元函数,n t t t ,...,,21是项,则),...,,(21n t t t ϕ是项;(3) 有限地使用(1),(2)形成的符号串是项。

定义2.2 设),...,,(21n x x x R 是任意的n 元谓词,n t t t ,...,,21是项,则称),...,,(21n t t t R 是原子公式。

定义2.3合式公式:(1) 原子公式是合式公式;(2) 若A 是合式公式,则)(A ¬也是合式公式;(3) 若B A ,是合式公式,则)(),(),(),(B A B A B A B A ↔→∨∧也是合式公式;(4) 若A 是合式公式,则(),()xA xA ∀∃也是合式公式。

其中x 为任意的个体变项;(5) 有限次地应用(1)~(4)形成的字符串是合式公式。

这样定义的合式公式又称作谓词公式,简称公式。

合式公式的最外层括号可以省去。

定义2.4(1) 在公式xA ∀和xA ∃中,A 是相应量词的辖域,x 称为指导变量。

(2) 在公式xA ∀和xA ∃中,x 的所有出现都是约束出现的,不是约束出现的变项称为自由出现的。

例如:在公式))),,()((),((z y x L y G y y x F x ∧∃→∀中,∀的辖域为))),,()((),((z y x L y G y y x F ∧∃→∃的辖域为)),,()((z y x L y G ∧x ∀中的x 和y ∃中的y 都是指导变量。

