剥层磨损理论及计算

合集下载

哈工大研究生摩擦磨损学位课思考题及答案(考试内容)

哈工大研究生摩擦磨损学位课思考题及答案(考试内容)

摩擦磨损理论思考题1.简述不同学科对摩擦学研究的关注点。

机械工程中主要包括动、静摩擦,如滑动轴承、齿轮传动、螺纹联接、电气触头和磁带录音头等;零件表面受工作介质摩擦或碰撞、冲击,如犁铧和水轮机转轮等;机械制造工艺的摩擦学问题,如金属成形加工、切削加工和超精加工等;弹性体摩擦,如汽车轮胎与路面的摩擦、弹性密封的动力渗漏等;特殊工况条件下的摩擦学问题,如宇宙探索中遇到的高真空、低温和离子辐射等,深海作业的高压、腐蚀、润滑剂稀释和防漏密封等。

生物中的摩擦学问题,如研究海豚皮肤结构以改进舰只设计,研究人体关节润滑机理以诊治风湿性关节炎,研究人造心脏瓣膜的耐磨寿命以谋求最佳的人工心脏设计方案等。

地质学方面的摩擦学问题有地壳移动、火山爆发和地震,以及山、海,断层形成等。

在音乐和体育以及人们日常生活中也存在大量的摩擦学问题。

2.利用表格分析流体摩擦、边界摩擦、干摩擦三种摩擦状态的基本特征。

表0.1 各种摩擦状态的基本特征摩擦状态典型膜厚摩擦膜形成方式应用流体动力润滑1~100μm由摩擦表面的相对运动所产生的动压效应形成流体润滑膜中、高速下的面接触摩擦副,如滑动轴承液体静力润滑1~100μm通过外部压力将流体送到摩擦表面之间,强制形成润滑膜低速或无速度下的面接触摩擦副,如滑动轴承、导轨等弹性流体动力润滑0.1~1μm与流体动力润滑相同中、高速下的点、线接触摩擦副,如齿轮、滚动轴承等薄膜润滑10~100nm与流体动力润滑相同低速下的点、线接触高精度摩擦副,如精密滚动轴承等边界润滑1~50 nm润滑油分子与金属表面产生物理或化学作用而形成润滑膜低速重载条件下的高精度摩擦副干摩擦1~10 nm表面氧化膜、气体吸附膜等无润滑或自润滑的摩擦副3.画图分析金属表面层的结构特点,分析各层是如何形成的?金属表面在加工过程中表层组织结构将发生变化,使表面层由若干层次组成。

典型的金属表层结构如图1.1所示。

金属基体之上是变形层,它是材料的加工强化层,总厚度为数十微米,由轻变形层逐渐过渡到重变形层。

第三章磨损及磨损理论ppt课件

第三章磨损及磨损理论ppt课件
➢ 粘着强度大于摩擦副中较软金属的剪切强度,小于较 硬金属的剪切强度;
➢ 剪切破坏发生在离粘着结合面不远的较软金属浅层内, 软金属涂抹(粘附)在硬金属表面上;
➢ 摩擦系数与轻微磨损差不多,但磨损程度加剧。
c.擦伤
➢ 粘着强度比摩擦副的两基体金属的剪切强度都高; ➢ 剪切主要发生在软金属的亚表层内,有时也发生在硬
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
Ⅲ 剧烈磨损阶段:当材料磨损量达到一定数值时, 摩擦条件发生较大的变化,磨损速度急剧增加。 这时机械效率下降,精度降低,出现异常的噪音 及振动,最后导致零件完全失效。 ** 从磨损过程的变化来看,为了提高机器零件的 使用寿命,应尽量延长“稳定磨损阶段”。
单位滑动距离的磨损量,横坐标 代表平均接触压力。
压力值小于H/3(σs ),磨损率小而且保持不变(即K保
持常数-磨损量与压力成正比);
压力值为H/3,各个微凸体上的塑性变形区开始发生相
互影响;
压力值超过H/3,磨损量急剧增大(K值急剧增大),高
的载荷作用下,整个表面变成塑性流动区,发生大面 积的粘着焊连,出现剧烈的粘着磨损。
a.轻微磨损
➢ 粘着强度比摩擦副两金属基体剪切强度低; ➢ 剪切发生在粘着结合面上,表面转移的材料较轻
微;
➢ 摩擦系数增大,但磨损量很小; ➢ 金属表面具有氧化膜、硫化膜或其他涂层时发生
轻微粘着摩损。
b.涂抹 “雪亮工程"是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。

