两相流的一些介绍
气液两相流和沸腾传热.pdf0
第一章绪论第一节两相流及其定义异质物体或系统中,各存在分界面的独文物质称之为相。
众所周知,自然界常见酌物质有三相,即固相+液相和气相。
因此,由任意两种存在分界试坤独物质组成【十体或系统都称之,为两相物体或两相表统。
树如,水和己的撮合物为一种两相物体,因为水和卸:都是存在分界面的独立物质。
但是,'盐水浴液是一种单相物体,田为在此溶液中盐和水之间无分界面,盐和水不居两种独立存在的物质。
两相物体的流动称为两相流。
在两相城中,两相之闻不仅存在分界面,面且进一公界面是随者派动在不断变化的。
因此,两相觥可定义为存在变动外界面的两种狡文物质组成的物体的. 流动。
气体和固体耦粒洇合物的流动为一种两相流,因为在此甜动表统中不仅存在两种独立物质,而且这两种物质之间的分界面是随流动面变化的。
根据两相流的定义,可以将两相褓大致分为如下三类,气体和液体共同流动时气筱两相流,气体和固体耦】位共同流动的气团两相流·液体和固体解放共同流动的液固两相流。
忱外,两种不同组分液体的共同流动也届于两相流范辟,本书主要讨论气液两相流的流体动力学和悦据传热问题。
气踺两相流根据物质组分的不同又可分为两种。
由同一组分枸顶种相组成髀气液两相流称为单组分】液两相舐,例如由木鼓汽和水构成的两相硫。
由不同组士的两种相组成肿气踺两相硫称为】组公气液两相流,例如由空气卸水构成的气淹两相流。
在不监生相变的流动过程中,单组分两相流和】煳i分两相流适用同样的物理规铮,因而可通称为气液两相硫。
棣揖散热惜晚的不同,气密两相硫还可公为绝热气淹两相掀和有热弈换酌气密两相硫。
当存在热交投时,在单组分气筱两相部中伴随菹流动含线工质的相交。
两·相铈这一术语在本世纪30年代苜光出现于美国的一些研究生论文中。
l945年,苏碟苜先将毡一来语应用于正式出版的学术刊物上。
莫+ 苏、银三国在本世纽20年代已''开始了气淹两相硫的研究工作,日本姑子即年代,我国在60年代也开始了这方面的研究工:,ff;·。
气液两相流课件
5.2 均相流模型的摩擦压降计算
一.均相流模型计算法
➢ 两相摩擦压力梯度
dp f Ph 0
dz A
对于圆管,控制体周界长度(m):Ph D
通流面积(m2):A D2
4
流体与壁面的摩擦剪应力(N/m2):
o
f
m j2
全气相摩擦压降梯度
dPf dz
l
分液相摩擦压降梯度
dPf dz
g
分气相摩擦压降梯度
dPfl 液相部分摩擦压降梯度 dz
dPfg 分气相摩擦压降梯度 dz
2 lo
全液相折算系数
2go 全气相折算系数
2 l
分液相折算系数
2g 分气相折算系数
dPf 两相摩擦压降梯度 dz
X 2 马蒂内里参数
5
第一章 两相流基本参数及其 计算 方法
1.1 基本概念 1.2 气相介质含量 1.3 两相流的流量和流速 1.4 两相介质密度及比容
6
1.1 基本概念
1.物态:在某一条件下,物质存在的一种状态。 常见的物态是气态、液态和固态。有时物态 也称之为相,常见的物质三态也称为:气相、 液相、固相。
11
1.2 气相介质含量
1.2.1 定义
气相介质含量表示两相流中气相所占的份额。
1.2.2 几种表示方式
1.质量含气率x
单位时间内,流过通道某一截面的两相流体总质量 M中气相所占的比例份额。
x M M M M M
式中,M、 M分别表示气相和液相的质量流量,kg/s。
那么,质量含液率(湿度)可以表示为
4
课程目录
第一章 两相流基本参数及其计算方法(4学时) 第二章 两相流的流型和流型图(6学时) 第三章 两相流的基本方程(4学时) 第四章 截面含气率的计算(8学时) 第五章 直管的两相流压降计算(10学时) 第六章 两相流局部压降计算(2学时) 第七章 两相临界流动(4学时) 第八章 两相流流动不稳定性(2学时)
两相流量计标准__解释说明以及概述
两相流量计标准解释说明以及概述1. 引言1.1 概述本文旨在探讨和解释两相流量计标准,并提供相关细节和背景知识。
两相流量计是用于测量同时存在液体和气体的混合物的仪器。
在工业领域中,对两相流量的准确测量具有重要意义,因为它能够帮助工程师们更好地理解和控制工艺过程中的流体行为。
1.2 文章结构本文将按照如下结构组织内容。
首先介绍两相流量计标准的定义和背景(第2节) ,包括制定标准的过程以及标准的重要性。
然后详细解释说明两相流量计(第3节) ,包括概念解析、测量原理以及常见类型的介绍。
最后,我们将概述两相流量计标准所要求的内容(第4节),包括流体性质和温度要求、测量精度和稳定性要求,以及设备尺寸和安装要求。
最后,在第5节中给出文章的结论与总结。
1.3 目的本文目的主要有以下几个方面:- 解释说明什么是两相流量计标准;- 提供制定两相流量计标准的背景和过程;- 强调两相流量计标准在工业领域中的重要性;- 描述两相流量计的工作原理和常见类型;- 概述两相流量计标准所要求的关键内容。
通过对这些方面的介绍,读者将能够更全面地了解两相流量计标准及其应用。
同时,本文也旨在为相关领域的研究人员和从业人员提供有用的参考,以促进两相流量计技术的发展与应用。
2. 两相流量计标准:2.1 定义和背景:两相流量计是用于测量同时含有气体和液体两种流体的混合物的流量的仪器。
在许多工业领域,如石油化工、能源生产和环境保护等,对两相流量计的需求日益增加。
因此,为了确保测量结果的准确性和可比性,制定了相应的两相流量计标准。
2.2 标准的制定过程:制定两相流量计标准需要考虑多个方面。
