同济大学2016—2017年数值分析测试题

合集下载

同济大学2016-2017 学年第一学期《概率论与数理统计》期终考试试卷(A 卷)

同济大学2016-2017 学年第一学期《概率论与数理统计》期终考试试卷(A 卷)

课号:122011 课名:概率论与数理统计 考试考查:考查年级 专业 学号 姓名 任课教师 备用数据:975.0)96.1(,95.0)645.1(=Φ=Φ.()8413.01=Φ,()9772.02=Φ,.488.27)15(,262.6)15(,1315.2)15(,8413.0)1(2975.02025.0975.0====Φχχt.54.17)8(,18.2)8(,306.2)8(,95.0)645.1(,236.9)5(2975.02025.0975.0290.0====Φ=χχχt.8944.0)25.1(=Φ220.950.050.95(8) 1.8595,(8) 2.733,(8)15.507t χχ===220.9750.0250.975(8) 2.306,(8) 2.1797,(8)17.5345,(0.6)0.7257t χχ===Φ=7531.1)15(,95.0)645.1(,8944.0)25.1(95.0==Φ=Φt一、填空题(18分)1, 设821,,,X X X 是取自正态总体),1(2σN 的简单随机样本,X 是其样本 均值;4321,,,Y Y Y Y 是取自正态总体),2(2σN 的简单随机样本,Y 是其样本均值,假设样本821,,,X X X ,4321,,,Y Y Y Y 相互独立,则当非零常数c = 时,统计量X Y c 服从自由度为 的t 分布.2, 设654321,,,,,X X X X X X 是取自正态总体),1(2σN 的简单随机样本,S X ,分别为样本均值和样本标准差,则()=>1X P ,()=<<228472.1,1σS X P . 3, 设521,,,X X X 是取自正态总体),0(2σN 的简单随机样本,则当非零常数c = 时,统计量()25242321X X X X X c+++服从自由度为 的F 分布.4, 设12,,n X X X 是取自正态总体()2,σμN 的简单随机样本,()∑−=+−=1121n i i i X Xc T 是2σ的无偏估计,则常数c 的值为 ( )A. n 1 ;B. n 21 ;C. 11−n ; D. )1(21−n .5, 设521,,,X X X 是取自正态总体()2,0σN 的简单随机样本,()()2542321X X X X X cT +++=,其中c 为非零常数,则当=c 时,T 服从自由度为 的 分布.6, 设821821,,,,,,,Y Y Y X X X 是取自正态总体)1,(μN 的简单随机样本,811,8i i X X ==∑8118i i Y Y ==∑,则()=X D ,()=−Y X D ,()=>−5.0Y X P .7, 设521,,,X X X 是取自正态总体),0(2σN 的简单随机样本,则当非零常数c = 时,统计量 ()25242321XX X X X c+++服从自由度为 的t 分布.8, 设随机变量4321321,,,,,,Y Y Y Y X X X 相互独立且服从相同的分布,()21,0σN X 服从正态分布,记∑==4141i i Y Y , 统计量∑∑==−=412312)(i ii iY Y XcT , 其中c 为非零常数,则当=c 时,T 服从自由度为 的 分布.二、 简答题1、 设某商务网站一天内被访问的次数X 服从参数为λ的泊松分布,有人根据近三年该网站的日被访问次数的数据推算出610)(=X E .根据该网站和广告商的协议,该网站每被访问一次网站获利0.10元.假设该网站各天被访问的次数相互独立且服从相同的分布.问:以95%的概率测算该网站在未来的100天里至少可以获利多少元? (要求用中心极限定理解题) .2、 设某厂生产药品的对于治疗某种疾病的治愈率为0.8.现在临床上让患有这种疾病的100个病人服用这个厂生产的这种药品.求在这100个病人中至少有75人治愈的概率的近似值. (要求用中心极限定理解题) .3、 某检验员逐个地对产品进行检验,检验一个产品所需的时间X (单位:秒)是个随机变量,且31)20(,32)10(====X P X P .如果该检验员一天内有效的工作时间为6.7小时,试求该检验员在一天有效工作时间内能检验的产品数量不少于1800个的概率的近似值.(要求用中心极限定理解题)4、 某保险公司开办的一个险种有100万人投保,每人每年支付120元保险费,在一年内投保人意外死亡的概率为0.0006,投保人意外死亡时保险受益人可以向保险公司要求赔付10万元。

同济大学数值分析试卷

同济大学数值分析试卷

同济大学课程考核试卷(A 卷)2006 — 2007 学年第 一 学期命题教师签名:陈雄达 审核教师签名:徐承龙课号:122145 课名:数值方法与计算机算法 考试考查:考查此卷选为:期中考试( )、期终考试(√)、重考( )试卷年级 专业 学号 姓名 任课(注意:本试卷共 7 大题, 2 大张,满分100分.考试时间为120分钟。

要求写出解题过程,否则不予计分。

一至五题为笔算题,要求给出答案;六、七题为编程题,请只用Matlab 编写)一、 (12分)已知函数2)(3-=x x f ,求一个四次多项式)(x p ,满足下面的插值条件:.1)1(')1(' ,3,2,1,0 ),()(+===f p k k f k p 且二、 (12分)利用追赶法求下面方程的解:.4411303120211033411354321⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------x x x x x三、 (12分)待定下面求积公式中的参数α,使其代数精度最高,并指明其代数精度:⎰-++=h f h f h f f h x x f 0 )).0(')('())()0((2d )( α四、(12分)试写出一个迭代格式求解下面的线性代数方程组,使其对任意初始向量皆收敛:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡210108481044410321x x x .五、(12分)用显式Euler 方法计算下述微分方程在步长25.0=h 时的近似解:⎪⎩⎪⎨⎧≤≤=-=.10,1)0(),1(4d d x y xy x y 六、(20分)下面的数据表近似地满足函数21cxb ax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像.625.0718.0801.0823.0802.0687.0606.0356.0995.0628.0544.0008.0213.0362.0586.0931.0i iy x ----七、(20分)若在Matlab 工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数精度为1010-的近似根,并写出调用方式:。