第3章金属磨损ppt课件

第3章金属磨损ppt课件

pv准则
pv准则形式简单,常用在非流体润滑的滑动轴承等零件的 设计中,作为选择抗胶合材料的依据。 但是其数据离散范围较大,有时达到50%,因此准确性较 差。
pv [ pv]
式中,p为Hertz最大应力;v为相对滑动速度。 根据工况条件[pv]在3.2×103~1.5×105 MPa·m/s之间变化。
载荷与速度的乘积与摩擦副间传递的功率成正比,因此可 以认为,材料一定的摩擦副传递的功率是有限的。工程中 常常要限制摩擦副的pv值。
2. 表面温度
pv值与摩擦副传递的功率成正比,也就是与摩擦损耗的功 率成正比,摩擦过程中这些能量产生的热使表面温度升高。
产生的热量在接触表面间不是均匀分布的,大部分的热量 产生在表面接触点附近,形成了半球形的等温面。
而由于摩擦副体积远大于接触峰点,一旦脱离接触,峰点 温度便迅速下降,一般局部高温持续时间只有几毫秒。
润滑油膜、吸附膜或其他表面膜将发生破裂,使接触峰点 产生粘着,随后在滑动中粘着结点破坏。
这种粘着、破坏、再粘着的交替过程就构成粘着磨损。
3.3.1 粘着磨损的种类
1. 轻微粘着磨损 当粘着结点的强度低于摩擦副金属的强度时,剪切发生在
对于纯金属和各种未经热处理的钢材,耐磨性与材料硬度成 正比关系。
2. 相对硬度
磨料硬度H0与试件材料硬度H之间的相对值。 为了防止磨粒磨损,材料硬度应高于磨料硬度。
3. 载荷
外载荷对各种材料的磨粒磨损有显著影响。线磨损率与表面 压力成正比。
当压力达到转折值pc时,线磨损率随压力的增加变得平缓, 这是由于磨粒磨损形式转变的结果。各种材料的转折压力值 是不同的。
结合面上。此时虽然摩擦系数增大,但是磨损却很小,材料 迁移也不显著。

摩擦学原理(第4章磨损理论)

摩擦学原理(第4章磨损理论)
将磨损分类的主要目的是为了将实际存在的各种各样的磨损现象归纳 为几个基本类型,从而更好地分析磨损规律。早期人们根据摩擦的作 用将磨损分为以下三大类:

1.机械类 由摩擦过程中表面的机械作用产生的磨损,包括磨粒磨损、表面塑性 变形、脆性剥落等,其中磨粒磨损是最普遍的机械磨损形式。 2.分子-机械类 由于分子力作用形成表面粘着结点,再经机械作用使粘着结点剪切所 产生的磨损,这类磨损的主要形式就是粘着磨损。 3.腐蚀-机械类 这类磨损是由介质的化学作用或电化学作用引起表面腐蚀,而摩擦中 的机械作用加速腐蚀过程,它包括氧化磨损和化学腐蚀磨损。

为了设计具有足够抗磨能力的机械零件和估算其磨损寿命,还必须 建立适合于工程应用的磨损计算方法。近年来通过对磨损状态和磨 屑分析以及对磨损过程的深入研究,提出了一些磨损理论,它们是 磨损计算的基础。磨损计算方法的建立必须考虑磨损现象的特征。 而这些特征与通常的强度破坏很不相同。
第四章 磨损机理

表4.1磨损类型
分类 磨损机理 1.粗糙峰变形或去除 2.犁沟导致的磨损 3.剥层磨损 主要由材料的机械行为引起的磨损 4.粘着磨损 5.磨料磨损 6.微动磨损 7.固体颗粒冲击引起的磨损 1.腐蚀磨损 2.氧化磨损 主要由材料的化学行为引起的磨损 3.扩散磨损 4.表面层溶解引起的磨损 5、高温下的粘着磨损 磨损常数K(范围) 10-4 10-4 10-4 10-4 10-2~10-1 10-6~10-4
第二篇 磨损理论

各种磨损形式有着不同的作用机理:
磨粒磨损主要是犁沟和微观切削作用; 粘着磨损过程与表面间分子作用力和摩擦热密切相关; 接触疲劳磨损是在循环应力作用下表面疲劳裂纹萌生和扩 展的结果; 而氧化和腐蚀磨损则由环境介质的化学作用产生。 接触面的塑性变形常常引起磨损,也就是说变形导致磨损, 化学作用也常能引起磨损。此外,有很多种磨损机理必 须利用机械学、热力学等学科的理论来分析。

