北京市人大附中2019-2020 学年度第一学期高一年级阶段性练习数学
2019-2020学年北京市人大附中高一(上)期中数学试卷(PDF版 含答案)
![2019-2020学年北京市人大附中高一(上)期中数学试卷(PDF版 含答案)](https://img.taocdn.com/s3/m/6d852ce98762caaedd33d478.png)
x
1
2
3
f (x) 2
1
3
x
1
2
3
g(x) 3
2
1
则方程 g[ f (x)] x 1 的解集为 ( )
A. {1}
B. {2}
C.{1 , 2}
D.{1 ,2, 3}
19.已知 f (x) 是定义在 (4, 4) 上的偶函数,且在 (4 , 0] 上是增函数, f (a) f (3),
5.已知函数 f (x) 的图象是两条线段(如图所示,不含端点),则 f [ f (1)] (
)
3
A. 1 3
B. 1 3
C. 2 3
6.已知 a , b 是实数,则“ a b 0 且 c d 0 ”是“ a b ”的 ( dc
D. 2 3
)
A.充分而不必要条件
B.必要而不充分条件
2019-2020 学年北京市人大附中高一(上)期中数学试卷
一、选择题(本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有
一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)
1.设集合 M {m Z | 3 m 2} , N {n Z | 1n3} ,则 M N (
17.已知函数 f (x) x 4 . x
(1)判断函数 f (x) 的奇偶性; (2)指出该函数在区间 (0 , 2] 上的单调性,并用函数单调性定义证明;
f (x), x 0
(3)已知函数 g(x) 5, x 0
,当 x [1,t] 时 g(x) 的取值范围是[5 ,) ,求实数 t
6.已知 a , b 是实数,则“ a b 0 且 c d 0 ”是“ a b ”的 (
人大附中2019-2020上高一数学期中答案(1)(1)
![人大附中2019-2020上高一数学期中答案(1)(1)](https://img.taocdn.com/s3/m/d91d5e49ccbff121dc36832c.png)
人大附中2019~2020学年度第一学期期中高一年级数学练习& 必修1模块考核试卷答案一卷一、选择题(每题5分,共40分)1.B 2.D 3.C 4.D 5.B 6.A 7.D 8.C 二、填空题(每题5分,共30分)9.{(3,−7)} 10.{−1,1} 11.30 12.(−3,0) 13.①②③④ 14.[−5,0] 三、解答题(每题10分,共30分)15.设全集是实数集R ,A ={x|2x 2−7x +3≤0},B ={x|x 2+a <0}。
(1)当a =−4时,求A ∩B 和A ∪B ; (2)若(∁R A )∩B =B ,求实数a 的取值范围。
解:(1)因为A ={x|12≤x ≤3},-------------------1‘当a =−4时,B ={x|−2<x <2}--------------------2‘ 所以A ∩B ={x|12≤x <2}-------------------------3‘ A ∪B ={x|−2<x ≤3}----------------------------4‘ (2)∁ℝA ={x|x <12或x >3}----------------------5‘因为(∁ℝA)∩B =B ,所以B ⊆∁ℝA ------------------6‘ 当B =∅即a ≥0时,满足B ⊆∁ℝA -----------------7‘ 当B ≠∅即a <0时,-----------------------------8‘ √−a ≤12,解得−14≤a <0-----------------------9‘ 综上,实数a 的取值范围为[−14,+∞)---------------10‘16.已知二次函数f (x )=x 2+2bx +c (b,c ∈R )。
(1)若f (x )≤0的解集为{x|−1≤x ≤1},求实数b,c 的值;(2)若c =b 2+2b +3,设x 1、x 2是关于x 的方程f (x )=0的两根,且(x 1+1)(x 2+1)=8,求b 的值;(3)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(−3,−2),(0,1)内,求实数b 的取值范围。
2019年人大附中高一数学期中考试
![2019年人大附中高一数学期中考试](https://img.taocdn.com/s3/m/fecf51636edb6f1afe001f6b.png)
x 1 2
x 2
xR Nhomakorabea求f
x 的值域;
(3)若存在 m R 且 m Z ,使得 f m f m ,则称函数 f x 是 函数,若函数 f x x a 是
x 函数,求 a 的取值范围.
5
D.存在 x0 R ,使得 x02 0
5.己知函数
f
x 的图象是两条线段(如图,不含端点),则
f
f
1 3
=(
)
A. 1
1
B.
3
3
C. 2
2
D.
3
3
1
6.已知 a, b 是实数,则“ a b 0 且 c d 0 ”是“ a b ”的( ) dc
C. 3,3
D. (0, 5]
五、填空题(本大题共 3 小题,每小题 6 分,共 18 分.请把结果填在答题纸上的相应位置.)
21.已知函数 f x 1 x x 3 ,则函数 f x 的最大值为___ __,函数 f x 的最小值点为________.
22.关于 x 的方程 g x t(t R) 的实根个数记 f t .
A. 0,1
B.1, 0,1
2.下列各组函数是同一函数的是( )
A. y x 与 y 1 x
C.0,1, 2
D.1, 0,1, 2
B. y x 12 与 y x 1
C. y x2 与 y x x
D.
y
x3 x2
x 1
与
y
x
3.下列函数中,在区间 0, 2 是增函数的是( )
2019-2020学年北京人大附中高一分班考数学试题含解析
![2019-2020学年北京人大附中高一分班考数学试题含解析](https://img.taocdn.com/s3/m/f2f07e6e53ea551810a6f524ccbff121dc36c51f.png)
2019年人大附中新高一分班考试数学试题真题一、选择题(本大题共17小题,共34分)1. 小雨利用几何画板探究函数()a y x b x c =--图象,在他输λ一组,,a b c 的值之后,得到了如图所示的函数图象,根据学习函数的经验,可以判断,小雨输入的参数值满足( )A. 0,0,0a b c >>= B. 0,0,0a b c <>=C. 0,0,0a b c >== D. 0,0,0a b c <=>【答案】B 2. 大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如33235,37911=+=++,3413151719,=+++⋯若3m 分裂后,其中有一个奇数是103,则m 的值是( )A. 9B. 10C. 11D. 12【答案】B3. 如图,AB 是半圆O 直径,按以下步骤作图:(1)分别以,A B 为圆心,大于AO 长为半径作弧,两弧交于点P ,连接OP 与半圆交于点C ;(2)分别以,A C 为圆心,大于12AC 长为半径作弧,两弧交于点Q ,连接OQ 与半圆交于点D ;(3)连接,,,AD BD BC BD 与OC 交于点E .根据以上作图过程及所作图形,下列结论:①BD 平分ABC ∠;②//BC OD ;③CE OE =;④2AD OD CE =⋅;所有正确结论的序号是( )的A. ①②B. ①④C. ②③D. ①②④【答案】D 4. 图1的摩天轮上以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30分钟.若图2表示21号车厢运行到最高点的情形,则此时经过多少分钟后,9号车厢才会运行到最高点?( )A. 10B. 20C. 152D. 452【答案】B 5. 某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘览车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?( )参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A. 16B. 19C. 22D. 25【答案】A 6. 如图,坐标平面上有一顶点为A 的抛物线,此拋物线与方程式2y 的图形交于B C 、两点,ABC 为正三角形.若A 点坐标为()3,0-,则此拋物线与y 轴的交点坐标为何?( )A. 90,2⎛⎫ ⎪⎝⎭ B. 270,2⎛⎫ ⎪⎝⎭ C. ()0,9 D. ()0,19【答案】B7. 如图的七边形ABCDEFG 中,,AB ED 的延长线相交于O 点.若图中1,2,3,4∠∠∠∠的外角的角度和为220 ,则BOD ∠的度数为何?( )A. 40B. 45C. 50D. 60【答案】A 8. 如图,菱形ABCD 的边长为10,圆O 分别与AB AD 、相切于、E F 两点,且与BG 相切于G 点.若5AO =,且圆O 的半径为3,则BG 的长度为( )A. 4B. 5C. 6D. 7【答案】C9. 桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?( )A. 80B. 110C. 140D. 220【答案】B10. 如图,坐标平面上,二次函数24y x x k =-+-的图形与x 轴交于、A B 两点,与y 轴交于C 点,其顶点为D ,且0k >.若ABC 与ABD △的面积比为1:4,则k 值为何?( )A. 1B. 12C. 43D. 45【答案】D 11. 如图的ABC 中有一正方形DEFG ,其中D 在AC 上,、E F 在AB 上,直线AG 分别交DE BC 、于M N 、两点.若90,4,3,1B AB BC EF ∠==== ,则BN 的长度为何?( )A. 43 B. 32 C. 85 D. 127【答案】D12. 图(一)、图(二)分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a b 、;中位数分别为c d 、,则下列关于a b c d 、、、的大小关系,何者正确?( )A. ,a b c d>> B. ,a b c d ><C. ,a b c d<> D. ,a b c d<<【答案】A 13. 如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A. 12 B. 35 C. 2 D. 4-【答案】D14. 如图的矩形ABCD 中,E 点在CD 上,且AE AC <.