首先,相关机构会收集并分析各种两相流量计的数据和实际应用情况。
其次,在专家的指导下,制定出适用于不同行业和领域的标准要求。
最后,在标准起草过程中,还可能进行多轮讨论和评审,并征求各方意见,以确保标准的科学性和实用性。
2.3 标准的重要性:制定统一的两相流量计标准具有重要意义。
气液两相流的性质和计算方法
气液两相流的性质和计算方法气液两相流是指气体和液体同时存在并混合流动的流体系统。
它在工业领域和自然界中都具有重要的应用价值,例如石油开采、化工生产以及大气湍流等。
了解气液两相流的性质和计算方法对于工程设计和科学研究都至关重要。
本文将介绍气液两相流的基本特性以及常用的计算方法。
一、气液两相流的性质1. 相态及其转变:在气液两相流中,气体和液体是两种不同的相态。
相态的转变主要涉及气体与液体之间的相互作用。
常见的气液相态转变有蒸发和凝结。
蒸发是液体转变为气体的过程,凝结则相反,是气体转变为液体的过程。
2. 平衡态:在气液两相流中,气相和液相之间存在着平衡态,即气体和液体之间的能量和质量交换达到平衡。
平衡态可以通过温度、压力和相对湿度等参数进行描述。
在一定的温度和压力条件下,气体和液体之间会达到平衡态,这对于计算气液两相流动参数至关重要。
3. 流速及测量方法:气液两相流的流速可以通过多种方法进行测量,常用的方法有雷诺数法、回收法和瞬时测量法等。
雷诺数法利用流速以及流动的截面积来计算气液两相流的饱和度,从而推导出流速。
回收法则通过测量液体回收某一时间段内的质量差异来计算流速。
瞬时测量法则是在气液两相流过程中通过传感器实时测量流速。
二、气液两相流计算方法1. 流动模型:在计算气液两相流动时,常用的模型有欧拉模型和拉格朗日模型。
欧拉模型是基于连续方程和动量方程的宏观计算方法,适用于大规模流体系统的计算。
拉格朗日模型则是基于颗粒运动方程的微观计算方法,适用于小尺度的气液两相流计算。
2. 数值模拟方法:气液两相流的数值模拟是一种常用的计算方法。
通过将流体系统划分为离散的网格单元,利用数学模型和计算算法对流体动力学进行数值求解。
常用的数值模拟方法有有限差分法、有限元法和计算流体力学(CFD)等。
3. 实验方法:为了验证理论计算结果和数值模拟方法的准确性,常常需要进行实验研究。
实验方法可以通过流体试验和实验观测两种途径进行。
气液两相流 第2章-两相流的基本理论
x
1 (1 x)
G G
• 对于均相流动,考虑流体流过微元流道的平衡方程式,设流道截面积为A, 与水平面的倾斜角为θ。
• 针对最普遍问题,不做任何简化:非稳态、非等截面、有换热、有内热生成
• 2.4管内气液两相流的基本ห้องสมุดไป่ตู้程
q
z
qv
Vm
A
p
θ
τ0
q -经流道壁面进入系统的热流密度,W/m2 qv-单位体积的内热发生率,J/m3·s P - 流道周界长度
2.1管内气液两相流的基本参数
7、气相(真实平均)速度VG、液相(真实平均)速度VL(actual velocity) m/s VG=QG/AG, VL=QL/AL 事实上,它们是各相在其所占截面上的平均速度,真正的两相流 速应当是截面上各流体质点的速度---局部速度。
8、折算速度VSG、VSL(Superficial gas/liquid velocity) m/s VSG:假定气相单独流过管道整个截面时的流速(即折算到整个截面上) VSG=QG/A, VSL: VSL=QL/A (VSG=QG/A=QG/(AG/α)=α·VG; VSL=(1-α)·VL
2.1管内气液两相流的基本参数
3、质量含气率x(mass fraction of the gas phase)
流过某一截面的气相质量流量占两相总质量流量的份额。
x WG WG W WG WL
WG x W WL (1 x) W
质量含液率为:
1 x WL WG WL
单组份气液两相流的质量含气率x也称为干度(Dryness、Quality)。
2.1管内气液两相流的基本参数
⑴真实密度(又称分相流密度)
土力学中的两相流推导过程
土力学中的两相流推导过程在土力学中,两相流是指土壤中含有两种不同相态的流体,常见的是水和空气。
研究土壤中的两相流对于了解土壤水分运动和土壤力学性质具有重要意义。
本文将从两相流的基本概念出发,介绍土力学中的两相流推导过程。
我们来了解一下两相流的基本概念。
两相流是指土壤中同时存在两种不同相态的流体,其中一种是连续相,另一种是离散相。
在土力学中,连续相常常是水,离散相则是空气。
土壤中的两相流可以通过各向同性介质的渗透理论进行研究。
渗透理论是基于达西定律和贝茨定律,描述了流体在多孔介质中的运动规律。
接下来,我们将介绍土力学中的两相流推导过程。
首先,我们假设土壤是一个各向同性的多孔介质,其中含有水和空气两相流体。
我们可以利用守恒方程和达西定律来推导两相流的运动方程。
我们考虑水相和空气相的质量守恒方程。
在水相中,质量守恒方程可以表示为:∂(ρwθw)/∂t + ∇·(ρwθwuw) = 0其中,ρw是水相的密度,θw是水相的体积含水率,uw是水相的速度矢量。
类似地,在空气相中,质量守恒方程可以表示为:∂(ρaθa)/∂t + ∇·(ρaθaua) + ρa∇·(ε) = 0其中,ρa是空气相的密度,θa是空气相的体积含气率,ua是空气相的速度矢量,ε是空气相的体积应力张量。
接下来,我们考虑连续相和离散相的动量守恒方程。
