工程测试实验指导书

合集下载

《桥梁工程试验》指导书

《桥梁工程试验》指导书

桥梁工程试验指导书姓名:班级§1 回弹仪检测水泥混凝土强度试验方法一、目的与适用范围1、本方法适用于在现场对水泥混凝土路面及其它构筑物的普通混凝土抗压强度的快速评定,所试验的水泥混凝土厚度不得小于100mm,温度应不低于10℃。

2、回弹法试验可作为试块强度的参考,不得用于代替混凝土的强度评定,不适于作为仲裁试验或工程验收的最终依据。

二、仪具与材料本方法需用下列仪具和材料:混凝土回弹仪;酚酞酒精溶液,浓度为1%。

三、方法与步骤测区和测点布置(1)对混凝土构造物,测区应避开位于混凝土内保护层附近设置的钢筋,测区宜在试样的两相对表面上有两个基本对称的测试面,如不能满足这一要求时,一个测区允许有一个侧面。

(2)测区表面应清洁、干燥、平整,不应有接缝、饰面层、粉刷层、浮浆、油垢等以及蜂窝、麻面,必要时可用砂轮清除表面的杂物和不平整处,磨光的表面不应有残留粉尘或碎屑。

(3)一个测区的面积宜不少于200mm×200mm,每一测区宜测定16个测点,相邻两测点的间距宜不小于3cm 。

测点距路面边缘或接缝的距离应不小于5cm 。

(4)对龄期超过3个月的硬化混凝土,应测定混凝土表层的碳化深度进行回弹值修正(略)。

四、计算1、将一个测区的16个测点的回弹值,去掉3个较大值及3个较小值,将其余10个回弹值按式(10.1.5—1)计算测区平均回弹值:10_∑=Ni Ns (10.1.4—1)式中:_Ns ——测区平均回弹值,准确至0.1; Ni ——第i 个测点的回弹值。

2、 当回弹仪非水平方向测试混凝土浇筑侧面时,应根据回弹仪轴线与水平方向的角度将测得的数据按公式(10.1.5—2)进行修正,计算非水平方向测定的修正回弹值。

当测定水泥混凝土面为向下垂直方向时,测试角度为一90°,回弹修正值△N 如表10.1.5所示。

--+=Ns N ⊿N (10.1.4—2)式中:-N ——经非水平测定修正的测区平均回弹值; -Ns ——回弹仪实测的测区平均回弹值;⊿N ——非水平测量的回弹值修正值,由表10.1. 5或内插法求得,准确至0.1;非水平测量的修正回弹值 表10.1. 53、混凝土强度推算(1)、当需要将回弹值换算为混凝土强度时,宜采用下列方法:①有试验条件时,宜通过试验建立实际的测强曲线,但测强曲线仅适用于材料质量、成型、养护和龄期等条件基本相同的混凝土。

安全人机工程综合实验指导书

安全人机工程综合实验指导书
【实验步骤】
1、打开电源开关,接通电源。若选配有微型打印机,则需先给打印机装纸加电。 2、复位:按“复位”键,数码管显示全为零。每换一组实验可“复位”一次,以保证仪器正常工作。实验 过程中,按“复位”键,实验将停止。 3、自检:用此功能检查仪器好坏。按“自检”键,仪器进入自检状态。主试面板八位数码管依次显示 1 -8,与此同时被试面板显示屏分红、绿、黄逐行显示及全屏显示。循环两遍后,仪器响蜂鸣,数码显示 器自动归零。 4、选择实验类型及组别:根据实验需要,按下主试面板实验类型选择键(“概率”、“数奇偶”、“数大 小”、“信息量”、“时距”键),对应键上的灯亮。 5、选择实验次数:实验次数范围在 10-255之间任意设置。按“选次”键,次数百位数码管闪,按“+” 键调百位数;再按“选次”键,次数十位数码管闪,按“+”键调十位数;再按“选次”键,次数个位数码管闪, 按“+”键调个位数。 6、按“启动”键开始实验。在实验正式开始之前,主试必须向被试者说明实验内容与要求,反应判别方 式。被试者面对显示屏,左手握“左”回答键,右手握“右”回答键,做好回答准备。实验开始后,被试者注 视显示屏,按要求进行回答,在回答正确的前提下,回答越快越好。回答正确,显示器自动显示每次回答 的反应时间,回答错误,蜂鸣声响提示,记录一次错误次数。实验结束蜂鸣长声响,显示该组实验结果。 7、打印实验结果:每组实验后,如果已经接好微型打印机,可按主试面板“打印”键,选择打印内容, 打印内容 1包括每组实验正确回答的平均反应时间、实验次数、错误回答次数,打印内容 2除包括打印内 容 1外,还打印实验中每次正确回答的反应时间。内容 1标志位显示“ 1”;内容 2标志位显示“ 2”。选择打 印内容后,按“启动”键开始打印。打印清单中字母简称的表示含义见表 1。
示屏两侧 4×4点阵区内显示。被试者判别显示的点之和是奇数还是偶数,用反应手键回答。奇数时,按“左” 键,偶数时按“右”键。回答正确,显示屏自动显示每一次正确判断的反应时间;回答错误,蜂鸣声响提示, 自动记录错误次数。实验结束,仪器自动显示正确回答的平均选择反应时及错误回答次数。标志位无显示。

建筑结构试验实验指导书 土木工程(完整)

建筑结构试验实验指导书 土木工程(完整)

建筑结构试验09级实验指导书说明一、试验报告必须用墨水笔工整书写,原始记录不得涂改,每个学生必须按时独立完成试验报告,(包括预习思考题及试验作业题)。

二、严格遵守实验室规则:1.做好试验课前的预习。

2不得动用与本次实验无关的仪器设备。

3试验完毕,清理整理所用仪器设备及环境卫生,填好实验使用登记本,并交给任课老师后方可离开实验室。

4如有仪器设备损坏,按学校有关规定处理。

三、实验指导书所列试验方法均以现行国标和规范为依据。

编者:陈高2012年5月目录实验一等强度梁实验 (1)一、实验目的: (1)二、实验原理 (1)三、实验步骤 (2)四、实验记录 (3)实验二纯弯梁实验 (4)一、实验目的 (4)二、实验原理 (4)三、实验步骤 (5)四、实验结果 (6)五、实验记录表格 (7)实验三同心拉杆实验 (8)一、实验目的 (8)二、实验原理 (8)三、实验步骤 (9)四、实验记录表格 (9)实验四:偏心拉杆实验 (10)一、实验目的 (10)二、实验原理 (10)三、实验步骤 (12)四、实验结果处理 (12)实验五典型桁架结构静载实验 (14)一、实验目的 (14)二、实验原理 (14)三、实验操作步骤简介 (15)四、实验记录 (16)实验六混凝土无损检测实验 (18)一、实验目的 (18)二、实验仪器 (18)三、试验方法及步骤 (18)四、实验报告 (18)五、思考题 (18)实验一 等强度梁实验一、实验目的:1、学习应用应变片组桥,检测应力的方法2、验证变截面等强度实验3、掌握用等强度梁标定灵敏度的方法4、学习静态电阻应变仪的使用方法 二、实验原理1、电阻应变测量原理电阻应变测试方法是用电阻应变片测定构件的表面应变,再根据应变—应力关系(即电阻-应变效应)确定构件表面应力状态的一种实验应力分析方法。

这种方法是以粘贴在被测构件表面上的电阻应变片作为传感元件,当构件变形时,电阻应变片的电阻值将发生相应的变化,利用电阻应变仪将此电阻值的变化测定出来,并换算成应变值或输出与此应变值成正比的电压(或电流)信号,由记录仪记录下来,就可得到所测定的应变或应力。