若P Q 、两点分别在AD AE 、上,:4:1AP PD =,:4:1AQ QE =,直线PQ 交AC 于R 点,且Q R 、两点到CD 的距离分别为q r 、,则下列关系何者正确?( )A. ,q r QE RC <=B. ,q r QE RC<<C. ,q r QE RC== D. ,q r QE RC=<【答案】D 15. 下表为小洁打算在某电信公司购买一支MAT 手机与搭配一个号码的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费,若小洁每个月的通话费均为x 元,x 为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x 至少为多少才会使得选择乙方案的总花费比甲方案便宜?( )甲方案乙方案号码的月租费(元)400600MAT 手机价格(元)1500013000注意事项:以上方案两年内不可变更月租费A. 500B. 516C. 517D. 600【答案】C 16. 如图的矩形ABCD 中,E 为AB 的中点,有一圆过,,C D E 三点,且此圆分别与,AD BC 相交于,P Q 两点.甲、乙两人想找到此圆的圆心O ,其作法如下:(甲)作DEC ∠的角平分线L ,作DE 的中垂线,交L 于O 点,则O 即为所求;(乙)连接,PC QD ,两线段交于一点O ,则O 即为所求.对于甲、乙两人的作法,下列判䉼何者正确?( )A. 两人皆正确B. 两人皆错误C 甲正确,乙错误D. 甲错误,乙正确【答案】A17. 如图,正六边形ABCDEF 中,P Q 、两点分别为,ACF CEF △△的内心.若2AF =,则PQ 的长度为何?( ).A. 1B. 2C. 2- D. 4-【答案】C 二、填空题(本大题共3小题,共9分)18. 如图,正方形ABCD 的边长是3,,P Q 分别在,AB BC 的延长线上,BP CQ =,连接,AQ DP 交于点O ,并分别与,CD BC 交于点,F E ,连接AE .下列结论:①AQ DP⊥②2OA OE OP=⋅③AOD OECFS S = 四边形④当1BP =时,1an 136t OAE ∠=其中正确结论的序号是__________.【答案】①③④19. 在等边ABC 中,M N P 、、分别是边AB BC CA 、、上的点(不与端点重合),对于任意等边ABC ,下面四个结论中:①存在无数个MNP △是等腰三角形;②存在无数个MNP △是等边三角形;③存在无数个MNP △是等腰直角三角形;④存在一个MNP △在所有MNP △中面积最小.所有正确结论的序号是__________.【答案】①②③20. 如图,在Rt ABC 中,90C = ∠,记,x AC y BC AC ==-,在平面直角坐标系xOy 中,定义(),x y 为这个直角三角形的坐标,Rt ABC 为点(),x y 对应的直角三角形.有下列结论:①在x 轴正半轴上的任意点(),x y对应的直角三角形均满足AB =;②在函数2019(0)y x x=>的图象上存在两点边,P Q ,使得它们对应的直角三角形相似;③对于函2(2020)1(0)y x x =-->图象上的任意一点P ,都存在该函数图象上的另一点Q ,使得这两个点对应的直角三角形相似;④在函数22020(0)y x x =-+>的图象上存在无数对点,(P Q P 与Q 不重合),使得它们对应的直角三角形全等.所有正确结论的序号是__________.【答案】①③④三、解答题(本大题共9小题,第21-26题每题6分,第27-29题,每题7分,共57分)21. 如图,AM 是ABC 的中线,D 是线段AM 上一点(不与点A 重合)//DE AB 交AC 于点,//F CE AM ,连结AE.的(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形;(2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD 交AC 于点H ,若BH AC ⊥,且BH AM =.①求CAM ∠的度数;②当4FH DM ==时,求DH 的长.【答案】(1)证明见解析;(2)成立,理由见解析;(3)①30°;②22. 对于平面直角坐标系xOy 中的点P 和M ,给出如下定义:若M 上存在两个点,A B ,使AB =2PM ,则称点P 为 的“美好点”.(1)当 M 半径为2,点M 和点O 重合时.①点()()()1232,0,1,1,2,2P P P -中, O 的“美好点"是__________.②若直线2y x b =+上存在点P 为 O 的“美好点”,求b 的取值范围;(2)点M 为直线y x =上一动点,以2为半径作M ,点P 为直线4y =上一动点,点P 为 M 的“美好点”,求点M 的横坐标m 的取值范围.【答案】(1)①P 1和P 2;②b (2)2≤m ≤6.23. 如图,在平面直角坐标系xOy 中,过T e 外一点P 引它的两条切线,切点分别为,M N ,若60≤ 180MPN ∠< ,则称P 为T e 的环绕点.(1)当 O 半径为1时,①在()()()1231,0,1,1,0,2P P P 中,O 的环绕点是__________.②直线2y x b =+与x 轴交于点A ,与y 轴交于点B ,若线段AB 上存在 的环绕点,求b 的取值范围;(2)T e 的半径为1,圆心为()0,t ,以(0)m m ⎛⎫> ⎪ ⎪⎝⎭为半径的所有圆构成图形H ,若在图形H 上存在T e 的环绕点,直接写出t 的取值范围.【答案】(1)①P 1,P 3;②1b ≤<或1b ≤-<;(2)-2<t ≤4.24. 在平面直角坐标系xOy 中,我们称横从坐标都是整数的点为整点,若坐标系内两个整点(),A p q 、()(),B m n m n ≤满足关于x 的多项式2x px q ++能够因式分解为()()x m x n ++,则称点B 是A 的分解点.例如()3,2A 、()1,2B 满足()()23212x x x x ++=++,所以B 是A 的分解点.(1)在点()15,6A 、()20,3A 、()32,0A -中,请找出不存在分解点的点__________;(2)点P 、Q 在纵轴上(P 在Q 的上方),点R 在横轴上,且点P 、Q 、R 都存在分解点,若PQR 面积为6,请直接写出满足条件的PQR 的个数及每个三角形的顶点坐标;(3)已知点D 在第一象限内,D 是C 的分解点,请探究OCD 是否可能是等腰三角形?若可能请求出所有满足条件的点D 的坐标;若不可能,请说明理由.【答案】(1)2A ;(2)答案见解析;(3)OCD 不可能为等腰三角形,理由见解析.25. 已知关于x 的一元二次方程2104x bx c ++=(1)21c b =-时,求证:方程一定有两个实数根.(2)有甲、乙两个不透明的布袋,甲袋中装有3个除数字外完全相同的小球,分别标有数字1,2,3,乙袋中装有4个除数字外完全相同的小球,分别标有数字1,2,3,4,从甲袋中随机抽取一个小球,记录标有的数字为b ,从乙袋中随机抽取一个小球,记录标有的数字为c ,利用列表法或者树状图,求b c 、的值使方程2104x bx c ++=两个相等的实数根的概率.【答案】(1)证明见解析;(2)16.26. 如图,在平面直角坐标系xOy 中,直线():10l y kx k =-≠与函数(0)m y x x=>的图象交于点()3,2A .(1)求,k m 的值;(2)将直线l 沿y 轴向上平移(0)t t >个单位后,所得直线与x 轴,y 轴分别交于点,P Q ,与函数y =(0)m x x>的图象交于点C .①当2t =时,求线段QC 的长.②若23QC PQ<<,结合函数图象,直接写出t 的取值范围.【答案】(1)1,6k m ==;(2)①;②12t <<.27. 在平面直角坐标系xOy 中,拋物线2224y x ax a a =-+-+顶点为A ,点,B C 为直线3y =上的两个动点(点B 在点C 的左侧),且3BC =.(1)求点A 的坐标(用含a 的代数式表示);(2)若ABC 是以BC 为直角边的等腰直角三角形,求拋物线的解析式;(3)过点A 作x 轴的垂线,交直线3y =于点D ,点D 恰好是线段BC 三等分点且满足3BC BD =,若抛物线与线段BC 只有一个公共点,结合函数的图象,直接写出a 的取值范围.【答案】(1)(),4A a a -;(2)2(2)6y x =++或2(4)y x =-;(3)1a =或25a <≤.28. 如图,在Rt ABC 中,90ACB ∠= ,点C 关于直线AB 的对称点为D ,连接,BD CD ,过点B 作//BE AC 交直线AD 于点E .(1)依题意补全图形;(2)找出一个图中与CDB △相似的三角形,并证明;(3)延长BD 交直线AC 于点F ,过点F 作FH //AE 交直线BE 于点H ,请补全图形,猜想,,BC CF BH 之间的数量关系并证明.【答案】(1)答案见解析;(2)与CDB △相似的三角形是ABE △,证明见解析;(3)作图见解析;22BH FC BC CF ⋅=+,证明见解析.29. 新定义:在平面直角坐标系xOy 中,若几何图形G 与A 有公共点,则称几何图形G 的叫A 的关联图形,特别地,若A 的关联图形G 为直线,则称该直线为A 的关联直线.如图,M ∠为A 的关联图形,的直线l 为A 的关联直线.(1)已知 O 是以原点为圆心,2为半径的圆,下列图形:①直线22y x =+;②直线3y x =-+;③双曲线2y x=,是O 关联图形的是__________(请直接写出正确的序号);(2)如图1,T e 的圆心为()1,0T ,半径为1,直线:l y x b =-+与x 轴交于点N ,若直线l 是T e 的关联直线,求点N 的横坐标的取值范围;(3)如图2,已知点()0,2B 、()2,0C 、()0,2D -,I 经过点C ,I 的关联直线HB 经过点B ,与I 的一个交点为P ;I 的关联直线HD 经过点D ,与I 的一个交点为Q ;直线HB 、HD 交于点H ,若线段PQ 在直线6x =上且恰为I 的直径,请直接写出点H 横坐标h 的取值范围.【答案】(1)①③;(2)11b +≤≤;(3)60h -≤<或02h <≤.的。
中国人民大学附属中学2019-2020学年度第一学期期中高一年级数学练习必修一模块考核试题
![中国人民大学附属中学2019-2020学年度第一学期期中高一年级数学练习必修一模块考核试题](https://img.taocdn.com/s3/m/4524c7ff767f5acfa1c7cde1.png)
C.充要条件D.既不充分也不必要条件
7.如下图,是吴老师散步时所走的离家距离( )与行走时间( )之间的函数关系的图象,若用黑点表示吴老师家的位置,则吴老师散步行走的路线可能是( )
8.已知集合 ,则 的所有非空真子集的个数是( )
A.30B.31C.510D.511
&必修1模块考核试卷答案20191108
一卷
一、选择题(每题5分,共40分)
1.B 2.D 3.C 4.D 5.B 6.A 7.D8.C
二、填空题(每题5分,共30分)
9. 10. 11.30 12. 13.①②③④14.
