射频基本知识

合集下载

射频知识

射频知识

射频知识———基本概念和术语一、基础知识1、功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm注:dBm是取1mw作基准值,以分贝表示的绝对功率电平。

换算公式:电平(dBm)=10lgw5W → 10lg5000=37dBm10W → 10lg10000=40dBm20W → 10lg20000=43dBm从上不难看出,功率每增加一倍,电平值增加3dBm2、增益(dB):即放大倍数,单位可表示为分贝(dB)。

即:dB=10lgA(A为功率放大倍数)3、插损:当某一器件或部件接入传输电路后所增加的衰减,单位用dB表示。

4、选择性:衡量工作频带内的增益及带外辐射的抑制能力。

-3dB带宽即增益下降3dB时的带宽,-40dB、-60dB同理。

5、驻波比(回波损耗):行驻波状态时,波腹电压与波节电压之比(VSWR)附:驻波比——回波损耗对照表:SWR 1.2 1.25 1.30 1.35 1.40 1.50回波损耗(dB)21 19 17.6 16.6 15.6 14.06、三阶交调:若存在两个正弦信号ω1和ω2 由于非线性作用将产生许多互调分量,其中的2ω1-ω2和2ω2-ω1两个频率分量称为三阶交调分量,其功率P3和信号ω1或ω2的功率之比称三阶交调系数M3。

即M3 =10lg P3/P1 (dBc)7、噪声系数:一般定义为输出信噪比与输入信噪比的比值,实际使用中化为分贝来计算。

单位用dB。

8、耦合度:耦合端口与输入端口的功率比, 单位用dB。

9、隔离度:本振或信号泄露到其他端口的功率与原有功率之比,单位dB。

10、天线增益(dB):指天线将发射功率往某一指定方向集中辐射的能力。

一般把天线的最大辐射方向上的场强E与理想各向同性天线均匀辐射场场强E0相比,以功率密度增加的倍数定义为增益。

Ga=E2/ E0211、天线方向图:是天线辐射出的电磁波在自由空间存在的范围。

方向图宽度一般是指主瓣宽度即从最大值下降一半时两点所张的夹角。

射频知识点总结

射频知识点总结

射频知识点总结一、射频基本概念1. 电磁波电磁波是一种由电场和磁场相互作用而产生的波动现象,是一种在真空中传播的波动现象。

电磁波具有频率和波长两个基本特征,频率越高,波长越短。

常见的射频波段包括:HF(3-30MHz)、VHF(30-300MHz)、UHF(300-3000MHz)、SHF(3-30GHz)等。

2. 天线天线是射频系统中的重要组成部分,它用来接收和发射电磁波。

天线的工作原理是通过和周围的电磁场相互作用,将电磁波转换成电流或者将电流转换成电磁波。

天线的性能对系统的传输和接收性能有很大的影响,因此天线设计是射频系统中的重要环节。

3. 调制解调调制解调是射频系统中的重要技术,它利用调制信号将基带信号传输到射频信号中,然后再通过解调将射频信号转换成原来的基带信号。

调制技术有幅度调制、频率调制、相位调制等多种方式,不同的调制方式适用于不同的通信场景。

二、射频组件1. 射频放大器射频放大器是射频系统中的重要组件,它用来对射频信号进行放大。

射频放大器的主要参数包括增益、带宽、噪声系数、输出功率等,不同的应用场景需要不同参数的射频放大器。

2. 滤波器滤波器是用来对射频信号进行频率选择和抑制干扰的器件,它可以选择性地通过某个频率范围的信号,同时将其他频率范围的信号进行抑制。

滤波器的种类很多,包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

3. 射频开关射频开关是用来控制射频信号的开关和切换的器件,它可以实现对射频信号的选择、分配和切换。

射频开关的性能包括插入损耗、隔离度、速度等多个方面。

4. 射频混频器射频混频器是用来将两个不同频率的射频信号混合到一起的器件,它可以实现频率的转换和信号的解调等功能。

射频混频器的工作原理是利用非线性元件将两个输入信号进行非线性混合,然后通过滤波将混频后的信号提取出来。

三、射频系统设计原则1. 抗干扰设计射频系统在使用过程中会受到各种干扰的影响,包括天线干扰、多路径干扰、热噪声干扰等,因此在射频系统设计中需要采取一系列抗干扰措施,以保证系统的可靠性和稳定性。

射频(RF)基础知识

射频(RF)基础知识

●什么是RF?答:RF 即Radio frequency 射频,主要包括无线收发信机。

2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)?答:EGSM RX: 925-960MHz, TX:880-915MHz;CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。

3. 从事手机Rf工作没多久的新手,应怎样提高?答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。

● 4. RF仿真软件在手机设计调试中的作用是什么?答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。

5. 在设计手机的PCB时的基本原则是什么?答:基本原则是使EMC最小化。

6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意?答:ABB是Analog BaseBand,DBB是Ditital Baseband,MCU往往包括在DBB芯片中。

PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。

将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。

7. DSP和MCU各自主要完成什么样的功能?二者有何区别?答:其实MCU和DSP都是处理器,理论上没有太大的不同。

但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。

8. 刚开始从事RF前段设计的新手要注意些什么?答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。

9. 推荐RF仿真软件及其特点?答:Agilent ADS仿真软件作RF仿真。

射频基础知识

射频基础知识

1、射频RF (Radio Frequency )是指频率较高,可用于发射无线电频率,一般常指几十到几百兆赫的频段,即VHF-UHF 频段。

2、由传输系统引导向一定方向传输的电磁波称为导行波。

3、传输线的几何长度(l )与其上传输电信号的波长(λ)之比l /λ ,称为传输线的相对长度或者叫电长度。

只要线的几何长度l 与其传输电信号的波长λ可以比拟时(通常为十分之一左右或以上),即可视为长线4、)。

(相应公式dB .1-V 1V lg 20R L += RL= -20log Γ VSWR=min max V V =Γ-Γ+11 5、确定移动通信工作频段可从以下几方面来考虑:①电波传播特性;②环境噪声及干扰的影响;③服务区范围、地形和障碍物影响以及建筑物的渗透性能;④设备小型化;⑤与已经开发的频段的干扰协调和兼容性;⑥用户需求及应用的特点。

