电子电路实验
电子电路仿真实验报告
电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。
实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。
2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。
(2)进行仿真实验,记录各个参数数据。
(3)分析实验结果,了解电源电路的工作原理和性能。
3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。
结果表明,当开关频率增加时,电路的效果也增强。
(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。
4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。
掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。
通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。
电子电路实验报告
一、实验目的1. 理解和掌握电子电路的基本原理和基本分析方法。
2. 熟悉常用电子仪器的使用方法,如示波器、万用表等。
3. 提高电路设计、调试和故障排除的能力。
二、实验仪器与设备1. 示波器2. 万用表3. 面包板4. 电源5. 电阻、电容、二极管、三极管等电子元件6. 电路原理图三、实验原理本次实验主要涉及以下几种电路:1. 放大电路:利用三极管放大信号的原理,实现对输入信号的放大。
2. 滤波电路:利用电容、电感等元件的特性,对信号进行滤波处理。
3. 振荡电路:利用正反馈原理,产生稳定的振荡信号。
四、实验步骤1. 搭建放大电路:(1)根据电路原理图,在面包板上搭建放大电路。
(2)使用示波器观察输入信号和输出信号的波形。
(3)调整电路参数,观察对输出信号的影响。
2. 搭建滤波电路:(1)根据电路原理图,在面包板上搭建滤波电路。
(2)使用示波器观察输入信号和输出信号的波形。
(3)调整电路参数,观察对输出信号的影响。
3. 搭建振荡电路:(1)根据电路原理图,在面包板上搭建振荡电路。
(2)使用示波器观察输出信号的波形。
(3)调整电路参数,观察对输出信号的影响。
五、实验结果与分析1. 放大电路:(1)输入信号为正弦波,输出信号为放大后的正弦波。
(2)通过调整电路参数,可以实现不同倍数的放大。
(3)放大电路具有非线性失真现象,需要通过合适的电路设计来减小。
2. 滤波电路:(1)输入信号为含有多种频率成分的复合信号,输出信号为经过滤波后的信号。
(2)通过调整电路参数,可以实现不同频率的滤波效果。
(3)滤波电路对信号有一定的延迟,需要根据实际需求进行优化。
3. 振荡电路:(1)输出信号为稳定的正弦波。
(2)通过调整电路参数,可以实现不同频率的振荡。
(3)振荡电路对电路参数的稳定性要求较高,需要保证电路元件的精度。
六、实验总结通过本次实验,我们掌握了电子电路的基本原理和基本分析方法,熟悉了常用电子仪器的使用方法,提高了电路设计、调试和故障排除的能力。
电子电路实习实验报告
一、实验目的本次电子电路实习实验旨在通过实际操作,加深对电子电路基本原理的理解,掌握电路的搭建、调试和测试方法,提高动手能力和分析问题、解决问题的能力。
二、实验器材1. 实验板:包括电源模块、电阻、电容、二极管、三极管、集成电路等;2. 电源:直流稳压电源;3. 测量仪器:万用表、示波器;4. 其他:导线、焊接工具、螺丝刀等。
三、实验内容1. 电阻、电容、二极管、三极管等基本元件的识别与检测;2. 基本电路的搭建与调试,如串联电路、并联电路、RC低通滤波器、晶体管放大电路等;3. 集成电路的应用,如555定时器、运算放大器等;4. 电路的测试与分析,包括静态工作点测试、动态响应测试等。
四、实验步骤1. 实验前准备(1)熟悉实验器材和实验步骤;(2)了解实验原理,明确实验目的;(3)准备好实验记录表格。
2. 实验操作(1)基本元件的识别与检测1)根据元件的外观、颜色、封装等特征进行识别;2)使用万用表测量元件的阻值、电容值、二极管正向导通压降、三极管放大倍数等参数。
(2)基本电路的搭建与调试1)根据电路图,将元件焊接在实验板上;2)连接电源,进行电路的调试;3)测试电路的静态工作点,确保电路正常工作。
(3)集成电路的应用1)根据电路图,搭建集成电路的应用电路;2)连接电源,进行电路的调试;3)测试集成电路的输出波形、幅度等参数。
(4)电路的测试与分析1)使用万用表测试电路的静态工作点;2)使用示波器观察电路的动态响应,如频率响应、瞬态响应等;3)分析测试结果,判断电路性能是否符合要求。
3. 实验记录与总结(1)记录实验数据,包括元件参数、电路参数、测试结果等;(2)分析实验结果,总结实验心得,提出改进建议。
五、实验结果与分析1. 电阻、电容、二极管、三极管等基本元件的识别与检测结果符合预期;2. 基本电路的搭建与调试成功,电路性能符合要求;3. 集成电路的应用电路搭建成功,电路性能符合要求;4. 电路的测试与分析结果表明,电路性能良好,满足设计要求。
电子电路实验四 实验报告
实验四波形发生电路实验报告一、理论计算1.正弦振荡电路实验电路如图1所示,电源电压为±12V。
分析图1电路的工作原理,根据图中的元件参数,计算符合振荡条件的Rw值以及振荡频率f0。