在连续相中,动量守恒方程可以表示为:∂(ρwθwuw)/∂t + ∇·(ρwθwuwuw) + ∇·(ρwθwug) = ∇·(σw) + ρw∇·(ε)其中,g是重力加速度,σw是水相的应力张量。
类似地,在离散相中,动量守恒方程可以表示为:∂(ρaθaua)/∂t + ∇·(ρaθauaua) + ∇·(ρaθaug) = ∇·(σa) + ρa∇·(ε)其中,σa是空气相的应力张量。
两相流的一些介绍
>Viscous
设置:K-ε 模型
原因:Spalart-Allmaras 机翼上
的超音速、跨音速流动 ,边界 层流动等
k-ε模型应用广泛用于 可压缩, 浮力,燃烧等。多相流动动量 方程中所模拟的项数是非常大 的,这使得多相流模拟中的紊 流模型非常复杂。这一模型可 以满足。
k-ω模型对于有压力梯度的大范 围边界层流动航天和涡轮机械 领域
9.putch设置
水的体积分数
初始化补充,此项设置为补充两相流的初始化,不经 过此项补充在计算时会默认为单项。
三.结果分析
因为网格形状及其质量对两相流的计算收敛性 影响非常大,所以在计算时,我们采用了两套 网格进行计算即六面体网格和四面体网格,然 后比较计算结果。在两相流计算过程中有主相 和第二相的设置区别,为了考察两种设置的关 系,我进行了水是第二相及空气是第二相的两 种设定计算。
质量守恒 对比
Inlet
四面体网格 166770.31 水为第二相
四面体网格 空气为第二 相
六面体网格 水为第二相
166770.63 166757.72
六面体网格
空气为第二 相
166757.8
outlet
166770.34 166770.78
166757.41 166757.02
net
0.03125 -0.15625
适合于流动中有相混合
或分离,或者分散相的
volume fraction 超过 10%
两相之间没有滑移速度,因为这个
过程是两相流是静止不动的,物体 一定速度冲入两相中。
的情形。(流动 中分散 相的volume fraction 小于 或等于 10%时可使用离
气固两相流动的基本概念和特性参数
2.1.2 气固两相流动的特性参数
设气体-固体颗粒混合物的体积为V,质量
为W,其中气体的体积为 V g ,质量为 ;
固体W g颗粒的体积为 数为W p N 。
,质量V p为 ,颗粒
1. 质量含气率
气体质量占两相混合物质量的份额为质量 含气率,即
Wg Wg
W Wg Wp
(2-1)
而
1 Wp Wp
• 4.平均粒径
平均粒径是颗粒群中大小各不相同的粒径的平均 值。平均粒径可定量地表示颗粒群的大小。确定 平均粒径的方法很多,大致有算术平均、几何平 均、调和平均、面积长度平均、体面积平均、重 量平均、平均表面积、平均体积、比表面积、中 径和多数径等。其中应用最多的是中径和多数径。 同一颗粒群用各种方法平均后,会得到各种不同 的平均粒径值。
量和气体质量,当颗粒速度 u p 等于输送气 流速度 u g 时,则
z p (1) g
(2-6)
• 混合比z是一个无量纲量。它是气固两相流
中一个很重要的参数。它的大小直接影响 输送管道内压力损失。混合比越大,对于 增大输送能力来说是有利的。但混合比过 大,在同样气流速度下可能产生堵塞,输 送压力也增高。因此混合比的数值受物料 的物理性质、输送方式以及输送条件等因 素的控制。
根据经验, (2-3)
V 的流动可看着平衡流。
(2-9)
一般物料任意堆积时的容积含气率约为0.
两相混合物的密度 它主要用于测定不能用筛网计测的极小微粒。
混合比越大,对于增大输送能力来说是有利的。
W /V (1 ) 这样互相作用的结果,就使它们的速度、温度逐渐接近,最终达到某种相对平衡状态。
(2-11)
• 2.粒径
粒径表示每个固体颗粒的大小程度,是判断固体 颗粒粗细程度的一个指标。。如果颗粒是球形的 或近似于球形的,那么可以取其直径作为粒径。 若颗粒的大小和形状不同,要对颗粒进行准确测 定并将其表示出来是几乎不可能的。许多人提出 了各种各样的粒径测定方法,在这些方法中,实 际应用的大致有两种。
两相流、多相流
两相流的概念及类型两相物质(至少一相为流体)所组成的流动系统。
若流动系统中物质的相态多于两个,则称为多相流,两相或多相流是化工生产中为完成相际传质和反应过程所涉及的最普遍的粘性流体流动。
通常根据构成系统的相态分为气液系、液液系、液固系、气固系等。
气相和液相可以以连续相形式出现,如气体-液膜系统;也可以以离散的形式出现,如气泡-液体系统,液滴-液体系统。
固相通常以颗粒或团块的形式处于两相流中。
两相流的流动形态有多种。
除了同单相流动那样区分为层流和湍流外,还可以依据两相相对含量(常称为相比)、相界面的分布特性、运动速度、流场几何条件(管内、多孔板上、沿壁面等)划分流动形态。
对于管内气液系统,随两相速度的变化,可产生气泡流、塞状流、层状流、波状流、冲击流、环状流、雾状流等形态;对于多孔板上气液系可以产生自由分散的气泡、蜂窝状泡沫、活动泡沫、喷雾等形态。
两相流研究的一个基本课题是判断流动形态及其相互转变。
流动形态不同,则热量传递和质量传递的机理和影响因素也不同。
例如多孔板上气液两相处于鼓泡状态时,正系统混合物(浓度增加时表面张力减低)的板效率(见级效率)高于负系统混合物(浓度增加时表面张力增加);而喷射状态下恰好相反。
两相流研究的另一个基本课题,是关于分散相在连续相中的运动规律及其对传递和反应过程的影响。
当分散相液滴或气泡时,有很多特点。