三、解答题(每题10分,共30分)
15.解:(1)因为 ,-------------------1‘
且 ,求实数 的值;
(3)若 满足 ,且关于 的方程 的两个实数根分别在区间 , 内,求实数 的取值范围.
17.已知函数 .(1)判断函数 的奇偶性;
(2)指出该函数在区间 上的单调性,并用函数单调性定义证明;
(3)已知函数 ,当 时 的取值范围是 ,求实数 的取值范围.(只需写出答案)
Ⅱ卷(共7道题,满分50分)
(Ⅲ)当函数 是 函数时,
若 ,则 显然不是 函数,矛盾.
若 ,由于都在 单调递增,故 在 上单调递增,
同理可证: 在 上单调递增,
此时不存在 ,使得 ,
同理不存在 ,使得 ,
又注意到 ,即不会出现 的情形,
所以此时 不是 函数.
当 时,设 ,所以 ,所以有 ,其中 ,
当 时,
因为 ,所以 ,
所以 .
当 时, ,
因为 ,所以 ,
所以 .
记 ,综上,我们可以得到: 的取值范围为
北京市人民大学附属中学2019-2020学年高一上学期期中考试数学试题(含解析)
![北京市人民大学附属中学2019-2020学年高一上学期期中考试数学试题(含解析)](https://img.taocdn.com/s3/m/04b7208b87c24028915fc3e1.png)
人大附中2019-2020学年第一学期期中考试高一数学试卷2019年11月说明:本试卷分I 卷和II 卷,I 卷17道题,共100分;II 卷7道题,共50分;I 卷、II 卷共24题,合计150分,作为期中成绩。
考试时间120分钟;请在答题卡上填写个人信息,并将条形码贴在答题卡的相应位置上.I 卷(共17题,满分100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确案填涂在答题纸上的相应位置.) 1.设集合{}{}=32,=13X x Z x Y y Z y ∈-<<∈-≤≤,则X Y ⋂=( )A. {}0,1B.{}1,0,1-C.{}0,1,2D.{}1,0,1,2-2.下列各组函数是同一函数的是( )A.xy x=与1y = B.()21y x =-与1y x =-C.2x y x =与y x =D.321x x y x +=+与y x =3.下列函数中,在区间()0,2是增函数的是( )A.1y x =-+B.245y x x =-+C.y x =D.1y x= 4.命题“∀x R ∈,都有20x ≥”的否定为( )A. ∀x R ∈,都有20x <B.不存在x R ∈,使得20x <C. ∃0x R ∈,使得200x ≥ D. ∃0x R ∈,使得200x < 5.己知函数()f x 的图象是两条线段(如图,不含端点),则13f f⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=( )A.13-B.13C.23-D.236.已知,a b 是实数,则“0a b >>且0c d <<”是“a bd c<”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件7.如下图,是吴老师散步时所走的离家距离()y 与行走时间()x 之间的函数关系的图 象,若用黑点表示吴老师家的位置,则吴老师散步行走的路线可能是( )8.已知集合{}523M x R x =∈--为正整数,则M 的所有非空真子集的个数是( ) A. 30 B.31 C. 510 D. 511二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸上的相应位置.)9.方程组322327x y x y +=⎧⎨-=⎩的解集用列举法表示为______________.10.已知函数()2,02,0x x f x x x +≤⎧=⎨-+>⎩,则方程()2f x x =的解集为__________.11.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 的值__________. 12.若函数f(x)=x 2-2(a-1)x+2在区间()1,4上不是单调函数,那么实数a 的取值范围是__________.13.几位同学在研究函数()()1xf x x R x=∈+时给出了下面几个结论: ①函数()f x 的值域为()1,1-; ②若12x x ≠,则一定有()()12f x f x ≠; ③()f x 在()0,+∞是增函数;④若规定()()1f x f x =,且对任意正整数n 都有:()()()1n n f x f f x +=,则()1n xf x n x=+对任意*n N ∈恒成立.上述结论中正确结论的序号为_______________.14.函数()()2241,2f x x x g x x a =-+=+,若存在121,,12x x ⎡⎤∈⎢⎥⎣⎦,使得()()12f x g x =,则a 的取值范围是______________.三、解答题(本大题共3小题,每题10分,共30分,解答应写出文字说明过程或演算步骤, 请将答案写在答题纸上的相应位置.)15.设全集是实数集{}{}22,2730,0R A x x x B x x a =-+≤=+<.(1)当4a =-时,求A B ⋂和A B ⋃; (2)若()R C A B B ⋂=,求实数a 的取值范围.16.已知二次函数()()22,f x x bx c b c R =++∈.(1)已知()0f x ≤的解集为{}11x x -≤≤,求实数,b c 的值;(2)已知223c b b =++,设1x 、2x 是关于x 的方程()0f x =的两根,且()()12118x x ++=,求实数b 的值;(3)已知()f x 满足()10f =,且关于x 的方程()0f x x b ++=的两实数根分别在区间()()3,2,0,1--内,求实数b 的取值范围.17.已知函数()4f x x x=+,(1)判断函数()f x 的奇偶性; (2)指出该函数在区间(0,2]上的单调性,并用函数单调性定义证明;(3)已知函数()()(),05,0,0f x x g x f x x x >⎧⎪==⎨⎪-<⎩,当[]1,x t ∈-时()g x 的取值范围是[5,)+∞,求实数t 取值范围.(只需写出答案)II 卷 (共7道题,满分50分)四、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)18.已知两个函数()f x 和()g x 的定义域和值域都是集合{}1,2,3,其定义如下表:则方程()1g f x x =+⎡⎤⎣⎦的解集为( )A.{}1B.{}2C.{}1,2D.{}1,2,319.已知()f x 是定义在()4,4-上的偶函数,且在()4,0-上是增函数,()()3f a f <,则实a ( )A.()3,3-B.()(),33,-∞-⋃+∞C.()4,3--D.()()4,33,4--⋃ 20.已知函数()225f x x ax =-+在[]1,3x ∈上有零点,则正数a 的所有可取的值的集合为( )A.7,33⎡⎤⎢⎥⎣⎦B.)+∞C. ⎤⎦D.五、填空题(本大题共3小题,每小题6分,共18分.请把结果填在答题纸上的相应位置.)21.已知函数()f x =则函数()f x 的最大值为_______,函数()f x 的最小值为________.22.关于x 的方程()()g x t t R =∈的实根个数记()f t . (1)若()1g x x =+,则()f t =____________;(2)若()()2,0,2,0,x x g x a R x ax a x ≤⎧=∈⎨-++>⎩,存在t 使得()()2f t f t +>成立,则a 的取值范围是_____.23.对于区间[](),a b a b <,若函数()y f x =同时满足: ①()f x 在[],a b 上是单调函数;②函数()[],,y f x x a b =∈的值域是[],a b ,则称区间[],a b 为函数()f x 的“保值,区间.(1)写出函数2y x =的一个“保值”区间为_____________;(2)若函数()()20f x x m m =+≠存在“保值区间,则实数m 的取值范围为_____________.六、解答题(本大题共1小题,满分14分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)24.已知x 为实数,用[]x 表示不超过x 的最大整数. (1)若函数()[]f x x =,求f(1.2),f(-1.2)的值;(2)若函数()()122x x f x x R +⎡⎤⎡⎤=-∈⎢⎥⎢⎥⎣⎦⎣⎦,求()f x 的值域; (3)若存在m R ∈且m Z ∉,使得()[]()f m fm =,则称函数()f x 是Ω函数,若函数()af x x x=+是Ω函数,求a 的取值范围.参考答案与解析I 卷(共17题,满分100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确案填涂在答题纸上的相应位置.)1.答案:B解析:因为X={-2,-1,0,1},Y={-1,0,1,2,3}所以X ∩Y={-1,0,1},即选B 。
北京市人民大学附中2019-2020学年第一学期高一数学指数函数与对数函数单元练习(含解析)
![北京市人民大学附中2019-2020学年第一学期高一数学指数函数与对数函数单元练习(含解析)](https://img.taocdn.com/s3/m/b4b536816294dd88d0d26bd4.png)
2019-2020学年第一学期高一年级数学指数函数与对数函数单元练习一、单选题(共15小题,每小题2分,共30分)1.若256(26)1x x x -+-=,则下列结果正确的是( )。
A .x =2B .x =3C .x =2或x =3D .以上都不对2.函数f (x )( )。
A .(-∞,0)B .[0,+∞)C .(-∞,0]D .(-∞,+∞) 3.函数y =log 2x (1≤x ≤8)的值域是( )。
A .RB .[0,+∞)C .(-∞,3]D .[0,3]4.已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图像如右图所示,则a ,b 满足的关系是( )。