数值分析试题与答案

数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。

同济大学高数09-16B(下)期末考试题

同济大学高数09-16B(下)期末考试题

同济大学2009-2010学年第二学期高等数学B(下)期终试卷一. 填空题(4'832'⨯=)1. 曲面2222321x y z ++=在点(1,2,2)-处的法线方程为122146x y z --+==-.2. 函数2ln(2)z x y =+在点(1,2)处沿方向(1,2)l =-的方向导数为25.3. 设(,,)f x y z 为连续函数,则三次积分2222120(,,)x y x y dx f x y z dz --+⎰⎰的柱面坐标积分形式为221220(cos ,sin ,)d d f z dzπρρθρρρθρθ-⎰⎰⎰.4. 设函数()f x 具有一阶连续函数,且(0)1f =,若曲线积分222()(())Lxy y dx yf x y dy +++⎰在整个平面上与路径无关, 则2()21f x x x =++.5. 曲面积分(4)32xz dS π∑+=⎰⎰, 其中222:4,0x y z z ∑++=≥6. 设函数222ln()u x y z =++, 则(1,1,1)2div(gradu)3=.7. 若幂级数0nn n a x ∞=∑在点2x =处收敛, 在点2x =-处发散, 则幂级数1(1)n nn a x n∞=-∑的收敛 区间为(1,3)-8. 设()f x 是以2π为周期的周期函数,它在(,]ππ-上的表达式为2,0()210x x f x x x ππ--<≤⎧=⎨+<≤⎩则()f x 的傅里叶级数在点5x π=处收敛到12π-二. 解答题(68')9. (8')证明函数326,(,)(0,0)(,)0(,)(0,0)xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩在点(0,0)处不连续.[30,01lim (,)0,lim (,)2x y x y f x y f x y =→=→==] 10. (10')计算二重积分sin Dydxdy y ⎰⎰, 其中D 是由直线y x =与y =. [210sin 1sin1y y yI dy dx y ==-⎰⎰] 11. (10')计算三重积分(42)x y z dV Ω++-⎰⎰⎰, 其中Ω是由平面1x y z ++=与三坐标平面所围成的闭区域.[120555(1)224I zdV z z dz Ω==-=⎰⎰⎰⎰] 12. (10')计算曲线积分22Lxdy ydxx y -+⎰, 其中L 为椭圆22142x y +=(按顺时针方向绕行). [222222222221122()x y x y Q P y x xdy ydx I dxdy x y x y x y π+=+≤∂∂--==⇒===∂∂++⎰⎰⎰] 13. (10')计算曲面积分222()()x y z dydz x y z dxdy ∑++++⎰⎰, 其中 ∑ 为曲面: 22(04)z x y z =+≤≤, 取上侧. [22224(4)4(4)(3)64,728z x y z x y I x z dV I πππΩ=+≤=+≤+=-+=-=-⇒=⎰⎰⎰⎰⎰⎰下侧下侧]14. (10')将函数21()32f x x x =++展开成(1)x -的幂级数, 并指出展开式成立的范围.[1101111()(1)()(1)(13)1224n n n n n f x x x x x ∞++==-=----<<++∑] 15. (8')求幂级数201(2)!!n n n x n ∞=+∑的收敛域及和函数, 并由此求级数201!n n n ∞=+∑的和. [22101111(,),()()()(24),(2)3(1)!2!24xn n n n n x x S x x x e S e n n ∞∞==-+Ω=-∞+∞=+=++=-∑∑]同济大学2010-2011学年第二学期高等数学B(下)期终试卷一. 填空题(4'832'⨯=) 1. 直线11211x y z -+==--与平面220x y z ++-=的夹角为6π.2. 向量函数222(,,)F x y y z z x =在点(1,2,1)-处的散度为2-.3. 质点在变力(,,)F yz xz z =-的作用下, 沿螺旋线:2cos ,2sin ,x t y t z t Γ===, 从点(2,0,0)M 运动到点(2,0,)N π-, 则变力F 所作的功为252π.4.闭区域22{}D x y =+≤, 则积分2275()2Dx y d σπ+=⎰⎰.5. 若级数0(1)n n n a x ∞=+∑在点32x =处条件收敛, 则该级数的收敛半径52.6. 函数2sin x 的麦克劳林展开式为12121(1)2(2)!n n nn x n --∞=-∑.7. 若1()sin nn S x bnx ∞==∑是函数()((0,))f x x x ππ=-∈的正弦展开式, 则()22S ππ-=-8. 设Ω是由22z x y =+与平面1Z =所围的有界闭区域,1Ω是Ω位于0,0x y ≥≥的部分, 则下列等式中正确的是C1:4A xdV xdV ΩΩ=⎰⎰⎰⎰⎰⎰; 1:4B ydV ydV ΩΩ=⎰⎰⎰⎰⎰⎰;1:4C zdV zdV ΩΩ=⎰⎰⎰⎰⎰⎰; 1:4D xydV xydV ΩΩ=⎰⎰⎰⎰⎰⎰.二. 解答题(68')9. (8')求曲线222222102x y z x y z ⎧++=⎨-+=-⎩在点(1,2,1)处的切线与法平面方程. [121,812208112x y z x y z ---==+-+=-] 10. (10')计算曲面积分2(2)x y dS ∑+-⎰⎰, 其中∑是球面2224x y z ++=被曲面.z =截下的较小部分的曲面.[2222222((1603x y I x y d ππθρ+≤=++==-⎰⎰⎰] 11. (10')将函数22()ln(1)xt f x x x e dt -=++⎰展开成x 的幂级数,并指出展开式成立的范围.[21111()(1)(),[1,1]!(21)n n n f x x x x n n n∞+==+--∈-+∑]12. (10')计算曲面积分2xzdydz ydzdx yzdxdy ∑++⎰⎰, 其中∑为曲面2221(0,0)x y z x z ++=≥≥取前侧.[2222219()(24xyD y I x yz dxdy x dxdy z π∑=++==⎰⎰⎰⎰]13. (10')计算三重积分(42)x y z dV Ω++⎰⎰⎰, 其中 Ω 是由曲面2221x y z +-=与平面 1,2z z ==所围成的有限闭区域. [222211214x y z I zdzdxdy π+≤+==⎰⎰⎰] 14. (10')()f x 是周期为4π的偶函数, 在[0,2]π上()2f x x π=-. 求该函数的傅里叶展开式, 并由此求级数的和211n n ∞=∑. [222118211()cos ,(,)(21)26n k f x x x k nπππ∞∞=-=+∈-∞+∞⇒=-∑∑] 15. (10')设()f x 为区间[,]a b 上的连续函数,且()0f x >,证明21()()()bbaaf x dx dx b a f x ≥-⎰⎰[2()1()()()()()2()()b bb b b b aaa a a a f x f x f y dxdy dxdy dxdyb a f y f y f x ==+≥=-⎰⎰⎰⎰⎰⎰]同济大学2011-2012学年第二学期高等数学B(下)期终试卷一. 填空选择题(3'824'⨯=)1. 极限22(,)(1,1)sin()lim 2x y x y x y→--=+.2. 若函数 (,)f x y 具有连续的偏导数, 且 (1,2)2,(1,2)1x y f f ==-, 则极限21(,1)(1,2)l i m31t f t t f t →+-=-.3. 由32210z x xyz ee --+-=所确定的函数(,)z z x y =在(1,1,1)点的偏导数(1,1,1)11z x e∂=∂- 4. xoy 平面上曲线L 的方程为(,)0F x y =, 若将该曲线关于直线0y x +=对称得到曲线 'L , 则'L 的方程为(,)0F y x --=.5. 函数(,)f x y 在某点沿任意方向的方向导数存在是函数在该点可微分的什么条件? [ B ] :A 充分条件; :B 必要条件; :C 充分必要条件; :D 无关条件.6. 若常数项级数1nn u∞=∑收敛, 则下列各项判断中正确的判断是: [ D ]21:nn A u∞=∑一定收敛; 1:nn u B n ∞=∑一定收敛; 1:n n C nu ∞=∑一定发散; :D 对于常数p , 如果1n n u ∞=∑收敛就可判断1np n u n∞=∑收敛, 必有1p >. 