(三)晶体结构
无机化学第3章_晶体结构
[答] 图3-1中的小立方体不具有平移性,因为它与相邻的小立方体并非等 同。相反,大立方体才具有平移性,在它的上下左右前后都有无隙并置的完 全等同的立方体,只是没有画出来而已,因此大立方体才是晶胞,小立方体 不是晶胞。
(2) 晶胞具有相同的顶角、相同的平面和相同的 平行棱
图3-19 底心晶胞举例(I2) [答]将晶胞原点移至bc面心(a)和ab面心(c)均不能
使所有原子坐标不变,只有将晶胞原点移至ac面心(b) 才得到所有原子坐标不变的新晶胞,可见碘的晶胞是B底 心(正交)晶胞。
立方
边长: a=b=c
夹角: = = =900
实例: Cu , NaCl
(只有1个晶胞参数a是可变动的)
四方
边长:a=bc
夹角: = = =900
实例: Sn, SnCl2
(有2个晶胞参数a和c)
六方
边长:a= bc
夹角: = =900 =1200
实例: Mg, AgI
(有2个晶胞参数a和c)
面心晶胞的特征
可作面心平移,即所有原子均可作在其原子坐标上+ (1/2,1/2,0;0,1/2,1/2;1/2,0,1/2)的平移 而得到周围环境完全相同的原子。如晶胞顶角有一个原子, 在晶胞三对平行面的中心必有完全相同的原子(周围环境 也相同)。
[例3-5]图3-17中哪个晶胞是面心晶胞?
图3-17面心晶胞(金属铜)(左)与非面心晶胞(Cu3Au)(右)举例
3-2-4 素晶胞与复晶胞
素晶胞是晶体微观空间中的最小基本单元。 复晶胞是素晶胞的多倍体。即体心晶胞、面心晶胞、 底心晶胞。
晶
素晶胞P
体心晶胞 I(2倍体)
晶体结构3
r+/r-= 0.155
CN=
0.225
0.414
0.732
1
3
形
4
6
8
(12)
配位体 正三角
正四面 正八面 正方 体 体 体
构性判断
半径比(r+/r-) 0.225-0.414 0.414-0.732 推测构型 四面体配位 八面体配位
>0.732
立方体配位
5-3 晶格能 —将1mol离子晶体中的正负离子完全气化而相互远离的气 态离子时所吸收的能量。
例如,泡林认为,Na+离子和F–离子的电子层构型都是1s22s22p6,核电荷 数分别为+11和+9,前者比后者大30%,因而前者的半径也应该相应比后者 缩小30%。经测定NaF晶体中阴阳离子的平衡核间距为231pm,按这种假设:
r(Na+)=(1-30%)r(F-)=0.7r(F-) r(Na+)+r(F-)=231pm 1.7r(F-)=231pm 即: r(F-)=136 pm r(Na+)=95 pm
金刚石在通常情况下不导电,熔化时也不导电。是热的不良导体。
Si、SiC等有半导体的性质,可有条件的导电。不存在独立的小 分子,而只能把整个晶体视为一个巨大的分子,无确定分子量。
金刚石晶体模型
晶体类型小结
晶体类型 离子晶体 原子晶体 化学键型
离子键
晶格质点
正、负离子
实 例
NaCl、CaF2 金刚石、SiO2 CO2、H2O、I2
§3-5 离子晶体
由离子键形成的化合物叫离子型化合物,离子型化合物虽然 在气态可以形成离子型分子,但离子型化合物主要还是以晶体 状态出现。 典型的离子晶体是指由带电的原子——阴离子和阳离子通过 离子键相互作用形成的晶体。 例CsCl、NaCl晶体,它们都是由正离子与负离子通过离子 键结合而成的晶体,统称离子晶体。在离子晶体中,晶格节点 由正、负离子占据,每个离子周围,等距离地排列着异号离子、 被异号离子所包围。 广义地说,所有存在大量阴阳离子的晶体都是离子晶体。
三种晶体结构的最密排晶面和最密排晶向
三种晶体结构的最密排晶面和最密排晶向1.引言1.1 概述晶体是具有长程有序排列的原子、离子或分子的固体物质。
晶体的结构是由最密排列的晶面和晶向构成的。
最密排晶面是指在晶体结构中,原子、离子或分子最紧密地靠近的面,而最密排晶向则指的是在晶体中最紧密地排列的方向。
本文将分析三种不同的晶体结构,探讨它们各自的最密排晶面和最密排晶向。
通过深入研究这些结构的排列方式,可以更好地理解晶体的性质和行为。
第一种晶体结构是立方晶系,也是最简单的晶体结构之一。
它的最密排晶面是(111)晶面,最密排晶向则是[110]晶向。
这些晶面和晶向在晶体中具有紧密的排列,使晶体的结构呈现出高度的对称性。
第二种晶体结构是六方晶系,它相对于立方晶系而言稍复杂一些。
在六方晶系中,最密排晶面是(0001)晶面,最密排晶向是[10-10]晶向。
