离散数学习题解答(祝清顺版)
离散数学(第二版)课后习题答案详解(完整版)
![离散数学(第二版)课后习题答案详解(完整版)](https://img.taocdn.com/s3/m/b20470d609a1284ac850ad02de80d4d8d15a01b4.png)
离散数学(第⼆版)课后习题答案详解(完整版)习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5 是⽆理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p: 是⽆理数.(7)p:刘红与魏新是同学.(10)p:圆的⾯积等于半径的平⽅乘以π.(13)p:2008 年元旦下⼤雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是⽆理数. p:5 是有理数.q:5 是⽆理数.其否定式q 的真值为1.(2)25 不是⽆理数.答:否定式:25 是有理数. p:25 不是⽆理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是⾃然数.答:否定式:2.5 不是⾃然数. p:2.5 是⾃然数. q:2.5 不是⾃然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧,其真值为 1.(2)不但π是⽆理数,⽽且⾃然对数的底e 也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e 是⽆理数,符号化为p q∧,其真值为1.(3)虽然2 是最⼩的素数,但2 不是最⼩的⾃然数.答:p:2 是最⼩的素数,q:2 是最⼩的⾃然数,符号化为p q∧? ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨,其真值为1.(2)符号化:p r∨,其真值为1.(3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p:刘晓⽉选学英语,q:刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q)(p q) .7.设p:王冬⽣于1971 年,q:王冬⽣于1972 年,说明命题“王冬⽣于1971 年或1972年”既可以化答:列出两种符号化的真值表:合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;, 才有;(3)只有, 才有;(4)除⾮, 否则;(5)除⾮(6)仅当.答:设p: , 则: ; 设q: , 则: .(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.(1)若2+2=4,则地球是静⽌不动的;(2)若2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数.12.将下列命题符号化,并给出各命题的真值:(1)2+2=4 当且仅当3+3=6;(2)2+2=4 的充要条件是3+3 6;(3)2+2 4 与3+3=6 互为充要条件;(4)若2+2 4,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.(1)若今天是星期⼀,则明天是星期⼆;(2)只有今天是星期⼀,明天才是星期⼆;(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:q:⼤熊猫产在中国.r:太阳从西⽅升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“ 是⽆理数.并且,如果3 是⽆理数,则也是⽆理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是⽆理数q: 3 是⽆理数r:是⽆理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重⾔式,所以论述为真。
离散数学 第6章 格(祝清顺版)
![离散数学 第6章 格(祝清顺版)](https://img.taocdn.com/s3/m/13d2dad8bb4cf7ec4afed0fb.png)
格与布尔代数的简介
离散数学
第六章 格与布尔代数
2007年8月20日
Discrete Mathematics
第1节 格的基本概念
科学出版社
主讲:祝清顺 教授
本节主要内容
1. 概念 一.格的定义
2. 对偶原理
3. 基本性质
二.格是代数系统
1. 作为代数系统的格的定义 2. 偏序集合的格与代数集合的格的关系 1. 子格 三.子格
离散数学 第六章 格与布尔代数 2007年8月20日
对偶原理
格的对偶原理表述如下: 设P是对任意格都为真的命题, 如果在命题P中把≤换成 ≥ (或把≥换成≤), ∨换成∧, ∧换成∨, 就得到另一个命 题P, 我们把P称为P的对偶命题, 则P对任意格也是真的命 题. 例如, P: a∧b=b∧a P: a∨b=b∨a
用盖住的性质画出偏序集图或称哈斯图,其作图规则为:
(1)小圆圈代表元素。 (2) 如果 x≤y 且x≠y,将代表 y 的小圆圈画在代表 x 的小 圆圈之上。 (3)如果<x, y>∈covA,则在x与y之间用直线连结。
离散数学 第六章 格与布尔代数 2007年8月20日
知识回顾
4. 上界、下界
定义 4 :设 (A ,≤ ) 是一偏序集,对于 BA ,如有a∈A, 且对任意元素x∈B,都有x≤a ,则称a为 B的上界。同理, 对任意元素x∈B,都有a≤x,则称a为B的下界。 5.最小上界和最大下界 定义 5 :设 (A ,≤ ) 是一偏序集且 BA , a 是 B 的任一上 界,若对B的所有上界 y均有a≤y ,则称 a是B 的最小上界,
离散数学 第六章 格与布尔代数 2007年8月20日
格与布尔代数的简介
离散数学课后习题答案(最新)
![离散数学课后习题答案(最新)](https://img.taocdn.com/s3/m/b9ff3d39647d27284b735180.png)
习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。
离散数学 第10章 谓词逻辑(祝清顺版)
![离散数学 第10章 谓词逻辑(祝清顺版)](https://img.taocdn.com/s3/m/4dd06074011ca300a6c390fb.png)
–可以是无穷集合,如N, Z, R,…。
全总个体域(universe)——宇宙间一切事物组成 。
说明
离散数学
本教材在论述或推理中,如果没有指明所采用 的个体域,都是使用的全总个体域。
第十章 谓词逻辑 2007年8月20日
2.谓词及相关概念
例2 考虑下列3个命题.
(1) 是无理数.
(2) 张洋毕业于北京大学. (3) 15=3×5.
谓词说明
1.谓词中个体词的顺序十分重要,不能随意变更。 如命题F(b, c)为“真”,但命题F(c, b)为“假”; 2.. F(a)与F(x)的不同: F(x, y):x是y的父亲 如例1中,F(x): 是无理数, a为5。
F(a)是有真值的,但F(x)却没有真值。
具体命题的谓词表示形式和 n元谓词是不同的,前者是有 真值的,而后者不是命题,它的真值是不确定的. 3. n元谓词与命题的区别: n 元谓词不是命题,但将 n 元谓词中的个体变元都用具体
a: 4, b: 5, c: 6. 则命题符号化为: F(b, a)F(a, c).