7. Ω是球体2222x y z R ++≤, 1Ω是球体Ω位于第一卦限内的部分(0,0.0)x y z ≥≥≥, 则积分23()x y z dv Ω++⎰⎰⎰等于 [ B ] 123:8()A x yz dv Ω++⎰⎰⎰; 12:8B y dv Ω⎰⎰⎰; 12:8()C x y dv Ω+⎰⎰⎰; 12:24D y dv Ω⎰⎰⎰.8. ∑是空间光滑的有向曲面片, Γ是与∑正向联系∑的有向边界曲线, 则由斯托克斯公式22(2)()()xz y dx xy z dy z x dz Γ+++++⎰等于 [ D ] :2A zdydz xdzdx dxdy ∑++⎰⎰; 22:(2)()()B xz y dydz xy z dzdx z x dxdy ∑+++++⎰⎰; :(21)C z x d S ∑++⎰⎰; :2(1)D zdydz y dxdy ∑-+-⎰⎰.二. 解答题(6'212⨯=)1. 求曲线 23322030x yz x y z ⎧--=⎨+--=⎩ 在(1,1,1)-点的切线方程. [111571x y z --+==-] 2. 计算Dxydxdy ⎰⎰, 其中D是由y =y =所围成的有界闭区域. [196I =] 三(8')求函数22(,)(2)ln f x y x y y y =++的极值, 并说明是极大还是极小值.[min 11(0,)f ee=-] 四(8')已知()f x 是[0,]π上的连续函数, 若将()f x 分别展开成周期为2π的傅里叶余弦和正弦级数, 它们分别为余弦级数01cos 2n n a a nx ∞=+∑; 正弦级数1sin n n b nx ∞=∑. 试写出系数 n a 与n b 的计算公式, 并求函数()0(),10f x x F x x ππ≤≤⎧=⎨-<<⎩周期为2π的傅里叶级数.[略] 五(10')3=上的点(,,)(0)x y z xyz ≠, 使得该点处的切平面与三个坐标平面所围四面体的体积最大. [体积V =max 111(1,,)498V ⇒=] 六(10')如果曲线积分22(1)(2())Lx y y dx xy x dy ϕ+++-⎰与路径无关, 其中()x ϕ是可导函数, 并且满足(0)1ϕ=, 求函数()x ϕ, 并计算积分22'(1)(2())L x y y dx xy x dy ϕ+++-⎰,其中'L 是沿曲线2x y xe =从(0,0)到(1,)e 的弧段.[31()13x x ϕ=-+2'213L e e ⇒=+-⎰]七(10')∑是由曲面1z =223()1z x y =+-所围立体的边界曲面, 它的法向指向曲面的外侧, 计算曲面积分32221()(2)()3x yz dydz xy y z dzdx x y z dxdy ∑+++++⎰⎰. [22112220312(22)5I x x yz y dv d d dz πρρθρρρπ+-Ω=+++==⎰⎰⎰⎰⎰⎰]八(10')求幂级数3111()(1)3nn n x n ∞=+-∑的收敛域及其和函数. [333(1)[0,2);()ln[1(1)]3(1)x S x x x -Ω==----- 九(8')判别常数项级数111121n na∞+++=∑的收敛性(0)a >, 并对自己的判断给出证明.[111ln ln 1ln ln 2111ln 11ln 1:2a nn a nn n a n a a a n a e na++++<+++<+⇒>=<<=⇒>收敛]同济大学2012-2013学年第二学期高等数学B(下)期终试卷一. 填空选择题(3'8⨯)1. 经过三点(1,1,3),(2,1,4),(3,0,1)A B C -的平面方程为543180x y z -+-=;点(2,0,1)到该平面的距离为2.2. yoz 平面上的直线2z y =-+绕着z在二次曲面中, 该曲面的类型是 圆锥面 .3. Ω是上半球体 22210x y z z ⎧++≤⎨≥⎩, ∑ 是 Ω 的边界曲面外侧, 1∑ 是上半球面2221,0x y z z ++=≥ 的上侧, 则利用高斯公式计算可得24()(2)(1)3x y d y d z y z d z d x x z d x d yπ∑-+++-+=⎰⎰;积分127()(2)(1)3x y dydz y z dzdx x z dxdy π∑-+++-+=⎰⎰.4. (1,2,2),(4,5,2)A B --是空间两点, L 是以,A B 为两端点的直线段, AB L 是以A 为起点 B 为终点的有向直线段,则1;14ABLL ds dz ==⎰⎰.5. D 是由曲线22y x =与3y x =-所围的有界闭区域, 则积分(,)Df x y dxdy ⎰⎰等于 [ A ]()A 213322(,)xx dx f x y dy --⎰⎰; ()B 212332(,)x xdx f x y dy --⎰⎰;()C 9223(,)ydy f x y dx -⎰; ()D 9322(,)y dy f x y dx -⎰.6. 积分222211()x y I x y dxdy +≤=+⎰⎰, 222222,0()x y y I x y dxdy +≤≥=+⎰⎰, 224431()x y I x y dxdy +≤=+⎰⎰,223341()x y I x y dxdy +≤=+⎰⎰, 则有 [ D ]1234()A I I I I >>>; 1243()B I I I I >>>; 4321()C I I I I >>>; 2134()D I I I I >>>.7. xoy 平面上密度为(,)x y μ的薄片D 对z 轴上位于(0,0,2)-点单位质点的引力为 (,,)x y z F F F F =, G 是引力常数, 则 [ B ] 32222(,)()()z DG x y A F dxdy x y z μ=++⎰⎰; 32222(,)()(4)z DG x y B F dxdy x y μ=++⎰⎰;32222(2(,)()[(2)]z D G z x y C F dxdy x y z μ⋅-=++-⎰⎰; 32222(,)()(4)z DG x y D F dxdy x y μ-=++⎰⎰. 8. ∑是抛物面222,0z x y z =--≥的上侧, 则由两类曲面积分的联系,(,,)(,,)(,,)P x y z d y d z Q x y z d z d x R x y z d x d y ∑++⎰⎰等于 [ C ]()(22)A P x Q y R d S ∑⋅+⋅+⎰⎰;()B ∑;()C ∑;()D ∑.二. (4'3⨯)1. 试求曲线21ln(1),t x t y t z e-==+=在参数1t =所对应点的切线与法平面方程.[1ln 21,426ln 20412x y z x y z ---==++--=] 2. 试求由方程3222xz z xy +-=所确定的函数(,)z z x y =在(1,1,1)点的全微分(1,1,1)dz . [(1,1,1)1255dz dx dy =-+] 3. 占有上半圆224,0x y y +≤≥的薄片面密度为2(,)()1x y x y μ=++, 试计算该薄片的质量. [2[()1]6DM x y dxdy π=++=⎰⎰]4. 将函数21()6x f x x x -=--展开成1x +形式的幂级数.[0311131()[(1)](1),11151110510414n n nn f x x x x x ∞==⋅-⋅=--++<+++⋅-∑] 5. 将函数0,02()22x f x x πππ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩展开成周期为2π的余弦级数.[141sin cos 2n n nx n ππ∞=-+∑]三. (8')求幂级数202(1)(1)n nn n x ∞=+-∑的收敛区间与和函数.[2211()2[12(1)]x s x x -<=--] 四. (10')Ω是由曲面z =以及2z =所围成的立体, 其体密度为22x y μ=+.(1)计算Ω关于z 轴的转动惯量;(2)试写出Ω关于平行于z 轴的直线0;1x x y ==转动惯量的计算公式(无需计算) [22222220128();()[()(1)]21z l I x y dv I x y x x y dv πΩΩ=+==+-+-⎰⎰⎰⎰⎰⎰] 五. (10')任意取定球面22228x y z ++=上一点并且任意给定一个方向, 都可以求出函数 2(23)u x y z =++在给定点沿给定方向的方向导数, 试求出所有这些方向导数中的最大 与最小值.[222223,(23)(28)gradu y z L x y z x y z λ=++=+++++-max min (P gradu gradu ⇒=±±==-六. (10')已知222222ax by x ydx dy x y x y +++++是某个二元函数的全微分. (1)试求出常数,a b ;(2)计算积分222222Lax by x y dx dy x y x y+++++⎰, 其中L 是逆时针方向的曲线221x y +=.