磨损及磨损理论

磨损及磨损理论
摩擦学基础知识 —磨损及磨损理论
第一节 概 述
任何机器运转时,相互接触的零件之间都将因相对运动而产 生摩擦,而磨损正是由于摩擦产生的结果。由于磨损,将造成 表层材料的损耗,零件尺寸发生变化,直接影响了零件的使用 寿命。从材料学科特别是从材料的工程应用来看,人们更重视 研究材料的磨损。据不完全统计,世界能源的1/3~1/2消耗 于摩擦,而机械零件80%失效原因是磨损。
表表面面存存在在明明显显粘粘着着痕痕迹迹和和材材料料转转移移,,有有较较大大粘粘着着坑坑块,块在,高在速高重速 载重下载,下大,量大摩量擦摩热擦使热表使面表焊面合焊,合撕,脱撕后脱留后下留片下片片粘片着粘坑着。坑。
黏黏着着坑坑密密集集,,材材料料转转移移严严重重,,摩摩擦擦副副大大量量焊焊合合,,磨磨损急损剧急增剧加增,加, 摩摩擦擦副副相相对对运运动动受受到到阻阻碍碍或或停停止止。。 材材料料以以极极细细粒粒状状脱脱落落,,出出现现许许多多““豆豆斑斑””状状凹凹坑坑。。
所以磨损是机器最常见、最大量的一种失效方式。据调查轮,胎压联痕(SEM 邦德国在1974年钢铁工业中约有30亿马克花费在维修上,其5中000X) 直接由于磨损造成的损失占47%,停机修理所造成的损失与磨损 直接造成的损失相当,如果再加上后续工序的影响,其经济损失 还需加上10%一20%。
摩擦痕迹 (350X)
此时虽然摩擦系数增大,但是磨损却很小,材料迁移也不显著。通常 在金属表面具有氧化膜、硫化膜或其他涂层时发生轻微粘着摩损。
(2)涂抹:
粘着结合强度大于较软金属抗剪切强度,小于较硬金属抗剪切强度。 剪切破坏发生在离粘着结合面不远的较软金属浅层内,软金属涂抹在硬 金属表面。这种模式的摩擦系数与轻微磨损差不多,但磨损程度加剧。
(3)磨损比

剥层磨损理论及计算

剥层磨损理论及计算

剥层理论其基本论点是:当摩擦副相互滑动时,软表面的粗糙峰容易变形,同时在循环载荷作用下软粗糙峰首先断裂,从而形成较光滑的表面。

这样,接触状态不再是粗糙峰对粗糙峰,而是硬表面的粗糙峰在相对光滑的软表面上滑动。

硬表面粗糙峰在软表面上滑动时,软表面上各点经受一次循环载荷,在表层产生剪切塑性变形并不断积累,这就在金属表层内出现周期的位错。

由于映象力的作用,距离表面深度为几十微米的表层位错消失。

这样靠近表层的位错密度小于内部的位错密度,即最大剪切变形发生在一定深度以内。

在摩擦过程中,剪切变形不断积累,使表面下一定深度处出现位错堆积,进而导致形成裂纹或孔穴。

当裂纹在一定深度形成后,根据应力场分析,平行表面的正应力阻止裂纹向深度方向扩展,所以裂纹在一定深度沿平行于表面的方向延伸。

当裂纹扩展到临界长度后,在裂纹与表面之间的材料将以片状磨屑的形式剥落下来。

根据剥层磨损理论可以得出简单的磨损计算公式。

硬表面对软表面滑动时的总磨损可以用下式表示:0Q k Ws =式中:0k 为磨损系数;W 为载荷;s 为滑动距离。

片状磨屑厚度h 可以根据低位错密度区的厚度来确定,即()41jGb h πμσ=- 式中,G 为剪切弹性模量;μ为材料的泊松比;j σ为表面摩擦应力;b 称为Burger 矢量。

磨损体积V 与滑动距离s 和临界滑动距离0s 有关。

临界滑动距离是指与空穴和裂纹形成时间和裂纹扩展到临界尺寸的速度有关的滑动。

磨损体积V 为0s V Ah s ⎛⎫= ⎪⎝⎭片状磨屑的面积A 与载荷和材料屈服极限有关,即s WA σ=。

将A 和h 代入上式,则得()041s jWsGb V s πσμσ=- 从上式可知,磨损量与载荷、滑动距离成正比,而不直接与材料的硬度有关,这点不同于粘着磨损的计算公式。

第三章 磨损及磨损理论

第三章 磨损及磨损理论

3、磨损过程 零件的正常磨损过程大致可分为三个阶段: 零件的正常磨损过程大致可分为三个阶段: 跑合阶段; 稳定磨损阶段; Ⅰ:跑合阶段;Ⅱ:稳定磨损阶段;Ⅲ:剧 烈磨损阶段
Ⅰ:跑合阶段 出现在摩擦副的初始运动阶段, 出现在摩擦副的初始运动阶段,由于表面存在 粗糙度,微凸体接触面积小,接触应力大, 粗糙度,微凸体接触面积小,接触应力大,磨 损速度快。 在一定载荷作用下, 损速度快。 在一定载荷作用下,摩擦表面逐渐 磨平,实际接触面积逐渐增大, 磨平,实际接触面积逐渐增大,磨损速度逐渐 减慢,如图所示。 减慢,如图所示。
二、 磨 损 的 分 类
1、粘着磨损
(1)定义 (1)定义 当摩擦副相对滑动时, 当摩擦副相对滑动时, 由于粘着效应所形 成的结点发生剪切断裂, 成的结点发生剪切断裂,接触表面的材料 从一个表面转移到另一个表面的现象称为 粘着磨损。 粘着磨损。
(2) 粘着磨损机理 当摩擦副接触时,接触首先发生 当摩擦副接触时,接触首先发生 在少数几个独立的微凸体上。 在少数几个独立的微凸体上。因 在一定的法向载荷作用下, 此,在一定的法向载荷作用下, 微凸体的局部压力就可能超过材 塑性变形, 料的屈服压力而发生塑性变形 料的屈服压力而发生塑性变形, 继而使两摩擦表面产生粘着 粘着; 继而使两摩擦表面产生粘着; 此后,在相对滑动过程中,如果粘着点的剪切 粘着点的剪切发生 此后,在相对滑动过程中,如果粘着点的剪切发生 在界面,则磨损轻微;如果剪切发生在界面以下, 在界面,则磨损轻微;如果剪切发生在界面以下, 材料就会从一个表面转移到另外一表面, 则材料就会从一个表面转移到另外一表面,继续滑 一部分转移的材料分离,从而形成游离磨粒。 动,一部分转移的材料分离,从而形成游离磨粒。 接触-塑性变形-粘着-剪断粘着点-材料转移** 接触-塑性变形-粘着-剪断粘着点-材料转移再粘着,循环不断进行,构成粘着磨损过程。 再粘着,循环不断进行,构成粘着磨损过程。