离散数学 第十章 谓词逻辑 2007年8月20日
例题
(2) 设F(x): x建成了, G(x): x是漂亮的, H(x): x是实验室. a: 这个 则命题符号化为: G(a)∧H(a)∧F(a). (3) 设F(x, y): x正在打开y, G(x): x是人, R(y): y是大红书 柜. a: 这个, b: 那只. 则命题符号化为: G(a)∧R(b)∧F(a, b).
离散数学 第十章 谓词逻辑 2007年8月20日
2007年8月20日
第1节 个体、谓词和量词
科学出版社
主讲:祝清顺 教授
离散数学(第五版)清华大学出版社第4章习题解答
![离散数学(第五版)清华大学出版社第4章习题解答](https://img.taocdn.com/s3/m/9add97dd0c22590102029dfe.png)
离散数学(第五版)清华大学出版社第4章习题解答4.1 A:⑤;B:③;C:①;D:⑧;E:⑩4.2 A:②;B:③;C:⑤;D:⑩;E:⑦4.3 A:②;B:⑦;C:⑤;D:⑧;E:④分析题4.1-4.3 都涉及到关系的表示。
先根据题意将关系表示成集合表达式,然后再进行相应的计算或解答,例如,题4.1中的Is ={<1,1>,<2,2>}, Es ={<1,1>,<1,2>,<2,1>,<2,2>}Is ={<1,1>,<1,2>,<2,2>};而题4.2中的R={<1,1>,<1,4>,<2,1>,<3,4>,<4,1>}.为得到题4.3中的R须求解方程x+3y=12,最终得到R={<3,3>,<6,2>,<9,1>}.求RoR有三种方法,即集合表达式、关系矩阵和关系图的主法。
下面由题4.2的关系分别加以说明。
1°集合表达式法将domR,domRUran,ranR的元素列出来,如图4.3所示。
然后检查R的每个有序对,若<x,y>∈R,则从domR中的x到ranR中的y画一个箭头。
若danR中的x 经过2步有向路径到达ranR中的y,则<x,y>∈RoR。
由图4.3可知RoR={<1,1>,<1,4><4,1>,<4,4>,<2,1>,<2,4>,<3,1>}.如果求FoG,则将对应于G中的有序对的箭头画在左边,而将对应于F中的有序对的箭头画在右边。
对应的三个集合分别为domG,ranUdomF,ranF,然后,同样地寻找domG到ranF的2步长的有向路径即可。
2° 矩阵方法若M是R的关系矩阵,则RoR的关系矩阵就是M·M,也可记作M,在计算2 48乘积时的相加不是普通加法,而是逻辑加,即0+0=0,0+1=1+0=1+1=1,根据已知条件得⎡1 0 0 1⎤⎡1 0 0 1⎤⎡1 0 0 1⎤⎢1 0 0 0⎥⎢1 0 0 0⎥⎢1 0 0 1⎥2 ⎢⎥⎢⎥⎢⎥M =⎢⎥⋅⎢⎥=⎢⎥⎢0 0 0 1⎥⎢0 0 0 1⎥⎢1 0 0 0⎥⎣1 0 0 0⎦⎣1 0 0 0⎦⎣1 0 0 1⎦M2中含有7个1,说明RoR中含有7个有序对。
离散数学第四版清华大学出版社课后答案
![离散数学第四版清华大学出版社课后答案](https://img.taocdn.com/s3/m/1f6d9a68178884868762caaedd3383c4bb4cb4d7.png)
离散数学第四版清华大学出版社课后答案第1章习题解答1.1除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,(4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或ww命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不w.“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2(1)p:2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真khd课多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,后的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许aw网分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
答案知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
(10)p:小李在宿舍里.p的真值则具体情况而定,是确定的。
离散数学 第4章 代数系统(祝清顺版)
![离散数学 第4章 代数系统(祝清顺版)](https://img.taocdn.com/s3/m/fdfba61cbed5b9f3f90f1cf8.png)
代数结构的知识体系
半群与群 环与域 格与布尔代数
分类 成分:载体及运算 公理:运算性质 产生 代数系统的构成
子集
子代数
同 种 的 同 类 型 的
等价关系
映射
代数系统的 同态与同构 代数系统间的关系
离散数学 第四章 代数系统 2007年8月20日
商代数 新代数系统
,有限域理论是差错控制编码理论的数学基础,在通讯中发 挥了重要作用。而电子线路设计、电子计算机硬件设计和通 讯系统设计更是离不开布尔代数。
离散数学 第四章 代数系统 2007年8月20日
学习本篇的方法
1、要按照数学的思维方式学习, 即观察客观世界, 抽象出模型 , 再分析、推理揭示内在规律的过程。 2、领会“抽象”性:代数的抽象性不仅体现在元素的抽象上, 还体现在相应运算的抽象上, 是在最纯粹的形式下研究代数结 构中的运算的规律与性质, 从运算的角度来考虑代数结构中的 元素。因此, 初等代数的相应概念、结论不能直接应用在抽象 代数中。如何跨越从直观到抽象是学习抽象代数的重要一步。 3、教材的基本思路是: 首先严格定义什么是代数结构, 并讨 论一般代数结构的基本性质。然后讨论代数结构研究的两个方 面:其一是通过一些基本性质来规定一类特定的代数结构, 并 对这类代数结构的性质进行研究。其二是研究代数结构之间的 各种关系, 通过对代数结构之间关系的研究 , 就可以把一个代 数结构中的某些性质推广到另一个代数结构中。
离散数学
第四章 代数系统
2007年8月20日
例题
例2 实数集R和两个二元运算: 普通加法+和普通乘法 ×, 构成一代数系统, 记作(R, +, ×).
(1) 载体是实数集R.