作业指导书-石子试验

作业指导书-石子试验
作业指导书
文件编号:HHSL/SC-2009
第1版第0次修改
石子试验作业指导书
第11页共19页
6、石料有机质含量试验
6.1本实验用于检验石料被有机质污染程度,评定石料品质。
6.2仪器设备及试剂:
天平:称量2kg、感量1g和称量100g、感量0.01g各1台。
量筒:100mL、250mL、1000mL。
(准确至0.01%)
(准确至0.01%)
式中 ---表观密度,kg/m3; ---饱和面干表观密度,kg/m3;
---以干料为基准的吸水率,%; ---以饱和面干状态为基准的吸水率,%;
---烘干试样质量,g; ---试样在水中质量,g;
---饱和面干试样在空气中质量,g。
以两次测值的平均值作为试验结果。如两次表观密度试验测值相差大于20kg/m3或两次吸水率试验测值相差大于0.2%时,试验应重做。
如溶液的颜色深于标准色,则应配制成混凝土作进一步检验。方法为:取试样一份,用浓度3%氢氧化钠溶液洗除有机杂质,再用清水淘洗干净,至试样用比色法试验时,溶液的颜色浅于标准色。然后用洗除有机杂质的和未经清洗的试样、相同的水泥、砂配成配合比相同且坍落度基本相同的混凝土,测其28d抗压强度。如石料未经洗除有机杂质的混凝土强度与经洗除有机杂质的混凝土强度之比不低于0.95时,则此石料可以使用。
搪瓷盘、毛巾等。
3.3试验步骤:
按(2.3试验)中规定的数量,称取潮湿的石料试样两份,分别放入搪瓷盘中,用拧干的湿毛巾试验表面浮水吸干至饱和面干状态。
黑龙江省水利工程质量检测第五分站
作业指导书
文件编号:HHSL/SC-2009
第1版第0次修改
石子试验作业指导书
第5页共19页

土力学实验指导书

土力学实验指导书

实验一土工参数测试综合试验(一)、土样制备1.概述土样的制备是获得正确的试验成果的前提,为保证试验成果的可靠性以及试验数据的可比性,应严格按照规程要求的程序进行制备。

土样制备可分为原状土和扰动土的制备。

本试验主要讲扰动土的制备。

扰动土的制备程序则主要包括取样、风干、碾散、过筛、制备等程序,这些程序步骤的正确与否,都会直接影响到试验成果的可靠性,土样的制备都融合在今后的每个试验项目中。

2.仪器设备孔径0.5mm、2mm和5mm的筛;天平;击样器;切土刀;橡皮板;木锤;烘箱;喷水设备等。

3.扰动土样制备步骤(1)将扰动土样进行土样描述,如颜色、气味、夹杂物和土类及均匀程度等,如有需要,将扰动土样拌和均匀,取代表性土样测定其含水量。

(2)将土样风干或烘干,然后将风干或烘干土样放在橡皮板上用木碾碾散,但应注意不得将土颗粒破碎。

(3)将分散后的土样根据各试验项目的要求过筛。

对于物理性试验如液限、塑限等试验,过0.5mm筛;对于力学性试验土样,过2mm筛;对于击实试验、比重试验(比重瓶法),过5mm筛。

(4)为配制一定含水量的试样,根据不同的试验要求,取足够过筛的风干土样,按下面的公式计算加水量,把土样平铺于不吸水的盘内,用喷水壶喷洒预计的加水量,并充分拌和均匀,然后装入容器内盖紧,润湿一昼夜备用。

(5)测定润湿后土样不同位置的含水量(至少二个以上),要求差值不大于±1%。

(6)按下式计算干土质量:m s=m/(1+0.01w h)式中:m s ——干土质量(g);m ——风干土质量(g);w h ——风干含水量(%)。

(7)根据试样所要求的含水量,按式计算制备试样所需的加水量:m w= 0.01(w-w h).m s式中:m w ——土样所需加水质量(g);m s ——干土质量(g);w ——制备试样所要求的含水量(%);w h ——风干含水量(%)。

(8)根据试验所要求的干密度按下式计算制备试样所需的风干含水率时的总土质量:m=(1+0.01w h) .ρd.V式中:m——制备试样所需的风干含水量时的总土质量;ρd ——制备试样所要求的干密度(g/cm3);V ——试样体积(cm3);w h ——风干含水量(%)。

地下工程测试实验指导书四

地下工程测试实验指导书四

实验一 土木工程监测常用传感器原理、使用与标定一、实验目的1.初步了解土木工程监控量测常用传感器原理和使用方法。

2.了解钢弦式土压力盒、钢筋计、混凝土应变计、锚杆计及位移计的埋设方法。

3.掌握频率接收仪的使用、数据记录与处理。

4.掌握常用传感器的标定。

二、钢弦式传感器的工作原理钢弦式传感器的工作原理是由钢弦内应力的变化转变为钢弦振动频率的变化。

根据《数学物理方程》中有关弦的振动的微分方程可推导出钢弦应力与钢弦振动频率的关系:ρσL f 21=式中:f -钢弦的振动频率; L -钢弦长度; ρ-钢弦的密度;σ-钢弦所受的张拉应力。

以压力盒为例,压力盒加工完成后,L 、ρ已为定值,所以,钢弦的振动频率只取决于钢弦上的张拉应力,而钢弦上的张拉应力又取决于外来压力P ,从而使钢弦频率与薄膜所受压力P 的关系是:2f -20f =K P式中:f -压力盒受压后钢弦的频率; 0f -压力盒未受压时钢弦的频率; P -压力盒底部薄膜所受的压力;K -标定系数,与压力盒构造等有关,各压力盒各不相同。

钢弦式压力盒构造简单,测试结果比较稳定,受温度影响小,测试方便,易于防潮,可做长期观测。

故在土木工程现场测试和监测中得到广泛的应用。

其缺点是灵敏度受压力盒尺寸的限制,并且不能用于动态测试。

图1至图5为钢弦式土压力盒、钢筋计、表面应变计、埋入式应变计、位移计的常见形状图。

图6为频率接收仪和分线盒图。

土压力传感器主要用于铁路、公路、市政道路、机场跑道基础、房屋基础,桩基础,船坞、桥台、墩台基础,坝体,挡土墙地下连续墙以及隧道、地下铁道、地下热力管道等工程接触压力的长期观测中。

钢筋应力传感器除用于量测钢筋混凝土结构中的钢筋应力外还可将其串接起来用于量测隧道及地下结构锚杆的应力分布,主要用于地下洞室、边坡、大坝、高层建筑的岩层之间、土层之间、岩土层之间受压后产生的位移量。

钢弦式表面应变传感器主要用于量测混凝土、钢筋混凝土、钢结构、网状钢结构的表面应变;也可用于已产生微裂的混凝土、钢筋混凝土工程裂缝变化的观测;或用于混凝土应力解除和温度应力的测量。

材料工程基础实验指导书

材料工程基础实验指导书

材料工程基础实验指导书1. 实验目的本实验旨在通过实际操作加深学生对材料工程基础知识的理解,培养学生的实验技能和分析问题的能力。

具体目标包括:•熟悉常用材料工程实验仪器的使用方法;•掌握材料的取样、制备和测试方法;•学会对实验数据进行处理、分析和结果判断。

2. 实验仪器和材料•金相显微镜•电子显微镜•扫描电子显微镜•金属材料样品•试样切割机•研磨机•电解腐蚀仪3. 实验步骤3.1 样品制备1.使用试样切割机根据需要制备样品,并在样品上进行标记。