该正弦振荡电路采用RC串并联选频网络,选频网络的示意图如下:当输入信号的频率足够低时,,超前,且当频率趋近于零时,相位超前趋近于+90°;当输入信号的频率足够高时,,滞后,且当频率趋近于无穷大时,相位滞后趋近于-90°。
因此,当信号频率从零逐渐变化到无穷大时,的相位将从+90°逐渐变化到-90°,故必定存在一个频率f0,当f= f0时,与同相。
RC串并联选频网络的反馈系数整理可得令,则代入上式,得出当f=f0时,,由正弦振荡电路的起振条件知,。
对于图1的正弦振荡电路,有将R3、R4代入上式,令之大于3,得Rw>10kΩ。
将R1=R2=16kΩ、C1=C2=0.01μF代入f0式,得f0=994.7Hz。
2.多谐振荡电路实验电路如图2所示。
深入分析图2所示电路的工作原理,画出Vo1、Vo2的波形,推导Vo1、Vo2波形的周期(频率)和幅度的计算公式。
再按图2中给出的元件参数计算Vo1、Vo2波形的周期(频率)、幅度,以备与实验实测值进行比较。
该电路为三角波发生电路,原理图如下:虚线左边为滞回电路,故Vo1为方波。
根据叠加原理,集成运放A1同相输入端的电位令,则阈值电压对于虚线右边的积分电路,其输入电压不是+U Z,就是-U Z,故积分电路的输出电压的波形为三角波。
设输出电压的初始值为-U T,终了值为+U T,则可解得T为矩形波、三角波共同的周期。
矩形波的幅度的理论值即为UZ,等于6V;将实验电路图中的各个参数代入各式,得UT=0.5*6=3V,故三角波的幅度理论值为3V,矩形波、三角波的周期 。
3.锯齿波发生电路锯齿波发生电路的原理图见仿真实验电路图。
设二极管导通时的等效电阻可忽略不计,当u o1=+U Z时,D3导通,D4截止,输出电压的表达式为uo随时间线性下降。
电子电路实训实验报告
一、实验目的通过本次电子电路实训实验,掌握电子电路的基本原理和实验技能,了解电子电路的设计与调试方法,培养动手操作能力和分析解决问题的能力。
二、实验原理电子电路是利用电子元件(如电阻、电容、电感、晶体管等)组成的电路,用于实现信号的产生、传输、处理和转换等功能。
本次实验主要涉及以下几种电路:1. 电阻分压电路:用于实现电压的分配和调节。
2. 晶体管放大电路:用于实现信号的放大。
3. 滤波电路:用于实现信号的筛选和分离。
4. 振荡电路:用于产生稳定的正弦波信号。
三、实验器材1. 电子元器件:电阻、电容、电感、晶体管、二极管等。
2. 仪器设备:示波器、万用表、电源、面包板等。
3. 工具:电烙铁、焊锡丝、剪刀、镊子等。
四、实验步骤1. 电阻分压电路实验(1)搭建电阻分压电路,将电阻按照一定比例连接。
(2)使用万用表测量电阻两端电压,记录数据。
(3)根据理论计算公式,计算实际电压与理论电压的误差。
2. 晶体管放大电路实验(1)搭建晶体管放大电路,连接晶体管、电阻、电容等元件。
(2)调整电路参数,观察输出信号的变化。
(3)使用示波器观察放大电路的输入、输出波形,分析电路性能。
3. 滤波电路实验(1)搭建滤波电路,连接电阻、电容、电感等元件。
(2)调整电路参数,观察滤波效果。
(3)使用示波器观察滤波电路的输入、输出波形,分析电路性能。
4. 振荡电路实验(1)搭建振荡电路,连接晶体管、电阻、电容等元件。
(2)调整电路参数,观察振荡波形。
(3)使用示波器观察振荡电路的输出波形,分析电路性能。
五、实验结果与分析1. 电阻分压电路实验结果:实际电压与理论电压误差较小,说明电阻分压电路性能良好。
2. 晶体管放大电路实验结果:放大电路能够放大输入信号,输出波形稳定,说明电路性能良好。
3. 滤波电路实验结果:滤波电路能够有效筛选信号,输出波形清晰,说明电路性能良好。
4. 振荡电路实验结果:振荡电路能够产生稳定的正弦波信号,输出波形稳定,说明电路性能良好。
通信电子电路实验报告
一、实验目的1. 了解通信电子电路的基本组成和工作原理。
2. 掌握通信电子电路的基本实验技能和操作方法。
3. 培养分析问题和解决问题的能力。
二、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 通信电子电路实验板5. 连接线三、实验原理通信电子电路是现代通信系统中的核心组成部分,其主要功能是将信号进行调制、放大、解调等处理,以实现信号的传输。
本实验主要涉及以下通信电子电路:1. 模拟调制解调电路:将模拟信号进行调制和解调,实现信号的传输。
2. 数字调制解调电路:将数字信号进行调制和解调,实现信号的传输。
3. 放大电路:对信号进行放大,提高信号的传输质量。
四、实验内容1. 模拟调制解调电路实验(1)实验目的:掌握模拟调制解调电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入调制电路的输入端。
③ 使用示波器观察调制电路的输出波形。
④ 改变调制电路的参数,观察输出波形的变化。
⑤ 将调制电路的输出信号接入解调电路的输入端。
⑥ 使用示波器观察解调电路的输出波形。
⑦ 改变解调电路的参数,观察输出波形的变化。
2. 数字调制解调电路实验(1)实验目的:掌握数字调制解调电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入调制电路的输入端。
③ 使用示波器观察调制电路的输出波形。
④ 改变调制电路的参数,观察输出波形的变化。
⑤ 将调制电路的输出信号接入解调电路的输入端。
⑥ 使用示波器观察解调电路的输出波形。
⑦ 改变解调电路的参数,观察输出波形的变化。
3. 放大电路实验(1)实验目的:掌握放大电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入放大电路的输入端。