x 的出现都是约束的,),(y x F 中的y 是自由出现的,)(y G 与),,(z y x L 中的y 是约束出现的,z 的出现是自由的。

一般情况下,在一个谓词公式A 中,除了可能含若干个个体常项,函数常项,谓词常 项外,还可能含个体变项,函数变项,谓词变项等。

谓词公式转换

谓词公式转换

谓词公式转换在咱们学习数学和逻辑的这个奇妙旅程中,有个叫谓词公式转换的家伙,时不时就出来给咱们找点小挑战。

咱先来说说啥是谓词公式。

简单讲,谓词公式就是用一些符号和规则来描述事物的性质和关系的式子。

比如说,“对于所有的 x,如果 x是偶数,那么 x 能被 2 整除”,这就是一个谓词公式。

那为啥要进行谓词公式转换呢?这就好比你有一堆乱七八糟的积木,你得把它们重新组合、排列,才能搭出你想要的城堡。

谓词公式转换也是这个道理,通过转换,能让我们更清楚地理解和解决问题。

我记得有一次,我在给学生讲谓词公式转换的时候,有个学生一脸迷茫地看着我,问:“老师,这东西到底有啥用啊?”我笑了笑,拿起一支笔和一张纸,给他举了个例子。

假设我们有个果园,里面有苹果树和梨树。

我们用谓词 P(x) 表示 x 是苹果树,用 Q(x) 表示 x 结的果子是甜的。

那么“有的苹果树结的果子是甜的”这个命题,用谓词公式可以写成:存在 x (P(x) 且 Q(x)) 。

那如果我们要把这个公式转换一下,比如说,转换成“存在 x (Q(x)且P(x))”,意思是不是一样的呢?这时候学生们就开始七嘴八舌地讨论起来。

经过一番思考和讨论,大家发现,这两个公式表达的其实是同一个意思,只是顺序不同罢了。

通过这个小小的例子,学生们一下子就明白了谓词公式转换的作用,那就是可以从不同的角度去描述同一个问题,让我们的思维更加灵活。

再比如说,“对于所有的 x,P(x) 蕴含Q(x)”这个谓词公式,我们可以通过等价变换,把它变成“不存在 x (P(x) 且非Q(x))”。

这种转换在解决逻辑推理问题的时候特别有用。

在实际的学习和应用中,谓词公式转换就像是一把万能钥匙,能帮我们打开很多难题的大门。

比如说在数学证明中,通过巧妙地转换谓词公式,可以让复杂的问题变得简单明了;在计算机编程中,正确地进行谓词公式转换,可以让程序的逻辑更加清晰,减少错误。

总之,谓词公式转换虽然看起来有点复杂和抽象,但只要我们多练习、多思考,就能掌握其中的窍门,让它成为我们学习和解决问题的得力工具。

谓词公式的解释

谓词公式的解释
解: 1 永真式 P(QP)的代换实例,故为逻辑有效的。 2 矛盾式 (PQ)Q 的代换实例,故为不可满足的。 3)解释I1: 个体域N, F(x):x>5, G(x): x>4, 公式为真 解释I2: 个体域N, F(x):x<5, G(x):x<4, 公式为假 结论: 为非永真式的可满足式
小结
例2.8
给定解释I如下:
1 个体域为实数集合R; 2 R中的特定元素a=0; 3 R上的特定函数f(x, y) =x+y,
g(x, y)=xy; 4 R上的特定谓词F(x, y):x=y。
在解释I下,公式分别解释为: 1) xF(f(x, a), g(x, a)) 解释为:
在实数集合R中,x(x+0=x0)
把这样得到的公式记作A*。称A*为A在I下的解释,或A在I下被解释成A*。
例2.8
给定解释I如下:
1 个体域为实数集合R; 2 R中的特定元素a=0; 3 R上的特定函数f(x, y) =x+y,
g(x, y)=xy; 4 R上的特定谓词F(x, y):x=y。
在解释I下,求下列各式的真值:
1)xF(f(x, a), g(x, a)) 2) xy(F(f(x, y), g(x, y))F(x, y)) 3 )xF(g(x, y), a)
定理2.2 重言式的代换实例都是逻辑有效的,永假式的代换实例都是不可满足的。
பைடு நூலகம்2.9
判断下列公式中,哪些是逻辑 有效的,哪些是不可满足的? 1)xF(x)(xyG(x,y)xF(x)) 2)(xF(x)yG(y))yG(y) 3)x(F(x)G(x))
分析——两种思路 1 公式的解释; (2)定理2.2。

离散数学 章节2 谓词逻辑

离散数学  章节2 谓词逻辑

2.4 谓词公式的推理演算
2.4.1
基本概念与基本公式
定义2.12 设A1,A2,…,An,B是谓词公 式,如果对A1,A2,…,An都取值1的任何解释, B必取值1,则称由前提A1,A2,…,An到B结论 的推理是有效的(正确的),或者称B是前 提A1,A2,…,An的逻辑结论(有效结论), 记为 A1,A2, ,An B ( A1 A2 An B)。
例如,设R(x,y,z)是三元谓词,z、 f(z)、g(x,y)是三个项,则 R(z,f(z),g(x,y))就是一个原子公式。
定义2.5 的符号串:
谓词公式是按下列规则定义
(1)0和1是谓词公式; (2)原子公式是谓词公式;
(3)若A、B是谓词公式, 则A 、 B 、A B 、A B 、 A B 是谓词公式;
(3)所有相应于Di的项都是有限次 使用(1),(2)得到的符号串。
例如,设f和g分别表示一元和二元函 数,a是个体常元,x,y是个体变元,则a, x,y,f(x),g(x,y),g(f(x),x)), f(g(x,y))等都是项。
定义2.4 设P(x1,x2,x3,…,xn)是n元 谓词,ti(1≤i≤n)是相应于个体变元xi的 个体域Di的项,则称P(t1,t2,t3,…,tn)为 原子谓词公式,简称原子公式。
定理2.11 设A,B是两个谓词公式,则 A=B的充要条件是 A B 且 B A 。 这个定理的证明可由谓词公式的等价定义 2.10和推理定义2.12直接得到。
定理2.12 设A,B是两个谓词公式, 则 A B的充要条件是 A B 是永真式。
2.4.2
演绎推理方法
(1)US规则(全称量词消去规则)
谓词公式是由原子公式,逻辑连接词, 量词和圆括号等组成的符号串,命题逻辑 中的命题公式仅是它的特例,所以命题逻 辑包含于谓词逻辑之中。

