【八年级】2018春人教版数学八年级下册171勾股定理word导学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键字】八年级

17.1勾股定理

学习目标

知识:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

能力:培养在实际生活中发现问题总结规律的意识和能力。

情感:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

学习重点:

1. 勾股定理的内容及证明。

学习难点:

1. 勾股定理的证明。

教学流程

【导课】

目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为和的直角△ABC,用刻度尺量出AB的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?

【阅读质疑自主探究】

例1已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。求证:a2+b2=c2。分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S△+S小正=S大正

4×ab+(b-a)2=c2,化简可证。

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。

例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:a2+b2=c2。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=4×ab+c2

右边S=(a+b)2

左边和右边面积相等,即

4×ab+c2=(a+b)2

化简可证。

【多元互动合作探究】

1.勾股定理的具体内容是:。

2.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)

⑴两锐角之间的关系:;

⑵若D为斜边中点,则斜边中线;

⑶若∠B=30°,则∠B的对边和斜边:;

⑷三边之间的关系:。

3.△ABC的三边a、b、c,若满足b2= a2+c2,则=90°;若满足b2>c2+a2,则∠B是角;若满足b2<c2+a2,则∠B是角。

4.根据如图所示,利用面积法证明勾股定理

【训练检测目标探究】

1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则

⑴c= 。(已知a、b,求c)

⑵a= 。(已知b、c,求a)

⑶b= 。(已知a、c,求b)

2.如下表,表中所给的每行的三个数a、b、c,有a<b<c,试根据表中已有数的规律,写出当a=19时,b,c的值,并把b、c用含a的代数式表示出来。

3.在△ABC

当P点移动多少秒时,PA与腰垂直。

4.已知:如图,在△ABC中,AB=AC,D在CB的延长线上。

求证:⑴AD2-AB2=BD·CD

⑵若D在CB上,结论如何,试证明你的结论。

【迁移应用拓展探究】

基础训练有关训练

布置作业

板书设计

教后反思

授课时间:累计课时:

第十七章勾股定理

17.1勾股定理(2)

学习目标

知识:会用勾股定理进行简单的计算。

能力:树立数形结合的思想、分类讨论思想。 情感: 学习重点:

1. 勾股定理的简单计算。 学习难点:

1. 勾股定理的灵活运用。 教学流程 【导课】

复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。 【多元互动 合作探究】

例1(补充)在Rt △ABC ,∠C=90°

⑴已知a=b=5,求c 。 ⑵已知a=1,c=2, 求b 。 ⑶已知c=17,b=8, 求a 。

⑷已知a :b=1:2,c=5, 求a 。 ⑸已知b=15,∠A=30°,求a ,c 。

分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。⑴已知两直角边,求斜边直接用勾股定理。⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。⑷⑸已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。

例2(补充)已知直角三角形的两边长分别为5和12,求第三边。

分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。

例3(补充)已知:如图,等边△ABC 的边长是6cm 。

⑴求等边△ABC 的高。 ⑵求S △ABC 。 分析:勾股定理的使用范围是在直角三角形中,因此注意要 创造直角三角形,作高是常用的创造直角三角形的辅助线做 法。欲求高CD ,可将其置身于Rt △ADC 或Rt △BDC 中, 但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=2

1

AB=3cm ,则此题可解。 【训练检测 目标探究】

1.填空题

⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

D

B

A

相关文档
最新文档