2.使用研磨机对样品进行粗磨,直到表面光洁。

3.使用细研磨纸进行细磨,直到样品表面无瑕疵。

4.清洗样品,确保表面无污染物。

5.在电解腐蚀仪中对样品进行电解腐蚀处理,以去除样品表面的氧化物和污染物。

3.2 金相显微镜观察1.将样品放置在金相显微镜上,并调整焦距和光源亮度,使样品清晰可见。

2.使用目镜和物镜对样品进行观察,并记录所观察到的结构特征。

3.3 电子显微镜观察1.将样品放置在电子显微镜上,并调整电子束亮度和对比度,使样品清晰可见。

2.使用电子显微镜观察样品,并记录所观察到的微观结构特征。

3.4 扫描电子显微镜观察1.将样品放置在扫描电子显微镜上,并调整电子束亮度和扫描速度,使样品清晰可见。

2.使用扫描电子显微镜观察样品,并记录所观察到的表面形貌特征。

4. 数据处理与分析在实验过程中,需记录实验数据并进行处理与分析。

数据处理主要包括:•实验数据的整理与分类;•对观察到的结构特征和形貌特征进行描述;•运用相关理论知识对观察结果进行解释和分析。

5. 实验结果实验结果应包括实验数据记录、结构特征描述和形貌特征描述。

针对实验结果,可进一步进行数据图表绘制、实验结果分析和相关结论总结。

6. 实验注意事项1.在操作实验仪器时要遵循相应的操作规范,严格遵守安全操作规程。

2.在样品制备过程中,应保持样品的完整性和纯净性,确保实验结果的准确性和可靠性。

3.在观察样品时,应注意调整仪器参数,保证样品清晰可见。

工程测试技术实验报告 飞机舱门启闭信号实验系统

工程测试技术实验报告 飞机舱门启闭信号实验系统

《工程测试技术》实验指导书及实验报告学号:173417030316姓名:滕仁翔院系:民用航空学院专业:飞行器质量与可靠性实验一:飞机舱门启闭信号实验系统一、实验目的(1)掌握飞机舱门,起落架和空地开关启闭的逻辑关系,通过单片机,接近开关及按键模拟出舱门间的相互关系。

(2)掌握光耦的工作原理与使用方法,利用单片机对光耦进行控制;(3)掌握液晶显示器的驱动原理;(5)掌握C8051F310的组成结构、工作原理、程序编写。

(6)掌握Keil、silicon laboratories单片机的软件仿真、动态调试以及程序下载等操作。

二、实验设备及仪器(1)飞机舱门启闭信号实验系统一套。

(2)双踪示波器一台,型号DS2022;(3)数字万用表一块及组合工具一套;三、工作原理飞机舱门启闭信号实验板如图1所示,是以单片机为MCU、配以红外传感器模拟舱门的启闭状态,并配以灯光指示等。

利用空地开关、起落架收放开关等,模拟飞机在地面或空中舱门的状态。

图1 飞机舱门启闭信号实验板实验板上配有舱门检测感应器接口,共模拟了前舱门、后舱门、货舱门1、货舱门2、轮舱门及应急出口,另外还有2个备用舱门口。

传感器常用红外传感器、磁敏感传感器等原理,这里采用红外传感器为例进行实验,板上主要资源有:1、C8051F310单片机如图2所示是C8051F310片上资源分布图。

图3是管脚排列图,主要有下列部分组成。

图2 C8051F310片上资源分布图 图3 C8051F310/2/4芯片管脚图①高速微内核70%的指令可以在1~2个系统周期内执行完成,在25MHZ 的时钟下指令执行时间可以达到25MIPS ,中断处理可以进行拓展。

②10位ADC :转换速率为200KSPS ,外部转换启动控制输入,VREF 从VDD 或者外部断口引入。

比较器的滞后时间和响应时间都是可编程的,比较器COMPRARATOR0可以配置成中断信号和复位信号。

③片上调试:支持断点、单步执行、内存检查和寄存器检查。

机械工程《传感器与检测技术》测试技术实验指导书

机械工程《传感器与检测技术》测试技术实验指导书

机械工程《传感器与检测技术》测试技术实验指导书机械工程测试技术实验指导书——传感器与检测技术罗烈雷编机械工程系机械工程测试技术实验指导书——传感器与检测技术一、测试技术实验的地位和作用《传感器与检测技术》课程,在高等理工科院校机械类各专业的教学打算中,是一门重要的专业基础课,而实验课是完成本课程教学的重要环节。

其要紧任务是通过实验巩固和消化课堂所讲授理论内容的明白得,把握常用传感器的工作原理和使用方法,提高学生的动手能力和学习爱好。

其目的是使学生把握非电量检测的差不多方法和选用传感器的原则,培养学生独立处理问题和解决问题的能力。

二、应达到的实验能力标准1、通过应变式传感器实验,把握理论课上所讲授的应变片的工作原理,并验证单臂、半桥、全桥的性能及相互之间关系。

2、通过差动变压器静态位移性能测试和差动变压器零点残余电压的补偿电路设计,把握理论课上所讲授的差动变压器的工作原理和零点残余电压的补偿措施。

3、通过电涡流式传感器的静态标定和被测体材料对电涡流式传感器特性的阻碍实验,把握理论课上所讲授的电涡流式传感器的原理及工作性能,验证不同性质被测体材料对电涡流式传感器性能的阻碍。

4、通过差动面积式电容传感器的静态及动态特性测试,了解差动面积式电容传感器的工作原理及其特性。

5、通过磁电感应式传感器的性能和霍尔式传感器直流静态位移特性的测试方法,把握磁电感应式传感器的工作原理及其性能和霍尔式传感器的工作原理及其特能。

6、通过压电式传感器的动态响应和引线电容对电压放大器与电荷放大器的阻碍实验,把握压电式传感器的原理、结构及应用和验证引线电容对电压放大器的阻碍,了解电荷放大器的原理和使用方法。

7、通过光敏三极管和光敏电阻的性能测试,把握光电传感器的原理与应用方法。

8、热电偶和热敏电阻的性能测试的方法,把握热电偶的原理和 NTC 热敏电阻的工作原理和使用方法,并对传感器灵敏度线性度进行分析。

9、通过差动放大器和低通滤波器设计和测试,把握差动放大器和滤波器的设计方法和性能测试方法。

《土木工程材料实验》实验指导书

《土木工程材料实验》实验指导书

《土木工程材料实验》实验指导书实验一、水泥胶砂强度检验(一)试验目的根据国家标准要求,测定水泥各龄期的强度,从而确定或检验水泥的强度等级。

(二)主要仪器设备水泥胶砂搅拌机、胶砂振实台(台面有卡具)、模套、试模(三联模)、抗折试验机、抗压试验机及抗折与抗压夹具、刮平直尺等。

(三)试验方法及步骤1. 试验前准备(1)将试模擦净,四周模板与底座的接触面应涂黄油,紧密装配,防止漏浆,内壁均匀刷一层薄机油。

(2)水泥与标准砂的质量比为1:3,水灰比为0.5。

(3)每成型三条试件需称量水泥450±2g,标准砂1350±5g。

拌合用水量为225±1ml。

(4)标准砂应符合国标要求。

2. 试件成型(1)把水加入锅里,再加入水泥,把锅固定。

然后立即开动机器,低速搅拌30s后,在第二个30s开始的同时均匀地将砂子加入,把机器转至高速再加拌30s。

停拌90s,在第一个15s内用一胶皮刮具将叶片和锅壁上的胶砂,刮入锅中间。

在高速下继续搅拌60s。

各个搅拌阶段,时间误差应在±1s之内。

(2)将空试模和模套固定在振实台上,用一个适当勺子直接从搅拌锅里将胶砂分二层装入试模,装第一层时,每个槽内约放300g胶砂,用大播料器垂直架在模套顶部沿每个模槽来回一次将料层播平,接着振实60次。

再装入第二层胶砂,用小播平器播平,再振实60次。

(3)从振实台上取下试模,用一金属直尺以近90?的角度架在试模模顶的一端,然后沿试模长度方向以横向锯割动作慢慢向另一端移动,一次将超过试模部分的胶砂刮去,并用同一直尺以近乎水平的情况下将试体表面抹平。