③ 使用示波器观察放大电路的输出波形。
④ 改变放大电路的参数,观察输出波形的变化。
⑤ 使用数字万用表测量放大电路的增益。
电子行业电子电路综合实验讲义
电子行业电子电路综合实验讲义简介本讲义旨在介绍电子行业的电子电路综合实验。
电子电路综合实验是电子行业学生必修的实践课程之一,通过实践探究电子元器件和电路的工作原理,锻炼学生的动手能力和解决问题的能力。
实验一:直流电源设计与调试实验目的本实验旨在通过设计和调试直流电源,让学生掌握电源电路的基本原理和设计方法。
设备与材料•变压器•整流二极管•电解电容•稳压二极管实验步骤1.根据规定的输出电压和电流,计算所需的变压器的规格。
2.连接变压器的输入端和输出端,注意极性。
3.接入整流二极管和电解电容,构成整流电路。
4.接入稳压二极管,实现稳压功能。
5.调试电路,测量输出的电压和电流是否满足要求。
实验结果与分析对设计好的直流电源进行调试,测量输出的电压和电流。
根据测量结果,可以分析设计中的偏差和误差,进而优化电源电路的设计。
实验二:放大电路设计与调试实验目的本实验旨在通过设计和调试放大电路,让学生了解放大电路的基本原理和不同类型的放大电路的特点。
设备与材料•二极管•电阻•小信号放大器实验步骤1.选择适当的放大器类型,如共射放大器、共基放大器或共集放大器。
2.根据放大倍数的要求,计算所需的电阻值。
3.搭建放大电路,注意连接的正确性和稳定性。
4.使用信号发生器输入信号,测量输出端的电压和电流。
5.根据测量结果,计算放大倍数并分析实际放大倍数与理论值的差异。
实验结果与分析通过测量输出端的电压和电流,计算放大倍数并分析实际放大倍数与理论值的差异。
根据分析结果,找出可能的影响因素,优化放大电路的设计。
实验三:滤波电路设计与调试实验目的本实验旨在通过设计和调试滤波电路,让学生了解滤波电路的基本原理和常见的滤波器类型。
设备与材料•电感•电容•信号发生器•示波器实验步骤1.选择适当的滤波器类型,如低通滤波器、高通滤波器或带通滤波器。
2.根据滤波器的截止频率和阻带带宽,选择合适的电感和电容。
3.搭建滤波电路,连接信号发生器和示波器。
最新电子电路实验四实验报告
最新电子电路实验四实验报告实验目的:1. 熟悉电子电路的基本组成和工作原理。
2. 掌握常用电子元器件的特性及其在电路中的应用。
3. 学习电路设计、搭建和调试的基本方法。
4. 提高分析和解决电路问题的能力。
实验内容:1. 设计并搭建一个基本的放大电路,包括晶体管的偏置和放大器的构建。
2. 测量并记录放大电路的输入阻抗、输出阻抗和增益。
3. 实验验证负反馈对放大器性能的影响,包括稳定性和增益的调整。
4. 通过实验分析,理解频率响应对放大器性能的影响。
5. 使用示波器和多用表等测量工具,对电路进行性能测试和故障诊断。
实验设备和材料:1. 面包板或印刷电路板(PCB)。
2. 晶体管(NPN和PNP类型)。
3. 电阻、电容、二极管等基本电子元器件。
4. 电源供应器。
5. 示波器。
6. 多用电表。
实验步骤:1. 根据实验指导书设计放大电路,并在面包板上搭建电路。
2. 调整电源供应器,为电路提供稳定的工作电压。
3. 使用多用电表检查电路的连通性和元器件的极性。
4. 打开示波器,连接到电路的输入和输出端,观察波形变化。
5. 调整电路中的电阻和电容,改变反馈网络,记录不同配置下的电路性能。
6. 分析实验数据,绘制电路的频率响应曲线。
7. 根据实验结果,对电路进行必要的调整和优化。
实验结果与分析:1. 记录电路的输入阻抗、输出阻抗和增益数据,并与理论值进行比较。
2. 分析负反馈对电路性能的影响,包括增益稳定性和带宽的变化。
3. 根据实验数据,绘制电路的频率响应曲线,并解释其物理意义。
4. 讨论实验中遇到的问题及其解决方案,提出可能的改进措施。
结论:通过本次实验,我们成功搭建并测试了一个基本的放大电路。
实验结果表明,电路的性能符合设计预期,输入阻抗、输出阻抗和增益均在合理范围内。
通过调整反馈网络,我们观察到了电路性能的明显变化,验证了负反馈对放大器性能的重要性。
此外,实验也提高了我们对电子电路设计、搭建和调试的理解和实践能力。
《电工电子学》实验报告三相交流电路实验报告
《电工电子学》实验报告三相交流电路实验报告
一、实验目的
1.了解三相交流电路的结构及基本工作原理;
2.通过测量示波器与多用表观察三相交流电路及各种参数的变化;
3.针对不同情况完成线路、电路和场地的实际试验实践工作。
二、实验原理
三相交流电路是一种由三相电源为电源,三个相电流同时传递的电路
组织方式。
它的特点在于三个正弦相电流的相位不同,相对电压相位型式
相同,其中两个相电流同时朝着正反两个方向流动。
因为在三相交流电路中,电流可以朝着正反两个方向流动,使得它可以用来实现功率的双转换,即可以将直流转换为交流,也可以将交流转换为直流。
由此可见,三相交
流电路的应用非常广泛。
三、实验仪器
1.示波器:采用示波器用来测量电流、电压变化;
2.多用表:多用表用来检测电压值、电流值、功率值等参数;
3.电阻电容仪:用来检测电路中电阻、电容的值;
4.母线:母线用来将实验电路供电。
四、实验步骤
1.根据实验要求,在实验母线上连接好实验电路,并将示波器和多用
表连接到合适位置;
2.将电阻电容仪插入电路中进行测量;
3.打开实验母线,观察示波器与多用表的显示变化;
4.根据实验要求。
电路电子实验报告总结与反思
电路电子实验报告总结与反思一、实验内容本次实验主要涉及电路电子领域的相关知识,包括电路的设计、实验仪器的使用和数据处理等。