第二章谓词逻辑法

第二章谓词逻辑法

3 谓词演算 predicate calculus
3.1 语法和符号 syntax and notation 3.2 连词 conjunctions 3.3 量词 quantifiers
谓词
谓词
在谓词逻辑中,命题是用形如P(x1,x2,…,xn)的谓词来表 述的。一个谓词可分为谓词名与个体两个部分
3.1.2 原子公式(atomic formulas)
谓词公式
原子谓词公式:
是由谓词符号和若干项组成的谓词演算。 若t1,t2,…,tn是项,P是谓词,则称P(t1,t2,…,tn)为原子 谓词公式。
分子谓词公式:
可以用连词把原子谓词公式组成复合谓词公式,并 把它叫做分子谓词公式。
3.1.2 原子公式(atomic formulas)
只有当其对应的语句在定义域内为真时,才具 有值T(真);而当其对应的语句在定义域内为假 时,该原子公式才具有值F(假)。
“老张是一个教师”:一元谓词 Teacher (Zhang) “机器人在1号房间中” :INRoom(Robot,r1). “Smith作为一个工程师为IBM工作”: 三元谓词 Works (Smith, IBM, engineer)
谓词
谓词
在n元谓词 P(x1,x2,…,xn)中,若每个个体均为常量、变 元或函数,则称它为一阶谓词。 如果某个个体本身又是一个一阶谓词,则称它为二阶 谓词,如此类推。 个体变元的取值范围称为个体域。个体域可以是有限 的,也可以是无限的。例如用I(x)表示“x是整数” ,则个体域为所有整数,是无限的。 谓词与函数不同,谓词的真值是”T“或”F“,而函数 的值是个体域中的一个个体,无真值可言。
例如:( x ) INROOM(x,r1) (1号房间内有个物体)

谓词公式与个体变元

谓词公式与个体变元

2.2 谓词公式与解释谓词公式:谓词演算的合式公式。

2.2 谓词公式与解释定义2.8P(t1, t2, …,t n)称为谓词演算的原子谓词公式,其中,P是谓词,t1, t2, …, t n是个体变元、个体常元或任意的n元函数。

定义2.91)原子谓词公式是谓词公式;2)若A是谓词公式,则(﹁A)也是谓词公式;3)若A和B都是谓词公式,则(A∧B), (A∨B), (A→B), (A↔B)都是谓词公式;4)若A是谓词公式,x是任何个体变元,则∀xA和∃xA都是谓词公式;5)只有经过有限次地应用规则1),2),3),4)所得到的公式是谓词公式。

2.2.1 谓词公式的定义根据运算的优先级,有些括号可以适当的去掉如:F(x)F(x)∨⌝G(x,y)∀x(F(x)→G(x))∃x∀y(F(x)→G(y)∧L(x,y))都是谓词公式。

2.2.2 自由与约束定义2.10对于谓词公式∀xA或∃xA来说,x称为量词∀x或量词∃x的指导变元或作用变元。

A称为相应量词的辖域。

在∀x和∃x的辖域中,x的所有出现都称为约束出现,所有约束出现的变元称为约束变元。

A 中不是约束出现的其他变元均称为是自由出现的,所有自由出现的变元为自由变元。

例2.5说明下列各式中量词的辖域与变元约束的情况:1)∀xF(y)2)∀x(F(x)→G(x))3)∀x(F(x)→∃yG(x, y))4)∀x∀y(F(x, y)∧G(y, z))∧∃xF(x, y)5)∀x(F(x)∧∃xG(x, z)→∃yH(x, y))∨G(x, y)6)∀x(F(x)↔G(x))∧∃xH(x)∧R(x)2.2.2 自由与约束解:1)∀xF(y)∀x的辖域是F(y),其中y为自由出现。