与立方晶系不同,六方晶系具有六方对称性,呈现出更复杂的晶体结构。
第三种晶体结构是四方晶系,它也是一种常见的晶体结构。
在四方晶系中,最密排晶面是(100)晶面,最密排晶向是[110]晶向。
四方晶系的晶体结构与立方晶系相似,但具有更多的对称性和排列方式。
通过对这三种晶体结构的最密排晶面和最密排晶向进行研究,我们可以更好地理解晶体的基本结构和性质。
这对于材料科学、凝聚态物理和相关领域的研究具有重要意义,同时也有助于开发新材料和改进现有材料的性能。
1.2文章结构文章结构部分的内容可以包括以下几个方面的介绍:1.2 文章结构本文主要分为引言、正文和结论三个部分。
引言部分概述了晶体结构和最密排晶面、最密排晶向的研究背景和重要性,并提出了本文研究的目的和意义。
正文部分分为三个小节,分别介绍了三种晶体结构的最密排晶面和最密排晶向。
每个小节将首先介绍该种晶体结构的一般特点和常见应用,然后详细讨论最密排晶面和最密排晶向的确定方法和规律,并给出具体的实例和数据进行说明。
结论部分对于每种晶体结构的最密排晶面和最密排晶向进行总结和回顾,并指出各种晶体结构最密排晶面和最密排晶向的综合特点和应用前景。
1晶体结构III
其相位差: 如果发生衍射的是 (HKL) 晶面,则:
晶体结构III —— 固体物理导论
所以,一个晶胞内所有原子的相干散射振幅需要对所有原子求和: 根据几何结构因子的定义,有:
因为衍射测量的是衍射强度,它正比于: 只需要将上式乘以共轭复数再开方即为结构因子的表达式
结构因子有可能使Laue条件允许的某些衍射斑点消失(消光)
显然H, K, L为全奇、全偶时,H+K, H+L, K+L 均为偶数。
H, K, L奇偶混杂时(2奇1偶或2偶1奇) H+K, H+L, K+L 必定有2个奇数, 1个偶数,所以:
只有当H, K, L 为全奇或全偶的晶面才会显现衍射蜂。(100), (110), (210), (211), (300)等晶面衍射峰消失。
晶体结构III —— 固体物理导论
发生衍射的条件
衍射条件的Bragg定律 Bragg 把晶体对X光的衍射 当作由原子平面的反射。 在反射方向上,一个平面 内所有原子的散射波位相 相同、相互叠加,当不同 原子平面间的辐射波符合 Bragg关系时,散射 波在反射方向得到加强, 形成衍射。
光的反射定律
假设弹性散射
晶体结构III —— 固体物理导论
3. 影响衍射强度的其它因素: 晶体的不完整性:对周期性的偏离,引起衍射峰展宽。 温度影响:使衍射峰值降低。 吸收影响:晶体原子对入射波的吸收。 消光效应:X射线在晶体内部多次反射引起的相消干涉。等等 以上在晶体结构的实际测量中都是要注意到的。
晶体结构III —— 固体物理导论
Laue方程k '− k = K h ,k ,l 不是真正的衍射加强条件, 因其含有消光点,必须采用几何结构因子来修正
晶体结构
晶体结构和布拉菲格子的区别
晶体结构和布拉菲格子的区别
基矢 原胞 晶胞(单胞)
初基元胞 点阵的基本 平移矢量。
有多种取法。
12面体
14面体
布拉伐格子 晶向 晶面
标志?
互质的整数(h1h2h3)-----晶面指数
若以单胞的棱a,b,c为坐标系对应的指数(h1h2h3)----miller index
33 23
13
32 22 12
31
33 11
21 31 13;32 12 32 0
11
23 21 21 0
同样若沿Z轴作对称操作-转动900
0 1 0 A 1 0 0
0 0 1
A1A
22
0
0
11
0
13
11
0
0
22
13
0
0 31 33
31 0 33
7晶系14种Bravais Lattice介绍
可以证明,由于对称性的要求,共有14种Bravais Lattice, 分为7个晶系(点阵只有7种点群)。 对称操作群{D/t} D--点(宏观)对称操作; t--平移对称操作. 点阵点群-------{D/t=0}7个7个晶系 点阵空间群-------{D/t}14个14 lattices
绪论
������ 固体物理是研究固体的结构和其组成粒子之间的相互作用 及运动规律,以阐明其性能和用途的学科。
固体的分类 晶体(晶态):原子按一定的周期规则排列的固体(长程有序)。 非晶体(非晶态):原子排列没有明确的周期性(短程有序)。
3晶体结构
自范性是晶体的本质特征
2. 对称性 晶体理想外形中常常呈现形状和大小 相同的等同晶面,具有特有的对称性。
晶体的宏观对称性只有32种可能组合, 称为32晶类或32点群。
m.p.