(4)在试模上作标记或加字条表明试件编号和试件相对于振实台的位置。

(5)试验前和更换水泥品种时,搅拌锅、叶片等须用湿布抹擦干净。

3. 养护(1)试件编号后,将试模放入雾室或养护箱(温度20±1℃,相对湿度大于90%),箱内篦板必须水平,养护20~24h后,取出脱模,脱模时应防止试件损伤,硬化较慢的水泥允许延期脱模,但须记录脱模时间。

路基路面工程实验指导书

路基路面工程实验指导书

路基路面工程实验指导书O、实验的目的与意义为了使学生系统的掌握路基路面工程施工质量检验与路面使用性能的测试方法,加深理论知识的懂得,训练动手能力,特设路基路面工程实验课。

试验项目包含:压实度、回弹弯沉、平整度、抗滑性能与渗水系数等内容。

下面是每个实验项目的测试仪器、实验方法与步骤、结果处理与报告的要求。

一、压实度试验检测方法压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密实状况,压实度越高,密实度越大,材料整体性能越好。

因此,路基路面施工中,碾压工艺成为施工质量操纵的关键工序。

关于路基土、路面半刚性基层及粒料类柔性基层而言,压实度是指工地实际达到的干密度与室内标准击实试验所得的最大干密度的比值;对沥青面层、沥青稳固基层而言,压实度是指现场实际达到的密度与室内标准密度的比值。

(一)灌砂法灌砂法是利用均匀颗粒的砂去置换试洞的体积,它是当前最通用的方法,很多工程都把灌砂法列为现场测定密度的要紧方法。

该方法可用于测试各类土或者路面材料的密度,它的缺点是:需要携带较多的量砂,而且称量次数较多,因此它的测试速度较慢。

使用此方法时,应符合下列规定:(1)当集料的最大粒径小于15mm、测定层的厚度不超过150mm时,宜使用φ100mm 的小型灌砂筒测试。

(2)当集料的粒径等于或者大于15mm,但不大于40mm,测定层的厚度超过150mm,但不超过200mm时,应用150mm的大型灌砂筒测试。

1.仪具与材料(1)灌砂筒:有大小两种,根据需要使用。

型式与要紧尺寸见图1及表1。

储砂筒筒底中心有一个圆孔,下部装一倒置的圆锥形漏斗,漏斗上端开口,直接与储图1 灌砂筒与标定罐(单位mm)砂筒的圆孔相同。

漏斗焊接在一块铁板上,铁板中心有一圆孔与漏斗上开口相接。

储砂筒筒底与漏斗之间设有开关。

开关铁板上也有一个相同直径的圆孔。

(2)金属标定罐:用薄铁板制作的金属罐,上端周围有一罐缘。

注:如集料的最大粒径超过40mm,则应相应地增大灌砂筒与标定罐的尺寸。

机械工程测试实验

机械工程测试实验

《机械工程测试技术》实验指导书实验一、霍尔传感器的直流激励特性一、实验目的加深对霍尔传感器静态特性的理解。

掌握灵敏度、非线性度的测试方法,绘制霍尔传感器静态特性特性曲线,掌握数据处理方法。

二、实验原理当保持元件的控制电流恒定时,元件的输出正比于磁感应强度。

本实验仪为霍尔位移传感器。

在极性相反、磁场强度相同的两个钢的气隙中放置一块霍尔片,当霍尔元件控制电流I不变时,Vh与B成正比。

若磁场在一定范围内沿X方向的变化梯度dB/dX为一常数,则当霍尔元件沿X方向移动时dV/dX=RhXIXdB/dX=K,K为位移传感器输出灵敏度。

霍尔电动势与位移量X成线性关系,霍尔电动势的极性,反映了霍尔元件位移的方向。

三、实验步骤1.有关旋钮初始位置:差动放大器增益打到最小,电压表置2V档,直流稳压电源置±2V档。

2..RD、r为电桥单元中的直流平衡网络。

3.差动放大器调零,按图6-1接好线,装好测微头。

4.使霍尔片处于梯度磁场中间位置,调整RD使电压表指示为零。

5.上、下旋动测微头,以电压表指示为零的位置向上、向下能够移动5mm,从离开电压表指示为零向上5mm的位置开始向下移动,建议每0.5mm读一数,记下电压表指示并填入数据记录表。

6.用以上的位移和输出电压数据,绘出霍尔传感器静态特性的位移和输出电压特性V-X曲线, 指出线性范围。

7.将位移和输出电压数据分成两组,用“点系中心法”对数据进行处理,并计算两点联线的斜率,即得到灵敏度值。

实验可见:本实验测出的实际是磁场的分布情况,它的线性越好,位移测量的线性度也越好,它们的变化越陡,位移测量的灵敏度也就越大。

数据记录表四、思考题1.为什么霍尔元件位于磁钢中间位置时,霍尔电动势为0。

2.在直流激励中当位移量较大时,差动放大器的输出波形如何?实验二、电容传感器的直流特性实验内容:加深对电容传感器静态特性的理解。

掌握灵敏度、非线性度的测试方法,绘制电容传感器静态特性曲线,掌握数据处理方法。

钢筋混凝土梁设计制作与加载量测实验指导书

钢筋混凝土梁设计制作与加载量测实验指导书

钢筋混凝土梁设计制作与加载量测实验指导书一、试验目的1、掌握制定混凝土结构构件试验方案的原则,设计钢筋混凝土简支梁的制作方案、受弯破坏的加荷方案和测试方案。

2、通过本试验,掌握钢筋混凝土基本构件的设计方法、施工方法及检测方法。

3、熟悉常用钢筋混凝土构件制作及测试系统的组成,能根据试验设计量程和精度要求正确选择试验设备和测量仪器。

4、初步掌握试验测量数据的整理和分析技术,能正确撰写试验报告。

5、深化所学知识,培养学生动手能力和创新能力,提高学生的科研兴趣。

二、试验要求1、钢筋混凝土简支梁设计、制作和受弯全过程试验,应在运用《混凝土结构设计原理》课程理论知识的基础上独立完成。

2、利用试验中心提供的试验设备及材料,设计并制作钢筋混凝土简支梁,使之在提供的加载条件下能按照加荷方案预定的形态被破坏。

3、预测自制试件的开裂荷载、破坏荷载以及受力性能,通过加载试验,验证预测结果,并分析实测结果与预测值相符程度的原因。

4、试验重要环节应注意留存图像资料。

5、试验容量540人,共分90组,6人为一组(注明组长、组员姓名、学号及手机号,按表1的样式制作成EXCEL表格)。

各班班长把分组情况于2018年9月30日前发到邮箱Wjunwen2901@。

以组为单位到结构实验北大厅(从土木楼南门东的通道进入院内,由东门进入)申领和借用工具。

2018年10月01日至20日完成试件的设计及制作,2018年11月20日前完成试件加载试验,2018年11月30日提交设计计算书和试验报告。

三、试验场地及需要耗材请在土木工程学院提供的试验场地、试验设备及材料等实际条件限制下,设计试件和开展试验。

表2 试验场地一览表表3 可选试验材料一览表表4 可选试验仪器设备一览表四、试验步骤及内容1、搜集相关的知识材料,查找相关信息,制作初步设计计算书;计算书包括钢筋混凝土简支梁的制作方案(包括构件截面设计、采用的材料参数(配合比和材料用量)、配筋量等)、受弯破坏的加荷方案(包括荷载分级、加荷制度等)和测试方案(包括测点布置以及加载设备、试验数据采集系统的选用等)。

工程热力学实验指导书:实验三 空气在喷管内流动性能测定实验

工程热力学实验指导书:实验三 空气在喷管内流动性能测定实验

实验三 空气在喷管内流动性能测定实验一、实验目的(1)巩固和验证有关气体在喷管内流动的基本理论,掌握气流在喷管中流速、流量、压力的变化规律,加深临界状态参数、背压、出口压力等基本概念的理解。