具体实验内容如下:1. 了解并掌握基本电路元件的特性和工作原理;2. 设计并组装电路板,实现特定功能;3. 使用万用表和示波器测量电路参数;4. 记录实验数据并进行数据处理;5. 分析实验结果,总结实验思考。
二、实验过程在本次实验中,我选择了一个简单的放大电路作为实验对象。
首先,我仔细研究了相关的理论知识,包括放大电路的分类、基本原理和电路设计方法等。
然后,根据实验要求,我设计了一个适合放大特定信号的电路。
接下来,我按照设计要求组装了电路板,并连接上相应的电源和信号源。
在实验过程中,我使用了万用表测量了电路中各个元件的电压和电流,并使用示波器观察了电路中信号的波形变化。
在实验过程中,我还出现了一些问题。
例如,我没有正确设置示波器的刻度,导致观察到的信号波形不清晰。
此外,我还发现电路中的一个元件连接错误,导致电路无法正常工作。
幸运的是,经过反复检查和排除,我成功解决了这些问题,并取得了满意的实验效果。
三、实验结果与数据分析通过本次实验,我成功实现了一个放大电路,并观察到了输入信号和输出信号的波形变化。
通过测量和数据处理,我得到了一些实验结果。
首先,我测量了电路中各个元件的电压和电流。
根据测量结果,我发现电路中的元件工作正常,并且符合设计要求。
此外,我还观察到输入信号和输出信号的幅度比例,发现输出信号的幅度确实得到了一定程度的放大。
然后,我对实验数据进行了进一步的分析。
通过对比不同输入信号的输出波形,我发现输入信号的频率对于输出的影响较大。
当输入信号的频率较小时,输出信号的形态基本保持不变。
但当输入信号的频率增大时,输出信号的波形发生了明显的改变。
综上所述,通过本次实验,我掌握了电子电路实验的基本方法和技巧,并成功设计和实现了一个放大电路。
实验结果符合预期,进一步验证了电路设计的正确性。
电子电路仿真实验报告
电子电路仿真实验报告一、实验目的1. 学习电子电路仿真实验的基本操作和方法。
2. 熟悉电子元器件如何实现电路中的各种功能。
3. 掌握几种基本电路的设计和仿真方法。
二、实验仪器和材料1. 电脑2. 软件:Multisim仿真软件3. 元器件:电阻、电容、二极管、三极管等。
三、实验原理在电子电路中,各种元器件按照一定的连接方式组成各种电路,实现信号的放大、变换、滤波等功能。
而在实验中,我们可以通过仿真软件来进行计算分析、虚拟实验等操作,为电路的设计和实现提供帮助。
本次实验将重点介绍三种基本电路的仿真方法和设计思路,包括放大电路、滤波电路和振荡电路。
每种电路都有自己的设计方法和指标,需要结合实际情况进行仿真和测试。
四、实验内容1. 放大电路仿真实验(1)单管共射放大电路单管共射放大电路是一种常见的放大器电路,可以实现信号放大和变换的功能。
在该电路中,输入信号经过电容和限流电阻进入基极,当输入信号变化时,导致基极电位的变化,进而影响集电极电位的变化,使得输出信号的幅值发生变化。
为了使单管工作稳定,需要额外加上一个偏置电路,保证输入信号不会进入截止区或饱和区。
该偏置电路通常由一个电阻和电源构成,根据实际需要可以调整电阻的取值来改变工作点。
如图所示,是一个单管共射放大电路的仿真电路图:其中Q1为NPN型三极管,Rb1为偏置电阻,Rb2为信号电阻,Re为发射极电阻,Rc为集电极电阻,C1为输入信号电容,C2为输出信号电容。
在仿真软件中,可以通过正弦信号源模拟输入信号,通过示波器实时监测输入信号和输出信号的变化。
为了得到高质量的输出信号,需要考虑以下几个因素:1)偏置电阻的取值应该适当,可以通过调整偏置电源来达到调节偏置电压的目的。
2)输入信号的电容取值应该适当,可以通过调节电容的容值来改变输入信号频率的响应情况。
3)集电极电阻和发射极电阻的取值应该适当,以达到适当的放大倍数和输出功率。
如图所示,是仿真软件中单管共射放大电路的实验效果:通过设置输入信号的频率,可以在示波器上观察到输出信号的变化,同时可以计算出输出信号的功率和放大倍数等重要指标。
电工电子实验报告
电工电子实验报告电工电子实验报告电工电子实验是电子工程学生必修的实验之一,通过实验可以加深对电子学原理的理解,提高实验能力和动手能力。
以下是三个电工电子实验案例的报告。
案例一:二极管特性实验实验目的:通过实验了解二极管的基本结构和特性。
实验器材:示波器、可变电阻器、半导体二极管、直流电源。
实验步骤:1、将二极管连接好,接入直流电源。
2、使用示波器观察二极管的正向和反向电压的变化。
3、随着正向电压升高,可以观察到二极管的电流也随之升高,但是反向电压升高时,二极管处于截止状态。
实验结论:通过实验可以知道,二极管是一种可以实现正向导电,反向截止的半导体器件。
在实际中,二极管常被用于整流、放大、开关等电路中。
案例二:晶体管放大电路实验实验目的:通过实验了解晶体管放大电路的基本原理和特性。
实验器材:示波器、晶体管、电阻、直流电源。
实验步骤:1、按照电路原理图连接好晶体管放大电路。
2、接入直流电源,使用示波器观察输入和输出信号的变化。
3、调节电位器使输出信号的幅度尽量大。
实验结论:通过实验可以知道,晶体管是一种可以进行信号放大的半导体器件。
在实际中,晶体管常被用于放大、开关、振荡等电路中。
案例三:555计时器实验实验目的:通过实验了解555计时器的基本原理和工作特性。
实验器材:可变电阻、电解电容、LED灯、555计时器、直流电源。
实验步骤:1、按照电路原理图连接好555计时器电路。
2、调节可变电阻和电解电容的值,改变输出信号的频率和占空比。
3、将LED灯连接到输出端口,观察LED灯的闪烁情况。
实验结论:通过实验可以知道,555计时器是一种可以进行频率调节、占空比调节的定时器器件。
在实际中,555计时器常被用于脉冲调制、计时、振荡等电路中。