3. 均一性
晶体质地均匀,具 有确定的熔点。
t
4. 各向异性
③. 晶胞的内容(组成)
原子的种类、数目及其在晶胞中的相对位置。
二. 布拉维系
按晶胞参数的差异可分成七种不同几何特征的三维晶胞。
立方cubic (c) 四方tetragonal (t) 正交orthorhomic (o) a = b = c α=β=γ=900 a = b ≠ c α=β=γ=900 a≠ b≠ c α=β=γ=900 1个晶胞参数a 2个晶胞参数a c 3个晶胞参数a b c
晶体类型
组成 粒子 金属晶体 原子晶体 离子晶体 分子晶体 原子 正离 子 原子 正、负 离子 分子 粒子 间作 用力 金属 键 共价 键 离子 键 分子 间力 物理性质 熔沸 点 高低 高 高 低 硬度 大小 大 大 小
熔融导 电性
例
好 差 好 差
Cr, K
SiO
2
NaCl 干冰
§4 金 属 晶 体
(c) 面心立方: d = m/a3 = (4M/NA)/(81/2r)3 = 4M/(83/2NAr3) (a):(b):(c) 1:1.299:1.414 面心立方堆积密度最大
4. 2 金属键理论
金属晶体中原子之间的化学作用力叫做金属键。金 属键没有方向性和饱和性,是一种遍布整个晶体的离域 化学键。
单斜monoclinic (m)
三斜anorthic (a) 六方hexagonal (h) 菱方rhombohedeal (R)
3-常见晶体结构
小结和作业
1 典型金属的晶体结构(面、体、密)
2 常见无机化合物晶体结构
以立方晶系为主 离子取代原子
重点:各典型金属的晶体结构的晶体学参数
3 固溶体的晶体结构(置换、间隙) 4 固溶体的性能(固溶强化)
作业:1、试从晶体结构的角度说明间隙固溶体、间隙相以及间隙化合物 之间的区别; 2、有一正交点阵,点阵常数a=b、c=a/2,某晶面在3个晶 轴上的截距分别为2个,3个和6个原子间距,求该晶面的密勒指数。 3、解释概念:配位数 、致密度、固溶强化
V K= V 0
V
V0
一个晶胞中原子所占的体积
一个晶胞的体积
在元素周期表一共约有110种元素,其中80
多种是金属,占2/3。而这80多种金属的晶体 结构大多属于三种典型的晶体结构。它们分 别是: 体心立方、面心立方、密排六方
二 典型金属的晶体结构
结构特点:以金属键结合,靠失去外层电子的金属离子 与自由电子的吸引力。无方向性,对称性较高的密 堆结构。 常见结构:
图2-45 面心立方结构
面心立方结构ABCABC排列
沿着面心立方的体对角线观察,就可以看到(111)面的这种堆 垛方式
密排六方结构:属于六方紧密堆积,以ABAB ...的堆积方式堆 积,具有这种结构的金属有:Mg、Zn、α-Ti等
图2-46 密排六方结构
体心立方结构:属于体心立方紧密堆积,原子是以体 心立方空间点阵的形式排列,具有这种结构的金属 有: α-Fe 、Cr、 V、Mo、W等
有序化
EAB结合能与EAA+EBB/2
原子间结合能是指原子结合时克服原子 间相互作用力外力所作的功。结合能越 大,原子越不容易结合。
3晶体结构与性质知识点讲解
第三章晶体结构与性质第一节晶体的常识【知识点梳理】一、晶体与非晶体1、晶体与非晶体①晶体:是内部微粒(原子、离子或分子)在空间按一定规律做周期性重复排列构成的物质。
②非晶体:是内部的原子或分子的排列呈杂乱无章的分布状态的物质。
2、晶体的特征(1)晶体的基本性质晶体的基本性质是由晶体的周期性结构决定的。
①自范性:a.晶体的自范性即晶体能自发的呈现多面体外形的性质。
b.“自发”过程的实现,需要一定的条件。
晶体呈现自范性的条件之一是晶体生长的速率适当。
②均一性:指晶体的化学组成、密度等性质在晶体中各部分都是相同的。
③各向异性:同一晶体构造中,在不同方向上质点排列一般是不一样的,因此,晶体的性质也随方向的不同而有所差异。
④对称性:晶体的外形和内部结构都具有特有的对称性。
在外形上,常有相等的对称性。
这种相同的性质在不同的方向或位置上做有规律的重复,这就是对称性。
晶体的格子构造本身就是质点重复规律的体现。
⑤最小内能:在相同的热力学条件下,晶体与同种物质非晶体固体、液体、气体相比较,其内能最小。