2)∀x(F(x)→G(x))∀x的辖域是F(x)→G(x), x为约束出现。

3)∀x(F(x)→∃yG(x, y))∀x的辖域是F(x)→∃yG(x, y), ∃y的辖域是G(x, y),其中x, y都为约束出现。

离散数学19.谓词公式与翻译

离散数学19.谓词公式与翻译
谓词合式公式也叫谓词公式,简称ห้องสมุดไป่ตู้式.
下面都是合式公式: P,(P→Q),(Q(x)∧P),(x)(A(x)→B(x)),(x)C(x)
而下面都不是合式公式: xyP(x) ,P(x)∧Q(x)x.
为了方便,最外层括号可以省略,但是若量词后边 有括号,则此括号不能省. 注意:公式(x)(A(x)→B(x))中x后边的括号不是最外 层括号,所以不可以省略.
谓词公式与翻译
一、谓词合式公式
定义:称n元谓词A(x1,x2,...,xn)为原子谓词公式,其 中x1,x2,...,xn 是客体变元。
例如 Q, A(x) , A(x,y), A(x,f(x)), B(x,y,z), B(x,a,b) 都 是原子谓词公式。
定义:谓词合式公式递归定义如下: 1)原子谓词公式是合式公式; 2)如果A是合式公式,则A也是合式公式; 3)如果A、B是合式公式,则(A∧B)、(A∨B)、(A→B)、 (AB)都是合式公式; 4)如果A是合式公式,X是A中的任何客体变元,则(X) A和 (X) A也是合式公式; 5)只有经过有限次地应用规则(1)-(4)所得的公式是合式公式.
P(|x-a|,0))→Q(|f(x)-b|, )).
例1 在谓词逻辑中将下列命题符号化. (1)凡正数都大于零. (2)存在小于2的素数. (3)没有不能表示成分数的有理数. (4)并不是所有参加考试的人都能取得好成绩.
解:(1)令F(x): x是正数.M(x):x大于零. 则符号化为:(x)(F(x)M(x)).
(2)令E(x): x小于2. S(x):x是素数.则符号化为: (x)(E(x)∧S(x)).
6
例2 对任意小的正数,存在一个正数,使得当
0<|x-a|<时,有|f(x)-b|<.此时称 lim f x b . xa 解:令P(x,y)表示“x大于y”, Q(x,y)表示“x小于y”,故 lim f x b 可命题符号化为: xa ( )( ) (x)(((P(,0)→P(,0))∧Q(|x-a|,)∧

1第2章谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词....

1第2章谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词....

第2章 谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词逻辑推理证明.一、重点内容1. 谓词与量词谓词,在谓词逻辑中,原子命题分解成个体词和谓词. 个体词是可以独立存在的客体,它可以是具体事物或抽象的概念。

谓词是用来刻划个体词的性质或事物之间关系的词. 个体词分个体常项(用a ,b ,c ,…表示)和个体变项(用x ,y ,z ,…表示);谓词分谓词常项(表示具体性质和关系)和谓词变项(表示抽象的或泛指的谓词),用F ,G ,P ,…表示.注意,单独的个体词和谓词不能构成命题,将个体词和谓词分开不是命题.量词,是在命题中表示数量的词,量词有两类:全称量词∀,表示“所有的”或“每一个”;存在量词∃,表示“存在某个”或“至少有一个”.在谓词逻辑中,使用量词应注意以下几点:(1) 在不同个体域中,命题符号化的形式可能不同,命题的真值也可能会改变.(2) 在考虑命题符号化时,如果对个体域未作说明,一律使用全总个体域.(3) 多个量词出现时,不能随意颠倒它们的顺序,否则可能会改变命题的含义.谓词公式只是一个符号串,没有什么意义,但我们给这个符号串一个解释,使它具有真值,就变成一个命题. 所谓解释就是使公式中的每一个变项都有个体域中的元素相对应.在谓词逻辑中,命题符号化必须明确个体域,无特别说明认为是全总个体域。