A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<15.已知函数f (x )=(x -a )(x -b )(其中a >b )的图像如下图所示,则函数g (x )=a x +b 的图像是( )。
6.函数f (x )=lg(21-x-1)的图像关于( )。
A .y 轴对称 B .x 轴对称 C .原点对称 D .直线y =x 对称7.某企业2019年的产值为125万元,计划从2020年起平均每年比上一年增长20%,问哪一年这个企业的产值可达到216万元( )。
A .2021年B .2022年C .2023年D .2024年8.13212112,log ,log 33a b c -===,则 A .a >b >c B .a >c >b C .c >a >b D .c >b >a9.函数y =2+log 2(x 2+3)(x ≥1)的值域为( )。
A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞)10.若f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值是( )。
A.14B.12 C .2 D .411.要建造一个长方体形状的仓库,其内部的高为3 m ,长与宽的和为20 m ,则仓库容积的最大值为( )。
北京人大附中2019-2020学年高一上学期期中数学试卷(含解析)
![北京人大附中2019-2020学年高一上学期期中数学试卷(含解析)](https://img.taocdn.com/s3/m/a843fc98f01dc281e43af061.png)
2019~2020学年度高一年级模块检测试题高一数学满分150分 时间:120分钟第Ⅰ卷(共17题,满分100分)一、选择题(本大题共8小题,每小题5分,共40分。
在每个题给出的四个选项中,只有一项是符合要求的)1.(★)集合X={x ∈Z|-3<x<2},Y={y ∈Z|-1≤y ≤3},则X ∩Y=( ) A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}关键点 必修1第一章集合与函数的概念1.1集合. 考向 集合间的运算.分析 根据题意先分别化简集合X,Y,再由交集的定义求出X ∩Y.解析 ∵X={x ∈Z|-3<x<2}={-2,-1,0,1},Y={y ∈Z|-1≤y ≤3}={-1,0,1,2,3},∴X ∩Y={-1,0,1},故选B. 答案 B点评 本题考查集合的表示方法及集合的交集运算. 2.(★★)下列各组函数是同一函数的是( ) A.y=|x|x 与y=1 B.y=√(x -1)2与y=x-1 C.y=x 2x 与y=x D.y=x 3+xx 2+1与y=x关键点 必修1第一章集合与函数的概念1.2函数及其表示. 考向 同一函数的判断.解析 A 中,y=|x|x ={1,x >0,-1,x <0与y=1的定义域和对应关系都不同,故A 不符合题意.B 中,y=√(x -1)2=|x-1|={x -1,x ≥1,1−x,x <1与y=x-1的对应关系不同,故B 不符合题意.C 中,y=x 2x 的定义域为{x|x ≠0},y=x 的定义域为R,两个函数的定义域不同,故C 不符合题意. D 中,y=x 3+xx 2+1的定义域为R,且y=x 3+x x 2+1=x(x 2+1)x 2+1=x,与y=x 的定义域和对应关系都相同,是同一函数,故D 符合题意.故选D. 答案 D点评判断两个函数是不是同一函数可以先从定义域进行分析,若定义域不同,则不是同一函数,若定义域相同,再分析对应关系,若对应关系相同,则为同一函数,若对应关系不同,则不是同一函数.3.(★★)下列函数中,在区间(0,2)上是增函数的是( )A.y=-x+1B.y=x2-4x+5C.y=√xD.y=1x关键点必修1第一章集合与函数概念1.3函数的基本性质.考向利用函数单调性的定义判断函数的单调性.解析A中,y=-x+1是一次函数,在(0,2)上为减函数;B中,y=x2-4x+5是二次函数,其图象的对称轴是x=2,所以在(0,2)上为减函数;C中,y=√x=x 12是幂函数,在(0,2)上是增函数;D中,y=1x是反比例函数,在(0,2)上为减函数.故选C.答案 C点评要熟练掌握基本初等函数的单调性,一次函数单调性的判断:y=kx+b(k≠0).当k>0时,函数在R上为增函数,当k<0时,函数在R上为减函数.二次函数单调性的判断:y=ax2+bx+c(a≠0),当a>0时,函数在(-∞,-b2a )上递减,在(-b2a,+∞)上递增,当a<0时,函数在(-∞,-b2a)上递增,在(-b2a,+∞)上递减.幂函数y=x a,当a>0时,函数在(0,+∞)上是增函数,当a<0时,在(0,+∞)上为减函数.4.(★★)命题“对任意x∈R,都有x2≥0”的否定为( )A.对任意x∈R,都有x2<0B.不存在x∈R,使得x2<0C.存在x∈R,使得x2≥0D.存在x∈R,使得x2<0关键点选修2-1,第一章常用逻辑用法1.4全称量词与存在量词.考向全称量词命题的否定.分析根据全称量词命题的否定是存在量词命题进行判断即可.解析全称量词命题的否定是先改变量词,再对结论进行否定,所以命题“对任意x∈R,都有x2≥0”的否定为“存在x∈R,使得x2<0”,故选D.答案 D5.(★★)已知函数f(x)的图象是两条线段(如图,不含端点),则f[f(13)]=( )A.-13B.13C.-23D.23关键点 必修1第一章集合与函数概念1.2函数及其表示. 考向 分段函数的有关计算.分析 先根据函数的图象写出函数的解析式,再根据解析式由内向外求出函数值. 解析 由函数图象可得f(x)={x +1,−1<x <0,x -1,0<x <1,∴f (13)=13-1=-23,则f (-23)=-23+1=13,∴f [f (13)]=f (-23)=13.故选B. 答案 B点评 本题考查分段函数求值,首先通过图象求出函数解析式,再计算函数值. 6.(★★)已知a,b 是实数,则“a>b>0且c>d>0”是“a d >bc ”的( ) A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件关键点 必修5第3章3.1不等式关系与不等式,选修2-1第一章常用逻辑用语1.2充分条件与必要条件.考向 考查不等式的性质和充分、必要条件的判断.解析 根据不等式的性质可知,由“a>b>0且c>d>0”可推出“a d >bc ”,但“ad >bc ”不能推出“a>b>0且c>d>0”,例如a=1,d=2,c=-3,b=4,满足“ad >bc ”,推不出“a>b>0且c>d>0”,所以是充分不必要条件,故选A. 答案 A7.(★★)下图是吴老师散步时离家距离y 与行走时间x 之间的函数关系的图象,若用黑点表示吴老师家的位置,则吴老师散步行走的路线可能是( )关键点 必修1第一章集合与函数概念1.2函数表示法. 考向 本题考查了函数的概念及读图识图能力.分析 由所给图象可知,吴老师刚开始一段时间离家越来越远,然后有一段时间离家的距离不变,然后离家越来越近,结合图象逐项排除.解析 根据函数图象可知,吴老师离家越来越远,有一段时间离家距离不变,说明他走的是一段弧线,然后离家越来越近直至回家,分析四个选项可知只有D 符合,故选D. 答案 D点评 本题考查实际问题中对应函数图象问题,体现直观想象的数学素养.8.(★★)已知集合M={x ∈R|5-|2x-3|为正整数},则M 的所有非空真子集的个数是( ) A.30B.31C.510D.511关键点 必修1第一章集合与函数概念1.1集合. 考向 集合的表示方法以及真子集的概念.分析 根据5-|2x-3|为正整数可计算出集合M 中的元素,然后根据非空真子集个数的计算公式2n -2(n 是元素个数)计算出结果.解析 由5-|2x-3|为正整数可得|2x-3|的值为0,1,2,3,4,所以2x-3的值为0,±1,±2,±3,±4,共9个值,对应的x 为32,2,1,52,12,3,0,72,-12,共9个值.∴M={-12,0,12,1,32,2,52,3,72},有9个元素,所以M 的非空真子集的个数为29-2=510,故选C. 答案 C点评 本题考查用列举法表示集合以及计算集合的非空真子集的个数.一个集合中含有n 个元素,则集合的子集的个数为2n ;集合的真子集的个数为2n -1;非空真子集的个数为2n -2. 二、填空题(本大题共6小题,每小题5分,共30分,请把结果填在答题纸上的相应位置) 9.(★)方程组{3x +y =2,2x -3y =27的解用列举法表示为 .关键点 必修1第一章集合与函数的概念1.1集合. 考向 二元一次方程组的解法及用列举法表示集合. 答案 {(3,-7)}解析 ∵{3x +y =2,2x -3y =27,∴{x =3,y =−7.∴用列举法表示为{(3,-7)}.10.(★★)已知函数f(x)={x +2,x ≤0,-x +2,x >0,则方程f(x)=x 2的解为 .关键点 必修1第三章函数的应用3.1函数与方程. 考向 分段函数以及函数与方程的简单应用.分析 考虑x ≤0和x>0时f(x)=x 2的解,求出解后注意判断是否满足定义域的要求. 解析 当x ≤0时,f(x)=x+2,代入f(x)=x 2得x+2=x 2,即x 2-x-2=0,解得x=-1或x=2, ∵x=2不满足x ≤0,故舍去,此时方程的解为x=-1.当x>0时,f(x)=-x+2,代入f(x)=x 2得-x+2=x 2,即x 2+x-2=0,解得x=1或x=-2(舍).综上,原方程的解为{-1,1}. 答案 {-1,1}点评 本题考查函数与方程的简单应用,已知f(x)是分段函数,求方程f(x)=x 2的解时,可分段考虑,求出每一段符合要求的解,最后得出结果.11.(★★)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/吨,一年的总存储费用为4x 万元,要使一年的总费用之和最小,则x 的值是 .关键点 必修1第三章函数的应用3.2函数模型及其应用,必修5第三章不等式3.4基本不等式:√ab ≤a+b 2.考向 利用函数模型以及基本不等式解决实际问题并求出实际问题的最优解. 分析 列出一年的总费用与总存储费用之和的表达式,利用基本不等式即可得出. 解析 由题意可得,一年的总费用包括一年的总运费与总存储费用之和. ∴总费用=600x×6+4x=4(x +900x)≥4×2√900=240(万元),当且仅当x=900x,即x=30时等号成立,故答案为30.