⑥稳定性:晶体由于有最小内能,因而结晶状态是一个相对稳定的状态。
⑦有确定的熔点:给晶体加热,当温度升高到某温度便立即熔化。
⑧能使X射线产生衍射:当入射光的波长与光栅隙缝大小相当时,能产生光的衍射现象。
X射线的波长与晶体结构的周期大小相近,所以晶体是个理想的光栅,它能使X射线产生衍射。
利用这种性质人们建立了测定晶体结构的重要试验方法。
非晶体物质没有周期性结构,不能使X射线产生衍射,只有散射效应。
(2)晶体SiO2与非晶体SiO2的区别①晶体SiO2有规则的几何外形,而非晶体SiO2无规则的几何外形。
②晶体SiO2的外形和内部质点的排列高度有序,而非晶体SiO2内部质点排列无序。
③晶体SiO2具有固定的熔沸点,而非晶体SiO2无固定的熔沸点。
④晶体SiO2能使X射线产生衍射,而非晶体SiO2没有周期性结构,不能使X射线产生衍射,只有散射效应。
晶体结构(共78张PPT)
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础
•
•
•
•
萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以
•
一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。
晶体结构(3, 原子晶体与分子晶体)
金刚石晶体
金刚石晶体
①每个碳 原子与 4 个碳原子 相连; 相连;
基本单元: 基本单元: 六元环
6 个碳
原子形成一 个六 元 环
金刚石晶体
②晶体中碳原子与C-C键数 晶体中碳原子与C 目比 1:2 。
SiO2晶体
①构成SiO2晶体的微粒是什么? 构成SiO 晶体的微粒是什么? Si原子和 原子和O Si原子和O原子
CO2
SiO2
课堂练习
° 1、 白磷分子中的键角为 60° ,分子的空间结 、 每个P原子与 构为正四面体 ,每个 原子与 3 个P原子结合成共 原子结合成共 价键。若将1分子白磷中的所有 分子白磷中的所有P-P键打开并各插 价键。若将 分子白磷中的所有 键打开并各插 个氧原子, 若每个P 入一个氧原子, 入一个氧原子,共可结合 6 个氧原子, 若每个P 原子上的孤对电子再与氧原子配位, 原子上的孤对电子再与氧原子配位,就可以得到 填分子式)。 磷的另一种氧化物 P4O10 (填分子式)。
SiO2晶体
④晶体中最小的环有 12 个 原子。 原子。
小结: 小结:三种化学键的比较
化学键 成键本质
由电子静电作用 键的方 影响键强弱 的因素 向性和 饱和性
金属键 金属阳离子和自 离子键 阴阳离子间的 静电作用 共价键 共用电子对
无 无 有
原子半径和 价电子数 离子半径和 离子电荷 键长
课堂练习 1、下列物质属于原子晶体的 化合物是 ( C ) A.金刚石 A.金刚石 B.NaOH C.二氧化硅 D.干冰 C.二氧化硅 D.干冰
小试牛刀】 【小试牛刀】
下列物质在变化过程中, 例1.下列物质在变化过程中,只需克服分子 下列物质在变化过程中 间作用力的是 ( C ) A.食盐溶解 食盐溶解 C.干冰升华 干冰升华 B.铁的熔化 铁的熔化 D.氯化铵的“升华” 氯化铵的“ 氯化铵的 升华”
第三章晶体结构
子晶体所释放的能量,用 U 表示。
晶格能 U 越大,则形成离子键得到离子晶体时放出的能量越多,离 子键越强。 一般而言,晶格能越高,离子晶体的熔点越高、硬度越大。晶格 能大小还影响着离子晶体在水中的溶解度、溶解热等性质。但离
子晶体在水中的溶解度与溶解热不但与晶体中离子克服晶格能进入水中 吸收的能量有关,还与进入水中的离子发生水化放出的能量(水化热) 有关。
子作周期性平移的最小集合。
复晶胞:素晶胞的多倍体;
体心晶胞(2倍体),符号I;
面心晶胞(4倍体),符号F; 底心晶胞(2倍体),符号A(B﹑C)。
二. 三种复晶胞的特征
1. 体心晶胞的特征:晶胞内的任一原子作体心平移[原子坐
标 +(1/2,1/2,1/2)]必得到与它完全相同的原子。
2. 面心晶胞的特征:可作面心平移,即所有原子均可作在其
P区的第三周期第三主族的Al3+ 也是8e-构型 ;d区第三至七副族原