例如液滴和气泡在运动中会变形,在液滴或气泡内出现环流,界面上有波动,表面张力梯度会造成复杂的表面运动等。
这些都会影响传质通量,进而影响设备的性能。
两相流研究的课题,还有两相流系统的摩擦阻力,系统的振荡和稳定性等。
两相流研究模型两相流的理论分析比单相流困难得多,描述两相流的通用微分方程组至今尚未建立。
大量理论工作采用的是两类简化模型:①均相模型。
将两相介质看成是一种混合得非常均匀的混合物,假定处理单相流动的概念和方法仍然适用于两相流,但须对它的物理性质及传递性质作合理的假定;②分相模型。
第二章(第一次课) 两相流动流型
第一课 两相流流型分类
尚智 上海交通大学 核工系
一、绝热通道
搅拌流(搅乳流)
搅拌流:在弹状流动下,随 着含气率或气相流量进一步 增加,气泡发生破裂,在较 大的流道里常会出现液相以 不定型的形状作上下振荡, 呈搅拌状态。在小尺寸流道 中则不一定发生这类搅拌流 动,而可能会发生弹状流向 环状流的直接平稳过渡。
环状流
环状流:当含气率更大时,气相 汇合成为气芯在流道芯部流动, 而液相则沿流道壁面成为一个流 动的液环,呈膜状流动,故名之 环状流。实际上,呈现纯环状流 型的参数范围很窄,通常是呈环 状弥散流状态,即通常总有一些 液体被夹带,以小液滴形式处于 气芯中。
水平管道内加热流动的流型
水平受热流道在承受低热负荷均匀加热时的
典型流型变迁。其流型变化过程与垂直受热 流动流型大致相同。由于受重力作用,导致 气相分布的不对称,出现了层状流动。相分 布的不对称与流体受热还导致波状层状流区, 流道顶部会发生间断性再湿润与干涸。在环 状流区,顶部会出现逐渐扩大的干涸区。
弹状流
弹状流:当气相流速增加到大于波速时,在气液分 界面处的波浪被激起而与流道上部壁面接触,并呈 现以高速沿流道向前推进的弹状块而形成类似冲击 波的轻型,这就形成弹状流型。它与塞状流的差别 在于气弹上部没有水膜,只是在气弹前后被涌起的 波浪使上部管壁周期性地受到湿润。
环状流
环状流:如果继续增大气相速度,液体将会被挤向 周围的管壁面,而形成环绕管周的一层液膜沿管壁 流动。而气相则在管子中心流动,称为气芯。这样 的流型称为环状流。通常总有一些液体以小液滴形 式被气芯夹带。由于重力作用,流道下部的液膜较 上部为厚。
两相流、多相流上课讲义
两相流的概念及类型两相物质(至少一相为流体)所组成的流动系统。
若流动系统中物质的相态多于两个,则称为多相流,两相或多相流是化工生产中为完成相际传质和反应过程所涉及的最普遍的粘性流体流动。
通常根据构成系统的相态分为气液系、液液系、液固系、气固系等。
气相和液相可以以连续相形式出现,如气体-液膜系统;也可以以离散的形式出现,如气泡-液体系统,液滴-液体系统。
固相通常以颗粒或团块的形式处于两相流中。
两相流的流动形态有多种。
除了同单相流动那样区分为层流和湍流外,还可以依据两相相对含量(常称为相比)、相界面的分布特性、运动速度、流场几何条件(管内、多孔板上、沿壁面等)划分流动形态。
对于管内气液系统,随两相速度的变化,可产生气泡流、塞状流、层状流、波状流、冲击流、环状流、雾状流等形态;对于多孔板上气液系可以产生自由分散的气泡、蜂窝状泡沫、活动泡沫、喷雾等形态。
两相流研究的一个基本课题是判断流动形态及其相互转变。
流动形态不同,则热量传递和质量传递的机理和影响因素也不同。
例如多孔板上气液两相处于鼓泡状态时,正系统混合物(浓度增加时表面张力减低)的板效率(见级效率)高于负系统混合物(浓度增加时表面张力增加);而喷射状态下恰好相反。
两相流研究的另一个基本课题,是关于分散相在连续相中的运动规律及其对传递和反应过程的影响。
当分散相液滴或气泡时,有很多特点。
例如液滴和气泡在运动中会变形,在液滴或气泡内出现环流,界面上有波动,表面张力梯度会造成复杂的表面运动等。
这些都会影响传质通量,进而影响设备的性能。
两相流研究的课题,还有两相流系统的摩擦阻力,系统的振荡和稳定性等。
两相流研究模型两相流的理论分析比单相流困难得多,描述两相流的通用微分方程组至今尚未建立。
大量理论工作采用的是两类简化模型:①均相模型。
将两相介质看成是一种混合得非常均匀的混合物,假定处理单相流动的概念和方法仍然适用于两相流,但须对它的物理性质及传递性质作合理的假定;②分相模型。
两相流基础
WG x= W
质量含液率(1-x)
含气率和含液率
体积含气率和体积含液率
体积含气率( β )表示流过管路流通截面上的气相体积 流量与气液混合物总体积流量之比,即:
β=QG/Q =QG/(QL+QG)
气相和液相的折算速度小于相应的气液相实际速度
滑动比、滑移速度、漂移速度
滑动比(s)
uG s = uL
滑移速度(slip velocity)或滑差
uslip = uG − uL
滑动比、滑移速度、漂移速度
漂移速度(drift velocity)
uDL = uL − uM
uDG = uG − uM
含气率和含液率
体积含气率(β)与质量含气率(x)
β=QG /Q =QG/(QL+QG) =uSG /(uSG +uSL)
WG uSG ρG uSG x= = = WG + WL uSG ρG + uSL ρ L u + u ρ L SG SL
ρG
∵ ρ L > ρG
∴ β >x
含气率和含液率
体积含气率(β)与质量含气率(x)之间的关系
l0
( dl ) dp ( dl )
dp
( )
§4-1 混输管道的流动参数和技术术语