1.8GHz 频段安排如下:1710~1725MHz 移动台发 1805~1820MHz 基站发(共15MHz ) 1745~1755MHz 移动台发1840~1850MHz 基站发(共10MHz )1710~1785MHz 移动台发1805~1880MHz 基站发6、“多址”(Multi Access )是指在多信道共用系统中,终端用户选择通信对象的传输方式,在陆地蜂窝移动通信系统中,用户可以通过选择“频道”、“时隙”或“PN 码”等多种方式进行选址,它们分别对应地被称为“频分(Frequency Division )多址”、“时分(Time Division )多址”和“码分(Code Division )多址”。

简称FDMA, TDMA 和CDMA.7、Pt (dBm )=10lg 1mW W )(m Pt8、No= KT B (W ) No (dBw )=-174 dBm + 10lgB (G121,C114)9、当编码器每20ms 取样一次,线性预测声域分析抽头为8时,输出260bit ,此时编码速率为260/20=13Kbits/s ,即为全速率信道。

《射频技术基础》课件

《射频技术基础》课件
工业领域:射频加热、射频焊接、射 频干燥等
军事领域:雷达、电子对抗、通信等
射频技术的发展历程
19世纪末,无线 电技术的诞生
20世纪初,无线 电技术的快速发展
20世纪中叶,射 频技术的广泛应用
21世纪初,射频 技术的创新与突破
03 射频技术基础知识
电磁波基础知识
电磁波:由电场和磁场相互激发产生的波
无线传感器网络中的射频技术
射频技术在无线传感器网 络中的应用
射频技术的特点和优势
射频技术的应用场景和案 例
射频技术在无线传感器网 络中的挑战和问题
物联网中的射频技术
射频识别 (RFID): 用于物品识别
和追踪
无线传感器网 络(WSN): 用于环境监测
和数据采集
近场通信 (NFC): 用于移动支付 和身份验证
射频技术在无线通信系统中的应用 实例
添加标题
添加题
添加标题
射频技术在无线通信系统中的发展 趋势
雷达系统中的射频技术
雷达系统:用于探测、跟踪和识别目标 射频技术:在雷达系统中用于发射和接收电磁波 应用实例:雷达系统中的射频技术用于探测、跟踪和识别目标 特点:射频技术在雷达系统中具有高精度、远距离、全天候等优点
调制:将信息信号转换为射 频信号的过程
解调方式:幅度解调、频率 解调、相位解调等
调制解调器的作用:实现射 频信号的调制和解调
射频信号的传输与接收:通 过天线进行传输和接收
射频信号的发射与接收
射频信号的发射:通过天线 将信号发射到空气中
射频信号的产生:通过振荡 器产生高频信号
射频信号的接收:通过天线 接收信号,并通过滤波器、
滤波器的类型:包括低通滤 波器、高通滤波器、带通滤 波器等

射频基础知识

射频基础知识

射频基础知识第⼀部分射频基础知识⽬录第⼀章与移动通信相关的射频知识简介 (1)1.1 何谓射频 (1)1.1.1长线和分布参数的概念 (1)1.1.2射频传输线终端短路 (3)1.1.3射频传输线终端开路 (4)1.1.4射频传输线终端完全匹配 (4)1.1.5射频传输线终端不完全匹配 (5)1.1.6电压驻波分布 (5)1.1.7射频各种馈线 (6)1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 ⽆线电频段和波段命名 (9)1.3 移动通信系统使⽤频段 (9)1.4 第⼀代移动通信系统及其主要特点 (12)1.5 第⼆代移动通信系统及其主要特点 (12)1.6 第三代移动通信系统及其主要特点 (12)1.7 何谓“双⼯”⽅式?何谓“多址”⽅式 (12)1.8 发信功率及其单位换算 (13)1.9 接收机的热噪声功率电平 (13)1.10 接收机底噪及接收灵敏度 (13)1.11 电场强度、电压及功率电平的换算 (14)1.12 G⽹的全速率和半速率信道 (14)1.13 G⽹设计中选⽤哪个信道的发射功率作为参考功率 (15) 1.14 G⽹的传输时延,时间提前量和最⼤⼩区半径的限制 (15) 1.15 GPRS的基本概念 (15)1.16 EDGE的基本概念 (16)第⼆章天线 (16)2.1天线概述 (16)2.1.1天线 (16)2.1.2天线的起源和发展 (17)2.1.3天线在移动通信中的应⽤ (17)2.1.4⽆线电波 (17)2.1.5 ⽆线电波的频率与波长 (17)2.1.6偶极⼦ (18)2.1.7频率范围 (19)2.1.8天线如何控制⽆线辐射能量⾛向 (19)2.2天线的基本特性 (21)2.2.1增益 (21)2.2.2波瓣宽度 (22)2.2.3下倾⾓ (23)2.2.4前后⽐ (24)2.2.5阻抗 (24)2.2.6回波损耗 (25)2.2.7隔离度 (27)2.2.8极化 (29)2.2.9交调 (31)2.2.10天线参数在⽆线组⽹中的作⽤ (31)2.2.11通信⽅程式 (32)2.3.⽹络优化中天线 (33)2.3.1⽹络优化中天线的作⽤ (33)2.3.2天线分集技术 (34)2.3.3遥控电调电下倾天线 (1)第三章电波传播 (3)3.1 陆地移动通信中⽆线电波传播的主要特点 (3)3.2 快衰落遵循什么分布规律,基本特征和克服⽅法 (4)3.3 慢衰落遵循什么分布规律,基本特征及对⼯程设计参数的影响 (4) 3.4 什么是⾃由空间的传播模式 (5)3.5 2G系统的宏⼩区传播模式 (5)3.6 3G系统的宏⼩区传播模式 (6)3.7 微⼩区传播模式 (6)3.8 室内传播模式 (9)3.9 接收灵敏度、最低功率电平和⽆线覆盖区位置百分⽐的关系 (10) 3.10 全链路平衡和最⼤允许路径损耗 (11)第四章电磁⼲扰 (12)4.1 电磁兼容(EMC)与电磁⼲扰(EMI) (12)4.2 同频⼲扰和同频⼲扰保护⽐ (13)4.3 邻道⼲扰和邻道选择性 (14)4.4 发信机的(三阶)互调⼲扰辐射 (15)4.5 收信机的互调⼲扰响应 (15)4.6 收信机的杂散响应和强⼲扰阻塞 (15)4.7 dBc与dBm (16)4.8 宽带噪声电平及归⼀化噪声功率电平 (16)4.9 关于噪声增量和系统容量 (17)4.10 直放站对基站的噪声增量 (17)4.11 IS-95 CDMA 对 GSM 基站的⼲扰 (19)4.12 G⽹与PHS⽹的相互⼲扰 (20)4.13 3G系统电磁⼲扰 (22)4.14 PHS系统与3G系统之间的互⼲扰 (24)4.15 GSM系统与3G系统之间的互⼲扰 (25)第五章室内覆盖交流问题应答 (12)5.1、⽬前GSM室内覆盖⽆线直放站作信源站点数量达60%,WCDMA的建设中,此类站点太多将导致⽹络上⾏噪声被直放站抬⾼,请问怎么考虑?5.2、⾼层窗边的室内覆盖信号场强难以做到主导,⽽室内窗边将是数据业务需求的⾼发区域,室内窗边的⾼速速率如何保证?5.3、有⼚家建议室内覆盖不⽤⼲放,全⽤⽆源覆盖分布,我们如何考虑?5.4、室内覆盖中,HSDPA引⼊后,有何新要求?5.5、系统引⼊多载频对室内覆盖的影响?5.6、上、下⾏噪声受限如何考虑?5.7、室内覆盖时延分集增益。