离散数学第2章 关系(祝清顺版)
![离散数学第2章 关系(祝清顺版)](https://img.taocdn.com/s3/m/289b5600a300a6c30d229f0a.png)
离散数学
关系矩阵的实例
例9 设A={3, 5, 6, 9}, A上的二元关系
R={<x, y|x>y},
试求出关系矩阵。
[解] 关系的集合表示为:
R={9, 3, 9, 5, 9, 6, 6, 3, 6, 5, 5, 3}.
关系矩阵为: 0 1 MR= 1 1
关系的三种表示方法: 集合表达式 关系矩阵
关系图
关系矩阵和关系图可以表示有限集合上的关系。
离散数学
第二章 二元关系
2007年8月20日
关系矩阵
设给定集合A={a1,a2,…,an},B={b1,b2,…,bm},R为从A到B
的一个二元关系,构造一个n×m矩阵。用集合A的元素标注矩
阵的行,用集合B的元素标注矩阵的列,对于aiA和bjB,令
n2 n2
个. 不
每一个子集代表一个A上的二元关系,所以A上有 2 同的二元关系。 |Ai|=mi,则A1×A2×…×An上有 2 二元关系。
离散数学 第二章 二元关系 2007年8月20日
m1m2…mn
个不同的
常用的关系
定义 对任意集合A,定义 (1) 空关系 (2) 全域关系 EA={<x, y>|x∈A且y∈A}=A×A (3) 恒等关系 IA={<x, x>|x∈A} (4) 小于或等于关系:LA={<x, y>|x, y∈A且x≤y}, 其中 AR。 (5) 整除关系:DA={<x, y>|x, y∈A且x整除y}, 其中 AZ* , Z*是非零整数集 (6) 包含关系:R={<x, y>|x, y∈A且xy}, 其中A是集 合族。
离散数学 第8章 树(祝清顺版)88页PPT文档
![离散数学 第8章 树(祝清顺版)88页PPT文档](https://img.taocdn.com/s3/m/beb687382e3f5727a5e962f1.png)
e6
e5
e3
e10
e9 e11
e6
e7 e8
e10
e11
离散数学
第八章 树
2007年8月20日
生成树的存在条件
定理3 任何无向连通图G 至少存在一棵生成树.
[证] 若连通图G中无回路, 则G为自身的生成树. 若G中包含回路, 则随意地删除回路上的一条边, 而
vVdeg(vi) =2m =2(n1). 另一方面, 设T有x片树叶, 可得
2(n1)= vVdeg(vi) ≥x+2(nx) 由上式解出x≥2.
离散数学
第八章 树
2007年8月20日
例题
例2 设T为6条边的树, 其顶点度为1, 2, 3. 如果T恰有3个 度为2的顶点,那么T有多少片树叶?并画出满足要求的 非同构的无向树. [解] 设T有x片树叶, 于是结点总数为
本章将对树进行详细的讨论,主要包括:
树的基本性质和生成树,
根树、有向树中的n元树、有序树和搜索树等。
离散数学
第八章 树
2007年8月20日
Discrete Mathematics
科学出版社
第1节 树
主讲:祝清顺 教授
树的概念
定义1 连通而无简单回路的无向图称为无向树, 简称树, 常用T表示树. 在树中度数为1的结点称为树叶, 度数大于1的结点称为分支结点.
e1
e4 e2 e7 e8
e6
e5 e3Fra biblioteke10
e9 e11
e1 e4 e2 e5
e3
e9
生成树T1
离散数学
第八章 树
离散数学 第8章 树(祝清顺版)
![离散数学 第8章 树(祝清顺版)](https://img.taocdn.com/s3/m/7f37689abceb19e8b8f6bafb.png)
G的生成树一般不惟一. 余树不一定是树, 因为余树不一定连通, 也可能包 含回路.
离散数学
第八章
树
2007年8月20日
例题
例4 在下图中, 可以看到该图的绿线所示的一个生成树 T. 其中e1, e2, e3, e4, e5, e9都是T的树枝, e6, e7, e8, e10, e11都是T的弦.
树
2007年8月20日
例题
例4 利用破圈法求下图的生成树。
依次删去边e6,e7,e8,e10,e11, 所得到的生成树就是例
9.1.3中所给出一棵生成树T1.
e4 e2 e7 e8 e10 e9 e5 e6 e3 e11
e1 e1
e4
e2
e9
e5 e3
T的余树如右图所示, 余树是不连通的, 同时也包含回路.
e 4 e2 e7 e8 e10 e9 e5 e6 e3 e11
离散数学 第八章 树
e1
e7 e 8 e6 e10 e11
2007年8月20日
生成树的存在条件
定理3 任何无向连通图G 至少存在一棵生成树. [证] 若连通图G中无回路, 则G为自身的生成树. 若G中包含回路, 则随意地删除回路上的一条边, 而 不影响图的连通性. 若上仍有回路, 则再删除回路上的一条边, 直到无 回路为止, 最后得到的图是无回路、连通的且为G的生 成子图, 故为G的生成树.