磨损的计算方法

磨损的计算方法

磨损计算方法的背景
但是,由于影响磨损的因素非常多,所以磨 损的计算也是相当复杂的。各国的摩擦学专家曾 提出过很多计算方法用来计算各种类型的磨损和 一些计算方法还未能达到实用阶段,因此,仍需 努力深入研究,加以完善。本节将简要地介绍磨 损的IBM计算法、两个配合“联接”体的磨损计 算法和两种主要磨损类型的计算法,以便深入理 解磨损的本质。
经过一些假设之后,上式可简化为
式中:C为系统常数,可由实验得到。将 等代 入式(5—12),并加以积分即可求得A值,再测出磨 痕长度就能计算出磨损体积。
二、两个配合“联接”体的磨损计算法
这种计算方法是根据摩擦副零件所允许的磨损
量来决定使用期限的。为此,需要解决以下三个方 面的问题:
(1)确定磨损过程中两接触表面之间的压力分布
假设磨粒为形状相同的圆锥体,半角为θ,锥底直径为 r(即犁出的沟槽宽度),载荷为W,压入深度h,滑动距离 为L,屈服极限σs。在垂直方向的投影面积为πr2,滑动时 只有半个锥面(前进方向的锥面)承受载荷,共有n个微凸 体,则所受的法向载荷为:
将犁去的体积作为磨损量,其水平方向的投影面积为一 个三角形,单位滑动距离的磨损量(磨损率)为Q0=nhr, 因 为r=htan θ,因此:
(1)
如果考虑到微凸体相互作用产生磨粒的概率数K和滑动 距离L,并且代人材料的硬度H=3σs,则接触表面的磨损 量表达式为:
(2)
式中Ks为磨粒磨损系数,是几何因素2/tan θ和概率常数 K的乘积,Ks与磨粒硬度、形状和起切削作用的磨粒数量
等因素有关。应当指出,上述分析忽略了许多实际因素, 例如磨粒的分布情况、材料弹性变形和滑动前方材料堆 积产生的接触面积变化等等,因此式(2)近似地适用于 二体磨粒磨损。在三体磨损中,一部分磨粒的运动是沿

磨损及磨损理论

磨损及磨损理论

粘着结合强度比两基体金属的抗剪强度都高,切应力高于粘着结合强度。 剪切破坏发生在摩擦副金属较深处,表面呈现宽而深的划痕。
此时表面将沿着滑动方向呈现明显的撕脱,出现严重磨损。如果滑动继 续进行,粘着范围将很快增大,摩擦产生的热量使表面温度剧增,极易出现 局部熔焊,使摩擦副之间咬死而不能相对滑动。 这种破坏性很强的磨损形式,应力求避免。
所以磨损是机器最常见、最大量的一种失效方式。据调查, 轮胎压痕(SEM 5000X) 联邦德国在1974年钢铁工业中约有30亿马克花费在维修上,其中 直接由于磨损造成的损失占47%,停机修理所造成的损失与磨损 直接造成的损失相当,如果再加上后续工序的影响,其经济损失 还需加上10%一20%。
摩擦痕迹 (350X)
1.6
磨损过程的一般规律:
1、磨损过程分为三个阶段:
表面被磨平, 实际接触面 积不断增大, 表面应变硬 化,形成氧 化膜,磨损 速率减小。
随磨损的增长,磨耗 增加,表面间隙增大, 表面质量恶 化,机件快速失效。
斜率就是磨损速率,唯一稳定值; 大多数机件在稳定磨损阶段(AB 段)服役; 磨损性能是根据机件在此阶段 的表现来评价。
(3)磨损比
冲蚀磨损过程中常用磨损比(也有称磨损率)来度 量磨损。
Hale Waihona Puke 材料的冲蚀磨损量(g或μ m 3) 磨损比= 造成该磨损量所用的磨料量(g)
它必须在稳态磨损过程中测量,在其它磨损阶段 中所测量的磨损比将有较大的差别。 不论是磨损量、耐磨性和磨损比,它们都是在一 定实验条件或工况下的相对指标,不同实验条件或 工况下的数据是不可比较的。
当材料产生塑性变形时,法向载荷W与较软材料的屈服极限σy之间的关系:
(1)
当摩擦副产生相对滑动,且滑动时每个微凸体上产生的磨屑为半球形。 其体积为(2/3)πa3,则单位滑动距离的总磨损量为:

摩擦学原理知识点

摩擦学原理知识点

绪论1、摩擦学定义:是对于相对运动的互相作用表面的科学技术,包含摩擦、润滑、磨损和冲蚀。

2、摩擦学研究内容主要包含:摩擦、磨损、润滑以及表面工程技术。

3、摩擦:是抵挡两物体接触表面在外力作用下发生切向相对运动的现象。

4、磨损:侧重研究与剖析资料和机件在不一样工况下的磨损机理、发生规律和磨损特征。

5、润滑:研究内容包含流体动力润滑、静力润滑、界限润滑、弹性流体动力润滑等在内的各样润滑理论及其在实践中的应用。

6、表面工程技术:将表面与摩擦学有机联合起来,解决机器零零件的减摩、耐磨,延伸使用寿命的问题。

第一章1、表面容貌:微观粗拙度、宏观粗拙度(即涟漪度)和宏观几何形状误差。

2、表面参数:(1)算术均匀误差 Ra是在一个取样长度lr内纵坐标值Z(x)绝对值的算术均匀值。

(2)轮廓的最大高度 Rz 是在一个取样长度 lr 内最大轮廓峰高 Zp 和最大轮廓谷深 Zv 之和的高度。

( 3)均方根误差 Rq是在一个取样长度 lr 内纵坐标值 Z( x)的均方根值。

3、对于液体,表层中所有分子所拥有的额外势能的总和,叫做表面能。

表面能越高,越易粘着。

4、物理吸附:当气体或液体与固体表面接触时,因为分子或原子互相吸引的作使劲而产生的吸附叫做物理吸附,是靠范德华力维系的,温度越高,吸附量越小。

物理吸附薄膜形成的特色是吸附和解吸附拥有可逆性,无选择性。

5、化学吸附:极性分子与金属表面的电子发生互换形成化学键吸附在金属表面上,且极性分子呈定向摆列。

化学吸附的吸附能较高,比物理吸附稳固,且是不完整可逆的,拥有选择性。

6、粘附:是指两个发生接触的表面之间的吸引。

7、影响粘附的要素:①湿润性,②粘附功,③界面张力,④亲和力。

8、金属表面的实质构造:(1)表面层:①污染层,②吸附气体层,③氧化层;( 2)内表层:①加工硬化层,②金属基体。

第二章1、固体表面的接触分类:(1)点接触和面接触。

(2)①弹性接触(赫兹接触),②塑性接触,③弹塑性接触,④粘弹性接触。

金属磨粒图谱识别 1.总述

金属磨粒图谱识别 1.总述

铁系金属磨粒图谱识别
——磨粒与磨损总述
1.磨粒
(1)磨粒分类:以材料划分的五大类磨粒,即铁系金属、有色金属、氧化物、润滑剂产物和污染物(不是因磨损产生但对磨损有影响)。

(2)磨粒形成机理
2.磨损机理
由于磨损过程的复杂性,磨粒类型和磨损机理之间不全是一一对应关系,磨粒类型和磨损机理之间对应关系如下图所示。

由于磨合期是摩擦副磨合过程,磨合初期产生的像切削磨粒等一般认为是正常的磨粒,将其归为正常磨粒(本文不讨论磨合期磨损磨粒)。

但切削磨粒出现在磨合期以外,则判断为异常磨损。

所以磨粒类型和磨损机理之间不全是一一对应关系。

4.不同磨损期的磨粒浓度曲线
如下图所示,其中A-磨合期,B-正常磨损期,C-异常磨损期。

图1-1:磨损元素浓度曲线图1-2:磨粒浓度曲线图1-1是采用光谱技术所得到的磨损元素浓度ppm(百万分之一)与时间的关系曲线,表征润滑剂中微米级及以下的小磨粒累积值,与图1-3的“磨损量”曲线十分吻合。