射频微波基础知识

射频微波基础知识

射频微波基础知识射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。

每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。

有线电视系统就是采用射频传输方式的。

在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。

在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波成为射频,英文缩写:RF一、射频和微波技术基础知识1、什么是射频?射频(RF)是指无线通信系统中使用的电磁频率范围。

它涵盖了广泛的频率范围,通常从3kHz(千赫)到300GHz(千兆赫)。

射频信号的特点是能够长距离传播并穿过障碍物,这使其成为各种通信应用的理想选择。

2、微波频率微波是射频频率的一个子集,频率范围为300MHz(兆赫)到300GHz。

虽然微波仍然是像射频一样的电磁波,但它们具有更短的波长,这在特定应用中提供了某些优势,例如高数据传输速率和精确成像能力。

二、射频和微波技术的应用1、无线通信射频和微波技术最突出的应用之一是在无线通信系统中。

从简单的无线电传输到复杂的蜂窝网络,射频技术使移动设备上的语音通话、短信、互联网浏览和视频流成为可能。

此外,Wi-Fi网络、蓝牙连接和其他无线协议依赖RF信号进行无缝数据交换。

2、卫星通信卫星通信严重依赖微波频率。

地球静止轨道或近地轨道卫星利用微波远距离传输电视信号、互联网数据和电话,确保在传统通信基础设施有限,或无法使用的偏远地区实现全球连接。

3、雷达系统微波雷达系统对各种应用至关重要,包括空中交通管制、天气监测和军事防御。

雷达使用微波脉冲来探测物体的存在、距离和速度,从而进行精确的跟踪和分析。

4、医疗应用射频和微波技术在医学领域有着重要的应用,例如磁共振成像(MRI)和微波消融。

射频基础知识资料课件

射频基础知识资料课件
WiFi技术实现
WiFi技术利用了射频技术中的无线局域网技术,通过无线方式连接设备到互联网。
工作流程
WiFi路由器通过无线方式与设备建立连接,设备通过浏览器或特定的应用程序向路由器发送请求。路由器将请求 发送到互联网上的目标服务器,服务器响应并将数据返回到路由器,再由路由器将数据发送到设备。
案例三:GPS定位原理及关键技术特点
射频信号可用于治疗某些疾病,如肿瘤、 心血管疾病等,也可用于医学影像和生理 信号采集。
02
射频基础知识
射频电路基础
01
02
03
射频电路组成
射频电路主要由天线、射 频前端、射频芯片和电源 管理模块等组成。
射频电路设计原则
射频电路设计需要遵循稳 定性、高效性、一致性和 可靠性等原则。
射频电路优化方法
射频技术的数字化和智能化
随着数字化和智能化技术的不断发展,射频技术也需要适 应数字化和智能化的趋势,实现更高效、更灵活、更智能 的无线通信。
射频技术发展面临的挑战
01 02
传输损耗和干扰问题
随着无线通信技术的发展,射频信号需要传输更远的距离,同时需要处 理更多的干扰问题,如何提高传输效率和抗干扰能力是射频技术面临的 重要挑战。
射频基础知识资料课件
目录
• 射频基础概念 • 射频基础知识 • 射频技术原理 • 射频技术应用 • 射频技术发展趋势与挑战 • 射频技术应用案例
01
射频基础概念
射频定义
01
射频(Radio Frequency,RF) 定义为一种电磁波,其频率在一 定范围内,常用的单位是赫兹( Hz)。
02
射频信号是指通过调制或其他方 式加载了信息的电磁波,常用于 无线通信和传输数据。

射频基础知识

射频基础知识

射频基础知识第⼀部分射频基本概念第⼀章常⽤概念⼀、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之⽐。

对于TEM波传输线,特征阻抗⼜等于单位长度分布电抗与导纳之⽐。

⽆耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。

在做射频PCB板设计时,⼀定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。

当不相等时则会产⽣反射,造成失真和功率损失。

反射系数(此处指电压反射系数)可以由下式计算得出:z1⼆、驻波系数驻波系数式衡量负载匹配程度的⼀个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,⽽驻波系数的取值范围是1~正⽆穷⼤。