离散数学 第八章 树 2007年8月20日
树简介
而系统地研究树,把树当成一个纯数学对象来研究的是法 国数学家约当(Jordan)。 1869年,约当(Jordan)作为一个纯数学对象独立地发现 了树,并给出了树的概念。 约当所研究的成果就是凯莱(Caylay Arthur)所要研究的,但他并不知道树
《离散数学》课后习题答案
![《离散数学》课后习题答案](https://img.taocdn.com/s3/m/295f94556c175f0e7dd13713.png)
1-1,1-2(1)解:a)是命题,真值为T。
b)不是命题。
c)是命题,真值要根据具体情况确定。
d)不是命题。
e)是命题,真值为T。
f)是命题,真值为T。
g)是命题,真值为F。
h)不是命题。
i)不是命题。
(2)解:原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a)设P:王强身体很好。
Q:王强成绩很好。
P∧Qb)设P:小李看书。
Q:小李听音乐。
P∧Qc)设P:气候很好。
Q:气候很热。
P∨Qd)设P: a和b是偶数。
Q:a+b是偶数。
P→Qe)设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
P Qf)设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a)P:天气炎热。
Q:正在下雨。
P∧Qb)P:天气炎热。
R:湿度较低。
P∧Rc)R:天正在下雨。
S:湿度很高。
R∨Sd)A:刘英上山。
B:李进上山。
A∧Be)M:老王是革新者。
N:小李是革新者。
M∨Nf)L:你看电影。
M:我看电影。
┓L→┓Mg)P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh)P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。
(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。
离散数学课后习题答案 (2)
![离散数学课后习题答案 (2)](https://img.taocdn.com/s3/m/3b69e62e24c52cc58bd63186bceb19e8b8f6ec0d.png)
离散数学课后习题答案1. 第一章习题答案1.1 习题一答案1.1.1 习题一.1 答案根据题意,设集合A和B如下:Set A and BSet A and B在此情况下,我们可以得出以下结论:•A的幂集为{ {}, {a}, {b}, {a, b} };•B的幂集为{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} };•A和B的笛卡尔积为{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) }。
因此,习题一.1的答案为:•A的幂集为{ {}, {a}, {b}, {a, b} };•B的幂集为{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} };•A和B的笛卡尔积为{ (a, 1), (a, 2), (a, 3), (b, 1), (b,2), (b, 3) }。
1.1.2 习题一.2 答案根据题意,集合A和B如下所示:Set A and BSet A and B根据集合的定义,习题一.2要求我们判断以下命题的真假性:a)$A \\cap B = \\{ 2, 3 \\}$b)$\\emptyset \\in B$c)$A \\times B = \\{ (a, 2), (b, 1), (b, 3) \\}$d)$B \\subseteq A$接下来,我们来逐个判断这些命题的真假性。
a)首先计算集合A和B的交集:$A \\cap B = \\{ x\\,|\\, x \\in A \\, \\text{且} \\, x \\in B \\} = \\{ 2, 3 \\}$。
因此,命题a)为真。
b)大家都知道,空集合是任意集合的子集,因此空集合一定属于任意集合的幂集。
根据题意,$\\emptyset \\in B$,因此命题b)为真。
c)计算集合A和B的笛卡尔积:$A \\times B = \\{ (x, y) \\,|\\, x \\in A \\, \\text{且} \\, y \\in B \\} = \\{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) \\}$。
(完整版)《离散数学》试题及答案解析,推荐文档
![(完整版)《离散数学》试题及答案解析,推荐文档](https://img.taocdn.com/s3/m/c8a4235aaef8941ea66e0540.png)
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
离散数学(第五版)清华大学出版社第7章习题解答
![离散数学(第五版)清华大学出版社第7章习题解答](https://img.taocdn.com/s3/m/65dc331c0740be1e650e9afe.png)
离散数学(第五版)清华大学出版社第7章习题解答7.1 (1),(2),(3),(5)都能构成无向图的度数列,其中除(5)外又都能构成无向简单图的度数列.分析1°非负整数列d,d ,L,d 能构成无向图的度数列当且仅当n di为1 2n∑i=1偶数,即d1,d2,L,dn中的奇数为偶数个.(1),(2),(3),(5)中分别有4个,0个,4个,4 个奇数,所以,它们都能构成无向图的度数列,当然,所对应的无向图很可能是非简单图.而(4)中有 3 个奇数,因而它不能构成无向图度数列.否则就违背了握手定理的推论.2°(5) 虽然能构成无向图的度数列,但不能构成无向简单度数列.否则,若存在无向简单图G,以1,3,3,3 为度数列,不妨设G 中顶点为v1,v2,v3,v4,且d(vi)=1,于是d(v2)=d(v3)=d(v4)=3.而v1只能与v2,v3,v4之一相邻,设v1与v2相邻,这样一来,除v2能达到3度外, v3,v4都达不到3度,这是矛盾的.