图1-2采用铁谱技术得到的磨粒浓度D1与系曲线,表征润滑剂中大于微米级的大磨粒浓度值,与图1-4的磨损率的“浴盆曲线”曲线十分接近。

图1-3:磨损量变化曲线图1-4:磨粒速率变化曲线
6.摩擦副的表面组成。

磨损的计算方法

磨损的计算方法

IBM计算法
IBM计算法
对应于2000个行程时的rR的数值,见表5-2。保证零 磨 劳曲损线时的的关行系程式次,数即N与tmax之间的关系可采用材料疲
由此式可以计算任意行程数容许的
IBM计算法
当N>21600时,上式是可行的,用式(5一10)预测 零磨损需按以下步骤进行: 1、将摩擦副零件要求的工作期限换算成行程次数N; 2、用查表法或其它方法确定材料的 3、通过实验或查表法确定 4、计算出
—、磨损的剥层理论
磨损的剥层理论是美国麻省理工学院的教授苏 (N.P.suh)于1973年建立的。这一新理论是以金 属的位错理论为基础的,它分析了亚表层金属的塑 性变形与断裂行为。
该理论叙述了导致薄而长的片状磨屑形成的过 程,其要点如下:
1.当接触的两表面滑动时,法向力和切向力 是经接触点的粘着与犁沟作用传递的。较软表面 上的微凸体容易产生塑性变形或被磨去,结果形 成了比较光滑的表面。此时的接触情况变成了硬 的凸峰与较软平面的接触,于是前者在后者上面 犁沟并使平面上每一接触点都经受着循环载荷。
锥面上某点的相对滑动速度为
相对
两个配合“联接”体的磨损计算法
于是,摩擦副两个零件的磨损速度分别为
两个配合“联接”体的磨损计算法
两个配合“联接”体的磨损计算法
由式(5-14)和式(5-20)可得
三、两种主要磨损类型的磨损计算方法
(1)简单粘着磨损计算(Archard模型)
上图为粘着磨损模型,假设摩擦副的一方为较硬
*H2O四种相组成的。另外,对磨屑的分析观察发 现,它具有两个区域,一是亮区,在该区发现有
球状碳化物聚集,其显微硬度很高,亮区又称为
白层组织;另一是暗区,此区呈涡流状组织,这