素在表现族价时,恰相当于电中性原子丢失所有最外层s电子和次
外层d电子,也具有8e-构型 ;稀土元素的+3价原子也具有8e-构型 , 锕系元素情况类似。 (3)18e-构型 ds区的第一、二副族元素表现族价时,具有18e-构 型 ;p区过渡后元素表现族价时,也具有18e-构型。 (4)(9—17)e-构型 d区元素表现非族价时最外层有9—17个电
图3-6 晶体微观对称性与它的宏观外形的联系
图3-7 晶态与非晶态微观结构的对比
3-2 晶胞
3-2-1 晶胞的基本特征
1.晶体的解理性:用锤子轻敲具有整齐外形的晶体(如方解 石),会发现晶体劈裂出现的新晶面与某一原晶面是平行 的,这种现象叫晶体的解理性。 2.布拉维晶胞:多面体无隙并置地充满整个微观空间,即
章末质量检测(三) 晶体结构与性质
章末质量检测(三)晶体结构与性质一、选择题(本题包括12小题,每小题4分,共48分)1.下列说法正确的是()A.晶体在受热熔化过程中一定存在化学键的断裂B.原子晶体的原子间只存在共价键,而分子晶体内只存在范德华力C.区分晶体和非晶体最科学的方法是对固体进行X-射线衍射实验D.非金属元素的原子间只形成共价键,金属元素的原子与非金属元素的原子间只形成离子键解析:选C A项,分子晶体受热熔化时破坏的是分子间作用力而不是化学键,错误;B项,有的分子晶体中存在氢键,错误;D项,金属元素原子与非金属元素原子间也可形成共价键,如AlCl3,错误。
2.下列说法中正确的是()A.离子晶体中每个离子的周围均吸引着6个带相反电荷的离子B.金属导电的原因是在外加电场的作用下金属产生自由电子,电子定向运动C.分子晶体的熔、沸点低,常温下均呈液态或气态D.原子晶体中的各相邻原子都以共价键相结合解析:选D选项A中离子晶体中每个离子周围吸引带相反电荷的离子数目与离子半径有关,如一个Cs+可同时吸引8个Cl-;选项B中金属内部的自由电子不是在电场力的作用下产生的;选项C中分子晶体的熔、沸点很低,在常温下也有呈固态的,如S属于分子晶体,它在常温下为固态。
3.下列有关冰和干冰的叙述不正确的是()A.干冰和冰都是由分子密堆积形成的晶体B.冰是由氢键形成的晶体,每个水分子周围有4个紧邻的水分子C.干冰比冰的熔点低得多,常压下易升华D.干冰中只存在范德华力不存在氢键,一个分子周围有12个紧邻的分子解析:选A干冰晶体中CO2分子间作用力只有范德华力,分子采取紧密堆积,一个分子周围有12个紧邻的分子;冰晶体中水分子间除了范德华力还存在氢键,由于氢键具有方向性,每个水分子周围有4个紧邻的水分子,采取非紧密堆积的方式,空间利用率小,因而密度小。
干冰融化只需克服范德华力,冰融化还需要克服氢键,由于氢键比范德华力大,所以干冰比冰的熔点低得多,而且常压下易升华。
三晶体结构PPT课件
2 h2
3 h3,
请同学自证: h1= h1 , h2= h2 , h3= h3
该晶面族的法向矢为倒格矢G (h’1h’2h’3) ,其中最短倒格矢Gh=h1b1+h2b2+ h3b3
a / , a / , a / 1 (h1,h2,h3为互质整数)。晶面间距即为
h1
2 h2
3 h3, 在法向的投
影
3
若ABC面的指数为(234),情况又如何?
5. 晶体中有哪几种密堆积,密堆积的配位数是多少?
6. 晶向指数,晶面指数是如何定义的?
第32页/共125页
5. 晶体中有哪几种密堆积,密堆积的配位数是多少? 6. 晶向指数,晶面指数是如何定义的?
第33页/共125页
§1.6 倒格子与布里渊区
一. 倒格子基矢 (Reciprocal Lattice Vector)
5. 氯化铯(CsCl)结构 Cs+,Cl-离子分别为简立方(SC)子格子,二子格子体心套构。
第22页/共125页
6. NaCl结构 Na+,Cl-分别为fcc子格子,沿立方边位移a/2套构而成。
第23页/共125页
注意
不同晶体结构的Cu.NaCl,金刚石 结构,闪锌矿结构等,它们的格子 均为fcc。
2. 体心立方元素晶体, [111]方向上的结晶学周期为 多大? 实际周期为多大?
3. 面心立方元素晶体中最小的晶列周期为多大? 该 晶列在哪些晶面内?