一般地,使用全称量词∀,特性谓词后用→;使用存在量词∃,特性谓词后用∧.2. 公式与解释谓词公式,由原子公式、联结词和量词可构成谓词公式(严格定义见教材). 命题的符号化结果都是谓词公式.例如∀x (F (x )→G (x )),∃x (F (x )∧G (x )),∀x ∀y (F (x )∧F (y )∧L (x ,y )→H (x ,y ))等都是谓词公式. 变元与辖域,在谓词公式∀xA 和∃xA 中,x 是指导变元,A 是相应量词的辖域. 在∀x 和∃x 的辖域A 中,x 的所有出现都是约束出现,即x 是约束变元,不是约束出现的变元,就是自由变元. 也就是说,量词后面的式子是辖域. 量词只对辖域内的同一变元有效.换名规则,就是把公式中量词的指导变元及其辖域中的该变元换成该公式中没有出现的个体变元,公式的其余部分不变.代入规则,就是把公式中的某一自由变元,用该公式中没有出现的个体变元符号替代,且要把该公式中所有的该自由变元都换成新引入的这个符号.解释(赋值),谓词公式A 的个体域D 是非空集合,则 (1) 每一个常项指定D 中一个元素; (2) 每一个n 元函数指定D n 到D 的一个函数;(3) 每一个n 元谓词指定D n 到{0,1}的一个谓词;按这个规则做的一组指派,称为A 的一个解释或赋值.在有限个体域下,消除量词的规则为:如D ={a 1,a 2,…,a n },则)(...)()()()(...)()()(2121n n a A a A a A x xA a A a A a A x xA ∨∨∨⇔∃∧∧∧⇔∀谓词公式分类,在任何解释下,谓词公式A 取真值1,公式A 为逻辑有效式(永真式);在任何解释下谓词公式A 取真值0,公式A 为永假式;至少有一个解释使公式A 取真值1,公式A 称为可满足式.3. 前束范式 一个谓词公式的前束范式仍是谓词公式. 若谓词公式F 等值地转化成B x Q x Q x Q k k ...2211那么B x Q x Q x Q k k ...2211就是F 的前束范式,其中Q 1,Q 2,…,Q k 只能是∀或∃,x 1,x 2,…,x k 是个体变元,B 是不含量词的谓词公式.每个谓词公式F 都可以变换成与它等值的前束范式. 其步骤如下:① 消去联结词→,↔,⎺∨;② 将联结词⌝移至原子谓词公式之前;③ 利用换名或代入规则使所有约束变元的符号均不同,并且自由变元与约束变元的符号也不同;④将∀x ,∃x 移至整个公式最左边;⑤ 得到公式的前束范式.4.谓词逻辑的推理理论 谓词演算的推理是命题演算推理的推广和扩充,命题演算中的基本等值公式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用. 在谓词演算推理中,某些前提和结论可能受到量词的限制,为了使用这些推理,引入消去和附加量词的规则,有US 规则(全称量词消去规则),UG 规则(全称量词附加规则),ES 规则(存在量词消去规则),EG 规则(存在量词附加规则)等,以便使谓词演算公式的推理过程可类似于命题演算的推理进行.二、实例例2.1 将下列命题符号化:(1) 有某些实数是有理数;(2) 所有的人都呼吸;(3)每个母亲都爱自己的孩子.注意:一般地,全称量词“∀”后,跟蕴含联结词“→”;存在量词“∃”后,跟合取联结词“∧”.解 (1) 设R (x ):x 是实数,Q (x ):x 是有理数。