在图7.5所示的4个图中,(1) 以1为度数列,(2)以2为度数列,(3)以3为度数列,(4)以4为度数列(非简单图).7.2 设有几简单图D以2,2,3,3为度数列,对应的顶点分别为v1,v2,v3,v4,由于d(v)=d+(v)+d_(v),所示,d+(v)−d−(v)=2−0=2,d+(v )=d(v )−d−(v )11222=2−0=2,d+(v)=d(v)−d−(v)=3−2=1,d+(v)=d(v)−d−(v)=3−3=033344481由此可知,D 的出度列为2,2,1,0,且满足d+(v)= d−(v).请读者画出∑i∑i一个有向图.以2,2,3,3为度数列,且以0,0,2,3为入度列,以2,2,1,0为出度列.7.3 D 的入度列不可能为1,1,1,1.否则,必有出度列为2,2,2,2(因为d(v)=d+(v)+d−(v)),)此时,入度列元素之和为4,不等于出度列元素之和8,这违背握手定理.类似地讨论可知,1,1,1,1也不能为D的出席列.7.4 不能. N阶无向简单图的最大度Δ≤n−1.而这里的n个正整数彼此不同,因而这n个数不能构成无向简单图的度数列,否则所得图的最大度大于n,这与最大度应该小于等于n-1矛盾.7.5 (1) 16个顶点. 图中边数m=16,设图中的顶点数为n.根据握手定理可知2m=32= n d(v)=2n∑ii=1所以,n=16.(2) 13个顶点.图中边数m=21,设3度顶点个数为x,由握手定理有2m=42=3×4+3x由此方程解出x=10.于是图中顶点数n=3+10=13.(3) 由握手定理及各顶点度数均相同,寻找方程2×24=nk的非负整数解,这里不会出现n,k均为奇数的情况. 其中n为阶级,即顶点数,k为度数共可得到下面10种情况.①个顶点,度数为48.此图一定是由一个顶点的24个环构成,当然为非简单图.②2个顶点,每个顶点的度数均为24.这样的图有多种非同构的情况,一定为非简单图.③3个顶点,每个顶点的度数均为16.所地应的图也都是非简单图.④4个顶点,每个顶点的度数均为12. 所对应的图也都是非简单图.⑤6个顶点,每个顶点的度数均为8,所对应的图也都是非简单图.⑥个顶点,每个顶点的度数均为 6.所对应的非同构的图中有简单图,也有非简单图.82⑦12 个顶点,每个顶点的度数均为 4. 所对应的非同构的图中有简单图,也有非简单图.⑧16个顶点,每个顶点的度数均为3,所对应的非同构的图中有简单图,也有非简单图.⑨24个顶点,每个顶点的度数均为2.所对应的非同构的图中有简单图,也有非简单图.⑩48个顶点,每个顶点的度数均为1,所对应的图是唯一的,即由24个K2构成的简单图.分析由于n阶无向简单图G中,ΔG( )≤n−1,的以①-⑤所对应的图不可能有简单图.⑥-⑨既有简单图,也有非简单图,读者可以画出若干个非同构的图,而⑩只能为简单图.7.6 设G为n阶图,由握手定理可知70=2×35= n d(v)≥3n,∑ 1i=1所以,⎢70⎥n≤=23.⎢3⎥⎣⎦⎢70⎥这里, ⎣x⎦为不大于x的最大整数,例如⎣2⎦=2,⎣2.5⎦=2,=23 .⎢3⎥⎣⎦7.7 由于δ(G)=n−1,说明G 中任何顶点v的度数d(v)≥δ(G)=n−1,可是由于G 为简单图,因而ΔG( )≤n−1,这又使得d(v)≤n−1,于是d(v)=n−1,也就是说,G中每个顶点的度数都是n−1,因而应有ΔG( )≤n−1.于是G为(n−1)阶正则图,即G为n阶完全图Kn.7.8 由G的补图G的定义可知,GUG为Kn,由于n为奇数,所以, Kn中各项顶点的度数n−1为偶数.对于任意的v∈V(G),应有v∈V(G),且dG(v)_d (v)=dK (v)=n−1Gn83其中dG(v)表示v在G中的度数, d (v)表示v在G中的度数.由于n−1为偶G数,所以, dG(v)与d (v)同为奇数或同为偶数,因而若G有r个奇度顶点,则G也G有r个奇度顶点.7.9 由于D'⊆D,所以,m'≤m.而n阶有向简单图中,边数m≤n(n−1),所以,应有n(n−1)=m'≤m≤n(n−1)这就导致m=n(n−1),这说明D为n阶完全图,且D'=D.7.10 图7.6给出了K4的18个非同构的子图,其中有11个生成子图(8-18),其中连通的有6个11,12,13,14,16,17).图7.6中,n,m分别为顶点数和边数.7.11 K4有11个生成子图,在图7.6中,它们分别如图8-18所示.要判断它们之中哪些是自补图,首先要知道同构图的性质,设G1与G2的顶点数和边数.若G1≅G2,则n1=n2且m1=m2.(8)的补图为(14)=K4,它们的边数不同,所以,不可能同构.因而(8)与(14)84均不是自补图类似地,(9)的补图为(13),它们也非同构,因而它们也都不是自补图.(10)与(12)互为补图,它们非同构,因而它们都不是自补图.(15)与(17)互为补图,它们非同构,所以,它们都不是自补图.类似地,(16)与(18)互为补图且非同构,所以,它们也都不是自补图.而(11)与自己的补图同构,所以,(11)是自补图.7.12 3阶有向完全图共有20个非同构的子图,见图7.7所示,其中(5)-(20)为生成子图,生成子图中(8),(13),(16),(19)均为自补图.分析在图7.7所示的生成子图中, (5)与(11)互为补图,(6)与(10)互为补图,(7)与(9)互为补图,(12)与(14)互为补图,(15)与(17)互为补图,(18)与(20)互为补图,以上互为补图的两个图边数均不相同,所以,它们都不是自补图.而(8),(13),(16),(19)4个图都与自己的补图同构,所以,它们都是自补图.7.13 不能.分析在同构的意义下,G1,G2,G3都中K4的子图,而且都是成子图.而K4的两条边的生成子图中,只有两个是非同构的,见图7.6 中(10)与(15)所示.由鸽巢原理可知, G1,G2,G3中至少有两个是同构的,因而它们不可能彼此都非同构.鸽巢原理m只鸽飞进n个鸽巢,其中m≥n,则至少存在一巢飞入至少[m]只n鸽子.这里⎡x⎤表示不小于x的最小整数.例如, ⎡2⎤=2,⎡2.5⎤=3.7.14 G是唯一的,即使G是简单图也不唯一.85分析由握手定理可知2m=3n,又由给的条件得联立议程组⎧2m=3n⎨2n−3=m.⎩解出n=6,m=9.6个顶点,9条边,每个顶点的度数都是3的图有多种非同构的情况,其中有多个非简单图(带平行边或环),有两个非同构的简单图,在图7.8中(1),(2)给出了这两个非同构的简单图.