综上所述,电工电子实验对于电子工程学生来说是非常重要的,通过实验可以更加深入地了解电子学原理,提高实验能力和动手能力。
以上三个案例是电工电子实验中较为常见的实验内容,希望可以帮助其他同学更好地完成实验任务。
电子电路设计实验报告
电子电路设计实验报告
实验目的
本实验的目的是通过设计和搭建多种电子电路,验证和应用电路设计的原理和知识。
实验材料
- 电子元器件:电阻、电容、二极管、晶体管等
- 工具:示波器、万用表、电源等
实验步骤
1. 根据实验指导书给出的电路图,搭建基本电子电路。
2. 使用万用表和示波器对电路进行测量和观察。
3. 调整电路参数,观察电路的变化和性能。
4. 记录实验数据,并进行数据分析和处理。
实验结果
通过实验的搭建和观察,我们验证了电子电路设计的原理和知识。
通过调整电路参数,我们观察到了电路的不同性能表现,并记录了相应的实验数据。
实验结论
本实验对我们加深了对电子电路设计的理解,可以更好地将理
论知识应用于实际电路设计中。
同时,通过实验的数据分析和处理,我们可以得出一些结论和启示,进一步完善和优化电路设计的方法
和策略。
注意事项
- 在搭建电路时,需按照实验指导书给出的电路图进行操作。
- 在实验过程中,保持仪器的正确使用和操作。
- 记录实验数据时,要准确、清晰地记录相关数据,方便后续
的数据分析。
电子电路设计实验报告
电子电路设计实验报告电子线路专题实验Ⅱ一、实验要求:1. 认真阅读学习系统线路及相关资料2. 将键盘阵列定义为0. 1. 2------ E. F,编程实现将键盘输入内容显示在LCD显示器上。
3. 编程实现将日历、时钟显示在LED显示屏上〔注意仔细阅读PCF8563资料〕,日历、时钟轮回显示。
4. 利用D/A转换通道〔下行通道〕实现锯齿波发生器;输出〔1~5V〕固定电压转换成〔4~20mA〕电流。
5. 利用A/D转换通道〔上行通道〕实现数据采集,将采集信号显示在LED屏上。
程序要求分别具有平均值滤波、中值滤波和滑动滤波功能。
6. 将按键阵列定义成与16个语音段对应,编写程序,实现按键播放不同的语音段。
二、实验设计思路:本次实验用c语言实现,主要包括LCD,LED,AD,DA,日历芯片,测温传感芯片。
受到嵌入式系统实验的启发,将LCD,LED,I2C总线协议,键盘扫描模块接口写成一个文件库〔放在library文件夹下〕,尽量做到调用时与底层硬件无关。
通过调用库文件中的函数,实现代码的重用性。
键盘,LCD的代码由于与嵌入式实验具有相通之处,因此可将高层的函数〔与底层硬件无关的函数〕方便地移植过来。
三、实验设计:1.矩阵键盘扫描模块4×4的矩阵键盘,通过扫描可得到按下键的行列值,将行列值转换为相应的对应数字0~F。
函数GetKey()实现获得按键的键值。
对于键盘模块对于对按键的键值识别主要是通过两次扫描而取得。
对于第一次扫描,给四行键全部赋予1,然后读回键盘值,对于第二次扫描,逐行为键盘送1,每次送1后再读回键盘值,假设非零,说明此行有键按下,最终确定键值。
通过调用GetKey函数构造GetChar()函数,实现获取键盘字符〔’0’~’F’〕的功能。
通过调用GetChar()函数构造GetDec()函数,实现获取键盘输入整数的功能,整数范围在0~99999。
有按’C’键回退一格,按’E’清空当前未完输入,按’F’键结束输入的功能。
基础电子电路实验
基础电子电路实验电子电路是电子学的基础,通过实验可以更好地理解电子电路的工作原理和性能。
本文将介绍几个基础电子电路实验,并以实验报告的形式进行描述。
实验一:二极管整流电路一、实验目的:通过搭建二极管整流电路,了解二极管的整流特性。
二、实验器材:1. 二极管 x 12. 电阻 x 13. 电源 x 14. 示波器 x 15. 频率计 x 16. 连接线 x 若干三、实验原理:二极管具有单向导电性,正向导通,反向截止。
利用这一特性,可以将交流信号转换为直流信号。
四、实验步骤:1. 按照电路图连接电路,注意正负极的连接方式。
2. 调节电源的输出电压和频率。
3. 使用示波器观察输入电压和输出电压的波形,并记录观察结果。
4. 使用频率计测量输入信号的频率。
五、实验结果:通过示波器观察到的波形可以发现,输入交流信号经过二极管整流后,输出信号变为单向导通的直流信号,实现了信号的整流。
六、实验结论:二极管整流电路可以将交流信号转换为直流信号,利用了二极管的单向导通特性。
本实验通过观察波形和测量频率,验证了二极管整流电路的功能。
实验二:放大器电路一、实验目的:通过搭建放大器电路,了解放大器的工作原理和性能参数。
二、实验器材:1. 三极管 x 12. 电阻 x 若干3. 电容 x 若干4. 电源 x 15. 示波器 x 16. 频率计 x 17. 连接线 x 若干三、实验原理:放大器是一种电子设备,可以将弱信号放大为较强的信号。
常用的放大器类型包括晶体管放大器和运放放大器。
四、实验步骤:1. 按照电路图连接电路,注意正负极的连接方式。
2. 调节电源的输出电压和频率。
3. 使用示波器观察输入信号和输出信号的波形,并记录观察结果。
4. 使用频率计测量输入信号的频率。
五、实验结果:通过示波器观察到的波形可以发现,输入信号经过放大器电路后,输出信号的幅度得到了放大,实现了信号的放大。
六、实验结论:放大器电路可以将弱信号放大为较强的信号,通过调整电路中的参数,可以实现不同幅度的放大。
电路实验报告(8篇)
电路实验报告(8篇)电路实验报告(8篇)电路实验报告1一、实验题目利用类实现阶梯型电阻电路计算二、实验目的利用类改造试验三种构造的计算程序,实现类的封装。