磨损机理中的分层理论及其若干应用

磨损机理中的分层理论及其若干应用

磨损机理中的分层理论及其若干应用随着机械制造业的快速发展,磨损问题已经成为制造业中不可避免的问题,使得机械零部件的使用寿命和性能受到严重的影响。

因此,对于磨损机理的研究已经成为当前磨损领域中的热点和难点问题之一。

分层理论是从宏观角度探讨磨损机理的方法之一,具有广泛的理论应用和工程实践价值。

磨损机理中的分层理论是一种从力学角度描述磨损现象的方法,它将磨损过程分解为不同的发生层,在每个层中探讨不同的磨损机理。

分层理论基于多学科交叉应用的思想,将力学、材料学、化学等不同学科的理论相融合,从而更加全面地解释了磨损机理。

该理论将磨损过程分为四个主要的层次:材料微观层、扩散层、失效层和接触层。

在材料微观层,有用于描述材料内部磨损机理的各种模型,例如裂纹扩展模型、内部变形模型等。

在扩散层,主要研究材料与磨损介质之间的化学反应、元素扩散以及表面强化等现象。

失效层则考虑了材料的断裂、磨损、腐蚀等机理,以及材料内部的应力、应变等因素对磨损现象的影响。

接触层是指磨损过程中发生磨损的两个表面的接触层,它涉及到表面变形、高温摩擦等现象。

分层理论不仅是对磨损机理的深入探讨,同时也有着广泛的理论应用和工程实践价值。

首先,它能够为机械零部件的设计、优化提供理论指导。

其次,分层理论还可以用于电子产品、锻钢厂、机器制造等工业领域,来减少机械零部件的磨损,从而提高机器的性能和寿命。

另外,该理论还可以指导工程师在选材、设计表面处理方法、制定润滑方案等问题上进行合理的选择,从而达到降低成本、提高效益的目的。

总之,分层理论是研究磨损机理的重要方法之一,它建立了磨损机理的多维模型,可以帮助工程师更加深入地了解磨损现象。

未来,我们相信该理论将继续得到深入研究和应用,并且为工业生产的磨损问题提供更有效的解决方案。

在分层理论的应用方面,越来越多的工程师和学者开始使用该理论来探讨磨损问题。

例如,一些机械制造厂商可以根据分层理论来设计出更加耐磨损的机械零部件,从而提高机器的性能和寿命。

磨损的计算方法行业研究

磨损的计算方法行业研究
—、磨损的剥层理论
磨损的剥层理论是美国麻省理工学院的教授苏 (N.P.suh)于1973年建立的。这一新理论是以金 属的位错理论为基础的,它分析了亚表层金属的塑 性变形与断裂行为。
谷风优质
4
该理论叙述了导致薄而长的片状磨屑形成的过 程,其要点如下:
1.当接触的两表面滑动时,法向力和切向力 是经接触点的粘着与犁沟作用传递的。较软表面 上的微凸体容易产生塑性变形或被磨去,结果形 成了比较光滑的表面。此时的接触情况变成了硬 的凸峰与较软平面的接触,于是前者在后者上面 犁沟并使平面上每一接触点都经受着循环载荷。
谷风优质
16
IBM计算法
谷风优质
17
IBM计算法
对应于2000个行程时的rR的数值,见表5-2。保证零 磨 劳曲损线时的的关行系程式次,数即N与tmax之间的关系可采用材料疲
由此式可以计算任意行程数容许的
谷风优质
18
IBM计算法
当N>21600时,上式是可行的,用式(5一10)预测 零磨损需按以下步骤进行: 1、将摩擦副零件要求的工作期限换算成行程次数N; 2、用查表法或其它方法确定材料的 3、通过实验或查表法确定 4、计算出
目录
当代磨损理论简述 磨损计算方法
减少磨损与防止磨损的方法
The end
谷风优质
1
第一节 当代磨损理论简述
近些年来,许多工业化国家非常重视对磨损 产物的研究,特别是从微观的角度进行了深入细 致的研究。这是因为,要真正了解磨损的过程, 并进一步研究磨损的机理,就必须弄清楚磨屑是 怎样形成的;其尺寸、形状和机械性能等与磨损 过程和磨损状态究竟有什么关系。为此,人们首 先通过扫描电子显微镜等现代化研究手段对磨屑 进行了观察,发现磨屑的形状有片状、卷曲状、 贝壳状和球状四类。此外,还研究了磨屑的显微 硬度、相组成和组织。

第6章 磨损理论

第6章 磨损理论

微动磨损



定义:相对接触的两个固体表面因微幅振 动(振幅<100μm)所产生的磨损。 发生部位:联接件:轴颈、螺栓联接、键 槽、花键、金属密封、离合器。 现象:表面产生疲劳裂纹。 磨损机理:

微动磨损是因微振产生的腐蚀、粘着、磨料和 疲劳等的一种综合磨损过程。
磨损机理
周期性的微振动
接触变形 氧化磨损 磨 磨粒磨损 粘着磨损 屑
.

弹性接触
d
.
K pV E p / R p
' 1 2
'
P为名义压力 ,V为滑动速度。 磨损率与pV成正比,选择材料参考pV系数值
防止和减轻粘着磨损的措施
1 合理选择摩擦副材料
脆性材料比塑性材料的抗粘着能力高。
宜选用互溶性小的金属,不要选用同种或晶格 类型相近的金属。Al,Sn,Cu,In与Fe的互溶 差,可作滑动轴承的基材。
Hm /Ha>1.3,材料耐磨性不再提高,低磨损区 Hm /Ha<1.25,K将随Ha /Hm的2.5次幂而下降
Ha K 0.57 K 0 Hm

2.5
增加金属材料的表面硬度,可增加其耐磨性。
硬度、粒径对磨损的影响
硬度
压力
疲劳磨损


定义:材料表面在循环接触应力的作用下,萌 生裂纹,导致产生片状或颗粒的磨屑,表面形 成 豆状凹坑、麻点,这种磨损称为疲劳磨损。 基本类型
磨损机理

磨损过程

粘着——剪切——再粘着——再剪切的循环

阿查德磨损定律:
W =KWL/HS VS材料磨损量与滑动距离成正比 式中: WVS 、Wvh分别为软、硬表面 材料磨损量与载荷成正比 的磨损体积量, W 软材料磨损与其硬度成反比 K, ,L分别为磨损系数,载荷和滑动长 度, Hs,Hh分别为软、硬表面布氏硬度

地层剥蚀量的计算

地层剥蚀量的计算

计算地层剥蚀量方法恢复地层剥蚀厚度是研究盆地演化史和进行油气资源定量评价的重要基础工作,通过地层剥蚀量的计算、地层最大埋深的确定,可以帮助我们确定烃源岩生油期、生气期,进而准确评价油气资源潜力,优选勘探目标。

目前存在多种计算地层剥蚀量的方法,如:(1)地层对比法、(2)沉积速度法(Van Hinte,1978)、(3)声波测井曲线法(Magara,1976)、(4)镜质体反射率(R o)法(Dow,1977)、(5)地震地层学法(尹天放等,1992)、(6)最优化方法(郝石生等,1988)、(7)天然气平衡浓度法(李明诚等,1996)等。

一、构造横剖面法该方法通过对构造发育特征的分析,推测地层的剥蚀量,基本原理如图1所示。

该方法适用于构造发育特征比较明显、尤其是角度不整合地区,对平行不整合的剥蚀量计算受到一定的限制。

图1 构造横剖面法推算地层剥蚀量示意图可以根据残余地层的展布特征及构造运动的特点推算出剥蚀厚度。

以某三维地震剖面为例,通过该方法可估算出该地区印支运动对C-P顶面造成的剥蚀量的剥蚀量最大可到1500m左右。

最大不超过1000m,J3~K沉积时期,J1+2二、沉积速率法该方法是依据不整合面上下地层的沉积速率及绝对年龄计算地层剥蚀量,具体可分如图2所示的几种情形进行处理(Guidish等,1985):图2 对不整合面的不同处理方法(Guidish等,1985)(a)将不整合面视为沉积间断,期间无剥蚀发生,界面上下沉积岩的绝对年龄的差值即为沉积间断的时间。