(2)测定不同工况(b p >cr p ,cr b p p =,cr b p p <)下,气流在喷管内流量m的变化,绘制s b p p m- 曲线;分析比较max m 的计算值和实测值;确定临界压力cr p 。

(3)测定不同工况时,气流沿喷管各截面(轴相位置X )的压力变化情况,绘制1p p X x-关系曲线,分析比较临界压力的计算值和实测值。

二、实验类型综合性实验 三、实验仪器本实验装置由实验本体、真空泵及测试仪表等组成。

其中实验本体由进气管段,喷管实验段(渐缩喷管与渐缩渐扩喷管各一),真空罐及支架等组成,实验装置系统图见图3.1,采用真空泵作为气源设备,装在喷管的排气侧。

喷管入口的气体状态用测压计6和温度计7测量。

气体流量用风道上的孔板流量计2测量。

喷管排气管道中的压力p 2用真空表11测量。

转动探针移动机构4的手轮,可以移动探针测压孔的位置,测量的压力值由真空表12读取。

实验中要求喷管的入口压力保持不变。

风道上安装的调节阀门3,可根据流量增大或减小时孔板压差的变化适当开大或关小调节阀。

应仔细调节,使实验段1前的管道中的压力维持在实验选定的数值。

喷管排气管道中的压力p 2由调节阀门3控制,真空罐13起稳定排气管压力的作用。

当真空泵运转时,空气由实验本体的吸气口进入并依次通过进气管段,孔板流量计,喷管实验段然后排到室外。

喷管各截面上的压力采用探针测量,如图3.2所示,探针可以沿喷管的轴线移动,具体的压力测量是这样的:用一根直径为1.2mm 的不锈钢制的探针贯通喷管,起右端与真空表相通,左端为自由端(其端部开口用密封胶封死),在接近左端端部处有一个0.5mm 的引压孔。

显然真空表上显示的数值应该是引压孔所在截面的压力,若移动探针(实际上是移动引压孔)则可确定喷管内各截面的压力。

实验指导书

实验指导书

空调工程实验指导书广东技术师范学院天河学院建筑工程系2011.9目录实验一风管的流速和流量测定 (3)实验二循环式空调过程试验装置 (10)实验一风管的流速和流量测定一、实验目的:1、了解各种风速风量测量装置的结构与特点。

2、掌握风速风量测量装置的测量方法与计算。

3、学习用多种测压方法测定管道内风量风速的方法,并加以比较。

二、实验原理:将集中流量计都接入连接严密的同意通风系统中,流过系统各断面上的流量应该是相等的,因此有各种流量计测定的流量值也应该是相等的。

但是由于这些流量计的原理各不相同,又因为设计、制造、安装等原因,也都会使测量产生误差。

由国际标准ISO-3966中建议的基本型皮托管的校准系数为1,因此我们可以以毕托管法为基准,测出通风系统的风速、风量,与其它几种流量计所测得流量相比较,测算出各自的流量系数或者校准系数。

下面分别说明各种流量计的测量原理:1、毕托管测流速及流量的方法:毕托管又叫动压管,它的作用是把流体的动能转变为位能来进行测量,由于流量与管道的横截面积以及流速有关,流速越大,流量也越大,因此只要用毕托管测量出流速也就相当于测量出了流量。

但是实际传送到毕托管中去的不是全压力,因为全压力只是在毕托管前端开孔处的某一点存在,而这个孔无论多么小,它总会占据一定的面积,所以也就不只是一点了。

因而传送到差压计里去的必然是这部分横截面上的平均压力。

并且利用毕托管测静压力的地方并不完全与测全压力的地方在同一点。

因此,实际传到差压计的压差与毕托管的大小和形状有关,而不是真正等于动压力和全压力之差。

为了校正流速计算的结果,我们引进了一个系数ξ,称为毕托管系数。

常见的基本型毕托管 =1。

在进行现场测定时,测量断面的选择应在气流比较平直扰动较少的直段上。

由于气流在管道断面上的分布不均匀,因此在同一断面上必须进行多点测量然后求出该断面的平均流速。

对圆形管道,可将管道断面划分为若干个等面积的同心环,然后在环上的水平及垂直两轴向布置测点。

工地试验室作业指导书

工地试验室作业指导书

工地试验室作业指导书工地试验室作业指导书一、实验名称:混凝土抗压强度试验二、实验目的:1.掌握混凝土抗压强度试验的基本原理和试验规程。

2.检测当前混凝土的质量水平,评价混凝土的实际强度。

3.提高实验者的实验动手能力和观察能力。

三、实验器材与试剂:1.混凝土试块2.试验水泥四、实验原理和方法:混凝土抗压强度试验是测定混凝土在标准条件下(一定湿度和温度等),经过一定天数的养护期后,在一定速率下受到一定力作用下产生的最大负荷(即破坏荷重)与试块极限截面积之比的试验。