[2221(1)2,1;(2)(2)()Lx y a b x y dx x y dy +===-=-++=⎰⎰]七. (8'){}n u 是斐波那契数列: 1,1,2,3,5,8,13,21,, 即12111,1,n n n u u u u u +-===+,2,3,n =, 试分析级数11n nu α∞=∑的收敛性, 其中α是实常数. [11113312,2(),()2223n n n n n n n n n n n u u u u u u u u u -++><⇒>+=>< 0α⇒≤时,级数显然发散;0α>时,级数收敛]同济大学2013-2014学年第二学期高等数学B(下)期终试卷一. 填空选择题(3'824'⨯=)1. 以空间三点(2,3,1),(1,2,3),(0,1,2)A B C ----为顶点的三角形面积2A =.2. 两平面20x y z --=与223x y z ++=的夹角余弦cos 6θ=.3. 曲面2:ln(21)z x y ∑=-+在(2,2,0)的法线方程为22421x y z--==--.4. D 是以(1,1),(1,1)-以及(1,1)--为顶点的三角形闭区域, 则积分3(2)4Dxy dxdy -=-⎰⎰5. 函数(,)f x y 具有连续的偏导数, 已知//(,)0,(,)0x y f x y f x y <>, 如果(1,1)a f =,(1,1)b f =- (1,1)c f =--,(1,1)d f =-四个数中最大的数是M , 最小的数是m , 则有 【D 】 (),A M a m d ==; (),B M c m a ==; (),C M d m b ==; (),D M b m d ==.6. 将110(,)xdx f x y dy ⎰⎰化成极坐标的二次积分式时, 下列正确的是 【C 】2c o s2()(cos ,sin )A d f d πθθρθρθρρ⎰⎰c o s20()(cos ,sin )B d f d πθθρθρθρρ⎰⎰;2s i n204()(c o s ,s i n )C d f d πθπθρθρθρρ⎰⎰; sin 204()(cos ,sin )D d f d πθπθρθρθρρ⎰⎰.7. Ω是由圆锥面z =与半球面z =所围的空间立体, 则将积分22(,)I f xy z dxdydz Ω=+⎰⎰⎰化成柱面坐标计算时, 下面正确的三次积分式是 【C 】22200()(,)A d d f z dz πρθρρρ⎰⎰; 2220()(,)B d d f z dz πρθρρρ⎰⎰;22()(,)C d f z dz πρθρρρ⎰; 220()(,)D d f z dz πρθρρρ⎰.8. 已知0(1,2,3,)n u n ≤=, 则1n n u ∞=∑发散的充分必要条件是 【A 】1()l i m nk n k A u →∞==-∞∑; ()lim n n B u →∞=-∞; ()C {}n u 是无界数列; 1()limnkn k D u→∞==+∞∑.二. 计算下列各题(6'530'⨯=)1. 在经过点(1,0,2)-的平面与球面222(1)(1)12x y z +-++=相交的所有圆弧中, 求出圆 弧长度的最小值. [6π] 2. 求函数2ln (1)yz x =+的全微分(1,)e dz . [122ln 2dx e dy -+]3. 计算22()Dx y x dxdy +-⎰⎰, 其中D 是由224,x y y x +≤≥确定的扇形区域. [2π] 4. L 为平面内光滑的简单闭曲线, 并取正向, 求曲线积分2323(s i n )()y Ly y x d x e x d y -++-⎰的最大值. [2222331(133)6x y I x y dxdy π+≤≤--=⎰⎰]5. 判断级数111(cos )nn e n ∞=-∑的收敛性, 并给出判断理由. [1n u n发散] 三. (10')求由方程221z xz x y e --+=所确定函数(,)z z x y =的偏导数(1,1,1)(1,1,1),z zx y ∂∂∂∂以及 二阶偏导22(1,1,1)zy∂∂. [22(1,1,1)(1,1,1)(1,1,1)111,,39z z zx y y ∂∂∂===-∂∂∂]四. (10')Γ是曲面2z xy =与柱面1x y +=的交线, 从z 轴正向看向z 轴的负向, 曲线Γ 是顺时针方向的, 计算曲线积分23(2)(3)(23)x yz dx xy x z dy x y dz Γ-++++++⎰.[22(33)31xyD I xy dxdy x dxdy ∑=+=-=-⎰⎰⎰⎰]五. (10')求幂级数021n nn x n ∞=+∑的收敛域, 以及该幂级数在收敛域内的和函数. [111()ln(12),[,0)(0);(0)1222S x x x S x =--∈-=] 六. (8')计算222(2)(2)zxy dydz x e dzdx x z y dxdy ∑++++⎰⎰, 其中∑是曲面z =位于02z ≤≤的部分, 曲面法向与z 轴正向的夹角为钝角. [645π-] 七. (8')()[0,]f x C π∈, 已知()f x dx ππ=⎰, 求常数12,,,n c c c , 使得积分21[()c o s ]nk k f x c k x d x π=-∑⎰取得最小值, 并说明1lim cos ()nk n k c kx F x →∞==∑在[,]ππ-上的函数表达式. [0()102()cos ,(),()10k f x x c f x kxdx F x f x x ππππ-≤≤⎧==⎨---≤<⎩⎰]同济大学2014-2015学年第二学期高等数学B(下)期终试卷一. 填空选择题(3'824'⨯=)1. 已知三向量:(2,1,1),(1,3,1),(1,,2)a b c y =-==-共面, 则常数2y =.2. 设(,)sin(23)f x y x y =+, 则极限0(2,)(,)lim 4cos(23)x f x x y f x y x y x∆→-∆-=-+∆.3. 已知可微函数(,)f x y 的偏导数(1,1)(1,1)1,2f fx y --∂∂==∂∂, 则函数(,)g x y =2(32,3)f x y x y --+在(,)(1,2)x y =点对变量y 的偏导数(1,2)6gy∂=∂.4. 已知连续函数22(,)(,)Lf x y x y f x y ds =+-⎰, 其中L 是上半圆周222,0x y r y +=≥,则322(,)1r f x y x y rππ=+-+.5. 设D 是由22222,4x y x x y +≥+≤所确定的平面闭域, L 是D 的正向边界, 则积分222(2)(2)6x Ly e xy dx x xy x dy π++++=⎰.6. 设D 是平面闭域: 22,x y y y x +≤≥. 则将二重积分22()DI f x y dxdy =+⎰⎰化为极坐标下的二次积分时, I 等于 【A 】s i n2204()2()A d f d πθπθρρρ⎰⎰; 32sin 244()()B d f d πθπθρρ⎰⎰;12()()C d f d πθρρρ⎰⎰; 3sin 244()2()D d f d πθπθρρρ⎰⎰.7. 已知常数项级数1nn u∞=∑收敛, 则下列收敛的级数是 【C 】21()nn A u ∞=∑; 11()n n n B u u ∞+=∑; 11()2n n n u u C ∞+=+∑; 1()(1)nn n D u ∞=-∑.8. 设1nn n a x∞=∑的收敛半径为0,1R ≠, 则231()nn n n a xx ∞=+∑的收敛半径为 【D 】(A(B ; ()C ;()D .二. 计算下列各题(6'424'⨯=)1. 求曲面2arctan 1xz y -=在(1,0,1)点的切平面与法线方程. [(1,1,2)n =-]2. 22(,)(1)yf x y x =+,当ρ=充分小时, 求(1,1)f x y +∆+∆的一阶近似值 a b x c y +∆+∆, 即(1,1)()f x y a b x c y +∆+∆-+∆+∆是ρ的高阶无穷小()o ρ. [488ln 2x y +∆+∆] 3. 计算曲面:12z xy ∑=-位于222,0x y y +≤≥部分的面积. [136π] 4. 设()f x 是(,)-∞+∞上的连续函数, 记002()a f x dx ππ=⎰, 02()cos n a f x nxdx ππ=⎰,2()s i n n b f x n x d xππ=⎰. 