射频很多接⼝的驻波系数指标规定⼩于1.5。

三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,⽽是如下⾯图形所⽰。

峰值功率即是指以某种概率出现的尖峰的瞬态功率。

通常概率取为0.1%。

四、功率的dB表⽰射频信号的功率常⽤dBm、dBW表⽰,它与mW、W的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W,利⽤dBm表⽰时其⼤⼩为五、噪声噪声是指在信号处理过程中遇到的⽆法确切预测的⼲扰信号(各类点频⼲扰不是算噪声)。

常见的噪声有来⾃外部的天电噪声,汽车的点⽕噪声,来⾃系统内部的热噪声,晶体管等在⼯作时产⽣的散粒噪声,信号与噪声的互调产物。

六、相位噪声相位噪声是⽤来衡量本振等单⾳信号频谱纯度的⼀个指标,在时域表现为信号过零点的抖动。

理想的单⾳信号,在频域应为⼀脉冲,⽽实际的单⾳总有⼀定的频谱宽度,如下页所⽰。

⼀般的本振信号可以认为是随机过程对单⾳调相的过程,因此信号所具有的边带信号被称为相位噪声。

相位噪声在频域的可以这样定量描述:偏离中⼼频率多少Hz处,单位带宽内的功率与总信号功率相⽐。

例如晶体的相位噪声可以这样描述:七、噪声系数噪声系数是⽤来衡量射频部件对⼩信号的处理能⼒,通常这样定义:单元输⼊信噪⽐除输出信噪⽐,如下图:对于线性单元,不会产⽣信号与噪声的互调产物及信号的失真,这时噪声系数可以⽤下式表⽰:Pno 表⽰输出噪声功率,Pni 表⽰输⼊噪声功率,G 为单元增益。

射频基础知识单选题100道及答案

射频基础知识单选题100道及答案

射频基础知识单选题100道及答案一、射频基本概念1. 射频通常指的是频率范围在()的电磁波。

A. 3Hz - 30kHzB. 30kHz - 300kHzC. 300kHz - 3MHzD. 3MHz - 300GHz答案:D2. 以下哪个单位通常用于表示射频功率?A. 伏特(V)B. 安培(A)C. 瓦特(W)D. 欧姆(Ω)答案:C3. 射频信号在自由空间中的传播速度大约是()。

A. 3×10⁵千米/秒B. 3×10⁶米/秒C. 3×10⁷米/秒D. 3×10⁸米/秒答案:D4. 射频信号的波长与频率的关系是()。

A. 波长=频率/光速B. 波长=光速×频率C. 波长=光速/频率D. 波长=频率×光速答案:C5. 射频信号的极化方式不包括()。

A. 水平极化B. 垂直极化C. 圆极化D. 三角极化答案:D二、射频电路元件6. 以下哪种元件主要用于储存电场能量?A. 电感B. 电容C. 电阻D. 二极管答案:B7. 一个理想电容在射频电路中的阻抗随着频率的增加而()。

A. 增加B. 减少C. 不变D. 先增加后减少答案:B8. 电感在射频电路中的主要作用是()。

A. 阻碍交流,通过直流B. 阻碍直流,通过交流C. 储存磁场能量D. 储存电场能量答案:C9. 电阻在射频电路中的作用主要是()。

A. 分压和分流B. 储能C. 滤波D. 放大答案:A10. 二极管在射频电路中的主要作用不包括()。

A. 整流B. 检波C. 放大D. 开关答案:C三、射频传输线11. 常见的射频传输线有()。

A. 同轴电缆、双绞线、光纤B. 同轴电缆、微带线、波导C. 双绞线、光纤、波导D. 微带线、双绞线、光纤答案:B12. 同轴电缆的主要特点是()。

A. 损耗小、带宽大B. 成本低、易安装C. 抗干扰能力强D. 以上都是答案:D13. 微带线主要用于()。

射频基本知识

射频基本知识

射频基本知识引⾔在进⼊射频测试前,让我们回顾⼀下单相交流电的基本知识。

⼀、单相交流电的产⽣在⼀组线圈中,放⼀能旋转的磁铁。

当磁铁匀速旋转时,线圈内的磁通⼀会⼉⼤⼀会⼉⼩,⼀会⼉正向⼀会⼉反向,也就是说线圈内有呈周期性变化的磁通,从⽽线圈两端即感⽣出⼀个等幅的交流电压,这就是⼀个原理⽰意性交流发电机。

若磁铁每秒旋转50周,则电压的变化必然也是50周。

每秒的周期数称为频率f ,其单位为赫芝Hz 。

103Hz=千赫kHz,,106Hz=兆赫MHz ,109Hz=吉赫GHz 。

在⽰波器上可看出电压的波形呈周期性,每⼀个周期对应磁铁旋转⼀周。

即转了2π弪,每秒旋转了f 个2π,称2πf 为ω(常称⾓频率,实质为⾓速率)。

则单相交流电的表达式可写成:V=V m )sin(0?ω+t =V m )2sin(0?π+ft式中V m (电压最⼤值)=2V e (有效值或V r.m.s.)。