答案 30点评 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中一正,二定,三相等,否则会出现错误.12.(★★)若函数f(x)=x 2+2(a-1)x+2在区间(1,4)上不是单调函数,那么实数a 的取值范围是 .关键点 必修1第一章集合与函数概念1.3函数的基本性质. 考向 二次函数单调性的应用. 答案 (-3,0)解析 函数f(x)=x 2+2(a-1)x+2的图象开口向上,且对称轴为x=1-a.∵函数f(x)=x 2+2(a-1)x+2在区间(1,4)上不是单调函数, ∴1<1-a<4,解得-3<a<0.故答案为(-3,0).点评 判断二次函数的单调性,可以通过二次函数图象的开口方向以及对称轴来进行分析:图象开口向上,在对称轴左侧单调递减,在对称轴右侧单调递增;图象开口向下,在对称轴左侧单调递增,在对称轴右侧单调递减.13.(★★★)几位同学在研究函数f(x)=x1+|x|(x ∈R)时给出了下面几个结论: ①函数f(x)的值域为(-1,1); ②若x 1≠x 2,则一定有f(x 1)≠f(x 2); ③f(x)在(0,+∞)上是增函数;④若规定f 1(x)=f(x),且对任意正整数n 都有:f n+1(x)=f(f n (x)),则f n (x)=x1+n|x|对任意n ∈N *成立.上述结论中正确结论的序号为 . 关键点 必修1集合与函数概念1.3函数的基本性质. 考向 函数的值域、单调性、奇偶性的综合运用.分析 函数f(x)=x1+|x|满足f(-x)=-f(x),∴f(x)为奇函数,求当x ≥0时的值域,单调性即可判断出①②③是否正确,再利用归纳推理判断④是否正确. 解析 ∵f(x)=x 1+|x|满足f(-x)=-x 1+|−x|=-x1+|x|=-f(x), ∴函数f(x)=x1+|x|为奇函数.又∵x ≥0时,f(x)=x 1+x =1-11+x ∈[0,1), ∴函数f(x)的值域为(-1,1),故①正确.∵x ≥0,f(x)=x 1+x =1-11+x 在[0,+∞)上是单调递增函数,∴由奇函数的性质知,函数f(x)=x1+|x|在R 上是单调增函数,∴若x 1≠x 2则一定有f(x 1)≠f(x 2). f 2(x)=f(f 1(x))=x 1+|x|1+|x|1+|x|=x 1+2|x|,同理,可求得f 3(x)=x 1+3|x|,由归纳推理可得f n (x)=x1+n|x|对任意n∈N *成立,所以④正确.故答案为①②③④. 答案 ①②③④点评本题考查函数的值域、单调性、奇偶性的综合应用,可以先判断函数的奇偶性,利用函数的奇偶性来简化有关求函数值域、单调性等问题.本题还考查了数学运算和逻辑推理的核心素养.14.(★★★)函数f(x)=2x2-4x+1,g(x)=2x+a,若存在x1,x2∈[12,2],使得f(x1)=g(x2),则a的取值范围是.关键点必修1第三章函数的应用3.1函数与方程. 考向函数的值域、函数与方程的综合问题.答案[-5,0]解析因为f(x)=2x2-4x+1=2(x-1)2-1,所以当x1∈[12,2]时,f(x1)∈[-1,1].因为g(x)=2x+a,所以当x2∈[12,2]时,g(x2)∈[a+1,a+4].当[-1,1]∩[a+1,a+4]=⌀时,有a+1>1或a+4<-1,得a>0或a<-5.故当[-1,2]∩[a+1,a+4]≠⌀时,-5≤a≤0,故答案为[-5,0].点评本题考查根据函数值域的关系求解参数的取值范围.当两个函数的值域的交集不为空集时,若从正面分析参数的取值范围较复杂,可考虑交集为空集时对应参数的取值范围,再求其补集,从而得到所求结果,体现了“正难则反”的数学思想方法的应用.三、解答题(本大题共3小题,每题10分,共30分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置)15.(★★)设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,求A∩B和A∪B;(2)若(∁RA)∩B=B,求实数a的取值范围.关键点必修1第一章集合与函数概念1.1集合.考向集合的运算以及一元二次不等式的解法.分析(1)当a=-4时,求出集合B,然后根据交集、并集的定义即可求出.(2)由(∁R A)∩B=B,可得B⊆∁RA,即可求解.解析(1)由题意得A={x|12≤x≤3}.当a=-4时,B={x|-2<x<2},∴A∩B={x|12≤x<2},A∪B={x|-2<x≤3}.(2)由(1)得∁R A=x|x<12或x>3,由(∁RA)∩B=B,得B⊆∁RA.①当B=⌀,即a≥0时,满足B⊆∁RA.②当B≠⌀,即a<0时,B={x|-√-a<x<√-a},要使B⊆∁R A,需√-a≤12,解得-14≤a,又a<0,所以-14≤a<0.综上可得,实数a的取值范围是a|a≥−14.点评本题重点考查集合的交集、并集、补集的运算.需要注意的是在求解第(2)问时需分集合B=⌀和B≠⌀两种情况讨论.体现了分类讨论数学思想的应用.16.(★★)已知二次函数f(x)=x2+2bx+c(b,c∈R).(1)已知f(x)≤0的解集为{x|-1≤x≤1},求实数b,c的值;(2)已知c=b2+2b+3,设x1,x2是关于x的方程f(x)=0的两根,且(x1+1)(x2+1)=8,求实数b的值;(3)已知f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.关键点必修1第三章函数的应用3.1函数与方程.考向一元二次方程根与系数关系的应用,三个“二次”关系在解题中的应用.解析(1)因为f(x)≤0的解集为{x|-1≤x≤1},所以-1和1是方程x2+2bx+c=0的两根,则{-2b=−1+1,c=(−1)×1,所以b=0,c=-1.(2)∵c=b2+2b+3,∴f(x)=x2+2bx+b2+2b+3.由题意得x2+2bx+b2+2b+3=0,∴x1+x2=-2b,x1x2=b2+2b+3.∵(x1+1)(x2+1)=8,∴x1x2+(x1+x2)+1=8,∴b2+2b+3-2b+1=8,∴b2=4,∴b=±2.当b=-2时,f(x)=x2-4x+3,符合题意.当b=2时,f(x)=x2+4x+11,此时f(x)=0无解,所以不符合题意. 综上,b=-2.(3)因为f(1)=0,所以1+2b+c=0,所以c=-1-2b.记g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x-(b+1).∵g(x)=0的两根分别在区间(-3,-2),(0,1)内,∴{g(-3)=5-7b >0,g(-2)=1-5b <0,g(0)=-(1+b)<0,g(1)=b +1>0,解得b ∈(15,57),则b 的取值范围是(15,57).点评 本题考查由一元二次不等式的解集求参数以及二次函数的零点分布问题. (1)一元二次不等式的解集的端点值对应一元二次方程的根. (2)一元二次方程根的分布问题可转化为二次函数零点分布问题.(3)利用根与系数关系解决与一元二次方程根有关问题时,要注意前提条件是一元二次方程必须有根,所以需要对结果进行检验. 17.(★★)已知函数f(x)=x+4x . (1)判断函数f(x)的奇偶性;(2)指出该函数在区间(0,2]上的单调性,并用函数单调性的定义证明;(3)已知函数g(x)={f(x),x >0,5,x =0,-f(x),x <0,当x ∈[-1,t]时,g(x)的取值范围是[5,+∞).求实数t 的取值范围.(只需写出答案)关键点 必修1第一章集合与函数概念1.3函数的基本性质. 考向 函数的奇偶性,函数的单调性,分段函数性质的应用.分析 (1)先求函数的定义域,然后根据奇偶性的定义判断函数f(x)的奇偶性. (2)利用单调性的定义,证明f(x)在(0,2]上的单调性即可. (3)作出g(x)的图象,根据图象求t 的取值范围.解析 (1)由题意得f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称, ∵f(-x)=(-x)+4(-x)=-x-4x =-f(x), ∴f(x)是奇函数.(2)f(x)在(0,2]上单调递减. 证明:任取x 1,x 2∈(0,2]且x 1<x 2,则f(x 1)-f(x 2)=x 1+4x 1-(x 2+4x 2)=(x 1-x 2)+(4x 1-4x 2)=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)(x 1x 2-4)x 1x 2. ∵0<x 1<x 2≤2,∴0<x 1x 2<4,x 1-x 2<0,∴x 1x 2-4<0.∴f(x1)-f(x2)>0,即f(x1)>f(x2).∴f(x)在(0,2]上单调递减.(3)t∈[0,1].提示:∵f(x)=x+4x是“对勾函数”,∴作出g(x)的图象,如图.从图中可以得出当值域为[5,+∞)时,t∈[0,1].点评(1)判断函数的奇偶性时,首先判断函数的定义域是否关于原点对称,若不对称,则是非奇非偶函数,若对称,再判断f(x)与f(-x)的关系,由此得到函数的奇偶性,有时也会利用变式来判断:奇函数需满足f(-x)+f(x)=0,偶函数需满足f(-x)-f(x)=0.(2)用定义法证明函数单调性的一般步骤:取值,作差,变形,判断符号,得结论.(3)要掌握对勾函数f(x)=x+ax(a>0)的单调性,增区间为(-∞,-√a),(√a,+∞),减区间为(-√a,0),(0,√a).第Ⅱ卷(共7道题,满分50分)四、选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,只有一项是符合题目要求的)18.(★★)已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表:x 1 2 3f(x) 2 1 3x 1 2 3g(x) 3 2 1则方程g[f(x)]=x+1的解为( )A.{1}B.{2}C.{1,2}D.{1,2,3}关键点必修1第一章集合与函数概念1.2函数及其表示.考向函数的定义,复合函数的概念.分析把x=1、2、3分别代入方程g[f(x)]=x+1进行检验,若满足,则是方程的解,若不满足,则不是方程的解.解析当x=1时,g[f(1)]=g(2)=2=1+1,∴x=1是方程的解.当x=2时,g[f(2)]=g(1)=3=2+1,∴x=2是方程的解.