在相同的管路内,只有液相流动,其质量流量 为 Gl = G (1 − x ) ,压降梯度为 ⎛ dp dl ⎞ ,则把混输管 ⎜ ⎟ ⎝ ⎠l ⎛ dp ⎞ 路压降梯度 dp dl 与 ⎜ dl ⎟ 之比定义为分液相折算 ⎝ ⎠l 2 系数,以 φl 表示,即:
两相流原理
两相流原理两相流原理是指在一定条件下,两种不同物质(例如液体和气体)同时存在于同一空间中并进行相互作用的现象。
在工程和科学领域中,对于两相流的研究具有重要意义,因为它在许多领域中都有广泛的应用,如核能工程、化工工艺、石油开采等。
两相流的形成通常是由于液体的蒸发或气体的凝结引起的。
在一定的温度和压力条件下,液体和气体可以同时存在于同一空间中。
液体和气体之间存在着物质的传递和能量的交换。
这种相互作用可以通过质量传递、能量传递和动量传递来描述。
在两相流中,液体和气体的相互作用形成了许多有趣的现象。
例如,在汽车发动机中,汽油的喷雾与气体的混合是发动机燃烧过程中关键的一步。
在核电站中,蒸汽与冷却剂之间的相互作用决定了核反应堆的热效率。
在化工工艺中,液体和气体的传递现象对反应速率和生产效率有着重要影响。
两相流的研究方法可以通过实验和数值模拟两种途径来进行。
实验方法通常是通过设计实验装置,模拟两相流现象,并通过观察和测量来获得数据。
数值模拟方法则是通过建立数学模型和计算流体力学方法来模拟和预测两相流的行为。
这两种方法各有优势和限制,需要根据具体情况选择合适的方法。
在实际工程中,两相流现象的研究和控制具有重要意义。
例如,在核电站中,需要确保蒸汽与冷却剂之间的传递过程稳定可靠,以保证核反应堆的安全运行。
在石油开采中,需要研究和控制油水两相流的行为,以提高开采效率和减少环境污染。
为了更好地理解两相流现象,研究人员还提出了许多物理模型和数学模型来描述和预测两相流的行为。
这些模型基于质量守恒、能量守恒和动量守恒等基本原理,并结合实验数据进行验证和修正。
通过不断改进和完善这些模型,可以更准确地预测和控制两相流的行为。
两相流原理是液体和气体在一定条件下相互作用的结果。
研究和控制两相流的行为对于许多工程和科学领域具有重要意义。
通过实验和数值模拟等方法,可以更深入地了解两相流的特性,并应用于实际工程中。
随着科学技术的不断发展,对于两相流的研究将会在各个领域中得到更广泛的应用。
两相流计算方法l
蓝色流体网
液-固两相流
蓝色流体网
S = vg vs
S = vs vl
5. 压力降
混合物的两相流压力降 ∆pT 与气相、液相、固相分相压力降 ∆pg 、∆pl 、 ∆ps 之间的关系有: A. Murdock J.W.公式;林宗虎公式
蓝色流体网
蓝色流体网
2) 应用近代新技术; 3) 应用基于软测量技术的软测量方法。 2. 主要应用 相分率:
采用低能γ 射线传感器测量相分率:单能γ 射线传感器测量含气 率,双能γ 射线传感器测量相含水率; 流量:
采用文丘里流量计或文丘里流量计+互相关技术测量总流量; 根据相分率和数学模型确定油、气、水各相的流量; 压力、温度变送器
蓝色流体网
大部分旋风分离器的切割粒径50之间实际上来流中携带的绝大多数液滴直径要比切割粒径大的多实际上工业用蓝蓝蓝色流体网色流体网色流体网色流体网wwwopenfluidcn蓝色流体网蓝色流体网蓝色流体网蓝色流体网wwwopenfluidcn旋风分离器可以除去大多数液体设计中的主要问题不在于分离器能否将液体分离出来而是如何合理地处理已经被离心力甩向边壁的液大部分气液旋流分离器不采用锥体结构而采用圆筒型结构
蓝色流体网
蓝色流体网
旋风分离器可以除去大多数液体,设计中的主要问题不在于分离器能 否将液体分离出来,而是如何合理地处理已经被离心力甩向边壁的液 体相。
大部分气-液旋流分离器不采用锥体结构,而采用圆筒型结构。 分离器的容量应保证旋涡的尾部不与下部的液面接触。因此隔离板 (或消涡板或稳涡板)的作用是提供一个接触面,旋涡的末端在此面 上像陀螺一样不停地旋转,该板的目的不是破坏和干扰旋涡,而是避 免旋涡与液面接触,可以大大降低湍流和明显削弱旋涡强度。
固气两相流输送理论简介
3.1固气两相流输送理论载气式送粉器主要依靠动能把粉末均匀、稳定地输送出来,辅之以气体分散和运输,粉末容易分散均匀及流畅运输。
因此送粉器的结构设计和送粉器的应用都要用到固气两相流输送的相关理论。
3.1.1固气两相流输送原理固气两相流,也称气力输送,是一种利用空气流作为输送动力在管道中输送粉粒状颗粒料的方法。
物料在管道中的流动状态实际上很复杂,主要随气流速度及气流中所含的物料量和物料本身料性的不同而显著变化。
通常,当管道内气流速度很高而物料量又很少时,物料颗粒在管道中接近于均匀分布,并在气流中呈完全悬浮状态被输送,见图3-1(a )。
随着气流速度逐渐减小或物料量有所增加,作用于颗粒的气流推力也就减小,使颗粒速度也相应减慢。
加上颗粒间可能发生碰撞,部分较大颗粒趋向下沉接近管底,这时管底物料分布变密,但物料仍然正常地被输送,见图3-1(b)。
当气流速度再减小时,可以看到颗粒成层状沉积在管底,这时气流及一部分颗粒从它的上层空间通过。
而在沉积层的表面,有的颗粒在气流的作用下也会向前滑移,见图3-1(c)。
当气流速度开始低于悬浮速度或者物料量更多时,大部分较大颗粒会失去悬浮能力,不仅出现颗粒停滞在管底,在局部地段甚至因物料堆积形成“砂丘”。
气流通过“砂丘”上部的狭窄通道时速度加快,可以在一瞬间将“砂丘”吹走。
颗粒的这种时而停滞时而吹走的现象是交替进行的,见图3-1(d)。
如果局部存在的“砂丘”突然大到充填整个管道截面,就会导致物料在管道中不在前进。