t 为时间(秒),0?为初相。

⼆、对相位的理解1、由电压产⽣的⾓度来看2设想有两个相同的单相发电机⽤连轴器连在⼀起旋转,当两者转轴(磁铁的磁极)位置完全相同时,两者发出的电压是同相的。

⽽当两者转轴错开0?⾓度时,⽤双线⽰波器来看,两个波形在时轴上将错开⼀个⾓度;这个⾓度就叫相位⾓或初相。

相位领先为正,滞后为负。

2假如在单相发电机上再加⼀组线圈,两组线圈互成90°(也即两电压之间相位差 90°),即可形成两相电机。

假如⽤三组线圈互成120°(即三电压之间,相位各差120°)即可形成三相电机。

两相电机常⽤于控制系统,三相电机常⽤于⼯业系统。

2、同频信号(电压)之间的叠加当两个电压同相时,两者会相加;⽽反相时,两者会抵消。

也就是说两者之间为复数运算关系。

若⽤⽅位平⾯来表⽰,也就是⽮量关系。

⽮量的模值(幅值)为标量,⽮量的⾓度为相位。

虽然⼈们关⼼的是幅值,但运算却必须采⽤⽮量。

虽然⼀般希望信号相加,但作匹配时,却要将反射信号抵消。

射频基础知识培训课件知识

射频基础知识培训课件知识
噪声相关概念
相位噪声 相位噪声是用来衡量本振等单音信号频谱纯度的壹个指标,在时域表现为信号过零点的抖动.理想的单音信号,在频域应为壹脉冲,而实际的单音总有壹定的频谱宽度,如下面所示.壹般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声.相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比.
无线通信使用的频段和波段
表1-1 无线通信使用的电磁波的频率范围和波段(续)
由于种种原因,在壹些欧、美、日等西方国家常常把部分微波 波段分为L、S、C、X、Ku、K、Ka等波段(或称子波段),具体 如表1 - 2所示.
无线通信使用的频段和波段
表 1-2 无线通信中所使用的部分微波波段的名称
第壹章 无线通信的基本概念
第壹节 概述 第二节 无线通信使用的频段和波段 第三节 无线通信的电磁波传播
无线通信的电磁波传输
无线通信中的电磁波按照其波长的不同具有不同的传播特点,下面按波长分述如下: 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波.理论研究表明,这壹波段的电磁波沿陆地表面和海水中传播的衰耗极小.
线性相关概念
信号在通过射频通道(这里所谓的射频通道是指射频收发信机通道,不包括空间段衰落信道)时会有壹定程度的失真,失真可以分为线性失真和非线性失真.产生线性失真的主要有壹些滤波器等无源器件,产生非线性失真的主要有壹些放(大)器、混频器等有源器件.另外射频通道还会有壹些加性噪声和乘性噪声的引入.
线性相关概念
第二章 射频常用计算单位简介
第壹节 功率单位简介 第二节 天线传播相关单位简介 第三节 其他
天线传播相关单位简介
天线和天线增益 天线增益壹般由dBi或dBd表示.dBi是指天线相对于无方向天线的功率能量密度之比,dBd是指相对于半波振子Dipole 的功率能量密度之比,半波振子的增益为2.15dBi,因此0dBd=2.15dBi.

射频基础知识培训

射频基础知识培训

射频基础知识培训一、射频概述射频(Radio Frequency,简称RF)是指无线电频率范围内的电磁波信号。

射频技术在现代通信、无线电、雷达等领域起着重要作用。

本次培训将介绍射频的基础知识,包括射频信号的特性、射频电路设计及射频测量。

二、射频信号的特性1. 频率范围:射频信号的频率范围通常指300kHz至300GHz之间的频段。

这一频率范围被广泛应用于无线通信和雷达系统中。

2. 带宽:射频信号的带宽是指在频率上的范围,用于传输信息。

带宽越宽,信号传输的速率越高。

3. 衰减:射频信号在传输过程中会发生衰减,衰减的程度与信号传播距离、传输介质等因素有关。

为了保持信号的质量,需要采取衰减补偿措施。

三、射频电路设计1. 射频放大器设计:射频放大器用于增强射频信号的强度。

设计射频放大器需要考虑电源电压、功率放大系数、频率响应等因素。

2. 射频滤波器设计:射频滤波器用于去除非期望频率范围内的干扰信号。

设计射频滤波器需要考虑信号带宽、截止频率、滤波器类型等因素。

3. 射频混频器设计:射频混频器用于将不同频率的信号进行混合,产生新的频率信号。

设计射频混频器需要考虑输入信号频率、混频器类型、频率转换效率等因素。

四、射频测量1. 射频功率测量:射频功率测量用于确定射频信号的功率水平。

常用的测量仪器包括射频功率计和射频功率传感器。

2. 射频频谱分析:射频频谱分析用于分析射频信号在频率上的变化情况。

常用的仪器包括射频频谱分析仪和扫频仪。

3. 射频网络分析:射频网络分析用于测量射频电路的传输特性(如反射系数、传输系数等)。

常用的仪器包括网络分析仪和隔离器。

五、总结通过本次射频基础知识培训,我们了解了射频信号的特性、射频电路设计和射频测量等内容。

掌握这些基础知识对于从事射频相关工作或研究具有重要意义。

我们将进一步深入学习射频技术并应用于实际项目中,提升我们的专业能力和水平。

(以上文字仅供参考,具体内容可根据实际情况进行添加或修改)。

射频基础知识

射频基础知识
1000mW 1000mW 10 lg 30 dBm 1mW
1mW 1mW 10 lg 0 dBm 1mW
1.26mW 1.26mW 10 lg 1dBm 1mW
功率和增益差损
30000mW 30W 10 lg 44.77 dBm 1mW
30W 30W 10 lg 14.77 dBW 1W


表示传输线长度。 z
'
驻波比和传输功率、Smith圆图
根据最大功率传输条件下的阻抗匹配,在使用公式时 往往涉及复数运算,比较麻烦,使用不方便。利用史密斯 圆图(Smith Chart)可简便求解,并且容易看出准确结果 的趋向,而其作图误差在工程允许范围内,常用于复杂网 络的初调计算。 要使信号源传送到负载的功率最大,需要负载匹配。 用smith圆图设计匹配网络,即使得负载阻抗变换到源端时 匹配到源特性阻抗如50欧姆。这就等于要求信号源经过匹 配网络到负载的输出阻抗必须等于负载的共轭阻抗,即:
• 传输媒介相对介电常数 r大于1时,电磁波传播速度小 内于真空中传输的距离。
C f 3 10 m / s
8
于光速为:
V r f
C
r 为传输媒介中电磁波的等效传输线波长。
• 真空中BD发射波长约为18.5cm,接收波长约为12cm。 • 实际传输线中以上两项的传输波长要略小于所给值。
- 10lg 1

2
0.52dB
驻波比和传输功率、Smith圆图
在非理想状态下,由于源阻抗、传输线上的特性阻抗、负 载阻抗都不可能是纯粹的50欧姆。因此存在源阻抗与负载 阻抗的失配。 根据最大功率传输定理:工作于正弦稳态的单口网络向一 个负载 Z L RL jX L 供电,如果该单口网络可用戴维宁等 效电路(其中 Zo Ro jX o 为源输出阻抗)代替,则在负载 * 阻抗等于含源单口网络输出阻抗的共轭复数(即 Z Z ) L o 时,负载可以获得最大平均功率。