通过这种改造理解类实现数据和功能封装的作用,掌握类的设计与编程。
三、实验原理程序要求用户输入的电势差和电阻总数,并且验证数据的有效性:电势差必须大于0,电阻总数必须大于0小于等于100的偶数。
再要求用户输入每个电阻的电阻值,并且验证电阻值的有效性:必须大于零。
此功能是由类CLadderNetwork的InputParameter ()函数实现的。
且该函数对输入的数据进行临界判断,若所输入数据不满足要求,要重新输入,直到满足要求为止。
本实验构造了两个类,一个CResistance类,封装了电阻的属性和操作,和一个CLadderNetwork类,封装了阶梯型电阻电路的属性和操作。
用户输入的电势差、电阻总数、电阻值,并赋给CladderNetwork的数据,此功能是由类CLadderNetwork的InputParameter 函数实现的。
输出用户输入的电势差、电阻总数、电阻值,以便检查,,此功能是由类CLadderNetwork的PrintEveryPart()函数实现的。
根据用户输入的电势差、电阻总数、电阻值换算出每个电阻上的电压和电流。
此功能是由类CLadderNetwork的Calculate ()函数实现的。
最后输出每个电阻上的电压和电流,此功能是由类CLadderNetwork 的PrintResult()函数实现的'。
此程序很好的体现了面向对象编程的技术:封装性:类的方法和属性都集成在了对象当中。
继承性:可以继承使用已经封装好的类,也可以直接引用。
多态性:本实验未使用到多态性。
安全性:对重要数据不能直接操作,保证数据的安全性。
以下是各个类的说明:class CResistance //电阻类private:double voltage;double resistance;double current;public:void InitParameter(); //初始化数据void SetResist(double r); //设置resistance的值void SetCur(double cur); //设置current的值void SetVol(double vol); //设置voltage的值void CalculateCurrent(); //由电阻的电压和电阻求电流double GetResist(){return resistance;} //获得resistance的值保证数据的安全性double GetCur(){return current;} //获得current的值double GetVol(){return voltage;} //获得voltage的值class CResistance //电阻类{private:CResistance resists[MAX_NUM]; //电阻数组int num;double srcPotential;public:void InitParameter(); //初始化数据void InputParameter(); //输入数据void Calculate(); //计算void PrintEveryPart(); //显示输入的数据以便检查void PrintResult(); //显示结果四、实验结果程序开始界面:错误输入-1(不能小于0)错误输入0 (不能为0)输入正确数据3输入错误数据-1输入错误数据0输入正确数据4同样给电阻输入数据也必须是正数现在一次输入2,2,1,1得到正确结果。
模拟电子电路实验一三极管的放大特性实验报告
模拟电子电路实验一三极管的放大特性实验报告实验一:三极管的放大特性一、实验目的:1.了解三极管的结构和工作原理;2.掌握三极管的基本参数和特性指标;3.理解三极管的放大功能和放大倍数的测量方法。
二、实验器材和材料:1.示波器2.信号源3.三极管4.变阻器5.接线板6.电阻7.万用表8.多功能电源三、实验原理:三极管是一种具有放大功能的电子器件,它由三个控制端,基极(B)、发射极(E)和集电极(C)构成。
三极管有两种工作状态:放大状态和截止状态。
1.放大状态:当输入信号较小时,三极管处于放大状态。
此时,基极和发射极之间的电流(IE)大于0,集电极和发射极之间的电流(IC)也大于0。
增加基极电流(IB)会放大集电极电流(IC)。
2.截止状态:当输入信号较大时,三极管处于截止状态。
此时,基极和发射极之间的电流(IE)小于0,集电极和发射极之间的电流(IC)小于0。
四、实验步骤:1.按照电路图连接实验电路,三极管的发射极接地,三极管的集电极通过电阻RL连接到正电源。
2.调节信号源的幅度和频率,将信号源的负极连接到示波器的接地端,将信号源的正极通过电阻R1连接到三极管的基极,调节变阻器的电阻值,使得示波器屏幕上的正弦波幅度适中。
3.测量基极电流(IB),发射极电流(IE)和集电极电流(IC)的数值,记录下来。
4.将电阻RL的数值改变,重复步骤3,记录下不同RL下的IB、IE和IC的数值。
五、实验结果:记录各组IB、IE和IC的数值,绘制IB,IE和IC随RL变化的曲线图。
根据图像可以得到三极管的放大倍数。
六、实验讨论:根据实验数据和曲线图,可以发现随着RL增加,IB和IE基本保持不变,IC呈现线性增长的趋势。
通过计算得出三极管的放大倍数,进一步验证了三极管的放大功能。
七、实验总结:通过本次实验,我们深入了解了三极管的结构和工作原理,掌握了三极管的基本参数和特性指标的测量方法。
实验结果验证了三极管的放大功能,并且通过计算得出了三极管的放大倍数。
电路实验报告(9篇)