如果设法使物料在管道中形成料栓,见图3-1(e)。
也可以利用料栓前后的压力差推动它前进。
以上所说的物料气力输送流动状态中,前三种属于悬浮流,颗粒是依靠高速流的气流动压被输送的,这种流动状态也称为动压输送。
后两种属于集团流,其中最后一种称为栓流,物料依靠气流的静压输送的。
第四种则动、静压的作用均存在。
3.1.2混合比混合比是指两相流中物料量与空气量的比值,由于它反映了输送量和输送状态的标准,是两相流的重要参数之一。
垂直管气液两相流的典型流型及其特点
垂直管气液两相流的典型流型及其特点垂直管气液两相流是指在垂直管道中同时存在气体和液体两相的流动现象。
根据流体流动状态的不同,垂直管气液两相流可以分为三种典型流型:泡状流、层状流和雾状流。
下面将逐一介绍这三种典型流型及其特点。
1. 泡状流(Bubbly Flow):泡状流是指在垂直管道中,气体以泡状形式分布在液体中的流动状态。
在泡状流中,气泡在液体中上升,并在液体表面破裂释放气体,形成新的气泡。
泡状流的特点是气泡间存在明显的相互干扰和碰撞,并且气泡与液体之间的质量和能量传递较为复杂。
泡状流的气体浓度较高,液体分布均匀,流动性能较好。
2. 层状流(Stratified Flow):层状流是指在垂直管道中,气体和液体以分层的形式共同流动的状态。
在层状流中,气体和液体分别分布在垂直管道的上下部分,两相之间通过界面分离。
层状流的特点是气体和液体分层明显,界面清晰可见,两相之间的相互作用较小。
层状流的气体浓度较低,液体分布不均匀,流动性能较差。
3. 雾状流(Annular Flow):雾状流是指在垂直管道中,气体包裹液滴形成雾状的流动状态。
在雾状流中,气流将液滴托起并形成雾状,液滴沿管道壁流动下降。
雾状流的特点是液滴分布均匀,气流和液相之间存在明显的摩擦阻力,液滴与管道壁之间存在明显的摩擦作用。
雾状流的气体浓度较低,液滴分布均匀,流动性能较好。
以上三种典型流型在垂直管气液两相流中具有不同的特点和应用场景。
泡状流适用于气体和液体的质量和能量传递较为复杂的情况,例如在化工反应器中的气液相反应。
层状流适用于气液分层明显的情况,例如在油井中的气液分离器中的气液分离。
雾状流适用于气体和液体之间存在明显摩擦作用的情况,例如在热交换器中的气体冷凝器。
垂直管气液两相流的典型流型包括泡状流、层状流和雾状流。
它们分别具有气泡间相互干扰和碰撞、气体和液体分层明显以及气流包裹液滴形成雾状等特点。
了解和掌握不同的典型流型对于正确评估和设计垂直管气液两相流的流动性能具有重要意义。
气液两相流
热物理量测试技术1 概述两相流广泛应用于热能动力工程、核能工程、低温工程以及航天领域等许多领域。
所谓两相流,广义上讲是指一种物质或两种物质在不同状态下的流动,其中气体和液体一起流动称为气液两相流。
对于两相流中的气液混合物,它们可以是同一种物质,即汽—液(如水和水蒸气),也可以是两种不同的物质,即气—液(如水和空气混合物)。
气液两相流是一个相当复杂的问题,。
在单相流中,经过一段距离之后,就会建立一个稳定的速度场。
但对于两相流,例如蒸汽和水,则很难建立一个稳定的流动,因为在管道流动中有压降产生,由于此压降作用会产生液体的蒸发,所以在研究气液两相流时必须考虑两相间的传热与传质问题。
两相流学科还处于半经验半理论阶段,对于两相流的流动和传热规律进行研究时,除了依靠各种数学物理模型外,还要依靠实验,这就需要两者相结合从而更好地进行研究。
2 两相流压降测量[1]压降,即两相流通过系统时产生的压力变化,是两相流体流动过程中的一个重要参数。
保持两相流体流动所需的动力以及动力系统的容量和功率就取决于压降的大小。
一般说来,两相流体流动时产生的压降一般由三部分组成,即摩擦阻力压降、重位压降、加速压降,管道系统出现阀门、孔板等管件时,还需测量局部压降。
目前,常用差压计或传感器来测量两相流压降。
2.1 利用差压计测量压降应用差压计测量气液两相流压降的测量原理图如图1所示。
所测压降为下部抽头的压力与上部抽头压力之差。
在差压计的Z1截面上可列出压力平衡式如下:P1+(Z2−Z1)ρC g=P2+(Z4−Z3)ρC g+(Z3−Z1)ρM g(2.1)式中,ρC为取压管中的流体密度;ρM为差压计的流体密度。
由(2.1)可得:P1−P2=(Z3−Z1)g(ρM−ρC)+(Z4−Z2)ρC g(2.2)由上式可知,要算出压降P1−P2的值,必须知道取压管中的流体密度ρC和差压计读数Z3−Z1。
当管中流体不流动时:P1−P2=gρm(Z4−Z2)(2.3)式中,ρm为两相混合物平均密度。
两相流_第2章_两相流的流型和流型图
1.单相流 2.泡状流 3.塞状流 4.弹状流 5.波状流 6.环状流 1.单相流 2.泡状流 3.塞状流 4.弹状流 5.波状流 6.环状流
流型演变与P 流型演变与P、q、Wo密切相关 很高时,塞状流和弹状流消失; P:当P很高时,塞状流和弹状流消失; 较大,环状流所占范围扩大; q:q较大,环状流所占范围扩大; Wo:Wo高 惯性作用增强,可消除波状状流, Wo:Wo高,惯性作用增强,可消除波状状流,流型不对称 性减小,接近竖直管中的流型。 性减小,接近竖直管中的流型。 注意:从工程角度,避免水平布置;当水平布置时, 注意:从工程角度,避免水平布置;当水平布置时,需要提高 入口水的流速, Wo>>1m/s,可避免波状流。 入口水的流速,使Wo>>1m/s,可避免波状流。