求出三角级数的和函数01()(cos sin )2n n n a S x a nx b nx ∞==++∑ 在(,]ππ-上的表达式. [2()0(),,(0)(0),()()00f x x S x S f S f x ππππ<<⎧===⎨-<<⎩] 三. (8')在平行六面体ABCDEFGH 中, 已知(1,1,2),(2,1,1),(1,2,0),(3,0,2)A B C H ---- 求(1),,D E G 点的坐标; (2)该平行六面体的体积. [(2,0,3),(6,1,3),(4,2,5);10V ----=] 四. (10')已知曲线积分22()()Lx ay dx x y dyx y ++++⎰在不包含x 轴负半轴的区域内与路径无关. (1)求常数a ;(2)计算上述积分,其中是上半平面从(1,0)到(0,1)的光滑曲线段331x y +=. [1;2a I π=-=]五. (10')计算曲面积分222()()(1)xy yz dydz x y z dzdx yz dxdy ∑++-++⎰⎰, 其中有向曲面 22:(1)z x y z ∑=+≤的法向与z 轴的夹角是钝角. [56π-]六. (10')求幂级数30(1)21n n n n x n ∞=-⋅+∑的收敛域与和函数.[331()ln(12),2S x x x x =+<七. (14')(1)如果直线l 与直线'l 的夹角为(0)2πθθ<<, 相距为0a >. 判别直线'l 绕直线l 旋转所得曲面∑的类型并给出判别的理由; (2)若直线l 的方程为:132212x y z ++-==, 直线'l 的方程为213431x y z ---==-, 试求由直线'l 绕直线l 旋转所得曲面∑以及相距 为2且垂直于直线l 的两平面所围立体体积的最小值. [(1)单叶双曲面;(2)''3,cos ll ll d θ==取222104:925(11),3x y z z V π∑+=+-≤≤=]同济大学2015-2016学年第二学期高等数学B(下)期终试卷一. 填空题(4'832'⨯=) 1. 设cosy xu xe =, 则(1,)2(1)2du dx dyππ=+-.2. 设曲面10xy yz zx ++-=在点(1,2,3)M --处的法向量为n , 其与z 轴正方向的夹角为 锐角, 则函数23ln()z xy y e ++在点(1,2,3)M --处沿n方向的方向导数为5.3. 交换二次积分的次序1221022112(,)(,)(,)yx dy f x y dx dy f x y dx dx f x y dy--+=⎰⎰⎰.4. 设空间立体Ω由平面0,1z z ==以及曲面22231x y z +-=所围成, 则三重积分3333()4x y z dv πΩ++=⎰⎰⎰.5.设曲线:(01)L y x ≤≤, 则曲线积分2()12Lx y ds π+=+⎰.6. 设在平面上, 曲线积分33()()4xx x xLa ee dy y e e dx π--+-+⎰与路径无关, 则常数 12a π=-.7.设无穷级数1(1)nn ∞=-∑, 则k 的最大取值范围是12a k =>.8. 设102()2,2x f x x x ππππ⎧-≤<⎪⎪=⎨⎪+≤≤⎪⎩, 将()f x 展开为正弦级数1sin n n b nx ∞=∑, 若该级数的和函数为()s x , 则53()24s π-=-.二.(10')设(,)z z x y =是方程22222880x y z yz z +++-+=确定的隐函数, 且(0,2)1z -=, 求22(0,2)(0,2)z zx x --∂∂∂∂,. 【22(0,2)(0,2)415z zx x --∂∂=∂∂=0,】三.(10')在椭圆锥面1z =xoy 面所围成的空间闭区域中放置一个长方体, 它 的各个侧面均平行于坐标面, 求该长方体的最大体积.【222max 114,2(1),33327V xyz x y z x y z V =+=-⇒===⇒=】 四.(10')计算三重积分z Ω-⎰⎰⎰, 其中Ω是由0,1z z ==所围成的闭区域.【21211()()1243I d d z dz d d z dz πρπρπππθρρρθρρρ=-+-=+=⎰⎰⎰⎰⎰⎰】五.(10')求曲线积分222(1)(12)y y Ly e dx x y e dy +++⎰, 其中L 为从(0,0)O 沿曲线x =(1,1)A 的有向弧段. 【01(1)(1)014DI d e dy e πσ=--+-=+-⎰⎰⎰】六.(10')计算曲面积分2332()(2)()y x e dydz y yz dzdx z y dxdy ∑-+-+-⎰⎰, 其中∑为曲面z =位于0z =与1z =之间的部分的下侧.【0222373()()1010I x y dv z y dxdy πππ∑+∑∑Ω∑=-=+--=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰】 七.(10')求幂级数131nn n n ∞=⋅+∑的收敛半径与和函数.【213111,()ln(13),(,)313333x R s x x x x x ==++-∈--】八.(8')设级数1[ln ln(1)ln(3)]n n a n b n ∞=++++∑收敛, 求常数,a b .【310312(1)ln 0()3012n a a b a b u a b n a b n n b ⎧=-⎪++=⎧+⎪=++++⇒⇒⎨⎨+=⎩⎪=⎪⎩】同济大学2016-2017学年第二学期高等数学B(下)期终试卷一. 填空选择题(3'824'⨯=)1. 已知直线L 过点(1,2,3)M -, 与z 轴相交, 且与直线1332:232x y z L ---==-垂直, 则直线L 的方程为123122x y z +--==--.2. 函数222ln()u x y z =++在点(1,2,2)P -处的梯度为244(,,)999-.3. 设2sin (,)1xytf x y dt t=+⎰, 则22(0,2)4f x ∂=∂.4. 设(,)f x y 连续,化二次积分1201(,)xdx f x y dy -⎰⎰为极坐标形式的二次积分:22s i n 42c o s s i n4(c o s ,s i n )(c o s ,s i n )d f d d f d ππθθθπθρθρθρρθρθρθρρ++⎰⎰⎰⎰.5. 设空间立体Ω由平面0,0,0,1x y z x y z ===++=围成, 则三重积分1(253)6x y z d v Ω+-=⎰⎰⎰.6. 无穷级数11133ln32n n n ∞-==⨯∑.7. 设级数1nn a∞=∑收敛, 则下列必收敛的级数是 [ D ]11:(1)n n n a A n ∞-=-∑; 21:n n B a ∞=∑; 2211:()n n n C a a ∞-=-∑; 11:()n n n D a a ∞+=+∑.8. 若幂级数1nn n a x∞=∑在2x =-处条件收敛, 则21(1)nn n a x ∞=-∑的收敛区间为 [ D ]:(2,2)A -;:(B ; :(1,3)C -;:(1D +.二.(8'216⨯=)9. 设函数3222222,0(,)00x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩, 求(0,0)yx f . [1]10. 求曲面222x z y =+上平行于平面224x y z +-=的切平面方程. [223x y z +-=]三.(10')计算二次积分112201x xdx dy x y ++⎰⎰.[13(ln )222π+]四.(10')计算曲线积分224Lydx xdy x y-+⎰, 其中L 是正向圆周229x y +=. [π-]五.(10')求曲面22z x y =-夹在圆柱面222x y +=及226x y +=之间的曲面面积, 并求相 应的形心坐标(其中曲面的密度1ρ=). [49,(0,0,0)3A M π=]六.(10')计算曲面积分22232()()()y xy e dydz yz z dzdx zx xy dxdy -+-+-⎰⎰, 其中∑为曲面22(1)z x y z =+≤的下侧. [6π]七.(10')将函数22134x x x ++-展开成2x +的幂级数, 并指出相应的收敛范围. [2102111(1)7[](2),4034532n n n n n x x x x x ∞+=+-=-++-<<+-∑]八.(10')设函数()g x 是(,)-∞+∞上周期为1的连续函数, 且1()0g x dx =⎰, 函数()f x 在区间[0,1]上有连续的导数, 记1()()n a f x g nx dx =⎰, 证明: 级数21n n a ∞=∑收敛.[0()()xG x g t dt =⎰,110011()()()'()n a f x dG nx G nx f x dx n n ==-⎰⎰,22n M a n≤]。