射频基本知识

射频基本知识

射频基本知识目录1. 射频概述 (2)1.1 射频定义与特点 (3)1.2 射频应用领域 (4)1.3 射频技术发展历史 (5)2. 射频信号及其特性 (6)2.1 电磁波与射频波 (7)2.2 频率范围与波长 (8)2.3 电磁波的时域和频域特性 (9)2.4 功率测量与单位 (10)2.5 幅度调制与相位调制 (12)3. 射频电路 (13)3.1 阻抗与反射系数 (14)3.2 匹配电路 (15)3.3 功率放大器 (16)3.4 滤波器与调谐电路 (17)3.5 衰减器与分频器 (19)4. 射频设备与系统 (20)4.1 信号源与检测器 (22)4.2 无线传输系统 (23)4.3 通信系统 (24)4.4 雷达系统 (25)4.5 测试与测量设备 (26)5. 射频技术应用案例 (28)5.1 5G 通信技术 (29)5.2 物联网应用 (30)6. 射频技术未来发展趋势 (31)1. 射频概述射频(Radio Frequency,简称RF)通信技术是现代通信的重要组成部分,它涉及无线电波的传输。

射频技术是通过发射机和接收机之间的无线电波来传输信号的,这些信号用于各种通信应用,如无线广播、移动通信系统、卫星通信和无线网络等。

在射频领域中,电磁波被用来承载信息,从简单的调幅(AM)广播到复杂的数字广播以及移动电话网络的高速数据传输,射频技术无处不在。

射频信号的特征可以从它们的波长和频率来描述,通常情况下,射频波的波长介于几厘米到几米之间,对应的频率范围从大约30 kHz 到300 GHz。

这个宽度频段使得射频技术可以涵盖从低频的无线电广播到高频的微波和无线宽带通信等多个应用领域。

射频系统通常包括调制和解调两个关键步骤,调制是将低频基带信号转换成高频的射频信号,使得信号可以通过无线电波传播。

这个过程涉及将基带信号的特性(如幅度和频率)嵌入到一个更高的射频载波上。

解调则在接收端进行,是将射频信号转换回可识别的低频信号,以便于进一步处理。

《射频基础知识培训》课件

《射频基础知识培训》课件
换为中频信号
射频功率放大器: 用于放大射频信 号的功率
射频天线:用于 发射和接收射频
信号
射频开关:用于 控制射频信号的
传输路径
直射传输:信号直接传播到接收端,适用于近距离通信 反射传输:信号通过反射物体传播到接收端,适用于远距离通信 散射传输:信号通过散射物体传播到接收端,适用于复杂环境通信 绕射传输:信号绕过障碍物传播到接收端,适用于障碍物较多的环境通信
GPS:全球定位系统,利用 卫星信号进行定位和导航
北斗:中国自主研发的全球 卫星导航系统,提供定位、 导航和授时服务
伽利略:欧洲研发的全球卫 星导航系统,提供定位和导 航服务
格洛纳斯:俄罗斯研发的全 球卫星导航系统,提供定位 和导航服务
区域导航系统:如美国的 WAAS、日本的MSAS等, 提供区域范围内的定位和 导航服务
调制方式:射频信号可以通过幅度、 频率、相位等多种方式进行调制
添加标题
添加标题
添加标题
添加标题
传播方式:射频信号可以通过空气、 电缆、光纤等多种介质进行传播
应用领域:射频信号广泛应用于无 线通信、广播电视、雷达、卫星通 信等领域
射频放大器:用 于放大射频信号
射频滤波器:用 于滤除不需要的
频率成分
射频混频器:用 于将射频信号转
射频振荡器是产生射频信号的电子设备 工作原理:通过振荡电路产生高频信号,然后通过放大器放大信号 振荡电路:由电容、电感、电阻等元件组成,通过调整元件参数可以改变信号频率 放大器:将振荡电路产生的信号放大,以满足传输或接收的要求 射频信号:高频电磁波,用于无线通信、雷达、广播电视等领域
射频放大器是射频电路中的关键部件,用于放大射频信号 射频放大器的工作原理主要是通过改变射频信号的频率和相位来实现信号的放大 射频放大器通常采用晶体管、场效应管等半导体器件作为放大元件 射频放大器的性能指标包括增益、噪声系数、线性度等