4. 晶面指数为(123)的晶面ABC是离原点O最近
的 重
晶 合
面 ,
, 除
O O
A点、外O,OBA和、OOCB分和别O与C基上矢是a否1
、a2 、a 有格点?
(2)将原点与各级近邻的格点连线,得 到几组格矢;
3第三讲 晶体结构3
几种典型结构型式(四) CaF2型 F-位于立方面心晶格 1个F-配位4个Ca2+ 1个Ca2+配位8个F-
F-占立方体的8个角、6个面心、12条棱和1个体心 8×(1/8)+6×(1/2)+12×(1/4)+1=8 4个Ca2+位于晶胞内 正负离子数比为1∶2
F-围成8个立方体,其中有4个立方体空隙被4个Ca2+占据 正离子数:负离子数:立方体空隙数=1∶2:2 阳离子占据空隙分数1/2
四、 晶体类型
晶体的性质由晶胞的大小、形状和质点的种类 (分子、原子、离子)及它们之间的作用力决定
组成 粒子 金属晶体 原子晶体 离子晶体 分子晶体 原子 离子 原子 离子 分子 粒子间 作用力 金属键 共价键 离子键 分子间 力 物理性质 熔沸点 高低 高 高 低 硬度 大小 大 大 小 熔融导 电性 好 差 好 差 例 Cr, K
配位数 4 6 8
构型 ZnS 型 NaCl 型 CsCl 型
几种典型结构型式(一) NaCl型 立方面心晶格 1个Na+配位6个Cl1个Cl-配位6个Na+
Cl-占立方体的8个角、6个面心 8×(1/8)+6×(1/2)=4
Na+占立方体的12条棱和体心,12×(1/4)+1=4
正负离子数比为1∶1
3、晶胞是人为划定的
金属铜的晶体结构
4、晶胞是“最小”的重复单元
从晶体的微观结构中可取出最小的重复单元, 它的基本特征是——顶角相同,不能再小。
这四种晶体的晶胞都是立方晶胞,这是指晶胞的 几何形状,不是指晶胞内部的原子的种类、数量 及排列。
同一种晶体可以取不同的晶胞,但习用晶胞有规定,是平行六面体(三维) 和平行四边形(二维)
晶体结构
§1.1 晶格的周期性
一、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。
定义:
各晶体是由一些基元(或格点)按一定规则, 周期重
复排列而成。任一格点的位矢均可以写成形式
Ra为n3 基 n矢1a1, n。2为Ra其2n 布中n拉3a,3菲、格子、的取n格1整矢n数2,,n或3 称、正、格矢a。1
3、金刚石结构( diamond ):
碳的同素异构体。 经琢磨后的金刚石又称钻石。 无色透明、有光泽、折光力极强,最硬的物质。
金刚石结构是复式晶格结构,基元中有两个碳原子A、B, 布拉菲格子是面心立方。
或可视为两个面心立方子晶格,沿体对角线平移1/4 体对角 线长度套构而成,如图所示.
金刚石晶体的配位数是4, 这4个碳原子构成一个 正四面体,碳-碳键角为109º28´。
基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。
可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
具有金刚石结构的晶体有: 金刚石、元素半导体Si、Ge ,灰锡等。
4、闪锌矿(立方ZnS)结构:( cubic zinc sulfide )
与金刚石结构类似,金刚石的基元是化学性质相同的两个 原子A、B ,而闪锌矿结构的基元是两个不相同的原子.
闪锌矿结构也可视为是两个不同原子的面心立方子晶格, 沿体对角线平移1/4 体对角线长度套构而成.