试验的机械循环压力下,混凝土发生的变形和裂纹等现象,显示混凝土材料在外力作用下的强度等物理特性。

五、实验步骤:1.混凝土试块应在露天场地上制备,将混凝土均匀浇铸到模具中,震实,并将模具平放于水平地面上。

2.24小时后,脱模。

脱模后立即用湿布覆盖试块,并保持湿润。

经过养护后,待试块表面完全干燥,计算试块质量,并记录试块编号、制作日期和试块尺寸等必要信息。

3.将制作的混凝土试块放在工地实验室进行试验测定。

4.根据已制备好试块的尺寸,组织人员合理布置试验场地,调整测试设备,安装仪器。

5.将试块放置在试验机的工作台上,并将试验机的上下压头垂直于试块平面,使压头确保与试块无旋转。

6.开始进行试验:首先卸空机器,然后调整加载速度,按照预定的加载速度重新启动测试机。

7.在试验的单程中,随时记录试验数据和各级荷载值。

如发现异常或故障,应立即切断电源并进行处理。

8.记录试验数据,计算出每一试块的抗压强度,并进行比较分析。

分析结果以图形方式表现,并分析原因,确定改进措施。

六、注意事项:1.试块尺寸应满足试验标准的要求,以便在试验的过程中有手能力合理布置测试设备。

2.要保证试块的外形准确、表面平整,以保证试验结果的精度和可比性。

3.仪器设备必须做好检查工作,保证其准确性和精密度。

4.每批制作的试块,应代表同一浇板中混凝土的状态和质量,并设定相同的混凝土配合比和同一混凝土拌和时间和易制备高强度混凝土。

工程测试与信号处理实验指导书

工程测试与信号处理实验指导书

工程测试与信号处理实验报告姓名班级学号指导教师2012年下学期实验目录实验一金属箔式应变片――单臂电桥性能实验实验二金属箔式应变片――半桥性能实验实验三金属箔式应变片――全桥性能实验实验四金属箔式应变片单臂、半桥、全桥性能比较实验实验五电容式传感器地位移特性实验实验六光电转速传感器地转速测量实验实验七霍尔测速实验实验八磁电式转速传感器地测速实验实验九电涡流传感器地位移特性实验实验十被测体材质对电涡流传感器地特性影响实验实验一金属箔式应变片――单臂电桥性能实验一、实验目地:了解金属箔式应变片地应变效应,单臂电桥工作原理和性能.二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应地关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成地应变敏感元件,通过它转换被测部位受力状态变化、电桥地作用完成电阻到电压地比例变化,电桥地输出电压反映了相应地受力状态.,对单臂电桥输出电压U o1= EKε/4.三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备).四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上.传感器中各应变片已接入模板地左上方地R1、R2、R3、R4.加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放地正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表地切换开关打到2V档).关闭主控箱电源(注意:当R w3、R w4地位置一旦确定,就不能改变.一直到做完实验三为止).3、将应变式传感器地其中一个电阻应变片R1(即模板左上方地R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V (从主控台引入)如图1-2所示.检查接线无误后,合上主控台电源开关.调节R W1,使数显表显示为零.图1-2应变式传感器单臂电桥实验接线图4、在电子称上放置一只砝码,读取数显表数值,依次增加砝码和读取相应地数显表值,直到200g(或500g)砝码加完.记下实验结果填入表1-1,关闭电源.5、根据表1-1计算系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差δf1=Δm/y F..S ×100%式中Δm为输出值(多次测量时为平均值)与拟合直线地最大偏差:y F·S 满量程输出平均值,此处为200g(或500g).五、思考题:单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以.实验二金属箔式应变片――半桥性能实验一、实验目地:比较半桥与单臂电桥地不同性能、了解其特点.二、基本原理:不同受力方向地两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善.当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2.三、需用器件与单元:同实验一.四、实验步骤:1、传感器安装同实验一.做实验(一)地步骤2,实验模板差动放大器调零.2、根据图1-3接线.R1、R2为实验模板左上方地应变片,注意R2应和R1受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)地电阻应变片作为电桥地相邻边.接入桥路电源±4V,调节电桥调零电位器R W1进行桥路调零,实验步骤3、4同实验一中4、5地步骤,将实验数据记入表1-2,计算灵敏度S2=U/W,非线性误差δf2.若实验时无数值显示说明R2与R1为相同受力状态应变片,应更换另一个应变片.图1-3应变式传感器半桥实验接线图表1-2半桥测量时,输出电压与加负载重量值五、思考题:1、半桥测量时两片不同受力状态地电阻应变片接入电桥时,应放在:(1)对边(2)邻边.2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性地(3)调零值不是真正为零.实验三金属箔式应变片――全桥性能实验一、实验目地:了解全桥测量电路地优点.二、基本原理:全桥测量电路中,将受力性质相同地两应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε.其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善.三、需用器件和单元:同实验一四、实验步骤:1、传感器安装同实验一.2、根据图1-4接线,实验方法与实验二相同.将实验结果填入表1-3;进行灵敏度和非线性误差计算.1-4全桥性能实验接线图表1-3全桥输出电压与加负载重量值五、思考题:1、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以.2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻.图1-5应变式传感器受拉时传感器圆周面展开图实验四 金属箔式应变片单臂、半桥、全桥性能比较一、实验目地:比较单臂、半桥、全桥输出时地灵敏度和非线性度,得出相应地结论.二、实验步骤:根据实验一、二、三所得地单臂、半桥和全桥输出时地灵敏度和非线性度,从理论上进行分析比较.阐述理由(注意:实验一、二、三中地放大器增益必须相同).FF实验五电容式传感器地位移实验一、实验目地:了解电容式传感器结构及其特点.二、基本原理:利用平板电容C=εA/d和其它结构地关系式通过相应地结构和测量电路可以选择ε、A、d中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器.三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源.四、实验步骤:1、按图3-1安装示意图将电容传感器装于电容传感器实验模板上,判别C X1和C X2时,注意动极板接地,接法正确则动极板左右移动时,有正、负输出.不然得调换接头.一般接线:二个静片分别是1号和2号引线,动极板为3号引线.2、将电容传感器电容C1和C2地静片接线分别插入电容传感器实验模板C x1、C x2插孔上,动极板连接地插孔(见图4-1).图4-1电容传感器位移实验接线图3、将电容传感器实验模板地输出端V o1与数显表单元V i相接(插入主控箱V i孔),Rw调节到中间位置.4、接入±15V电源,旋动测微头推进电容器传感器动极板位置,每间隔0.2mm记下位移X与输出电压值,填入表4-1.表4-1 电容传感器位移与输出电压值5、根据表4-1数据计算电容传感器地系统灵敏度S和非线性误差δf.五、思考题:试设计利用ε地变化测谷物湿度地传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?实验六磁电式转速传感器测速实验一、实验目地:了解磁电式测量转速地原理.二、基本原理:基于电磁感应原理,N匝线圈所在磁场地磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N个磁棒时,每转一周线圈感应电势产生N次地变化,通过放大、整形和计数等电路即可以测量转速.三、需用器件与单元:磁电式传感器、数显单元测转速档、直流源2-24V.四、实验步骤:1、磁电式转速传感器按图5-4安装传感器端面离转动盘面2mm左右.将磁电式传感器输出端插入数显单元Fin孔.(磁电式传感器两输出插头插入台面板上二个插孔)2、将显示开关选择转速测量档.3、将转速电源2-24V用引线引入到台面板上24V插孔,合上主控箱电开关.使转速电机带动转盘旋转,逐步增加电源电压观察转速变化情况.五、思考题:为什么说磁电式转速传感器不能测很低速地转动,能说明理由吗?实验七霍尔测速实验一、实验目地:了解霍尔转速传感器地应用.二、基本原理:利用霍尔效应表达式:U H=K H IB,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次.每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物地转速.三、需用器件与单元:霍尔转速传感器、直流源+5V、转动源2-24V、转动源单元、数显单元地转速显示部分.四、实验步骤:1、根据图5-4,将霍尔转速传感器装于传感器支架上,探头对准反射面内地磁钢.图7-1霍尔、光电、磁电转速传感顺安装示意图2、将5V直流源加于霍尔转速传感器地电源端(1号接线端).3、将霍尔转速传感器输出端(2号接线端)插入数显单元Fin端,3号接线端接地.4、将转速调节中地+2V-24V转速电源接入三源板地转动电源插孔中.5、将数显单元上地开关拨到转速档.6、调节转速调节电压使转动速度变化.观察数显表转速显示地变化.五、思考题:1、利用霍尔元件测转速,在测量上有否限制?2、本实验装置上用了十二只磁钢,能否用一只磁钢?实验八光电转速传感器地转速测量实验一、实验目地:了解光电转速传感器测量转速地原理及方法.二、基本原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型地,传感器端部有发光管和光电池,发光管发出地光源在转盘上反射后由光电池接受转换成电信号,由于转盘上有相间地16个间隔,转动时将获得与转速及黑白间隔数有关地脉冲,将电脉计数处理即可得到转速值.三、需用器件与单元:光电转速传感器、直流电源+5V、转动源及2-24V直流源、数显单元.四、实验步骤:1、光电转速传感器已安装在三源板上,把三源板上地+5V、接地V0与主控箱上地+5V、地、数显表地Vin相连.数显表转换开关打到转速档.2、将转速源2-24V输出旋到最小,接到转动源24V插孔上.3、合上主控箱电源开关,使电机转动并从数显表上观察电机转速.思考题:已进行地实验中用了多种传感器测量转速,试分析比较一下哪种方法最简单、方便.实验九电涡流传感器位移实验一、实验目地:了解电涡流传感器测量位移地工作原理和特性.二、基本原理:通过高频电流地线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈地距离有关,因此可以进行位移测量.三、需用器件与单元:电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片.四、实验步骤:1、根据图8-1安装电涡流传感器.图8-1电涡流传感器安装示意图图9-1 电涡流传感器安装示意图图9-2电涡流传感器位移实验接线图2、观察传感器结构,这是一个平绕线圈.3、将电涡流传感器输出线接入实验模板上标有L地两端插孔中,作为振荡器地一个元件.4、在测微头端部装上铁质金属圆片,作为电涡流传感器地被测体.5、将实验模板输出端V o与数显单元输入端V i相接.数显表量程切换开关选择电压20V档..6、用连结导线从主控台接入15V直流电源接到模板上标有+15V地插孔中.7、使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm读一个数,直到输出几乎不变为止.将结果列入表8-1.表8-1电涡流传感器位移X与输出电压数据8、根据表8-1数据,画出V-X曲线,根据曲线找出线性区域及进行正、负位移测量时地最佳工作点,试计算量程为1mm、3 mm及5mm时地灵敏度和线性度(可以用端基法或其它拟合直线).五、思考题:1、电涡流传感器地量程与哪些因素有关,如果需要测量±5mm地量程应如何设计传感器?2、用电涡流传感器进行非接触位移测量时,如何根据量程使用选用传感器.实验十被测体材质对电涡流传感器特性影响一、实验目地:了解不同地被测体材料对电涡流传感器性能地影响.二、基本原理:涡流效应与金属导体本身地电阻率和磁导率有关,因此不同地材料就会有不同地性能.三、需用器件与单元:除与实验二十五相同外,另加铜和铝地被测体圆盘.四、实验步骤:1、传感器安装与实验二十五相同.2、将原铁圆片换成铝和铜圆片.3、重复实验二十五步骤,进行被测体为铝圆片和铜圆片时地位移特性测试,分别记入表8-2和表8-3.表8-2被测体为铝圆片时地位移为输出电压数据表8-3被测体为铜圆片时地位移与输出电在数据4、根据表8-2和表8-3分别计算量程为1mm和3mm时地灵敏度和非线性误差(线性度).5、分别比较实验二十五和本实验所得结果进行小结.五、思考题:当被测体为非金属材料如何利用电涡流传感器进行测试?。