无线射频基础知识介绍

无线射频基础知识介绍

无线射频基础知识介绍无线射频(Radio Frequency, RF)技术是一种利用无线电频率范围内的电磁波进行数据传输和通信的技术。

它广泛应用于无线通信、广播、雷达等领域,并且在物联网和5G等新兴领域中扮演着重要角色。

一、无线射频的基本概念无线射频是指频率范围在3kHz到300GHz之间的电磁波。

它是通过振荡器产生的电磁波,并通过天线进行辐射和接收。

射频信号的特点是可以传输较长距离,穿透能力强,适用于无线通信和广播。

二、无线射频的特性1.频率范围广泛:从低频到高频,无线射频可以覆盖从几kHz到几GHz的频率范围。

2.能量传播:无线射频信号以电磁波的形式传播,可以穿透大部分非金属材料,如墙壁、树木等。

3.多径传播:由于无线信号会反射、绕射和衍射,从而形成多个路径的传播,可能导致信号干扰和衰减。

4.抗干扰能力:无线射频系统具有一定的抗干扰能力,可以通过调制技术、编码技术和频谱分配等方式来减小干扰。

三、无线射频的应用领域1.无线通信:无线射频技术是现代移动通信系统的基础,包括手机、无线局域网(Wi-Fi)、蓝牙和卫星通信等。

2.广播:广播电台利用无线射频技术传输音频信号,实现广播节目的传播。

3.雷达:雷达系统利用射频信号来探测目标的位置、速度和距离,广泛应用于军事和民用领域。

5.定位和导航:利用无线射频信号和三角测量原理,可以实现定位和导航功能,如GPS系统。

6.医疗:医疗设备中的无线射频技术可以用于监测患者的生命体征、无线手术和无线成像等。

7.物联网:物联网系统中的无线射频技术实现物体之间的无线连接和通信,促进设备之间的互联互通。

四、无线射频的未来发展随着科技的不断进步,无线射频技术也在不断发展。

未来,无线射频技术可能会有以下趋势:1.5G技术的推广:5G技术将提供更高的速度和更低的延迟能力,将推动无线通信技术的进一步发展和应用。

2.物联网应用的普及:物联网将实现设备之间的互联互通,无线射频技术在物联网中将发挥更加重要的作用。

射频基础知识及其主要指标

射频基础知识及其主要指标

射频基础知识及其主要指标射频(Radio Frequency)是指在射频范围内发送、接收和处理电磁波的技术。

射频技术在电子通信、无线网络、雷达系统、遥控器、医疗设备和安全系统等领域广泛应用。

了解射频基础知识及其主要指标对于理解射频技术的原理和应用至关重要。

射频技术基础知识包括频率、波长、功率、带宽、增益、灵敏度和失真等。

频率是指电磁波振荡的次数,以赫兹(Hz)表示,常用的射频频率范围是3kHz到300GHz。

不同频率的射频波有不同的特性和应用,例如低频射频波可以穿透墙壁,适用于室内通信,而高频射频波有更短的波长和更高的传输速度,适用于无线通信。

波长是指电磁波一个完整周期的长度。

波长和频率之间有一个基本关系,即波长等于光速除以频率。

例如,频率为1MHz的射频波,其波长为300米。

波长越长,频率越低,穿透力越强。

功率是指射频信号的电磁能量大小,以瓦特(W)表示。

在射频技术中,功率可以用于衡量发送端或接收端的信号功率。

发送端的功率越大,信号传输距离越远;接收端的功率越大,接收到的信号质量越好。

带宽是指射频信号的频率范围。

在通信系统中,信号一般需要特定的频带宽度来传输和接收数据。

带宽越宽,信号传输速度越快。

增益是指射频信号在其中一设备或系统中的放大程度。

增益通常用分贝(dB)表示。

增益可以是发送端的输出功率增益,也可以是接收端的输入信号增益。

增益越大,信号强度越强,传输距离越远。

灵敏度是指接收端设备能够捕捉到的最小信号强度。

灵敏度越高,接收端可以接收到更弱的信号,提高信号质量和传输距离。

失真是指信号在传输过程中发生形状、幅度或频率上的变化。

失真会导致信号质量下降和数据错误。

射频系统中的常见失真包括失真、非线性失真、混叠等。

除了上述基础知识,还有一些射频技术中常见的指标也值得关注。

例如,动态范围是指射频系统可以容忍的最大信号强度和最小信号强度之间的差异。

该指标用于衡量系统的灵敏度和抗干扰能力。

总结起来,射频技术的基础知识包括频率、波长、功率、带宽、增益、灵敏度和失真等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引 言在进入射频测试前,让我们回顾一下单相交流电的基本知识。

一、 单相交流电的产生在一组线圈中,放一能旋转的磁铁。

当磁铁匀速旋转时,线圈内的磁通一会儿大一会 儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。

若磁铁每秒旋转50周,则电压的变化必然也是50周。

每秒的周期数称为频率f ,其单位为赫芝Hz 。

103Hz=千赫kHz,,106Hz=兆赫MHz ,109Hz=吉赫GHz 。

在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。

即转了2π弪,每秒旋转了f 个2π,称2πf 为ω(常称角频率,实质为角速率)。

则单相交流电的表达式可写成:V=V m )sin(0ϕω+t =V m )2sin(0ϕπ+ft式中V m (电压最大值)=2V e (有效值或V r.m.s.)。

t 为时间(秒),0ϕ为初相。

二、 对相位的理解1、 由电压产生的角度来看²设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴(磁铁的磁极) 位置完全相同时,两者发出的电压是同相的。

而当两者转轴错开0ϕ角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。

相位领先为正,滞后为负。

²假如在单相发电机上再加一组线圈,两组线圈互成90°(也即两电压之间相位差 90°),即可形成两相电机。

假如用三组线圈互成120°(即三电压之间,相位各差120°)即可形成三相电机。

两相电机常用于控制系统,三相电机常用于工业系统。

2、 同频信号(电压)之间的叠加当两个电压同相时,两者会相加;而反相时,两者会抵消。

也就是说两者之间为复数运算关系。

若用方位平面来表示,也就是矢量关系。

矢量的模值(幅值)为标量,矢量的角度为相位。

虽然人们关心的是幅值,但运算却必须采用矢量。

虽然一般希望信号相加,但作匹配时,却要将反射信号抵消。

三、 射频交流电的频率为50Hz 时,称为工频。

20Hz 到20kHz 为音频,20kHz 以上为超声波 ,当频率高到100 kHz 以上时,交流电的辐射效应显著增强;因此100 kHz 以上的频率泛称射频。

有时会以3 GHz 为界,以上称为微波。

常用频段划分见附录。

第1章 传输线的基本知识传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。

频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。

不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。

我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。

通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。

其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。

最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。

传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。

对于一般工程技术人员,只需会利用公式或圆图即可。

这里主要讲无耗传输线,有耗的用得较少,就不多提了。

射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。

先熟悉传输线是合理的,而电路的东西是比较具体的。

即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。

1.1 传输线基本公式1.电报方程对于一段均匀传输线,在有关书上可查到,等效电路如图1-1所示。

根据线的微分参数可列出经典的电报方程,解出的结果为:V 1=21(V 2+I 2Z 0)e гx + 21 (V 2-I 2Z 0)e -гx (1-1) I 1=021Z (V 2+I 2Z 0)e гx - 021Z (V 2-I 2Z 0)e -гx (1-2) ² x 为距离或长度,由负载端起算,即负载端的x 为0²г= α+j β, г为传播系数,α为衰减系数, β为相移系数。