当x=3时,g[f(3)]=g(3)=1≠3+1,∴x=3不是方程的解,故选C.答案 C点评本题考查根据函数的自变量与函数值的对应关系求方程的解,求形如f[g(x)]的复合函数值时,可先计算出内层函数g(x)的值,然后根据g(x)的值,计算外层函数f[g(x)]的值. 19.(★★)已知f(x)是定义在(-4,4)上的偶函数,且在(-4,0]上是增函数,若f(a)<f(3),则实数a的取值范围是( )A.(-3,3)B.(-∞,-3)∪(3,+∞)C.(-4,-3)D.(-4,-3)∪(3,4)关键点必修1第一章集合与函数概念1.3函数的基本性质.考向函数单调性,奇偶性的综合应用.分析由函数f(x)是定义在(-4,4)上的偶函数,可得f(-x)=f(x)=f(|x|),再结合f(x)的单调性,即可求得实数a的取值范围.解析∵f(x)是定义在(-4,4)上的偶函数,∴f(-x)=f(x)=f(|x|),∴f(a)<f(3)可化为f(|a|)<f(3),又∵f(x)在(-4,0]上是增函数,∴{|a|>3,-4<a<4,解得-4<a<-3或3<a<4,∴a的取值范围是(-4,-3)∪(3,4).故选D.答案 D点评本题考查根据函数的单调性,奇偶性求解参数的范围,利用f(-x)=f(x)=f(|x|)的转化可避免对参数的讨论.20.(★★★)已知函数f(x)=x2-2ax+5在x∈[1,3]上有零点,则正数a的所有可能的值的集合为( )A.[73,3] B.[√5,+∞) D.[√5,3] D.(0,√5]关键点必修1第三章函数的应用3.1函数与方程.考向与二次函数零点有关的分类讨论问题.分析考虑函数f(x)在区间[1,3]上有一个零点,有两个零点进行讨论.即可解出正数a的所有可能的值的集合.解析①当f(x)在R上仅有一个零点时,Δ=4a2-20=0(a>0),∴a=√5,此时零点x=√5∈[1,3],所以a=√5成立.②当f(x)在R上有两个零点时,其中有一个零点在[1,3]上,此时f(1)·f(3)≤0,即(6-2a)(14-6a)≤0,解得73≤a≤3.当f(x)在[1,3]上有两个零点时,需满足条件{Δ=4a2-20>0,1<a<3,f(1)=6-2a≥0,f(3)=14-6a≥0,解得√5<a≤73.综上所述,正数a的取值集合为[√5,3].故选C.答案 C点评二次函数零点分布的问题一般从判别式,图象的对称轴位置,区间端点函数值等方面来考虑.五、填空题(本大题共3小题,每小题6分,共18分)21.(★★)已知函数f(x)=√1−x+√x+3,则函数f(x)的最大值为,函数f(x)的最小值为.关键点必修1第一章集合函数概念1.3函数的基本性质.考向求函数的最值.答案2√2;2解析[f(x)]2=(√1−x+√x+3)2=4+2√4−(x+1)2,x∈[-3,1].当x=-1时,[f(x)]2取得最大值8,所以f(x)max=2√2.当x=-3或1时,[f(x)]2取得最小值4,所以f(x)min=2.点评本题考查含根式函数的取值,一般有两种题型:若只有一个根式,则可考虑使用换元法求解函数的值域或最值;若是多个根式,则可考虑函数本身的特点,通过平方、配凑等方法处理、转化为易求出最值或值域的函数.22.(★★★)关于x的方程g(x)=t(t∈R)的实数根个数为f(t).(1)若g(x)=x+1,则f(t)= ;(2)已知g(x)={x,x≤0,-x2+2ax+a,x>0(a∈R).若存在t,使得f(t+2)>f(t)成立,则a的取值范围是.关键点必修1第三章函数的应用,3.1函数与方程.考向函数的定义,函数与方程的综合应用.答案1;(1,+∞)解析(1)因为g(x)=x+1,所以函数g(x)的值域为R,且函数g(x)为单调函数,故方程g(x)=t 有且只有一个根,故f(t)=1.(2)g(x)={x,x≤0,-x2+2ax+a(a∈R),x>0.当t≤0时,利用图象分析可知,f(t)=1.当a≤0时,g(x)的图象如图:此时f(t+2)≤f(t),∴不存在t,使得f(t+2)>f(t)成立. 当a>0时,g(x)的图象如图:此时存在t,使得f(t+2)>f(t)成立.则x>0时,函数的最大值大于2,即-4a-4a 2-4>2,解得a>1.当t>0时,若a≤0,则不存在t,使得f(t+2)>f(t)成立. 若a>0,g(x)的图象如图.若存在t,使得f(t+2)>f(t)成立,则x>0时,函数的最大值大于2,即-4a -4a 2-4>2,解得a>1.综上,a ∈(1,+∞).23.(★★★)对于区间[a,b](a<b),若函数y=f(x)同时满足:①f(x)在区间[a,b]上是单调函数;②函数y=f(x),x ∈[a,b]的值域是[a,b].则称区间[a,b]为函数f(x)的“保值”区间.(1)写出函数y=x 2的一个“保值”区间: ;(2)若函数y=x 2+m(m ≠0)存在“保值”区间,则实数m 的取值范围为 . 关键点 必修1集合与函数的概念1.3函数的基本性质子.考向 函数的值域,单调性及新定义问题.答案 [0,1];[-1,-34)∪(0,14)分析 (1)由条件可知f(x)在区间[a,b]上是单调函数,根据y=x 2的值域是[0,+∞),可得[a,b]⊆[0,+∞),从而y=x 2在区间[a,b]上单调递增,由此得{f(a)=a,f(b)=b,从而解出a,b 的值,得出结果. (2)根据已知中“保值”区间的定义,分函数y=x 2+m 在区间[a,b]上单调递增和函数y=x 2+m 在区间[a,b]上单调递减两种情况讨论,即可得出m 的取值范围.解析 (1)∵函数y=x 2的值域是[0,+∞)且y=x 2在[a,b]的值域是[a,b],∴[a,b]⊆[0,+∞),∴a ≥0,从而函数y=x 2在区间[a,b]上单调递增,∴{a 2=a,b 2=b,解得{a =0,b =1,∴函数y=x 2的一个“保值”区间为[0,1].(2)若a<b ≤0,则y=x 2+m 在区间[a,b]上单调递减.∴{a 2+m =b,b 2+m =a,消去m 得a 2-b 2=b-a,整理得(a-b)(a+b+1)=0. ∵a<b,∴a+b+1=0,即a=-b-1,∴{b ≤0,-b -1<b,解得-12<b ≤0.∴m=-b 2+a=-b 2-b-1=-(b +12)2-34∈[-1,-34). 若b>a ≥0,则函数y=x 2+m 在区间[a,b]上单调递增,∴{a 2+m =a,b 2+m =b,消去m 得a 2-b 2=a-b,整理得(a-b)(a+b-1)=0. ∵a<b,∴a+b-1=0,即b=1-a,∴{a ≥0,1−a >a,解得0≤a<12, ∴m=-a 2+a=-(a -12)2+14∈[0,14).又∵m ≠0,∴m ∈(0,14). 综上,可知m 的取值范围是[-1,-34)∪(0,14).故答案为[0,1];[-1,-34)∪(0,14).点评 本题考查新定义背景下的二次函数的定义域,值域与单调性的综合问题.解决此题的关键是将新定义与已学知识产生联系,运用所学知识解决问题.本题中的“保值”区间实际就是定义域,值域以及函数单调性的结合.六、解答题(本大题共1小题,满分14分,解答应写出文字说明过程或演算步骤)24.(★★★)已知x 为实数,用[x]表示不超过x 的最大整数.(1)若函数f(x)=[x],求f(1.2),f(-1.2)的值;(2)若函数f(x)=[x+12]-[x 2](x ∈R),求f(x)的值域; (3)若存在m ∈R 且m ∉Z,使得f(m)=f([m]),则称函数f(x)是Ω函数,若函数f(x)=x+a x 是Ω函数,求a 的取值范围.关键点 必修1第一章集合与函数概念1.3函数的基本性质.考向 函数的值域,单调性等以及新定义的应用.解析 (1)∵[x]表示不超过x 的最大整数,f(x)=[x],∴f(1.2)=[1.2]=1,f(-1.2)=[-1.2]=-2.(2)∵[x+12]=[x 2]或[x+12]=x 2+1, ∴f(x)=[x+12]-[x2](x ∈R)的值域为{0,1}.(3)当a=0时,f(x)=x,显然f(x)不是Ω函数.当a<0时,f(x)=x+ax 是一个增函数,在(-∞,0)∪(0,+∞)上单调递增.此时不存在m<0,使得f(m)=f([m]),同理不存在m>0,使得f(m)=f([m]).又∵m[m]≥0,即不会出现[m]<0<m 的情况,∴f(x)=x+ax不是Ω函数.当a>0时,假设f(m)=f([m]),∴m+am =[m]+a[m],∴a=m[m],其中[m]≠0.当m>0时,∵[m]<m<[m]+1,∴[m2]<m[m]<([m]+1)[m],∴[m]2<a<([m]+1)[m].当m<0时,[m]<0,∵[m]<m<[m]+1,∴[m2]>m[m]>([m]+1)[m],∴[m]2>a>([m]+1)[m].记k=[m].综上可以得到:a>0且对任意k∈N*,a≠k2且a≠k(k+1).点评本题考查新定义背景下的取整函数问题,主要考查学生的运算和推理能力,取整函数是一个比较常考的函数,实际上可以看作是一个分段函数,其图象的每一段都是平行于x轴的,本题考查了逻辑推理和数学运算的核心素养.。
2019-2020学年北京市人大附中高一上学期期中考试数学试题
![2019-2020学年北京市人大附中高一上学期期中考试数学试题](https://img.taocdn.com/s3/m/b3fe4302f7ec4afe04a1df8c.png)
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
I卷(共17题,满分100分)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确案填涂在答题纸上的相应位置.)
1.设集合 ,则 ()
A. B. C. D.
【答案】B
【解析】
【分析】
根据表示元素的范围以及表示元素是整数先分别用列举法写出集合 ,然后再计算 的结果.
【详解】因为 , ,所以 .
故选:B.
【点睛】本题考查集合集合的表示方法以及集合的交集运算,难度较易.
2.下列各组函数是同一函数的是()
A. 与 B. 与
【分析】
直接判断一次函数、二次函数、反比例函数、幂函数在区间 上的单调性即可得到结果.
【详解】 、 、 在区间 是减函数,
在区间 是增函数.
故选:C.
【点睛】一次函数的单调性判断: ,当 时在 上递增,当 时在 上递减;
二次函数的单调性判断: ,当 时在 上递减,在 上递增;当 时在 上递增,在 上递减.