电路实验报告(9篇)电路试验报告1一、试验仪器及材料1、信号发生器2、示波器二、试验电路三、试验内容及结果分析1、VCC=12v,VM=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输2、VCC=9V,VM=4、5V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输3、VCC=6V,VM=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输出波形最大且不失真。
(以下输入输出值均为有效值)四、试验小结功率放大电路特点:在电源电压确定的状况下,以输出尽可能大的不失真的信号功率和具有尽可能高的转换效率为组成原则,功放管常工作在尽限应用状态。
电路试验报告2一、试验目的1、更好的理解、稳固和把握汽车全车线路组成及工作原理等有关内容。
2、稳固和加强课堂所学学问,培育实践技能和动手力量,提高分析问题和解决问题的力量和技术创新力量。
二、试验设备全车线路试验台4台三、试验设备组成全车电线束,仪表盘,各种开关、前后灯光分电路、点火线圈、发动机电脑、传感器、继电器、中心线路板、节气组件、电源、收放机、保险等。
四、组成原理汽车总线路的组成:汽车电器与电子设备总线路,包括电源系统、起动系统、点火系统、照明和信号装置、仪表和显示装置、帮助电器设备等电器设备,以及电子燃油喷射系统、防抱死制动系统、安全气囊系统等电子掌握系统。
随着汽车技术的进展,汽车电器设备和电子掌握系统的应用日益增多。
五、试验方法与步骤1、汽车线路的特点:汽车电路具有单线、直流、低压和并联等根本特点。
(1)汽车电路通常采纳单线制和负搭铁,汽车电路的单线制.通常是指汽车电器设备的正极用导线连接(又称为火线),负极与车架或车身金属局部连接,与车架或车身连接的导线又称为搭铁线。
蓄电池负极搭铁的汽车电路,称为负搭铁。
现代汽车普遍采纳负搭铁。
同一汽车的全部电器搭铁极性是全都的。
对于某些电器设备,为了保证其工作的牢靠性,提高灵敏度,仍旧采纳双线制连接方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子电路设计训练(模拟部分)实验报告班级:姓名:学号:实验一:共射放大器分析与设计1.目的:(1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。
(2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察静态工作点的变化对输出波形的影响。
(3)加深对放大电路工作原理的理解和参数变化对输出波形的影响。
(4)观察失真现象,了解其产生的原因。
2.步骤:(1)请对该电路进行直流工作点分析,进而判断管子的工作状态。
(2)请利用软件提供的各种测量仪表测出该电路的输入电阻。
(3)请利用软件提供的各种测量仪表测出该电路的输出电阻。
(4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。
(5)请利用交流分析功能给出该电路的幅频、相频特性曲线。
(6)请分别在30Hz、1KHz、100KHz、4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。
(提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注意信号源幅度和频率的选取,否则将得不到正确的结果。
)3.实验结果:(1)直流工作点分析:由图可知Vbe=588mV,三极管工作在放大区。
(2)测量输入电阻:由图可知Uin=8.292mV ,Iin=1.709uA ,故输入电阻Ω===K V I U R in in i 852.4uA709.1m 292.8 (3)测量输出电阻:由戴维宁等效定理可知:Ω=⨯=-=K U U R R ON OFF L o 832.21-558.20599.214300)1()((4)幅频、相频特性:①使用测量仪表测量:将输入输出分别接入波特测试仪的IN、OUT口如图所示:则得到幅频、相频特性分别如图:②交流分析获得:选择仿真列表中的交流分析,按下图设置参数与输出,可得频率特性。
(5)由标尺工具确定下限、上限截止频率,由于幅频曲线上的最大值为8.036dB ,则取20lgA=5.036dB 的点作为所求点,如图:MHz f Hz f H L 549.125,721.72==(6)改变频率,观察输入、输出关系:①f=30Hz:②f=1KHz:③f=100KHz:④f=1MHz:⑤f=100MHz:由此,不同频率下的增益与相位差与频率特性所示的基本一致。
实验二:射级跟随器分析与设计1.目的:通过使用Multisim来仿真电路,测试如图2所示的射随器电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察静态工作点的变化对输入输出特性的影响。
2.步骤:(1)请对该电路进行直流工作点分析,进而判断管子的工作状态。
(2)请利用软件提供的各种测量仪表测出该电路的输入电阻。
(3)请利用软件提供的各种测量仪表测出该电路的输出电阻。
(4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。
(5)请利用交流分析功能给出该电路的幅频、相频特性曲线。
(6)用瞬态分析法分析其电压跟随器特性,随意改变负载电阻阻值,观察输出特性有何变化。
3.实验结果:(1)直流工作点分析:由图可得Vbe=0.6199V ,因此三极管工作在放大区。