例如,简立方晶格的几个晶列如图所示。
晶体 结构
离子晶体
由阴阳离子通过离子键结合而成的晶体。
ClNa+
类型 晶胞
NaCl型
CsCl型
ZnS型
CaF2型
堆积方 式 配位数
阴离子周围等 距且最近的阴 离子数 阳离子周围等 距且最近的阳 离子数
氯离子:面心立方 钠离子:填所有八 面体空隙
氯离子:简单立方 铯离子:立方体空 隙
硫离子:面心立方 钙离子:面心立方 锌离子:其中四个 氟离子:八个四个 错位的四面体空隙 空隙
晶体,熔融 都不导电。 有些与水电 离。
晶体导电 熔化导电
离子晶体:离子化合物 原子晶体:Si 金刚石 SiO2 分子晶体:大多数共价化合物 金属晶体:金属单质 SiC
A、不同晶型: 原子晶体>离子晶体>分子晶体 (金属晶体,有的很高W,有的很低Hg) B、同种晶型: 1、原子晶体:比较共价键的强弱。半径越小,键能越大。 金刚石>碳化硅>晶体硅
B A
第三层的另一种排列 方式,是将球对准第一层 1 6 5 4
2
3
的 2,4,6 位,不同于
AB 两层的位置,这是 C 层。
1 6 5
2 3 4
1 6
5
2
3
4
第四层再排 A,于是形
成 ABC ABC 三层一个周
期。 得到面心立方堆积— A1型。 如:金属铜
A
C
B
1 6
5
2
A
3
4
C B
A
配位数 12 。 ( 同层 6, 上下层各 3 ) 面心立方紧密堆积的前视图
石墨晶体是___结构,每层内碳原子排 正六边形 平面的网状 列成_______,构成_________结构。
工程材料基础3晶体结构
金属
晶格常 数(nm)
•表3-3 几种面心立方结构元素的晶格常数
Al γ-Fe β-Co
Ni Cu Ag
Pt
0.405 0.365 0.354 0.352 0.361 0.408 0.392 (912℃) (>390℃)
Au 0.407
金属 晶格常数
(nm) 轴比c/a
PPT文档演模板
•表3-4 某些密排六方结构元素的晶格常数
体心立方晶胞其原子半径:
a为晶格常数;
面心立方晶胞其原子半径;
密排六方晶胞其原子半径 :
PPT文档演模板
工程材料基础3晶体结构
3.7.4 配位数
配位数是指晶格中任一原子周围与其最近 邻且等距离的原子数目。
体心立方晶格中的配位数为8; 面心立方晶格中的配位数12; 密排六方晶格配位数也为12。
PPT文档演模板
工程材料基础3晶体结构
典型晶格配位数示意图
•(a)体心立方
(b 三种典型晶格配位数示意图
PPT文档演模板
工程材料基础3晶体结构
3.7.5 致密度
一个晶胞内原子所占体积与晶胞体积之比, 称之为致密度。致密度K可用下式求出:
式中n为晶胞原子数;v为一个原子的体积, (r为原子半径);V为晶胞体积。
a 12 0.74 0.207a 0.112a
PPT文档演模板
工程材料基础3晶体结构
3.7.7 晶体的堆垛方式
密排六方结构:密排面堆垛顺序为ABABABABC……排列 面心立方结构: 密排面堆垛顺序为ABCABCABC……排列
PPT文档演模板
•图3-16 面心立方结构和密排 •六方结构中原子堆垛的方式
Be α-Ti α-Zr α-Co Mg Zn
第三章晶体结构
三.其它晶体结构 1.金刚石结构
金刚石结构为面心立方格 子,碳原子位于面心立方的所 有结点位置和交替分布在立方 体内的四个小立方体的中心, 每个碳原子周围都有四个碳, 碳原子之间形成共价键。
一.面心立方紧密堆积结构
4. CaTiO3(钙钛矿)型结构 钙钛矿结构的通式为ABO3,其中,A2+ 、B4+或A1+ 、B5+金
属离子。CaTiO3在高温时为立方晶系,O2-和较大的Ca2+作面心 立方密堆,Ti4+填充于1/4的八面体空隙。Ca2+占据面心立方的 角顶位置。O2-居立方体六个面中心,Ti4+位于立方体中心。Z=1, CNCa2+=12 CNTi4+=6 ,O2-的配位数为6 (2个Ti4+和 4个Ca2+)。
一.面心立方紧密堆积结构 1. NaCl型结构
Cl-呈面心立方最紧密堆积,Na+则填充于全部的八面体空隙
中,(即阴离子位于立方体顶点和六个面的中心,阳离位于立
方 体 的 中 心 和 各 棱 的 中 央 ) 。 两 者 CN 均 为 6 , 单 位 晶 胞 中 含 NaCl的个数Z=4 ,四面体空隙未填充。
一.面心立方紧密堆积结构 2. β-ZnS(闪锌矿)型结构
S2-位于面心立方的结点位置,Zn2+交错地分布于立方体内 的1/8小立方体的中心,即S2-作面心立方密堆,Zn2+填充于1/2的 四面体空隙之中,CN均为4,Z=4。β -ZnS是由[ZnS4]四面体以 共顶的方式相连而成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体结构一.(9分)下图所示为HgCl2和不同浓度NH3-NH4Cl反应得到的两种含汞的化合物A 和B的微观结构重复单元图。