【答案】
【解析】
【分析】
首先根据方程组求出其解,然后运用列举法表示出对应的解集即可(以有序数对 的形式表示元素).
【详解】因为 ,所以 ,所以列举法表示解集为: .
故答案为: .
【点睛】本题考查二元一次方程组解集的列举法表示,难度较易.二元一次方程组的解用列举法表示时,可将元素表示成有序数的形式: .
4.命题“对任意x∈R,都有x2≥0”的否定为( )
A.对任意x∈R,都有x2<0B.不存在x∈R,都有x2<0
2019北京人大附中高一(上)期中数学含答案
![2019北京人大附中高一(上)期中数学含答案](https://img.taocdn.com/s3/m/78bad56b9e3143323868936c.png)
2019北京人大附中高一(上)期中数学一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.(5分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=( )A.{0,1} B.{﹣1,0,1} C.{0,1,2} D.{﹣1,0,1,2}2.(5分)下列各组函数是同一函数的是( )A.与y=1 B.与y=x﹣1C.与y=x D.与y=x3.(5分)下列函数中,在区间(0,2)上是增函数的是( )A.y=﹣x+1 B.y=x2﹣4x+5 C.D.4.(5分)命题“对任意a∈R,都有a2≥0”的否定为( )A.对任意a∈R,都有a2<0 B.对任意a∈R,都有a2<0C.存在a∈R,使得a2≥0 D.存在a∉R,使得a2<05.(5分)已知函数f(x)的图象是两条线段(如图所示,不含端点),则f[f()]=( )A.﹣B.C.﹣D.6.(5分)已知a,b是实数,则“a>b>0且c<d<0”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.(5分)如图是王老师锻炼时所走的离家距离(S)与行走时间(t)之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是( ).B.C.D.分)方程组的解集用列举法表示为 分)已知函数,则方程分)几位同学在研究函数(,则对任意,若存在,使得分)已知函数.)已知函数,当....数,)若()若函数,求函数,若函数是2019北京人大附中高一(上)期中数学参考答案一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选:B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.2.【分析】直接利用同一函数的定义的应用求出结果.【解答】解:针对选项A:的定义域为{x|x≠0},函数y=1的定义域为x∈R,故错误.对于选项B:和函数y=x﹣1不相等,故错误.对于选项C:的定义域为{x|x≠0},函数y=x的定义域为x∈R,故错误.对于选项D:的定义域为x∈R,函数y=x的定义域为x∈R,故正确.故选:D.【点评】本题考查的知识要点:函数的性质的应用,主要考查学生对同一函数的定理的理解和应用,属于基础题.3.【分析】直接利用函数的图象和函数的单调性的应用求出结果.【解答】解:对于选项:A由于y=﹣x+1在实数范围内为减函数,故错误.对于选项:B由于函数y=x2﹣4x+5=(x﹣2)2+1,该函数为开口方向向上,对称轴为x=2的抛物线,故函数的图象在(0,2)上单调递减,故错误.对于选项:C函数的图象为第一象限内的幂函数,由于,所以函数的图象单调递增,故正确.对于选项:D函数的图象为双曲线,所以函数y=在(0,2)上单调递减,故错误.故选:C.【点评】本题考查的知识要点:函数的性质的应用,主要考查函数的单调性的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.【分析】直接利用全称命题是否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“对任意a∈R,都有a2≥0”的否定为:存在a0∈R,使得a02<0.故选:B.【点评】本题考查命题的否定特称命题与全称命题的否定关系,基本知识的考查.5.【分析】先根据函数的图象利用分段函数写出函数的解析式,再根据所求由内向外逐一去掉括号,从而求出函数值.【解答】解:由图象知f(x)=∴f=﹣1=﹣,∴==﹣+1=.故选:B.【点评】本题主要考查了函数的图象,以及分段函数的解析式和函数单调性的判断,属于基础题.6.【分析】直接利用不等式的性质和简易逻辑中的四个条件的应用求出结果.【解答】解:当c<d<0,所以,故,由于a>b>0,所以,故.但是,整理得,整理不出a>b>0且c<d<0.故“a>b>0且c<d<0”是“”的充分而不必要条件.故选:A.【点评】本题考查的知识要点:不等式的性质的应用,四个条件的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.7.【分析】由题意可得在中间一段时间里,他到家的距离为定值,故他所走的路程是一段以家为圆心的圆弧,结合所给的选项得出结论.【解答】解:根据王老师锻炼时所走的离家距离(S)与行走时间(t)之间的函数关系图,可得在中间一段时间里,他到家的距离为定值,故他所走的路程是一段以家为圆心的圆弧,结合所给的选项,故选:C.【点评】本题主要函数的解析式表示的意义,函数的图象特征,属于中档题.8.【分析】直接利用集合的定义和真子集的关系式的关系式运算的应用求出结果.【解答】解:集合M={x∈R|5﹣|2x﹣3|为正整数},故5﹣|2x﹣3|>0,整理得|2x﹣3|<5,即﹣5<2x﹣3<5,解得﹣1<x<4,由于集合M为正整数,所以M={﹣,0,,1,,2,,3,},故集合M的所有非空真子集的个数是29﹣2=510.故选:C.【点评】本题考查的知识要点:集合元素在不等式的解法中的应用,主要考查学生对集合的定义的理解,属于基础题型.二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸上的相应位置.)9.【分析】直接接二元一次方程组求出结果,再转换解集的形式.【解答】解:整理得,解得,转换为列举法为{(3,﹣7)}.故答案为:{(3,﹣7)}.【点评】本题考查的知识要点:二元一次方程组的解法和应用,针对性的考查了学生的运算能力和转换能力,属于基础题.10.【分析】直接利用分段函数的解析式,进一步解一元二次方程求出结果.【解答】解:根据函数的解析式,当x≤0时,x+2=x2,解得x=2或﹣1,(正值舍去),故x=﹣1.当x>0时,﹣x+2=x2,解得x=﹣2或1(负值舍去),故x=1.所以解集为{﹣1,1}.故答案为:{﹣1,1}.【点评】本题考查的知识要点:分段函数的解析式的应用,一元二次方程的解法的应用,针对性的考查学生对分类讨论思想问题的应用,属于基础题型.11.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.12.【分析】首先求出函数的对称轴,进一步利用对称轴和区间的关系求出a的范围.【解答】解:根据函数的图象,函数f(x)=x2+2(a﹣1)x+2的对称轴方程为x=1﹣a,由于函数在区间(1,4)上不是单调函数,所以1<1﹣a<4,解得:﹣3<a<0.故答案为:(﹣3,0).【点评】本题考查的知识要点:二次函数的性质的应用,函数的对称轴和区间的关系的应用,考查学生对函数的图象的理解问题和应用,属于基础题型.13.【分析】①因为|x|<1+|x|,所以由绝对值不等式得,函数值域(﹣1,1).②f(x)=是一个奇函数,当x≥0时,f(x)=,可得函数f(x)在(0,+∞)上是一个增函数,由奇函数的性质知,函数f(x)=是一个增函数,进而可得出正确.③理由同上.④由数学归纳法得证.【解答】解:①正确;∵|x|<1+|x|,∴,故函数值域(﹣1,1).②正确;f(x)=是一个奇函数,当x≥0时,f(x)=,可得函数f(x)在(0,+∞)上是一个增函数,由奇函数的性质知,函数f(x)=是一个增函数,∴x1≠x2,一定有f(x1)≠f(x2);③正确;由②可知f(x)在(0,+∞)是增函数.④正确;当n=1时,f1(x)=f(x)=,f2(x)=,当n=k时,f k(x)=成立,当n=k+1时,f k+1(x)=成立,由数学归纳法知,此命题正确.故答案为:①②③④.【点评】本题考查函数的性质以及恒成立问题,属于中档题.14.【分析】根据条件求出两个函数的值域,结合若存在,使得f(x1)=g(x2),等价为两个集合有公共元素,然后根据集合关系进行求解即可.【解答】解:∵函数f(x)=2x2﹣4x+1=2(x﹣1)2﹣1;∴当≤x≤2时,当x=1时,f(x)有最小值﹣1;当x=2时,f(x)有最大值1;即﹣1≤f(x)≤1,则f(x)的值域为[﹣1,1];当≤x≤2时,2×+a≤g(x)≤4+a,即1+a≤g(x)≤4+a,则g(x)的值域为[1+a,4+a],若存在,使得f(x1)=g(x2),则[1+a,4+a]∩[﹣1,1]≠∅,若[1+a,4+a]∩[﹣1,1]=∅,则1+a>1或4+a<﹣1,得a>0或a<﹣5,则当或[1+a,4+a]∩[﹣1,1]≠∅时,﹣5≤a≤0,即实数a的取值范围是[﹣5,0],故答案为:[﹣5,0].【点评】本题主要考查函数与方程的应用,根据条件求出两个函数的值域,结合集合元素关系进行求解是解决本题的关键,属于中档题.三、解答题(本大题共3小题,每题10分,共30分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)15.【分析】(1)推导出A={x|≤x≤3}.当a=﹣4时,B={x|﹣2<x<2},由此能求出A∩B,A∪B.(2)先求出∁R A,由(∁R A)∩B=B,得到B⊆∁R A,从而A∩B=∅,由B=∅,求出a≥0,由B≠∅,求出﹣≤a<0,由此能求出a的取值范围.【解答】解:(1)A={x|2x2﹣7x+3≤0}={x|≤x≤3}.