(完整)数值分析试题库与答案解析,推荐文档

(完整)数值分析试题库与答案解析,推荐文档

模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设,,则=.,= ______.152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A 342⎛⎫⎪=- ⎪ ⎪⎝⎭x ∞A1x3.已知y =f (x )的均差(差商),,,01214[,,]3f x x x =12315[,,] 3f x x x =23491[,,]15f x x x =, 那么均差=.0238[,,] 3f x x x =423[,,]f x x x 4.已知n =4时Newton -Cotes 求积公式的系数分别是:则,152,4516,907)4(2)4(1)4(0===C C C = .)4(3C 5.解初始值问题的改进的Euler 方法是阶方法;0(,)()y f x y y x y '=⎧⎨=⎩6.求解线性代数方程组的高斯—塞德尔迭代公式为,123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩若取, 则.(0)(1,1,1)=- x(1)=x 7.求方程根的牛顿迭代格式是 .()x f x =8.是以整数点为节点的Lagrange 插值基函数,则01(), (),, ()n x x x 01, ,, ,n x x x =.()nk jk k x x =∑9.解方程组的简单迭代格式收敛的充要条件是.=Ax b (1)()k k +=+x Bx g 10.设,则的三次牛顿插值多项式为(-1)1,(0)0,(1)1,(2)5f f f f ====()f x ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式满足:,,()p x (1)15p =(1)20p '=(1)30p ''=,.(2)57p =(2)72p '=2.构造代数精度最高的形式为的求积公式,并求出10101()()(1)2xf x dx A f A f ≈+⎰其代数精度.3.用Newton 法求方程在区间内的根, 要求.2ln =-x x ) ,2(∞8110--<-kk k x x x 4.用最小二乘法求形如的经验公式拟合以下数据:2y a bx=+i x 19253038iy 19.032.349.073.35.用矩阵的直接三角分解法解方程组.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x 6 试用数值积分法建立求解初值问题的如下数值求解公式0(,)(0)y f x y y y '=⎧⎨=⎩,1111(4)3n n n n n hy y f f f +-+-=+++其中.(,),1,,1i i i f f x y i n n n ==-+三、证明题(10分)设对任意的,函数的导数都存在且,对于满足x ()f x ()f x '0()m f x M '<≤≤的任意,迭代格式均收敛于的根.20Mλ<<λ1()k k k x x f x λ+=-()0f x =*x 参考答案一、填空题1.5; 2. 8, 9 ; 3.; 4. ; 5. 二; 911516456. , (0.02,0.22,0.1543)(1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩7. ; 8. ; 9. ;1()1()k k k k k x f x x x f x +-=-'-j x ()1B ρ<10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题1.差商表:11122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+令,,求出a 和b.(2)57p =(2)72p '=2.取,令公式准确成立,得:()1,f x x =,, , .0112A A +=011123A A +=013A =116A =时,公式左右;时,公式左, 公式右2()f x x =14=3()f x x =15=524=∴ 公式的代数精度.2=3.此方程在区间内只有一个根,而且在区间(2,4)内。

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。

解:(1)插值基函数分别为()()()()()()()()()()1200102121()1211126x x x x x x l x x x x x x x ----===--------()()()()()()()()()()021*******()1211122x x x x x x l x x x x x x x --+-===-+---+-()()()()()()()()()()0122021111()1121213x x x x x x l x x x x x x x --+-===-+--+-故所求二次拉格朗日插值多项式为()()()()()()()()()()()2202()11131201241162314121123537623k k k L x y l x x x x x x x x x x x x x ==⎡⎤=-⨯--+⨯-+-+⨯+-⎢⎥⎣⎦=---++-=+-∑(2)一阶均差、二阶均差分别为[]()()[]()()[][][]010*********011201202303,11204,41234,,52,,126f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----===----===---故所求Newton 二次插值多项式为()()[]()[]()()()()()20010012012,,,35311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-++++-=+-例2、 设2()32f x xx =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。

数值分析练习题附答案

数值分析练习题附答案

1
2-3 对矩阵 A 进行 LDLT 分解和 GGT 分解,求解方程组 Ax=b,其中
16 4 8
1
A=( 4 5 −4) , b=(2)
8 −4 22
3
解:(注:课本 P26 P27 根平方法)
设 L=(l i j ),D=diag(di),对 k=1,2,…,n,
其中������������=������������������-∑������������=−11 ���������2��������� ������������
������31=(������31 − ∑0������=1 ������3������������1������ ������������)/ ������1=186=12
������32=(������32

∑1������=1
������3������������2������
������������ )/
6.6667
,得 ������3 = 1.78570
−1 209
������4
0
������4
0.47847
(
56
−1
780 (������5) 209)
(200)
(������5) ( 53.718 )
1 −1
4
1 −4
15
������1
25
������2
6.6667再由1源自− 15561
− 56
209

x (k1) 1

1 5
(12

2 x2( k )

x (k) 3
)


2 5
x (k) 2

数值分析习题集及答案[1](精)

数值分析习题集及答案[1](精)

数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -= ( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b c s a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n nn n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj jj x l x x k n =≡=∑ii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少? 9. 若2nn y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()b aS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hhf x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰; (3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

数值分析考试题和答案

数值分析考试题和答案

数值分析考试题和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,插值法的主要目的是()。

A. 求解线性方程组B. 求解非线性方程C. 构造一个多项式来近似一个函数D. 求解微分方程答案:C2. 线性方程组的高斯消元法中,主元为零时,应采取的措施是()。

A. 停止计算B. 回代求解C. 转置矩阵D. 行交换答案:D3. 以下哪种方法不是数值积分方法()。

A. 梯形规则B. 辛普森规则C. 牛顿法D. 复合梯形规则答案:C4. 以下哪种方法用于求解非线性方程的根()。

A. 欧几里得算法B. 牛顿迭代法C. 高斯消元法D. 线性插值法答案:B5. 在数值分析中,最小二乘法主要用于()。

A. 求解线性方程组B. 求解非线性方程C. 曲线拟合D. 微分方程数值解答案:C6. 以下哪种方法不是数值微分方法()。

A. 前向差分B. 后向差分C. 中心差分D. 欧拉方法答案:D7. 以下哪种方法用于求解常微分方程的初值问题()。

A. 欧拉方法B. 龙格-库塔方法C. 牛顿迭代法D. 高斯消元法答案:B8. 在数值分析中,矩阵的特征值问题可以通过()方法求解。

A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形规则答案:B9. 以下哪种方法不是数值稳定性分析中的方法()。

A. 绝对稳定性B. 相对稳定性C. 条件数D. 牛顿法答案:D10. 在数值分析中,条件数用于衡量()。

A. 算法的效率B. 算法的稳定性C. 算法的准确性D. 算法的复杂度答案:B二、填空题(每题2分,共20分)1. 在数值分析中,插值多项式的次数最高为______,其中n是插值点的个数。

答案:n-12. 线性方程组的高斯消元法中,如果某行的主元为零,则需要进行______。

答案:行交换3. 梯形规则的误差与被积函数的______阶导数有关。

答案:二4. 牛顿迭代法中,每次迭代需要计算______。

答案:函数值和导数值5. 最小二乘法中,残差平方和最小化时,对应的系数向量是______。

2015-同济大学数值分析-参考答案

2015-同济大学数值分析-参考答案
3
1

1
ex
2
1
1 x
2
dx
34 0 34 e e e 5.481
3
将 f ( x) =x 代入,左边 = 将 f ( x) =x 4 代入, 左边 =
1
1
3 3 3 3 3 dx sin d 0 0 2 右边 3 2 1 x2 2
(10 分)
l1 0 0 y1 5 Ly = 1 l2 0 y2 = 3.25 0 2.5 l y -29 3 3
追:
l1 4 l2 5.25 1 u1 5 l3 10.5 2.5 u2 10
x
y
0
2
2
1

1
3 2
2 (10 分)
基函数: 0 ( x) 1, 1 ( x) cos x, 2 ( x) sin x
(0 , 0 ) (0 , 1 ) (0 , 2 ) a (0 , f ) 法方程: (1 , 1 ) (1 , 2 ) b (0 , f ) sym (2 , 2 ) c (0 , f )
xk
4.5 4.766 4 4.789 6 4.790 6 4.790 6
3/4
k 0 1 2 3 4
4.5
Ans Ans cos( Ans) Ans 1 cos( Ans) Ans sin( Ans) 1
= = =
2014-2015 数值分析试卷
维基解密
x3

2
3

数值分析习题(含标准答案)

数值分析习题(含标准答案)

]第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1若误差限为5105.0-⨯,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。

3已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算)~解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

(误差限的计算)解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6设x 的相对误差为%a ,求nx y =的相对误差。