满足条件的非同构的简单图只有图7.8中,(1),(2)所示的图,(1)与(2)所示的图,(1)与(2)是非同构的.注意在(1)中不存在3个彼此相邻的顶点,而在(2)中存在3个彼此相邻的顶点,因而(1)图与(2)图非同构.下面分析满足条件的简单图只有两个是非同构的.首先注意到(1)中与(2)中图都是K6的生成子图,并且还有这样的事实,设G1,G2都是n 阶简单图,则G1≅G2当且仅当G1≅G2,其中G1,G2分别为G1与G2的补图.满足要求的简单图都是6阶9条边的3正则图,因而它们的补图都为6阶6条边的2正则图(即每个顶点度数都是2).而K6的所有生成子图中,6条边2正则的非同构的图只有两个,见图7.8中(3),(4)所示的图,其中(3)为(1)的补图,(4)为(2)的补图,满足要求的非同构的简单图只有两个.但满足要求的非同简单图有多个非同构的,读者可自己画出多个来.7.15 将K6的顶点标定顺序,讨论v1所关联的边.由鸽巢原理(见7.13 题),与v1关联的5条边中至少有3条边颜色相同,不妨设存在3条红色边,见图7.9中(1)所示(用实线表示红色的边)并设它们关联另外3个顶点分别为v2,v4,v6.若v2,v4,v6构成的K3中还有红色边,比如边(v2,v4)为红色,则v1,v2,v4构成的K3为红色K3,见图7.9中(2)所示.若v2,v4,v6构成的K3各边都是蓝色(用虚线表示),则v2,v4,v6构成的K3为蓝色的.867.16 在图7.10 所示的3个图中,(1)为强连通图,(2)为单向连通图,但不是强连通的,(3)是弱连通的,不是单向连通的,更不是强连通的.分析在(1)中任何两个顶点之间都有通路,即任何两个顶点都是相互可达的,因而它是强连能的.(2)中c不可达任何顶点,因而它不是强连通的,但任两个顶点存在一个顶点可达另外一个顶点,所以,它是单向可达的.(3)中a,c互相均不可达,因而它不是单向连通的,更不是强连通的.判断有向图的连通性有下面的两个判别法.1°有向图D是强连通的当且仅当D中存在经过每个顶点至少一次的回路.2°有向图D是单向连通的当且仅当D中存在经过每个顶点至少一次的通路. (1) 中abcda为经过每个顶点一次的回路,所以,它是强连能的.(2)中abdc为经过每个顶点的通路,所以,它是单向连通的,但没有经过每个顶点的回路,所以,它不是强连通的.(3)中无经过每个顶点的回路,也无经过每个顶点的通路,所以,它只能是弱连通的.7.17 G−E的连通分支一定为2,而G−V''的连通分支数是不确定的.分析设E为连通图G的边割集,则G−E的连通分支数p(G−E)=2,不可'''能大于2.否则,比如p(G−E)=3,则G−E由3个小图G,G'',G 组成,且E中边'1 2 3的两个端点分属于两个不同的小图.设E''中的边的两个端点一个在G 中,另一个187在G 中,则E''⊂E',易知p(G−E'')=2,这与E'为边割集矛盾,所以,2p(G−E'')=2.但p(G−V')不是定数,当然它大于等于2,在图7.11中,V'={u,v}为(1)的点割集, p(G−V)=2,其中'G 为(1)中图. V''={v}为(2)中图的点割集,且v为割点, p(G'−V'')=4,其中G为(2)中图.'7.18 解此题,只要求出D的邻接矩阵的前4次幂即可.⎡0 1 1 0⎤⎡1 1 0 1⎤1 0 0 020 1 1 0A=⎢⎥A =⎢⎥⎢0 1 0 1⎥⎢1 0 0 1⎥⎢0 0 0 0⎥⎢0 0 0 1⎥⎣⎦⎣⎦⎡1 1 1 1⎤⎡1 2 1 2⎤3 1 1 0 14 1 1 1 1A =⎢⎥A =⎢⎥⎢0 1 1 1⎥⎢1 1 0 1⎥⎢0 0 0 1⎥⎢0 0 0 1⎥⎣⎦⎣⎦D中长度为4的通路数为A4中元素之和,等于15,其中对角线上元素之和为3,即D中长度为3的回路数为3.v 到v 的长度为4的通路数等于a(4)=2.3434分析用邻接矩阵的幂求有向图D中的通路数和回路数应该注意以下几点:1°这里所谈通路或回路是定义意义下的,不是同构意义下的.比如,不同始点(终点)的回路2°这里的通路或回路不但有初级的、简单的,还有复杂的.例如,v1,v2,v1,v2,v1是一条长为4的复杂回路.3°回路仍然看成是通路的特殊情况.88读者可利用A2,A3,求D中长度为2和3的通路和回路数.7.19 答案A:④.分析G中有Nk个k度顶点,有(n−Nk)个(k+1)度顶点,由握手定理可知n d(v)=k⋅N +(k+1)(n−N )=2m∑ikki=1⇒Nk=n(k+1)−2n .7.20 答案A:②; B:③.分析在图7.12中,图(1)与它的补同构,再没有与图(1)非同构的自补图了,所以非同构的无向的4阶自补图只有1个.图(2)与它的补同构,图(3)与它的补也同构,而图(2)与图(3)不同构,再没有与(2),(3)非同构的自补图了,所以,非同械的5阶自补图有7.21 答案A:④; B:③; C:④; D:①.分析(1)中存在经过每个顶点的回路,如adcba.(2)中存在经过每个顶点.的通路,但无回路.(3)中无经过每个顶点至少一次的通路,其实,b,d两个顶点互不可达.(4)中有经过每个顶点至少一次的通路,但无回路,aedcbd为经过每个顶点的通路.(5)中存在经过每个顶点至少一次的回路,如aedbcdba(6)中也存在经.过每个顶点的回路,如baebdcb.由7.16 题可知,(1),(5),(6)是强连通的,(1),(2),(4),(5),(6)是单向连能的,(2),(4)是非强连通的单向连通图.注意,强连通图必为单向连通图.6 个图中,只有(3)既不是强连通的,也不是连通的,它只是弱连通图.在(3)中,从a到b无通路,所以d,<a,b>=∞,而b到a有唯一的通路ba,所以d<b,a>=1.7.22 答案A:①; B:⑥㈩C:②; D:④.89分析用Dijkstra标号法,将计算机结果列在表7.1中.表中第x列最后标定y/Z表示b到x的最短路径的权为y,且在b到x的最短路径上,Z邻接到x, 即x的前驱元为Z.由表7.1可知,a的前驱元为c(即a邻接到c),c的前驱元为b,所以,b到a的最短路径为bca,其权为4.类似地计论可知,b到c的最短路径为bc,其权为1.b到d 的最短路径为bcegd,其权为9.b到e 的最短路径为bce,其权为7.表7.1顶点a b c d e f gk0 7 1∞ ∞ ∞ ∞1 4 ∞ 5 4∞1/b2 12 5 4∞4/c3 12 5 4/c114 12 5/c75 97/e4 01 95 4 77.23 答案A:⑧; B:⑩C:③; D:③和④.分析按求最早、最晚完成时间的公式,先求各顶点的最早完成时间,再求最晚完成时间,最后求缓冲时间。