建筑材料检测实验指导书

建筑材料检测实验指导书

建筑材料检测实验指导书实验指导书宁波大学土木工程实验教学中心2005年10月实验一界面砂浆压剪粘结原强度检测一、实验目的1、学会界面砂浆压剪粘结原强度检测的标准方法。

2、掌握检测仪器设备。

二、实验设备、仪器等:1、压力试验机2、G型砖3、金属垫丝4、钢尺三、实验步骤1、试件制备。

2、每组试件4对。

3、在试验条件空气中养护14天。

4、利用压剪夹具将试件在试验机上进行强度测定,加载速度20~25mm/min。

四、实验结果评定1、每组试验为4对试件,求其平均值。

如果出现极值按照粗大误差剔除准则即Dixon准则取舍。

实验二饰面砖粘结强度检测一、实验目的1、学会饰面砖粘结强度检测的标准方法。

2、掌握检测仪器设备。

二、实验设备、仪器等:1、粘结强度检测仪2、游标卡尺3、手持切割机4、914快速粘结剂三、实验步骤1、在饰面砖上黏贴标准块2、在标准块上安装带有万向接头的拉力杆3、安装千斤顶,匀速摇转手柄升压,直至饰面砖剥离,记录数字显示器峰值,即粘结力值;并记录破坏状态。

四、实验结果评定1、单个饰面砖试件粘结强度应按下列公式计算:R=X/StX:粘结强度St:试样受拉面积2、平均粘结强度应按下列公式计算:Rm=(R1+R2+R3)/3Rm:平均粘结强度R1、R2、R3:单个试样粘结强度值实验三抹面胶浆柔韧性检测一、实验目的1、学会抹面胶浆柔韧性检测的标准方法。

2、掌握检测仪器设备二、实验设备、仪器等:1、水泥胶砂试模2、天平:精度为0.01g3、振实台4、水泥胶砂搅拌机5、水泥抗折试验机6、压力机三、实验步骤1、试件的制备2、试件的脱模和养护采用标准抹面胶浆砂浆成型,用聚乙烯薄膜覆盖,在实验室标准条件下养护2天后脱模,继续用聚乙烯薄膜覆盖养护5天,去掉覆盖物在实验室标准条件下养护7天。

3、抗折强度测定4、抗压强度测定五、实验结果1、压折比的计算T=Rc/RfRc:抗压强度,单位(N/mm2)Rf:抗折强度,单位(N/mm2)实验四面砖粘结砂浆线性收缩率检测一、实验目的1、学会面砖粘结砂浆线性收缩率检测的标准方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一学用DRVI可重构虚拟仪器实验平台一. 实验目的通过本实验让学生了解虚拟仪器的概念和基于组件的装配式软件设计方法,掌握用DRVI可重构虚拟仪器平台进行计算机测试系统设计的方法。

二. DRVI可重构虚拟仪器实验平台简介1、概述DRVI可重构虚拟仪器实验平台是一种自主知识产权的新型装配架构的虚拟仪器,其设计思想是按照汽车和PC机的装配式生产模式,将计算机虚拟仪器测试系统分解为一个软件装配底盘和若干实现独立功能的软部件模块。

然后,根据测量任务需求,用软体底盘把所需的软部件模块装配起来,形成一个满足特定需求的测试系统。

当测试任务发生变化时,对软体底盘上装配的软部件模块进行重新组合和装配就可以快速调整为另一个新的测量系统。

DRVI的主体为一个带软件控制线和数据线的软主板,其上可插接软仪表盘、软信号发生器、软信号处理电路、软波形显示芯片等软件芯片组,并能与A/D卡、I/O卡等信号采集硬件进行组合与连接。

直接在以软件总线为基础的面板上通过简单的可视化插/拔软件芯片和连线,就可以完成对仪器功能的裁减、重组和定制,快速搭建一个按应用需求定制的虚拟仪器测量系统。

图1、虚拟仪器软件总线结构图2、软件安装和运行从光盘启动DRVI可重构虚拟仪器实验平台安装程序DRVISetup.exe(或从深圳市德普施科技有限公司网站下载该软件),运行该安装程序后出现如下界面,按提示进行软件安装,分别填写用户名、单位,并设定软件工作路径等参数,直至出现结束画面为止。

安装完成后在WINDOWS桌面上出现图标,在程序组中出现DRVI,双击该图标就可以启动DRVI软件。

图2、DRVI软件安装界面DRVI启动后点击红色箭头所示按钮从DRVI采集卡、运动控制卡,或网络在线进行注册登记,获取软件使用权限,然后就可以使用了。

图3、DRVI软件运行界面3、插接软件芯片DRVI通过在前面板上可视化插接虚拟仪器软件芯片来搭构虚拟仪器或测量实验。

插接软件芯片的过程很简单,从软件芯片表中点击需要的软件芯片,将其添加到DRVI前面板上,然后在新插入的软件芯片上压下鼠标不放,将其拖动到合适位置。

重复上述步骤,插入其它软件芯片。

插接在DRVI前面板上的虚拟仪器软件芯片的屏幕位置是可以移动和调整的,点击快捷工具条中的“移动软件芯片位置”图标,然后在待移动的软件芯片上压下鼠标不放,就可以将其拖动到新位置,从而实现屏幕布局的调整。

4、DRVI软件总线的概念和软件芯片的连线图5、虚拟仪器软件芯片的连线为实现虚拟仪器软件芯片间的数据交换,DRVI中设置了一组软件总线,包图4、用DRVI设计虚拟仪器精品文档,欢迎下载使用!括256条Double型单变量数据线和32条Double型数组型数据线,可传输有效值等单变量数据,也可传输波形、频谱等数组数据。

虚拟仪器软件芯片可以通过这组透明的数据总线进行数据传输和命令数据交换。

任何两个虚拟仪器软件芯片只要连接在一条数据线上就可以在彼此间交换数据,就象在物理上用通讯线路连接在一起的节点间可以彼此交换数据一样。

连线的方法是在软件芯片上点击右鼠标键,弹出该芯片的属性表,修改其中的连接数据线号就可以实现软件芯片间的连线。

5、虚拟仪器设计样例:李沙育图形若将两路不同相位的同频正弦波信号分别作为X轴和Y轴信号输入X-Y信号示波器,其信号波形是一个椭圆,称为李沙育图形。

在DRVI中设计李沙育图形很简单,用两片数字信号发生器芯片产生同频的正弦波信号,然后用一片旋钮芯片控制其中一个数字信号发生器芯片的相位,最后用一片X-Y曲线显示芯片显示李沙育图形就可以了。