数值分析试题(卷)和答案解析

数值分析试题(卷)和答案解析

试题__2009___年~__2010___年第 一学期课程名称: 数值分析 专业年级: 2009级(研究生) 考生学号: 考生: 试卷类型: A 卷 √ B 卷 □ 考试方式: 开卷 √ 闭卷 □………………………………………………………………………………………………………一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦(10分) 七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

2016-2017-1 数值分析A卷标答

2016-2017-1 数值分析A卷标答

2016年秋 研究生《数值分析》(A )卷 标准答案(2016-2017-1) 一、选择题(每小题3分,3*5=15分)1.B2. A3.A4. C5. D二、填空题(每小题3分,3*5=15分)1. 21102-⨯;2. 13; 3. 1001212100307002313⎛⎫ ⎪-⎛⎫⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭-- ⎪⎝⎭; 4. 2; 5.()()1111122k k k k k k k k k k y y h y x h y y y x y x ++++=+-++⎧⎪⎨=+-+-++⎪⎩三、(10分) 解:由题意分解有 111100200221571000012251727001100255TT A LDL ⎛⎫⎛⎫⎛⎫- ⎪ ⎪⎪⎪⎪⎪ ⎪⎪⎪=---= ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪- ⎪⎝⎭⎝⎭⎝⎭………………….(5分) 由LY b =,可得694,7,5Y ⎛⎫= ⎪⎝⎭。

………………………………………………………(3分)由T DL X Y =,可得10723,,999X ⎛⎫=⎪⎝⎭。

………………………………………….………(2分) 四、(10分) 解:由三次拉格朗日插值多项式公式得:()()()()()()()()()()()() 1.532 2.51.52 2.512 2.5()0.750.251 1.5 2.51 1.520.250.75x x x x x x L x e ex x x x x x e e ------=-⨯+⨯-------⨯+⨯………………(5分)3(1.2) 3.3338362L =.………………………………………………………...….………(5分)五、(10分)解:(1)梯形公式[()()]2b aT f a f b -=+,…………………………………….………(3分)11(1)0.683939722S e -=+=…………………………………………………….………(2分)(2)辛普森公式为)]()2()([6b f ba ef a f ab S +++-=………………………………………….…..……(3分)1120.6323331(14)866S e e --=++=.………………………………………….…………(2分)六、(10分) (1)雅克比方法:()1100210,221002a B D L U -⎛⎫-⎪ ⎪ ⎪=-+=-- ⎪ ⎪ ⎪- ⎪⎝⎭0,2λ=±,则3a >-。

同济大学《数值分析》2016-2017学年第一学期期末考试B卷

同济大学《数值分析》2016-2017学年第一学期期末考试B卷

=++−=++=−+.022,1,122321321321x x x x x x x x x 同 济 大 学2016~2017 学年第一学期期末考试试题 B 卷科目名称:数值分析 学生所在院: 学号: 姓名:注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

一、(12 分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。

0cos 2312=+−x x 二、(15分)设求方程 根的迭代法 kk x x cos 3241+=+R x ∈∀0(1)证明对,均有*lim x x k k =∞→,其中*x 为方程的根.(2)此迭代法收敛阶是多少? 证明你的结论.=a a a a A 000002三、(8分)若矩阵,说明对任意实数0≠a ,方程组b AX =都是非病态的。

(范数用∞⋅)四、(15求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R −=。

五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据为已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出a ,b 。

六、(12分)确定常数 a ,b 的值,使积分[]dx x b ax b a I 2112),(∫−−+=取得最小值。

七、(14分)对于求积公式:∫∑=≈bank k k x f A dx x f x 1)()()(ρ,其中:)(x ρ是区间),(b a 上的权函数。

(1) 证明此求积公式的代数精度不超过2n-1次; (2) 若此公式为Gauss 型求积公式,试证明∑∫==nk bakdx x A1)(ρ八、(14分)对于下面求解常微分方程初值问题 ==00)(),(y x y y x f dx dy的单步法:++==++=+),(),()2121(121211hk y h x f k y x f k k k h y y n n n n n n (1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。

数值分析试题(卷)与答案解析

数值分析试题(卷)与答案解析

数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2位有效数字。

2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。

3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。

4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。

5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。

6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。

7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。

8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。

9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是(B)<1 。

10. 由下列数据所确定的插值多项式的次数最高是 5 。

x 0 0.5 1 1.5 2 2.5 y =f (x )-2-1.75-10.2524.2511. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

同济大学数值分析matlab编程

同济大学数值分析matlab编程

同济⼤学数值分析matlab编程MATLAB 编程题库1.下⾯的数据表近似地满⾜函数21cx bax y ++=,请适当变换成为线性最⼩⼆乘问题,编程求最好的系数c b a ,,,并在同⼀个图上画出所有数据和函数图像.625.0718.0801.0823.0802.0687.0606.0356.0995.0628.0544.0008.0213.0362.0586.0931.0ii y x ----解:>> x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; >> y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; >> A= [x ones(8,1) -x.^2.*y]; >> z=A\y;>> a=z(1); b=z(2); c=z(3); >>xh=[-1:0.1:1]';>>yh=(a.*xh+b)./(1+c.*xh.^2); >>plot(x,y,'r+',xh,yh,'b*')2.若在Matlab ⼯作⽬录下已经有如下两个函数⽂件,写⼀个割线法程序,求出这两个函数精度为1010-的近似根,并写出调⽤⽅式:>> edit gexianfa.mfunction [x iter]=gexianfa(f,x0,x1,tol) iter=0;x=x1;while(abs(feval(f,x))>tol) iter=iter+1;x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end>> edit f.m function v=f(x) v=x.*log(x)-1;>> edit g.m function z=g(y) z=y.^5+y-1;>> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 =1.7632 iter1 = 6>> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 =0.7549 iter2 = 83.使⽤GS 迭代求解下述线性代数⽅程组:123123123521242103103x x x x x x x x x ì++=--++=í???-+=??解:>> edit gsdiedai.mfunction [x iter]=gsdiedai(A,x0,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); iter=0; x=x0;>> A=[5 2 1;-1 4 2;1 -3 10]; >> b=[-12 10 3]'; >>tol=1e-4; >>x0=[0 0 0]';>> [x iter]=gsdiedai(A,x0,b,tol); >>x x =-3.0910 1.2372 0.9802 >>iter iter = 64.⽤四阶Range-kutta ⽅法求解下述常微分⽅程初值问题(取步长h=0.01),(1)2x dy y e xy dx y ì??=++?í??=??解:>> edit ksf2.mfunction v=ksf2(x,y)v=y+exp(x)+x.*y; >> a=1;b=2;h=0.01; >> n=(b-a)./h; >> x=[1:0.01:2]; >>y(1)=2;>>for i=2:(n+1)k1=h*ksf2(x(i-1),y(i-1));k2=h*ksf2(x(i-1)+0.5*h,y(i-1)+0.5*k1); k3=h*ksf2(x(i-1)+0.5*h,y(i-1)+0.5*k2); k4=h*ksf2(x(i-1)+h,y(i-1)+k3); y(i)=y(i-1)+(k1+2*k2+2*k3+k4)./6; end >>y调⽤函数⽅法>> edit Rangekutta.mfunction [x y]=Rangekutta(f,a,b,h,y0) x=[a:h:b]; n=(b-a)/h; y(1)=y0; for i=2:(n+1)k1=h*(feval(f,x(i-1),y(i-1)));k2=h*(feval(f,x(i-1)+0.5*h,y(i-1)+0.5*k1)); k3=h*(feval(f,x(i-1)+0.5*h,y(i-1)+0.5*k2)); k4=h*(feval(f,x(i-1)+h,y(i-1)+k3)); y(i)=y(i-1)+ (k1+2*k2+2*k3+k4)./6; end>> [x y]=Rangekutta('ksf2',1,2,0.01,2); >>y5.取0.2h =,请编写Matlab 程序,分别⽤欧拉⽅法、改进欧拉⽅法在12x ≤≤上求解初值问题。