二.流型图
1.实验条件 1.实验条件
空气和多种液体混合物,d 空气和多种液体混合物,di=25.4mm,P=0.17MPa
2.坐标参数 2.坐标参数
横坐标
(j Fr =
g
+ jf ) gd
2
j2 = gd
3 = µ ρ σ w w w
ρ ′′j g
2
三.流型图
目前广泛采用的流型图均 为二元的, 为二元的,其坐标为流动参 数或组合参数。 数或组合参数。 选用右图流型图注意 1. 实验条件 P=0.14-0.54MPa, Di=31.2mm; P=0.14-0.54MPa 流动工质是空气和水。 流动工质是空气和水。 2. 该图和应用P=3.45-6.9MPa 该图和应用P=3.45 6.9MPa, P=3.45汽水混合物在D =121.7mm管 汽水混合物在Di=121.7mm管 子中得到的实验数据符合良 好。
两相流和ns方程
两相流和ns方程
两相流和NS方程
一、引言
两相流是指在同一空间内同时存在两种不同物质的流动现象。
NS方程是指纳维-斯托克斯方程,描述了流体力学中的连续性、动量和能量守恒。
本文将结合这两个概念,探讨两相流中的NS方程的应用和影响。
二、两相流的介绍
两相流是一种常见的流动现象,例如汽车发动机中的燃烧过程,冷却塔中的水蒸气排出等。
在两相流中,两种不同物质的相互作用会产生复杂的流动行为。
这些行为包括气体与液体的相对运动、相变现象等。
三、NS方程的介绍
NS方程是描述流体力学中流体运动行为的方程组。
它由连续性方程、动量方程和能量方程组成。
连续性方程描述了质量守恒,动量方程描述了力的作用和运动的变化,能量方程描述了能量的转换和传递。
四、两相流中的NS方程应用
在两相流中,NS方程被广泛应用于预测和模拟流体的行为。
通过解析NS方程,我们可以了解两种不同物质之间的相互作用,预测流体的流动速度和压力分布等。
五、两相流中的NS方程影响
通过对两相流中NS方程的研究和应用,我们可以更好地理解和控制两相流动的行为。
这对于许多工程领域都具有重要意义,例如能源转换、化工过程和环境保护等。
六、结论
两相流和NS方程是流体力学中的重要概念。
通过对两相流中NS方程的深入研究和应用,我们可以更好地理解和控制两相流动的行为。
这对于解决工程问题和改进工程设计具有重要意义。
希望本文能为读者对两相流和NS方程的理解提供一些帮助。
气液两相流 整理
第一章概论相的概念:相是体系中具有相同化学组成和物理性质的一部分,与体系的其它均匀部分有界面隔开两相流动的处理方法:双流体瞬态模拟方法和精确描述物理现象的稳态机理模型是多相管流研究的主要方法目前研究存在的问题:1、多相流问题未得到解析解;2、油气水三相流的研究不够深入;3、水平井段变质量流动研究较少;4、缺乏向下流动的综合机理模型;5、缺乏专用研究仪器气液两相流的分类:1、细分散体系:细小的液滴或气泡均匀分散在连续相中2、粗分散体系:较大的气泡或液滴分散在连续相中3、混合流动型:两相均非连续相4、分层流动:两相均为连续相气液两相流的基本特征:1、体系中存在相界面:两相之间也存在力的作用,出现质量和能量的交换时伴随着机械能的损失2、两相的分布情况多种多样:两相流动中两相介质的分布称为流型3、两相流动中存在滑脱现象:相间速度的差异称为滑脱,滑脱将产生附加的能量损失4、沿程流体体积流量有很大变化,质量流量不变气液两相流研究方法:1、经验方法:从气液两相流动的物理概念出发,或者使用因次分析法,或者根据流动的基本微分方程式,得到反映某一特定的两相流动过程的一些无因次参数,然后依据实验数据整理出描述这一流动过程的经验关系式。
优点:使用方便,在一定条件下能取得好的结果缺点:使用有局限性,且很难从其中得出更深层次的关系2、半经验方法:根据所研究的气液两相流动过程的特点,采用适当的假设和简化,再从两相流动的基本方程式出发,求得描述这一流动过程的函数关系式,最后用实验方法确定出函数关系式中的经验系数。
优点:有一定的理论基础,应用广泛缺点:存在简化和假设,具有不准确性3、理论分析方法:针对各种流动过程的特点,应用流体力学方法对其流动特性进行分析,进而建立起描述这一流动过程的解析关系式。
优点:以理论分析为基础,可以得到解析关系式缺点:建立关系式困难,求解复杂研究气液两相流应考虑的几个问题:1、不能简单地用层流或紊流来描述气液两相流2、水平或倾斜流动是轴不对称的3、由于相界面的存在增加了研究的复杂性4、总能量方程中应考虑与表面形成的能量问题5、多相流动中各相的温度、组分的浓度都不是均匀的,相之间有传热和传质6、各相流速不同,出现滑脱问题,是多相流研究的核心与重点流动型态:相流动中两相介质的分布状况称为流型或两相流动结构流型图:描述流型变化及其界限的图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三.结果分析
因为网格形状及其质量对两相流的计算收敛性 影响非常大,所以在计算时,我们采用了两套 网格进行计算即六面体网格和四面体网格,然 后比较计算结果。在两相流计算过程中有主相 和第二相的设置区别,为了考察两种设置的关 系,我进行了水是第二相及空气是第二相的两 种设定计算。
Models -> solve.. Base---基于压力求 解器 2. 隐形格式 ---Implicit 3.非定常流动-Unsteady
设置:1Pressure
Your site here
2.多相流模型
步骤:Define -> Models > Multiphase...