谓词公式补余律

谓词公式补余律

谓词公式补余律谓词公式补余律,是数理逻辑中的一个重要概念,用来描述命题中的主语和谓语之间的关系。

在逻辑推理中,谓词公式补余律是一个基本原理,它帮助我们理解命题的真值和逻辑结构。

本文将从逻辑角度探讨谓词公式补余律的含义和应用。

我们来简单介绍一下谓词公式补余律的定义。

在逻辑学中,谓词是对主语进行陈述或描述的动词或形容词,而补余则是指主语所具有的性质或特征。

谓词公式补余律指的是,如果一个命题中的主语已经包含了谓语所要表达的全部信息,那么谓语就可以省略不写,因为它已经可以通过主语来推导出来。

举个简单的例子来说明谓词公式补余律。

假设有一个命题是“所有人都是动物”,这个命题中的主语是“人”,谓语是“是动物”。

根据谓词公式补余律,我们可以省略谓语部分,只写出主语“人”,因为在这个命题中已经包含了所有人都是动物这个信息。

谓词公式补余律在逻辑推理和论证中起着非常重要的作用。

通过运用这一原理,我们可以简化命题的表达,减少冗余信息,使逻辑推理更加清晰和简洁。

在实际生活和学术研究中,谓词公式补余律可以帮助我们更好地理解和分析复杂的命题结构,提高逻辑推理的准确性和效率。

除了在逻辑学中的应用,谓词公式补余律也可以在其他领域发挥重要作用。

比如在自然语言处理和人工智能领域,谓词公式补余律可以帮助计算机更好地理解和处理自然语言的命题结构,提高机器学习和推理的效率和准确性。

谓词公式补余律是数理逻辑中的一个基本原理,它帮助我们理解命题的结构和含义,简化命题的表达,提高逻辑推理的准确性和效率。

通过深入研究和应用谓词公式补余律,我们可以更好地理解和利用逻辑学在各个领域的应用,推动科学技术的发展和人类文明的进步。

希望本文对读者有所启发和帮助,引发对逻辑学和谓词公式补余律的思考和探讨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解释的说明
(1) 一个谓词公式如果不含自由变元,则在一个解释下, 可以得到确定的真值,不同的解释下可能得到不同的 真值。
(2) 公式的解释并不对变元进行指定,如果公式中含有自 由变元,即使对公式进行了一个指派,也得不到确定的 真值,其仅是个命题函数,但约束变元不受此限制。
3)有公式的解释定义可以看出,公式的解释有许多的解 释,当D为无限集时,公式有无限多个解释,根本不可能 将其一一列出,因而谓词逻辑的公式不可能有真值表 可列。
二、约束部分
在谓词公式中,形如xP(x)或xP(x)以及
xP(x,y)的部分中x称为指导变元,在辖
西 域中,x的所有出现称为约束变元(约束出
华 大
现);y是自由变元(自由出现)。
学 量词的辖域
(x)P(x)或(x)P(x)中的公式P(x),通
称为量词的辖域。换言之,量词的辖域是
邻接其后的公式,除非辖域是原子公式,
项,则 f (t1, t2 ,, tn ) 是原子公式;
西 合式公式的归纳定义:
华 大
1、任意的原子公式是公式
学 2、若A是公式,则xA、xA是公式;
3、若A、B是公式,则 A、A∧ B、A∨B、A → B、A B是 公式;
有限次地应用前三条,得到公式。
判断下列符号串是否为合式公式: 1. x(P(x) ∧ Q(x)) 2. xy(P(x) Q(y)) 3. yx∧ P(x) 4. x f(x) → x(g(x,y) ∨f(x) )
(2)xy(F(f(x,a),y)F(f(y,a),x)) 在解释N下此公式:xy(x+0=yy+0=x)此命题为真 (3)F(f(x,y),f(y,z))在解释N下该公式x+y=y+z 此时,x,y,z均为自由变元,解释不对自由变元进行指定。因而该 公式是命题函数,不是命题,真值不能确定。
例如公式:x F(x,a)∧x G(f(x),a)
三、谓词公式的赋值(解释)
一个解释由4部分组成:
(1) 非空个体域D;
西 华
(2)D中特定元素;
大 (3)D上特定函数; 学 (4)D上特定谓词。
公式x F(x,a)∧x G(f(x),a)
指定:D=实数集合;a=0;f(x):3x;F(x,y):x≥y; G(x,y):x=y。
则x (x ≥0) ∧x (3x=0) 假命题。
解释举例1
给定解释I如下:
西 华 大 学
x(F(x) ∧ G(x,2))
(F(2) ∧ G(2,2)) ∧ (F(3) ∧ G(3,2))
y L(2,y) ∧ y L(3,y)
0∧ 11
(L(2,2)∨L(2,3)) ∧(L(3,2) ∨ L(3,3)) ( 1 ∨0 ) ∧(0 ∨ 1) 1
解释举例2
例2:已知指定一个解释N如下: (1)个体域为自然数集合DN (2)指定常项a=0 (3)DN上的指定函数f(x,y)=x+y,g(x,y)=x*y (4)指定谓词F(x,y)为x=y 在以上指定的解释N下,说明下列公式的真值
(1)xF(g(x,a),x) 即x(x*0=x)该命题假的
• 项的定义
1. 个体变元、个体常元是项;
2. 若 f (x1, x2 ,, xn ) 是任意n元函数,t1,t2,…,tn 是项,
则 f (t1, t2 ,, tn ) 是项; 3. 有限次的应用1,2得到项。
一、合式公式的定义:
原子公式: f (x1, x2 ,, xn ) 为n元谓词符号,t1,t2,…,tn 是
对x (F(x,y)∧y G(x,y)) F(x,y) 改为: x (F(x,t)∧y G(x,y)) F(s,t) 或者为:t (F(t,y)∧y G(t,y)) F(x,y)
谓词公式的解释
西 谓词逻辑中的解释(赋值)