无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。

而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。

² Z 0为传输线的特性阻抗。

² Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

² 两式中前一项x 越大值越大,相位也越领先,即为入射波。

后一项x 越大值越小,相位也越落后,即为反射波。

² 由于一般只对线上的分布感兴趣,因此式中将时间因子ej ωt 去掉了。

2. 无耗线上的电压电流分布上面公式中2端为负载端,1端为源端,而x 可为任意值,泛指线上任意一点的电压与电流,因此下面将V 1、I 1的1字省掉。

V = 21(V 2+I 2Z 0)e j βx [1+|Г|e-j(2βx-Φ) ] (1-3) I = 21 [(V 2+I 2Z 0)/Z 0]e j βx [1-|Γ|e -j(2βx-Φ)] (1-4) 式中Г(反射系数)=∣Г|∠Φ = 0202022022Z Z Z Z Z I V Z I V +-=+- (1-5) |Г|≤1 , 要想反射为零,只要Z 2=Z 0即成。

(10-3),(10-4)式中首项不是X 的函数,而ej βX 为相位因子,不影响幅度。

只是末项(方括号项)影响幅度分布.现在让我们看看电压分布:V x = V(1 + |Г|e -j(2βX+Φ) )显然 2βx+Φ=0 或 2N π时, 电压最大,V max =V(1+|Г|)2βx+Φ=π 或 (2N-1)π时, 电压最小,V min =V(1-|Г|)驻波比 ρ= Γ-Γ+=11min max V V (1-6) 当|Г|<<1 时ρ=1+2|Г| ,有时也会用到|Γ| =(ρ-1)/ 2 。

这是一个天馈线中最常见的一个技术指标,英文缩写为S.W.R ,也有用V.S.W.R ,即强调是电压之比。

线上电压因反射的存在而出现有高有低的现象并不是我们希望的,我们希望|Г| → 0, 也就是ρ→1。

一般应用时ρ≤1.5即可,有的场合要求ρ≤1.1。

作为运算,用反射系数Г更合适一些。

也有人定义:返回损失(回损)= 20log ∣Г∣dB (1-7) 英文为Return Loss,也有人译成回波损耗。

由于∣Г∣≤1,因此为负值,但习惯上不管这个负号,有时会讲出驻波比多少dB 之类的话,其实他是在讲回损。

不同行业有不同的习惯用语,驻波ρ、回损R.L.、与反射系数Γ的常用数值见附录。

3. 对特性阻抗Z 0的理解⑴ 在解电报方程中令Z 0=Cj G L j R ωω++ 式中R 为传输线单位长度的电阻(导体本身电阻与长度的比值)。

L 为传输线单位长度的电感(导体本身电感与长度的比值)。

G 为传输线单位长度的电导(两导体间的电导与长度的比值)。

C 为传输线单位长度的电容(两导体间的电容与长度的比值)。

在频率较低时,Z 0随频率而变化,频率高时(射频)Z o ≈C L / (1-8)Z 0就与频率关系不大了。

通常Z 0在射频低端是用测一段传输线的电感与电容后算出的,直接测Z 0是测不出来的。

Z 0测试频率不宜低于10MHz 。

⑵ Z 0是一种结构尺寸决定的电参数如同轴线的Z 0=dD r ln60ε (1-9)εr 为同轴线内充填介质的相对介电常数。

D 为外导体内径,d 为内导体外径 ,如图1-2所示。

双线的Z0=120ln[1)/(2-+d D dD ] ≈120ln(2D/d) (10-10)D 为两导线之间的中心距,d 为导线直径。

如图1-3所示。

其他形状的传输线的Z 0可查其他书得到其计算公式或图表。

尺寸均匀的传输线本身不产生反射,只是在尺寸不连续处才会产生反射。

⑶ Z 0可看成是一根无限长均匀传输线的输入阻抗, 无限长的传输线虽然是不存在 的,但是可以借用一下这个概念。

既然是无限长,显然是不会有反射的,这是一层意思。

另一种看法是既然是无限长,再加上一段也是无限长,而且输入阻抗也不会变。

因此一个负载的阻抗经过一段线后的输入阻抗仍为此阻抗本身而且与长度无关,则此阻抗即为该线的特性阻抗;但由于通常电缆并不均匀,不宜用长电缆的输入阻抗作为Z 0来验收。

⑷ 在甚高频以上可用约λ/8的线测其末端开路和短路时的输入容抗与感抗相乘开方即得Z 0,用λ/8是因为此时误差最小。

4. 无耗线的输入阻抗无耗时,(10-1)(10-2)两式可化成:V = V 2Cos βx + jI 2Z 0Sin βx (1-11) I = I 2Cos βx + j(V 2/Z 0)Sin βx (1-12) 变量用x 表示是可以变的,而通常我们只对某一长度l 下的阻抗感兴趣,故改写成l ,这只是个习惯而已。

Z in = Z 0 ljZ l Z l jZ l Z ββββsin cos sin cos 2002++ (1-13) ⑴ 若Z 2=Z 0时,Z in = Z 0 ( 与长度无关)。

⑵ 若Z 2≠Z 0,l =λ/4时,Z in = Z 02/Z 2 这点可用来作阻抗变换器或简称变阻器。

⑶ 若Z 2=0,Z ins =jZ 0tan l β,显然当l 为λ/4时,l β=90°,Z ins =∞,这点可用来作 支撑或并联补偿。

⑷ 若Z 2=∞,Z ino =-jZ 0Cot l β,显然,当l 为λ/4时,Z ino =0,这点可用来作电耦合 或串联补偿。

• 对于λ/4线,末端短路时入端呈现开路;而末端开路时入端却呈现短路,这种结果凭想当然是想不出来的,它是理论的计算结果,而且是经得起仪器检验的结果。

⑸ 由⑶⑷可得Z ino ³Z ins =(-jZ 0Cot l β)( jZ 0tan l β)= Z 02,这就是测Z 0的根据。

⑹ 对末端为任意阻抗,除(10.13)外,可由(10.3)(10.4)指数表达式得到, Z in = Z 0)2()2(11φβφβ----Γ-Γ+x j x j e e (1-14)当2βx-Φ=0,或 2N π时,即线上电压最大点的输入阻抗Z in max =ρZ 0。

相关文档
最新文档