转动旋钮就可以产生出不同相位差的正弦波信号合成的李沙育图形。

名称功能图标标签芯片标签芯片的作用是插入一条文字信息显示标签,以显示一些说明性文字。

另外它也可以与软件总线上的一条数据线相连,动态显示数据线上的数据值。

箭头芯片箭头线的作用是在屏幕上绘制一条箭头线,用来指示芯片的工作顺序,或信号的流向。

开/关类芯片开/关类芯片的作用是提供类似物理设备中开关的功能。

它与一条数据线相连,可控制连接在该数据线上其他软件芯片启/停运行的目的。

按钮芯片按钮芯片的作用是:通过鼠标对此芯片图标的点击来向其他芯片发出一个单次运行的直接控制命令。

图6、李沙育图形实验演示系统精品文档,欢迎下载使用!数字输入类芯片数字输入类的作用是为用户提供物理旋钮、推杆功能类似的芯片。

它与一条数据线相连,用户可以通过鼠标拖动来改变芯片上指针位置,调整数据线上的值,从而达到改变连接在该数据线上其他软件芯片工作参数的目的。

单变量显示类芯片单变量显示类芯片的作用是提供类似温度计、表头的功能。

它与一条数据线相连,数据线上数据的变化会使其示值同步变化。

波形/频谱显示芯片波形/频谱显示芯片的作用是在屏幕上用二维曲线方式显示所连接的数组型数据线上的波形或频谱数据,可通过调节控件大小来对显示曲线进行展缩。

曲线组显示芯片曲线组显示芯片的作用是在屏幕上用二维曲线方式显示所连接的多条数组型数据线上的波形或频谱数据,在屏幕显示一组曲线。

伪彩色图显示芯片伪彩色图显示芯片的作用是在屏幕上用伪彩色方式显示一组曲线,主要用于小波分析结果的显示。

X-Y曲线显示芯片X-Y曲线显示芯片的作用是显示以X、Y方式同步输入的两条数组型数据线上的两通道信号所组成的信号波形,如轴心轨迹、李沙育图形等。

数据采集类芯片数据采集芯片的作用是控制A/D卡或声卡进行信号采集。

将挂接的传感器信号转化为数字量,并存放在连接的数组型数据线上。

数据输出类芯片数据输出类芯片的作用是控制D/A卡或声卡进行信号输出。

将连接的数组型数据线上的数据转化为模拟信号输出。

信号发生器芯片信号发生器芯片用于产生软件模拟的标准信号波形数据,包括白噪声、正弦波、方波、三角波、拍波、线性扫频波、对数扫频波。

脚本类芯片脚本类芯片的作用是Signal VBScript写一段用户自定义功能的小程序,如生成特殊信号,某种特殊的信号分析方法等。

波形参数计算芯片波形参数计算芯片作用是对连接的数组型数据线上的波形数据进行分析,计算信号的有效值、均值、方差等参数,计算结果输出到另一条数据线上。

相关系数计算芯片相关系数芯片作用是对所连接的两条数组型数据线上的波形数据进行相关分析,计算信号的自相关系数或互相关系数,结果输出到另一条数组型数据线上。

频谱运算芯片频谱运算芯片作用是对所连接的数组型输入数据线上的波形数据进行FFT变换,计算信号的实频/虚频、功率谱、幅频/相频,并将计算结果输出到两条数组型数据线上。

FFT频谱校正芯片FFT谱校正芯片作用是对所连接的数组型输入数据线上的波形数据进行FFT变换和频谱校正,计算信号的实频/虚频、功率谱、幅频/相频,并将计算结果输出到两条数组型数据线(软件芯片)上。

概率密度/分布函数芯片概率密度/分布函数芯片的作用是:对所连接的数组型输入数据线上的波形数据进行概率密度或概率分布计算,并将计算结果输出到一条数组型数据线上。

谱窗函数芯片谱窗函数芯片的作用是在时域用窗函数(矩形、Hanning、Hamming、BlackMan、平顶窗)对信号进行截断和加窗,减小后续FFT频谱计算中的能量泄漏。

频谱细化分析芯片频谱细化分析芯片的作用是对选定的频率段进行局部放大,以更高的频率分辨率显示频谱的细节。

倍频程分析芯片倍频程分析芯片的作用是采用FFT算法计算声音输入的声音信号/噪声信号的倍频程谱,显示倍频程谱。

谱阵芯片谱阵芯片的作用是对一个长时间段的信号进行连续观测,分段计算信号的频谱,并以三维谱阵的方式显示,从而在一个长的观测时间段内以时-频联合分析的方法了解信号频率成分随时间的变化情况。

传递函数芯片传递函数芯片的作用是对所接收的系统激励信号和系统响应信号进行传递函数分析,计算信号的传递函数和相干函数。

数字滤波类芯片信号数字滤波芯片的作用是提供一个和物理低通/高通/带通滤波器功能相似的芯片。

对输入信号进行滤波,去除频率通带外的干扰频率成份。

包络检波芯片包络检波芯片的作用是用垂直滤波器对信号进行带通滤波和Hilbert变换方法,提取信号中的包络成分。

功率倒频谱芯片功率倒频谱运算芯片的作用是对所连接的数组型输入数据线上的波形数据进行FFT变换,计算信号的对数功率谱,然后再对其进行FFT变换,计算信号频谱的功率谱,分析信号频谱中的周期成分。

离散小波变换芯片离散小波变换芯片的作用是按照设定的小波滤波器系数对信号进行二进小波变换/正交小波变换/小波包变换,对信号进行小波分解。

AR模型分析芯片AR模型分析芯片的作用是对所连接的数组型输入数据线上的波形数据进行AR模型分析,计算AR模型系数和AR功率谱。

多自由度振动模型多自由度振动模型芯片采用单输入、多输出N自由度振动模型对振动系统进行仿真。

用户可以改变模型自由度数、激振芯片力作用点位置、各节点质量、阻尼、刚度参数。

用户可以通过外加的激振力对其激振,并测取系统的响应信号。

网络数据采集芯片网络数据采集芯片的作用是通过网络获取网络上其他主机上运行的DRVI中数组型数据线上的数据,从而达到数据采集卡、传感器等硬件资源共享的目的。

网络命令发送芯片网络命令发送芯片的作用是通过网络向网上其它运行DRVI 的主机发送直接软件芯片工作命令,驱动远端主机DRVI软件上插接的软件芯片工作,从而达到远程控制的作用。

采样数据广播芯片采样数据广播芯片的作用是通过IP广播方式将数组型数据线上的测量数据发送到网络上,从而达到数据采集卡、传感器等硬件资源多人同时共享的目的。

广播数据接收芯片广播数据接收芯片的作用是接收网络上其它DRVI主机广播的测量数据,进行远程分析。

定时器芯片定时器芯片的作用是产生一个指定时间间隔的周期性事件,并在事件中发出直接软件芯片驱动命令,从而达到定期控制DRVI中软件芯片工作的目的。

三. 实验内容1.设计一个李沙育图形实验演示系统,显示两路正弦波信号在不同相位差下的李沙育图形。

2.设计一个李沙育图形实验演示系统,显示两路正弦波信号在不同频率差下的李沙育图形。

四. 实验仪器和设备1.计算机1台2.DRVI快速可重组虚拟仪器平台1套3.打印机1台五. 实验步骤及内容1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI采集仪主卡检测”或“网络在线注册”进行软件注册。

2.从芯片表中拖拉软件芯片到软件面板上,熟悉软件芯片的放置、移动、连线和删除操作;然后采用DRVI上的软件芯片搭建一个李沙育图形实验演示系统。

3.将设计完成的虚拟仪器实验系统存盘保存。

六. 实验报告要求拷贝实验系统运行界面,插入到Word格式的实验报告中,并附上所设计的虚拟仪器脚本文件。

七. 思考题1.什么是虚拟仪器,其本质特征是什么?2.什么是基于组件的应用软件开发,它和传统的基于编程语言的应用软件开发有什么区别和特点?3.简述DRVI可重构虚拟仪器平台的工作原理。

相关文档
最新文档