设置:混合模型---Mixture 原因:VOF 模型适合于分层
四面体-空气为第 二相-水的密度
Your site here
四面体网格各相面体-水为第二相-水的体积分数
四面体-空气为第二相-空气的体积分数
四面体-空气为第二相-水的体积分数
Your site here
六面体网格的各相密度
六面体-水为第 二相-混合密度
速度对比
四面体网格 水为第二相
四面体网格 空气为第二相
六面体网格 水为第二相
六面体网格 空气为第二相
Your site here
四面体网格各相密度
四面体-水为第 二相-混合密度
四面体-水为第 二相-空气密度
四面体-水为第 二相-水的密度
四面体-空气为第 二相-混合密度
四面体-空气为第 二相-空气密度
两相之间没有滑移速度,因为这个 过程是两相流是静止不动的,物体 一定速度冲入两相中。
的或自由表面流,mixture 和Eulerian 模型适合于流 动中有相混合或分离,或者 分散相的volume fraction 超过 10%的情形。(流动 中分散相的volume fraction 小于或等于 10% 时可使用离散相模型)
第二相体检分数的设定
Your site here
7.解算器设置
步骤:solve->control->soultion 设置:discretion中体积分数--QUICK格式。QUICK体积分数解算器 格式,是专门用于多相流计算的格式,适合大体积分数变化的流场 计算。其他解算器为保证计算精确,设为二阶迎风格式
多相流模型
王新慧
2011.10.20
一.多相流概念与分类
定义:两种或两种以上不同相的流体混合在一
起的流动 第 二 相
分类:
1气-液或者液-液两 2.气-固两相流 3.液-固两相流 4.三相流
主 相
Your site here
二.问题设置和基本流程
Your site here
1.求解器的设置 步骤:Define ->
Your site here
3.湍流模型 步骤:Define -> Models >Viscous
设置:K-ε 模型 原因:Spalart-Allmaras 机
翼上的超音速、跨音速流动 ,边界层流动等 k-ε模型应用广泛用于 可压缩, 浮力,燃烧等。多相流动动 量方程中所模拟的项数是非 常大的,这使得多相流模拟 中的紊流模型非常复杂。这 一模型可以满足。 k-ω模型对于有压力梯度的大范 围边界层流动航天和涡轮机 械领域
166757.72 166757.8
166757.41 166757.02
0.3125 -0.21875
Your site here
Your site here
8.初始化设置
在初始化时,Y轴向速 度为863m/s,这个速度 值是流场在刚开始计算 时的冲击速度,随着计 算的深入,流场冲击速 度会逐渐增大,最后达 到预设的1700m/s。
Your site here
9.putch设置
水的体积分数
初始化补充,此项设置为补充两相流的初始化,不经 过此项补充在计算时会默认为单项。
六面体-空气为第二相-空气的体积分数
Your site here
速度迹线
四面体-水是第二相-速度迹线
四面体-空气第二相-速度迹线
六面体-水是第二相-速度迹线
六面体-空气是第二相-速度迹线
Your site here
压力迹线
四面体-水为第二相-压力迹线
四面体-空气为第二相-压力迹线
六面体-水为第二相-压力迹线
Your site here
网格划分
四面体网格 六面面体网格
蓝色面为压力入口,红色面为压力出口,黄色面 为对称面,黑色的地面和RVE框架为WALL
Your site here
压力对比
四面体网格水为第二相
四面体网格 空气为第二相
六面体网格水为第二相
六面体网格 空气为第二相
Your site here
p0 总压......p s - - - 静压
- -混合密度 ..... v - -速度
出口边界:pressure-outlet压力出口
Your site here
6.边界条件设置与第二相体积分数设定
Your site here
6.边界条件设置与第二相体积分数设定
在边界条件界面中,选择第二 相设定窗口,可任意设定空气 或水的体积分数
六面体-空气为第二相-压力迹线
Your site here
质量守恒对比
Inlet
四面体网格 水为第二相 166770.31
outlet
166770.34
net
0.03125
四面体网格 空气为第二 相 六面体网格 水为第二相
六面体网格 空气为第二 相
166770.63
166770.78
-0.15625
六面体-水为第 二相-空气密度
六面体-水为第 二相-水的密度
六面体-空气第 二相-混合密度
六面体-空气第 二相-空气密度
六面体-空气第 Your site here 二相-水的密度
六面体网格的各相体积分数
六面体-水为第二相-空气的体积分数
六面体-水为第二相-水的体积分数
六面体-空气为第二相-空气的体积分数
Your site here
4.定义材料
Your site here
5.定义第二相
步骤:define->phase... 设置:1.主相--air 2.第二相--water_liquid
Your site here
6.边界条件设置与第二相体积分数设定 步骤: Define->Boundary Conditions... 入口边界:pressure_inlet ---压力入口 压力计算: p0 p s 1 / 2 | v |2