(b)发生了剥蚀,视剥蚀掉的地层的沉积速率等于其剥蚀速率,所以:H e=[(V上+V下)/2]×[(T下-T上)/2](c)认为剥蚀掉的地层的沉积速率等于不整合面之下地层的沉积速率,而其剥蚀速率等于不整合面之上的地层的沉积速率,因此剥蚀开始的时间(T e)和剥蚀厚度(H e)即为:T e=(V上T上+V下T下)/(V上+V下)H e=V上(T e-T上)该方法必须在知道不整合面上下地层的沉积速率及绝对年龄的情况下才能适用。

第五章_磨损原理讲诉

第五章_磨损原理讲诉

按照磨损程度的不同,粘着磨损可以分为以下五类: 1) 轻微磨损 粘着点的剪切强度比形成该粘着点的任何一方的基体金属的剪切强度 都小(如锡与铁对磨),磨损发生在粘着点的界面上,材料转移十分轻微, 甚至不产生材料转移。磨合属于这种磨损。
2) 涂抹
粘着点的剪切强度介于形成该粘着点的两种基体金属的剪切强度之间 (如铅与钢对磨),剪切破坏发生在较软金属的浅表层内,并使该表层的材 料转移到较硬金属表面上,使后者的表面上被涂抹上薄薄的一层。 例如,重载蜗轮表面的铜涂抹到蜗杆表面上即属此类。
3) 刮伤 沿滑动方向形成严重 的划痕。剪切破坏发生在较软 金属的表层。
4) 胶合
表面局部温度相当高,粘着点的面积较大,由于粘着点的剪切强度比形成粘 着的任何一方基体金属的剪切强度都要高(如铜与钢对磨),故在摩擦副的一方 或双方的基体金属上产生较深层的破坏,因而,既有较多的软金属转移到硬金属 表面上,同时也有部分硬金属转移到软金属表面上。
根据磨损程度的不同,磨粒磨损又可分为以下三种类型: 1、擦伤 磨粒作用在表面上的应力较低,使摩擦表面沿滑动方向形成微细 的擦痕。被尘土、灰砂等污染的零件的摩擦表面上常出现这种磨损。 2、刮伤 磨粒作用在表面上的应力较高,使脆性材料表面碎裂;而对韧性 材料,则往往表现为摩擦表面产生塑性变形或疲劳破坏。 3、犁沟 在磨粒作用下,较软金属表面因塑性变形而出现较深的沟槽。
衡量磨损特性的主要参数是磨损率,通常可采用以下三种磨损率: 1、线性磨损率:
Rl l / L
Rv V /( LAn )
2、体积磨损率:
3、重量磨损率:
Rw w /( LAn ) RV
w
-磨损重量; L -滑动距离;
式中,l -磨损厚度; V -磨损体积;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

剥层理论其基本论点是:
当摩擦副相互滑动时,软表面的粗糙峰容易变形,同时在循环载荷作用下软粗糙峰首先断裂,从而形成较光滑的表面。

这样,接触状态不再是粗糙峰对粗糙峰,而是硬表面的粗糙峰在相对光滑的软表面上滑动。

硬表面粗糙峰在软表面上滑动时,软表面上各点经受一次循环载荷,在表层产生剪切塑性变形并不断积累,这就在金属表层内出现周期的位错。

由于映象力的作用,距离表面深度为几十微米的表层位错消失。

这样靠近表层的位错密度小于内部的位错密度,即最大剪切变形发生在一定深度以内。

在摩擦过程中,剪切变形不断积累,使表面下一定深度处出现位错堆积,进而导致形成裂纹或孔穴。

当裂纹在一定深度形成后,根据应力场分析,平行表面的正应力阻止裂纹向深度方向扩展,所以裂纹在一定深度沿平行于表面的方向延伸。

当裂纹扩展到临界长度后,在裂纹与表面之间的材料将以片状磨屑的形式剥落下来。

根据剥层磨损理论可以得出简单的磨
损计算公式。

硬表面对软表面滑动时的总磨损可以用下式表示:
0Q k Ws =
式中:0k 为磨损系数;W 为载荷;s 为滑动距离。

片状磨屑厚度h 可以根据低位错密度区的厚度来确定,即
()41j
Gb h πμσ=- 式中,G 为剪切弹性模量;μ为材料的泊松比;j σ为表面摩擦应力;b 称为Burger 矢量。

磨损体积V 与滑动距离s 和临界滑动距离0s 有关。

临界滑动距离是指与空穴和裂纹
形成时间和裂纹扩展到临界尺寸的速度有关的滑动。

磨损体积V 为
0s V Ah s ⎛⎫= ⎪⎝⎭
片状磨屑的面积A 与载荷和材料屈服极限有关,即s W
A σ=。

将A 和h 代入上式,则

()041s j
WsGb V s πσμσ=- 从上式可知,磨损量与载荷、滑动距离成正比,而不直接与材料的硬度有关,这点不同于粘着磨损的计算公式。

相关文档
最新文档