大 在命题逻辑对每个命题符号作个真值指定可以得一个

公式的一个指派,又称赋值,又称解释。如公式中共出 现n个不同的命题符号,则共有2n个解释,因而可以列 出公式的真值表。而谓词逻辑中公式的赋值解释是 怎样的呢?
§2.2 一阶逻辑合式公式及解释
• 符号体系:
1. 个体常元符号:a,b,c,……a1,a2,a3,…… 西华2. 个体变元:x,y,z,……,x1,x2,x3,……
大3. 学
4.
函数符号:f,g,h,……f1,f2,f3,…… 谓词符号:F,G,H,……
5. 量词符号:
6. 联结词: ∧∨ →
四、谓词公式的类型
西
设A是公式。如果A在任何的解释下都

大 是真的,假式;如果A
在一些解释下为假,一些解释下为真,
则A是非永真的可满足式。
例如: x A(x) x A(x)是永真式; x A(x)∧x A(x)是永假式。
代换实例
西华设A0是含命题变元p1, p2, …, pn的命题逻辑公式,
否则应在所辖公式的两侧插入圆括号。
量词辖域举例
西 例如:x F(x)G(x,y)

大 学
解:x的辖域仅F(x),x是指导变元,变
元x第一次出现是约束出现,第二次出
现是自由出现,y的出现是自由出现。
所以第一个x是约束变元,第二个x是
自由变元,本质上这两个x的含义是不
同的;而y仅是自由变元。
换名规则
2、 代替规则:对自由变元进行代入。
整个谓词公式中同一个字母的自由变元是指同一个个体 名词。因此可以用整个公式中没有的变元符号来代替, 且要求整个公式中该变元同时用同一个符号代替。
换名规则举例
西x F(x,y)∧x G(x,y) 华大改为:x F(x,y)∧u G(u,y) 学或者为: z F(z,y)∧x G(x,y)
可以看出,在谓词公式中一个变元可能既是约束出现,同
时又有自由出现,则该变元既是自由变元又是约束变元,
西 本质上这两种出现,用的是一个符号,实质上是不同的
华 大 学
含义。为避免混淆,需要改名。改名要采用以下规则, 使谓词公式的含义不改变。
1、 换名规则:对约束变元进行换名。
将量词辖域内出现的某个约束变元及其相应量词中的指 导变元,可以换成一个其他变元,改变元不能与本辖 域内的其他变元同名,公式中的其他部分不改变。
相关文档
最新文档