当a=﹣4时,B={x|﹣2<x<2},∴A∩B={x|≤x<2},A∪B={x|﹣2<x≤3}.(2)∁R A={x|x<或x>3}.当(∁R A)∩B=B时,B⊆∁R A,即A∩B=∅.①当B=∅,即a≥0时,满足B⊆∁R A;②当B≠∅,即a<0时,B={x|﹣<x<},要使B⊆∁R A,需≤,解得﹣≤a<0.综上可得,a的取值范围为a≥﹣.【点评】本题考查交集、并集、补集、实数的取值范围的求法,是中档题,解题时要认真审题,注意交集、补集、并集定义的合理运用.16.【分析】(1)﹣1,1为方程x2+2bx+c=0的两个根,由韦达定理或直接代入可得解;(2)将(x1+1)(x2+1)=8展开x1x2+x1+x2=7,将方程x2+2bx+b2+2b+3=0的韦达定理代入,可得解;(3)利用二次方程的根的分布条件可得解;【解答】解:(1)由题可知:﹣1,1为方程x2+2bx+c=0的两个根;所以,解之得:b=0,c=﹣1;(2)因为c=b2+2b+3,f(x)=x2+2bx+c=0,所以x2+2bx+b2+2b+3=0因为x1、x2是关于x的方程x2+2bx+b2+2b+3=0的两根,所以△=4b2﹣4b2﹣8b﹣12≥0即;所以,因为(x1+1)(x2+1)=8,所以x1x2+x1+x2=7,所以﹣2b+b2+2b+3=7;所以b2=4,所以b=2或b=﹣2,因为,所以b=﹣2;(3)因为f(1)=0,所以c=﹣1﹣2b设g(x)=f(x)+x+b=x2+(2b+1)x﹣b﹣1,则有解得,故b的取值范围为;【点评】本题考查三个二次之间的关系,利用韦达定理整体代入的处理方法,考查了二次方程根的分布问题,属于中档题.17.【分析】(1)利用奇偶函数判断方法判断;(2)利用减函数的定义判断即可;(3)根据分段函数写出结论.【解答】解:(1)因为函数的定义域为(﹣∞,0)∪(0,+∞),所以x∈(﹣∞,0)∪(0,+∞)时,﹣x∈(﹣∞,0)∪(0,+∞),函数的定义域关于原点对称,因为,所以f(x)是奇函数.(2)函数f(x)在区间(0,2]上是减函数,证明:任取x1,x2∈(0,2],且0<x1<x2≤2,,因为0<x1<x2≤2,所以2≥x2>0,2>x1>0,所以4>x1x2,所以x1x2﹣4<0,又因x1﹣x2<0,x1x2>0,所以,所以f(x1)>f(x2),所以函数f(x)在区间(0,2]上是减函数.(3)实数t的取值范围为[0,1].【点评】考查判断函数的奇偶性,函数单调性的证明,和分段函数的应用,中档题.四、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)18.【分析】根据函数定义域和值域关系,分别进行讨论求解即可.【解答】解:若x=1,则g[f(1)]=g(2)=2,而x+1=1+1=2,即方程g[f(x)]=x+1成立.若x=2,则g[f(2)]=g(1)=3,而x+1=2+1=3,即方程g[f(x)]=x+1成立.若x=3,则g[f(3)]=g(3)=2,而x+1=3+1=4,即方程g[f(x)]=x+1不成立.即方程的解为{1,2},故选:C.【点评】本题主要考查方程的求解,结合函数的定义域和值域的关系,利用分类讨论思想进行求解是解决本题的关键,比较基础.19.【分析】根据题意,由函数的奇偶性与单调性可得f(a)<f(3)⇒|a|>3,解可得a的取值范围,结合函数的定义域即可得答案.【解答】解:根据题意,f(x)是定义在(﹣4,4)上的偶函数,且在(﹣4,0]上是增函数,则f(x)在区间[0,4)上为减函数,又由f(a)<f(3),则f(|a|)<f(3),则有|a|>3,解可得:a>3或a<﹣3;又由函数的定义域为(﹣4,4),即a的取值范围为(﹣4,﹣3)∪(3,4);故选:D.【点评】本题考查函数的奇偶性与单调性的综合应用,注意函数的定义域,属于基础题.20.【分析】利用参数分离法分离出2a,求出y=x+的值域,即可得到解.【解答】解:x∈[1,3],x2﹣2ax+5=0得,当且仅当x=成立,又y=x+,y(1)=6,y(3)=,所以y∈[,6],要使函数f(x)=x2﹣2ax+5在x∈[1,3]上有零点,即2a∈[,6],a∈[,3],故选:C.【点评】考查函数的零点问题,用了参数分离法,对勾函数求值域,中档题.五、填空题(本大题共3小题,每小题6分,共18分.请把结果填在答题纸上的相应位置.)21.【分析】先求出函数定义域,利用基本不等式求出最大值,因为f(x)≥0,f(x)=0为最小,求出即可.【解答】解:的定义域为[﹣3,1],由基本不等式,得,当1﹣x=x+3,即x=﹣1时,成立,当x=﹣3,1时f(x)=0,故答案为:;﹣3,1.【点评】考查求函数的定义域,函数最值,利用了基本不等式,中档题.22.【分析】(1)g(x)=x+1的值域为R且在R上为单调递增函数,直接求解可得;(2)存在t使得f(t+2)>f(t)成立,即方程的g(x)=t+2根的个数比方程g(x)=t的根的个数多,对第二段函数的对称轴进行讨论,结合函数图象得到答案【解答】解:(1)g(x)=x+1的值域为R且在R上为单调递增函数,则方程g(x)=t只有一个解,所以f(t)=1;(2)存在t使得f(t+2)>f(t)成立;即方程的g(x)=t+2根的个数比方程g(x)=t的根的个数多;当a≤0 时,作出函数g(x)的图象;显然不满足方程的g(x)=t+2根的个数比方程g(x)=t的根的个数多;当a>0时,作出函数g(x)的图象;要存在t,使得方程的g(x)=t+2根的个数比方程g(x)=t的根的个数多;则要求二次函数的最大值要大于2;即,解得a>1;故答案为:1,(1,+∞).【点评】本题考查对新定义的理解与等价转化,考查函数的单调性,方程的根的个数和数形结合的思想,属于中档题.23.【分析】(1)由“保值”区间的定义直接写出即可;(2)根据题意,按[a,b]⊆(0,+∞),[a,b]⊆(﹣∞,0),a=0及b=0四种情况讨论即可.【解答】解:(1)由“保值”区间的定义可得函数y=x2的一个“保值”区间为[0,1];(2)易知,函数f(x)=x2+m(m≠0)的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0),①当[a,b]⊆(0,+∞)时,则,即方程x2﹣x+m=0有两个不相等的正根,则,解得;②当[a,b]⊆(﹣∞,0)时,则,则a+b=﹣1,则,即方程x2+x+m+1=0有两个不相等的负根,则,解得;③当a=0时,此时f(0)=0,则m=0,与题设矛盾;④当b=0时,则,即m2+m=0,解得m=﹣1或m=0(舍去);综上,实数m的取值范围为.故答案为:[0,1];.【点评】本题考查函数中的新定义问题,解决本题的关键是把问题转化为一元二次方程中根与系数的关系问题,进而建立不等式组得解,本题属于中档题.六、解答题(本大题共1小题,满分14分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)24.【分析】(1)直接考察数据的取整问题,直接求出结果.(2)利用函数的取整问题的应用,进一步求出函数的值域.(2)利用函数f(x)是Ω函数和函数的取整,进一步进行讨论,最后求出参数的范围.【解答】解:(1)已知x为实数,用[x]表示不超过x的最大整数,所以f(1.2)=1,f(﹣1.2)=﹣2.(2)方法1:因为,所以,只可能有两种情况:(1)存在整数t,使得,此时,f(x)=0;(2)存在整数t,使得,此时,f(x)=1.综上,f(x)的值域为{0,1}.(3)当函数是Ω函数时,若a=0,则f(x)=x显然不是Ω函数,矛盾.若a<0,由于都在(0,+∞)单调递增,故f(x)在(0,+∞)上单调递增,同理可证:f(x)在(﹣∞,0)上单调递增,此时不存在m∈(﹣∞,0),使得f(m)=f([m]),同理不存在m∈(0,∞),使得f(m)=f([m]),又注意到m[m]≥0,即不会出现[m]<0<m的情形,所以此时不是Ω函数.当a>0时,设f(m)=f([m]),所以,所以有a=m[m],其中[m]≠0,当m>0时,因为[m]<m<[m]+1,所以[m]2<m[m]<[m]([m]+1),所以[m]2<a<[m]([m]+1).。
北京市人大附中2019-2020学年第一学期高一10月份段考数学试卷(一) 含答案
![北京市人大附中2019-2020学年第一学期高一10月份段考数学试卷(一) 含答案](https://img.taocdn.com/s3/m/f044d1ef3b3567ec102d8ac4.png)
C. m>5 t!X: m<3 D. m二巧成m运3
「1 (x>o)
7.定义符号两部(sgnx = 斗 O(x cc O) ,则不等式x+2> ( 2x - 1)银川的解集是(
1-l(x<o)
. {xi - 3+.../否 <x<二�主},
一τ-
4
、 {xfx<寸 -3+-.l二':1'二:1 }
B. {巾>· 3叫否 )
儿持有 8 股票的股民人数是(
A. 7
B. 6
c. 5Biblioteka D. 4A. {2, 4, 7, 8} B.φ
C. {l, 3, 5, 6} D. {2, 4, 6, 8}
4.下列衣示图巾的阳Ht部分的足(
A. CAUC)「1 (BUC)
B. (Aυβ) n (AUC)
C. (AUE)们(βUC)
D. (AUE) nc
5. t::1.知。,bεR,则卡列命题i正确的是(
A. -H: a>b,则a2>b2
B. -h:Iαl>b, Y!川 a2>b2
c. 若α>lbl,贝jl a2>b2
D.若a*lbl,贝I] a2 :;z!:b2
6. p:如- ml<1, q: x2 - 8x+ 12<0, JI. q 是p的必要不允分条件,则 m 的取伯范罔是(
A. 3<m<5
B. 3运mζ5
A. :lxε R,x -x 十 一 二 O 4
B. :lxE R,x x+ <0 4
c. :lxε R,x -x+-:::;O
4
D. 't!xε R,x -x+- <0 4