同济大学数值分析matlab编程题汇编.doc

同济大学数值分析matlab编程题汇编.doc

同济大学数值分析matlab编程题汇编.MATLAB编程题库1.下面的数据表近似地满足函数,请适当变换成为线性最小二乘问题,编程求最好的系数,并在同一个图上画出所有数据和函数图像。

解:x=[-x=[:文件一文件二函数v=f(x)v=x . * log(x)-1;函数z=g(y)z=y. y-1;解以下内容:编辑gex AFA。

m函数[x ITER]=gex AFA(f,x0,x1,tol)ITER=0;而(标准(x1-编辑gex AFA。

m函数[x ITER )=gex AFA(f,x0,x1,tol)ITER=0;同时(标准(x1:解以下内容:编辑gsdiedai。

m函数[x iter]=gsdiedai(A,x0,b,tol)D=diag(diag(A));函数[x iter]=gsdiedai(A,x0,b,tol)D=diag(diag(A));L=D:编辑ksf 2。

m函数v=ksf2(x,y)v=y exp(x)x . * y;a=1;b=2;h=0.01n=(b-a)./h .x=[1:0.01:2];y(1)-省略部分-0.5000 1.0000 0.5000-1.0000 1.0000 UU=2.0000 3.0000 4.0000 0-0.5000 7.0000 0 0-1.0000 x=林空间(0,1,11);x ' ans=0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.90001.0000 x=[1 2 3 4];y=[6 11 18 27];p=polyfit(x,y,2)p=1.0000 2.0000 3.0000 diag(1(4,1),1)ans=0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 012 .编程实现求解满足下列条件的区间[-1,2]上的三次样条函数S(x),并画出此样条函数的图形: Xi-1 0 1 2 f(Xi)-1 0 1 0f(Xi)' 0-1函数splx=[-1 0 1 2]y=[0-1 0 1 0-1]PP=csape(x,y,'完整')[断点coefs、npolys、ncoefs、dim]=unmkpp(PP)xh=-1:0.133602 if-1=xh=0 yh=coefs(1,1)*(xh 1).3系数(1,2)*(xh 1).2系数(1,3)*(xh 1)系数(1,4)否则,如果0=xh=1 yh=系数(2,1)*(xh).3系数(2,2)*(xh).2系数(2,3)*(xh)系数(2,4)否则,如果1=xh=2 yh=系数(3,1)*(xh-1).3系数(3,2)*(xh-1).2系数(3,3)*(xh-1)系数(3,4)否则返回图(xh,yh,' r ')13 .二分法程序如果nargintol x=(a b)/2 fx=feval(f,x)如果符号(外汇)==符号(fa) a=x fa=fx elseif符号(外汇)==符号b=x FB=FX否则返回结束。

2016数值分析期末试卷(A卷)

2016数值分析期末试卷(A卷)

第 1 页 共 6 页西北农林科技大学本科课程考试试题(卷)2015—2016学年第二学期《 数值分析 》课程A 卷 专业班级: 命题教师: 审题教师:学生姓名: 学号: 考试成绩:一、填空题(每空2分,共20分) 得分: 分1. 设x 1=1.216, x 2=3.654均具有3位有效数字,则x 1+ x 2的误差限为 .2. 近似值x *=0.231关于真值x =0.229有 位有效数字.3. 误差有多种来源,数值分析主要研究 误差和 误差.4. 已知f (1)=2,f (2)=3,f (4)=5.9,则2次Newton 插值多项式中x 2项前面的系数为 .5. 计算积分⎰15.0d x x , 计算结果取4位有效数字. 用梯形公式计算的近似值为 ,用Simpson 公式计算的近似值为 . 其中,梯形公式的代数精度为 ,Simpson 公式的代数精度为. ( 1.7321≈≈) 6. 假设n n H R ⨯∈是Householder 矩阵,n v R ∈是一个n 维向量,则Hv = .二、 选择题(每小题 2分,共20分) 得分: 分1. 用13x+所产生的误差是 误差.A. 舍入B. 观测C. 模型D. 截断 2.1.732≈,计算)41x =,下列方法中最好的是 .A.28-B. (24-C. ()2164+ D. ()41613. 在Newton-Cotes 求积公式中,当Cotes 系数为负值时,求积公式的稳定性不能保证. 因此在实际应用中,当 时的Newton-Cotes 求积公式不使用.第 2 页 共 6 页A. 8n ≥B. 7n ≥C. 5n ≥D. 6n ≥4. 解方程组Ax =b 的简单迭代格式(1)()k k x Bx g +=+收敛的充要条件是 .A. ()1A ρ<B. ()1B ρ<C. ()1A ρ>D. ()1B ρ>5. 已知方程3250x x --=在x =2附近有根,下列迭代格式中在02x =附近不收敛的是 .A. 1k x+=B.1k x +=C.315k kk x x x +=-- D.3122532k k k x x x ++=- 6. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=700150322A ,则)(A ρ为 . A . 2 B . 5 C . 7 D . 37. 三点的高斯求积公式的代数精度为 .A . 2B .5C . 3D . 48. 用列主元消去法解线性方程组⎪⎩⎪⎨⎧-=+--=-+-=+-134092143321321321x x x x x x x x x ,第1次消元时,选择的主元为 .A.-4B. 3C.4D.-99. 假设cond (A )表示非奇异矩阵A 的条件数,则下列结论中错误的是 .A.()()1cond A cond A -=B.()(),cond A cond A R λλλ=∈C. ()1cond A ≥D.()1cond A A A -=⋅10. 设)(x f 可微, 求方程)(x f x =的牛顿迭代格式是 .A. 1()1()k k k k k x f x x x f x +-=-'-B. 1()1()k k k k k x f x x x f x ++=+'+C. 1()()k k k k f x x x f x +=-'D. 1()()k k k k f x x x f x +=+'三、简答题(每小题5分,共20分)得分:分1. 什么是数值算法的稳定性?如何判断算法是否稳定?为什么不稳定的算法不能使用?2. 埃尔米特插值与一般函数插值有什么不同?3. 简述二分法的优缺点.4. 什么是矩阵的条件数?如何判断线性方法组是病态的?第 3 页共 6 页第 4 页 共 6 页四、计算题(每小题8分,共32分) 得分: 分1. 已知下列函数表(1) 写出相应的3次(2) 作均差表,写出相应的3次Newton 插值多项式,并计算f (1.5)的近似值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同济大学2016—2017年数值分析测试题——回忆版
(总体较简单)
1.二次插值多项式拟合函数
2.已知矩阵1200
02
52000
384000410400
0512A ⎛⎫ ⎪

⎪= ⎪
⎪ ⎪⎝⎭
用克洛特分解A LU =(L 为下三角,
U 为单位上三角) 3.已知:
用最小二乘法拟合形如sin()2
x
a b π+的函数
4.(1)指出积分公式1
()(0.5)f x dx f ≈⎰的代数精度
(2)由(1),将区间四等分,用复合积分公式求解2
1
x e dx -⎰
5.41||10k k x x -+-<
6.已知线性方程组:12312312
312061
x x x x x x x x x --=⎧⎪
-+-=⎨⎪--+=⎩
(1)写出超松弛(SOR )迭代格式,0.5ω=; (2)取初值(0)(0,0,0)T x =,根据上述迭代格式求(1)x ; (3)判断超松弛迭代格式的收敛性,并说明理由。

(以下为编程题)
7.写程序,要求向量v 的最大按摸分量vi ,并指出vi 在v 中的位置
function [vi,itd]=maxanmo (v )
8.编程,按迭代公式11
()10
k k k x x b Ax +=+
-求解方程Ax b =,要求满足:41||||0.510k k x x -+∞-<⨯
function x=ide4(A,b)
9.已知0.001h =,按欧拉方法求解初值问题
,010(0)1
x dy y e
x dx
y π-⎧=-⎪≤≤⎨⎪=⎩。

相关文档
最新文档