离散数学课后习题答案
![离散数学课后习题答案](https://img.taocdn.com/s3/m/39a5343bf78a6529647d538b.png)
1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。
解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。
举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。
由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。
充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。
由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。
(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。
离散数学 第9章 命题逻辑(祝清顺版)
![离散数学 第9章 命题逻辑(祝清顺版)](https://img.taocdn.com/s3/m/cc88fd4d77232f60ddcca1fb.png)
Discrete Mathematics
第1节 命题与连结词
科学出版社
主讲:祝清顺 教授
一、命题与联结词
具有真假意义的陈述句,也就是能够确定或分辨其真假 的陈述句称为命题。 作为命题的陈述句所表达得的判断结果称为命题的真值. 真值只取两个:真与假。 真值为真的命题称为真命题。 真值为假的命题称为假命题。
2007年8月20日
复合命题符号化的基本步骤
① 确定句子是否为命题,不是就不必翻译; ② 找出所有的原子命题; ③ 确定句中连接词对应于哪一个命题连接词;
④ 正确表示原子命题和选择命题连接词;
⑤ 要按逻辑关系翻译而不能凭字面翻译。
离散数学
第九章 命题逻辑
2007年8月20日
例题
例1.6 将下列命题符号化.
离散数学 第九章 命题逻辑 2007年8月20日
数理逻辑的主要内容
数理逻辑内容丰富,但其主要包括‚两个演算‛ 加‚四 论‛,即:
–逻辑演算。包括命题演算和谓词演算
证明论。主要研究数学理论系统的相容性(即不矛盾、 现 协调性)的证明。 代 递归论(能行性理论)。自从电子计算机发明后,迫 数 切需要在理论上弄清计算机能计算哪些函数。递归论 理 研究能行可计算的理论,它为能行可计算的函数找出 逻 各种理论上精确化的严密类比物。 辑 模型论。主要是对各种数学理论系统建立模型,并研 究各模型之间的关系以及模型与系统之间的关系。
在自然语言中,‚如果P, 那么Q‛中的前件P与后件Q往 往具有某种内在联系 (形式蕴涵). 而在数理逻辑中,P与
Q可以无任何内在联系(实质蕴涵).
在数学或其它自然科学中,‚如果P,那么Q‛往往表达
的是前件为真,后件 Q 也为真的推理关系。但在数理逻
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
195 = 1 ∙ 154 + 41 154 = 3 ∙ 41 + 31 41 = 1 ∙ 31 +10 31 = 3 ∙ 10 +1 10=10 ∙ 1 +0 所以, gcd(934, 195) = 1. 代回去, 有 gcd(540, 168) = 1 = 31 3 ∙ 10 = 31 3 ∙ (41 1∙31) = 4 ∙ 31 3 ∙ 41 = 4 ∙ (154 3 ∙ 41) 3 ∙ 41 = 4 ∙ 154 15 ∙ 41 = 4 ∙ 154 15 ∙ (1951 ∙ 154) = 19 ∙ 154 15 ∙ 195 = 19 ∙ (934 4 ∙ 195) 15 ∙ 195 = 19 ∙ 934 91 ∙ 195 故 gcd(540, 168) = 19 ∙ 934 91 ∙ 195, 其中 m=19, n = 91. (2) 方法同(1). 计算可得: gcd(369, 25) = 1, gcd(369, 25)= 4 ∙ 369 59 ∙ 25, 其中 m=4, n = 59. (3) 方法同(1). 计算可得: gcd(369, 25) = 33, gcd(369, 25)= 8 ∙ 165 1 ∙ 1287, 其中 n=8, m = 1. (4) 方法同(1). 计算可得: gcd(369, 25) = 2, gcd(369, 25)= 17 ∙ 42 2 ∙ 256, 其中 n=8, m = 1. 32. 由定理 1.3.8, 可得 ab=lcm(a, b)gcd(a, b)=24 ∙ 144. 由已知条件 a+b=120, 根据根与 系数的关系可构造一个一元二次方程 x2120x+24 ∙ 144=0 解之得, x1=72, x2=48. 由此可得 a=72, b=48 或 a=48, b=72. 33. (1) 运用辗转相除法可得 10920 = 1 ∙ 8316 + 2604 8316 = 3 ∙ 2604 + 504 2604 = 5 ∙ 504 + 84 504 = 6 ∙ 84 +0 所以, gcd(934, 195) = 84. (2) 对于(1)中各式回代过去, 有 gcd(10920, 8316) = 84 = 2604 5 ∙ 504 = 2604 5 ∙ (8316 3 ∙ 2604) = 16 ∙ 2604 5 ∙ 8316 = 16 ∙ (10920 1 ∙ 8316) 5 ∙ 8316 = 16 ∙ 10920 21 ∙ 8316 故 gcd(10920, 8316) = 21 ∙ 8316+16 ∙ 10920, 其中 m = 21, n=16. (3) 由最大公因子与最小公倍数的关系, 有 ab 8316 10920 =1081080. lcm(a, b) gcd(a, b) 84
3