(2)测量输入电阻:由图得输入电阻:Ω===K uAmVI U R in in i 85.9015.110(3)测量输出电阻:则由戴维宁等效定理可得输出电阻:Ω=-⨯=-=1.28)1869.9928.9(7.4)1(onoff L o U U R R(4)利用测量仪表测量频率特性:(5)交流分析获得频率特性:(6)瞬态分析法分析其电压跟随器特性:由图可见,改变负载电阻的值,其输出与输入电压之间保持大小相等、相位相同,显示出典型的电压跟随特性。
实验三:差动放大器分析与设计1.目的:(1)通过使用Multisim来仿真电路,测试如图3所示的差分放大电路的静态工作点、差模电压放大倍数、输入电阻和输出电阻。
(2)加深对差分放大电路工作原理的理解。
(3)通过仿真,体会差分放大电路对温漂的抑制作用。
2.步骤:(1)请对该电路进行直流工作点分析,进而判断电路的工作状态。
(2)请利用软件提供的电流表测出电流源提供给差放的静态工作电流。
(3)请利用软件提供的各种测量仪表测出该电路的输入、输出电阻。
(4)请利用软件提供的各种测量仪表测出该电路的单端出差模放大倍数。
(5)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。
(6)请利用交流分析功能给出该电路的幅频、相频特性曲线。
(7)请利用温度扫描功能给出工作温度从0℃变化到100℃时,输出波形的变化。
(8)根据前面得到的静态工作点,请设计一单管共射电路,使其工作点和电路的静态工作点一样。
利用温度扫描功能,给出单管共射电路工作温度从0℃变化到100℃时,输出波形的变化,比较单管共射电路与共射差分电路的区别。
3. 实验结果:(1)直流工作点分析:由图可知,Vbe1=582.91mV ,Vbe3=604.27mV ,并由对称性可知,四个三极管均工作在放大区。
(2)测量电流源提供给差放的静态工作电流:所以镜像电流源提供的电流I Q =772.401uA 。
(3)测量该电路的输入、输出电阻: ① 输入电阻:Ω===36396.55520uAmVI U R in in i②输出电阻:由戴维宁等效定理得:Ω=-⨯=-=K U U R R onoff L o 017.1)1035.101315.111(10)1((4)测量单端出差模放大倍数:由图可得放大倍数为:052.520036.101==mVmVA(5)使用仪表测量幅频、相频特性曲线:(6)交流分析获得频率特性曲线:(7)工作温度从0℃变化到100℃时,输出波形的变化:由图可见,该电路的输出电压随温度的变化影响不大。
(8)设计一单管共射电路,使其工作点和原差放电路的静态工作点一样:单管共射电路工作温度从0℃变化到100℃时输出波形的变化如图:比较单管放大电路和差放电路温度扫描的结果,可知差放电路抑制温漂的性能要明显好于共射放大电路。
实验四:集成运算放大器应用1.目的:(1)了解集成运放的内部结构及各部分功能、特点;(2)了解集成运放主要参数的定义,以及它们对运放性能的影响。
(3)掌握集成运算放大器的正确使用方法;(4)掌握用集成运算放大器构成各种基本运算电路的方法;(5)掌握根据具体要求设计集成运算放大电路的方法,并会计算相应的元件参数;(6)学习使用示波器DC、AC输入方式观察波形的方法,掌握输出波形的测量绘制方法。
2.步骤:(1)按上图搭建运放电路,观测放大倍数,并通过调节反馈电阻R5来实现改变放大器的增益。
(2)调整运放的直流工作点,分析输出直流信号的幅度与参考电压的关系。
(3)对电路进行温度扫描,分析其温度漂移特性如何。
(4)应用AD817搭建积分器,微分器,射随器电路。
(5)应用AD817搭建减法器,要求有两路信号输入,经过相减后输出,并写出减法器输出电压的表达公式。
3.实验结果(1)搭接运放电路,观察放大倍数:输入、输出波形如上图所示,可得放大倍数A=1。
改变反馈电阻R2=2KΩ,如下图,得到不同的波形:显然放大倍数A ’=2,符合12R R A 的理论值。
(2)调整运放的直流工作点,得出直流信号的幅度与参考电压如图:由图可知,VDD 较小的时候,运放工作在线性区,输出电压与输入电压成正比;而VDD 较大时,运放达到饱和,输出电压保持为参考电压12V 不变。
(3)对电路进行温度扫描,得到如图所示波形:显然各条输出曲线基本完全重合,可见温漂很小。
(4)应用AD817搭建积分器,微分器,射随器电路:①积分器:电路:波形(红色为方波输入,蓝色为三角波输出):②微分器:电路:波形(红色为三角波输入,蓝色为方波输出):③射极跟随器:电路:波形(红色为输入,蓝色为输出):(5)应用AD817搭建减法器:输出电压表达式为:VDD R R VCC R R R R R U o 2341423)1(-++=,同时参数要满足3241////R R R R =。
4.问题(1)大信号放大的特性与小信号放大特性的区别?小信号放大时,运放工作在线性区,呈现出比例放大特性,即输入与输出成正比;而大信号输入时可能使运放达到饱和,输出保持为参考电压不变。
(2)运放的重要指标有哪些?输入电阻、输出电阻、输入电平、电压(电流)放大倍数、失真度、带宽、效率、输入失调电压(电流)等。
(3)运算放大器AD817本身的输入输出电阻是多少?对于整体运放电路,输入输出电阻如何估算?理想运算放大器的输入电阻为无穷大,输出电阻为0。
而对于实际的运算放大器及整体的运放电路,输入输出电阻可用前面实验中的方法测量,即测量输入端电压和电流计算输入电阻,测量带载和不带载的输出电压来计算输出电阻。
(4)运放的温度漂移特性如何,并试回答原因何在?从实验结果中可以看到,运放的温度漂移非常小。
因为运放前端为差分输入,抑制共模信号的能力强。