a219=0} ={2, 3}, 由根与系数的关系, 有 2+3=a, 即 a=5. (2) 因为集合 C={x | x2+2x8=0}={2, 4}, 而⊊A∩B, A∩C=, 所以 3∈A, 2∉A. 故 93a+a219=0, 42a+a219≠0; 解之得, a = 2. 20. 因为 A∩B={3}, 所以3B, 而 x2+1>3, 所以只可能 x3= 3 或 2x1= 3. 若 x3 = 3, 则 x=0, 此时 A={3, 0, 1}, B={3, 1, 1}, 故 A∩B={3, 1}, 不合题意. 若 2x1= 3, 则 x = 1, 此时 A={3, 1, 0}, B={4, 3, 2}, 故 A∩B={3}, 满足题意. 综上所述, x = 1, 且 A∪B={4, 3, 0, 1, 2}. 21. 由于 B=(A∩B)∪( A ∩B), 故 B={1}∪{3}={1, 3}, B ={2, 4}. 由此知 A∩B={3}, 3A, 1A; 由 A ∩ B ={2}知, 2 A , 4 A , 从而 2A, 4A, 故 A={3, 4}. 22. A (BC)= A ( B C ) = A ( B C ) = ( A B) ( A C ) =(AB)∪(A∩C). 23. (1) ((A∪(BC))∩A)∪(B (BA)) = ((A∪(B∩ C ))∩A)∪(B∩ ( B A) ) = A∪(B∩( B ∪A)) = A∪(∪(B∩A))=A. (2) ((A∪B)∩B)(A∪B) = ((A∪B)∩B)∩ ( A B) = ((A∪B)∩B)∩( A ∩ B ) = (A∪B)∩B∩ A ∩ B = (3) ((A∪B∪C)( B∪C))∪A = ((A∪B∪C) ∩ ( B C ) )∪A = ((A∪B∪C) ∪A) ∩( B C ∪A) = (A∪B∪C) ∩( ( B C ) )∪A) = A∪((B∪C) ∩ ( B C ) ) = A∪=A. 24. 将不超过 100 的正整数排列如下: 1 11 21 31 41 51 2 12 3 4 5 6 7 8 18 28 38 48 58 9 10 19 20 29 30 39 49 40 50
祝清顺
1
习题 一 (第 1 章 集合)
1. (1) A={0, 1, 2, 3}; (2) A={(2, 3), (1, 0), (0, 1), (1, 0), (2, 3)}; (3) A={1, 2, 3}; (4) A={1, 2, 3, 4, 5}; (5) A={6, 1}. 2. (1) {x | x=2k, kN+, k≤50}; (2) {x | x=6k, kZ}; (3) {(x, y) | (xx0)2+(yy0)2=r2}; (4) {x | 15<x<40, x 为素数}. 3. (1) c=a 或 c=b; (2) a, b 为任意值; (3) a=c=, b={}; (4) b=c=d. 4. 当 a=0 时, 解得 x=2/3 满足题意; 当 a≠0 时, 由=98a≤0, 得 a≥9/8. 综上, 满足条件的 a 的范围是: {a | a≥9/8 或 a=0}. 5. (1) , {a}, {{b}}, {c}, {a, {b}}, {a, c}, {{b}, c}, {a, {b}, c}; (2) , {}; (3) . 6. (1) 2n; (2) 2n1, n≥1, 当 n=0 时不存在; (3) 没有. 因为集合只有 n 个元素, 其子集所含元素个数不可能比整个集合的元素 个数多. 7. (1) 成立; (2) 不成立; (3) 成立; (4) 成立. 8. (1) 不正确, 例如 A={a}, B={a, b}, C={{a}, {b}}, 从而 A∈B 且 B∈C, 但 A∈C. (2) 不正确, 例子同(1); (3) 不正确, 例如, A={1}, B={{1}, 2}, C={{1}, 3}; (4) 不正确, 例如, A={1}, B={1, 2}, C={{1}, {1, 2}}. 9.
68 78 88 98
69
70
79 80 89 90 99 100
可以依次得到素数 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. 25. 由恒等式 mq + np = (mn + pq) − (m − p)(n − q)及条件(m p) | (mn pq)可知, (m p) | (mq np). 26. 设 n=2k+1, n21=(2k+1)21=4k(k+1). 因为 k(k+1)是相邻两个自然数的乘积, 必然是 2 的倍数, 所以原式是 8 的倍数. 27. 101 小于 11 的平方, 这样就可以只用 2、 3、 5、 7 这四个质数来验证. 101 无法被 2、 3、5、7 整除, 所以 101 是质数. 28. 240=2120=2260=2330=2415=2435. 504=2252=22121=22112. 654=2327=23109=23717 51480 = 225740 = 2212870 = 236435 = 2351287 = 2353429 = 23532143 = 233251113. 29. (1) 因为 258=2112+6, 所以 q=21, r=6. (2) 因为 258=(39)( 15)+12, 所以 q= 39, r=12. (3) 因为367=(16)24+17, 所以 q= 16, r=17. (4) 因为334=26(13) +4, 所以 q= 26, r=4. 30. 44758=5598+3 5598=698+7 698=88+5 88=18+0 18=08+1 所以 4475=(10573)8. 31. (1) 运用辗转相除法可得 934 = 4 ∙ 195 + 154
13 14
15 16 17
22 23 24 25 26 27 32 33 34 35 36 37 42 43 44 45 46 47 52 53 54 55 56 57
59 60
4
61 71 81 91
62 63 64 65 66 67 72 73 74 75 76 77 82 83 84 85 86 87 92 93 94 95 96 97
2
(1) 错误; (2) 正确; (3) 正确; (4) 错误; (5) 错误; (6) 错误; (7) 正确; (8) 正确; (9) 错误; (10) 错误. 10. (1) {d}; (2) {a, c, e}; (3) {a, b, c, e}; (4) {b, d, e}. 11. 各集合的文氏图如图所示(阴影部分).
A
B E
A C
B E
A C