1.写出A、B的化学式和B的生成反应方程式;2.晶体A中,NH3、Cl的堆积方式是否相同,为什么?3.晶体A中Hg占据什么典型位置,占有率是多少?4.指出B中阴阳离子组成特点;5.比较A和B在水溶液中溶解性的大小。
二.(14分)钛酸锶是电子工业的重要原料,与BaTO3相比,具有电损耗低,色散频率高,对温度、机械应变、直流偏场具有优良稳定性。
因此可用于制备自动调节加热元件、消磁元器件、陶瓷电容器、陶瓷敏感元件等。
制备高纯、超细、均匀SrTiO3的方法研究日益受到重视。
我国研究者以偏钛酸为原料常压水热法合成纳米钛酸锶,粒子呈球形,粒径分布较均匀,平均22nm。
已知SrTiO3立方晶胞参数a=390.5pm。
1.写出水热法合成纳米钛酸锶的反应方程式;2.SrTiO3晶体的结构可看作由Sr2+和O2-在一起进行(面心)立方最密堆积(ccp),它们的排列有序,没有相互代换的现象(即没有平均原子或统计原子),它们构成两种八面体空隙,一种由O2-构成,另一种由Sr2+和O2-一起构成,Ti4+只填充在O2-构成的八面体空隙中。
(1)画出该SrTiO3的一个晶胞(Ti4+用小球,O2-用大○球,Sr2+用大球)(2)容纳Ti4+的空隙占据所有八面体空隙的几分之几?(3)解释为什么Ti4+倾向占据这种类型的八面体空隙,而不是占据其他类型的八面体空隙?(4)通过计算说明和O2-进行立方密堆积的是Sr2+而不是Ti4+的理由(已知O2-半径为140pm)3.计算22nm(直径)粒子的质量,并估算组成原子个数。
三.(10分)NH4Cl为CsCl型结构,晶胞中包含1个NH4+和1个Cl-,晶胞参数a=387pm。
把等物质的量的NH4Cl和HgCl2在密封管中一起加热时,生成NH4HgCl3晶体,晶胞参数a=b=419pm、c=794pm(结构如右图)。
1.已知Cl-半径为181pm,求NH4+(视为球形离子)的半径。
2.计算NH4HgCl3晶体的密度;3.指出Hg2+和NH4+的Cl-具体配位形式;4.通过具体计算,指出晶体中Cl-与Cl-之间的最短距离是多少?四.(8分)金属铜的理想堆积模型为面心立方紧密堆积(CCP),设它的边长为acm。
在晶体中与晶胞体对角线垂直的面在晶体学中称为(1,1,1)面。
1.请画出金属铜的晶胞(○表示Cu原子),并涂黑有代表性的1个(1,1,1)面上的Cu原子。
2.计算(1,1,1)面上Cu占整个面积的百分率以及Cu占整个体积的百分率(给出计算过程)。
3.在1个盛有CuSO4溶液的电解槽内电镀铜,其中阴极经过特殊处理,只有1个(1,1,1)面暴露在电解质溶液中,其余各面均被保护。
假设此面面积为bcm2,电镀时电流恒为I。
Cu2+在此面上做恒速率均匀沉积,tmin后,有一层Cu原子恰好在阴极上沉积完毕,求这是已沉积的第几层Cu原子?(阿伏加德罗常数为N A,法拉第常数为F)五.(10分)某钠盐X的阴离子为正八面体构型,由7个原子70个电子组成。
X晶体的结构有如下特点:阴离子的空间排列方式与NaCl晶体中的Na+(或Cl-)的排列方式完全一样,而Na+占据其全部四面体空隙中。
1.确定阳离子、阴离子个数比;2.确定X的化学式;3.如果X晶体的晶胞参数为a(cm),X的摩尔质量为M X(g/mol),写出X密度的表达式;4.X晶体中Na+的空间排列方式与CsCl晶体中的Cs+(或Cl-)的排列方式是否完全一样?如果将阴离子看作由Na+形成的空隙中,那么占有率为多大?5.如果晶胞的坐标原点为Na+,请画出该晶胞全部阴离子的空间构型(阴离子用●表示)6.某钾盐Y的阴离子组成和在晶胞中的排列方式与X相似,而K+填充在全部八面体空隙中,写出Y的化学式。
六.(5分)Na2O为反CaF2型结构,晶胞参数a=555pm。
1.计算Na+的半径(已知O2-半径为140pm);2.计算密度。
七.(8分)点阵素单位是指最小的重复单位,将最小重复单位的内容用一个点阵表示,最小重复单位中只含一个点阵点,称为素单位。
含2个或2个以上点阵点的单位称为复单位。
画出素单位的关键是能按该单位重复,与单位预角上是否有圆圈无关。
某平面周期性结构系按右图单位重复堆砌而成。
1.写出该素单位中白圈和黑圈的数目。
2.请画出2种点阵素单位,要求一种顶点无原子,另一种顶点有原子。
3.请画出石墨片层的3种点阵素单位。
八.(10分)最简单的二元硼氮化合物可以通过下列反应合成:B2O3(l)+2NH3(g) 2BN(s)+3H2O(g)反应产生的氮化硼的结构与石墨结构相类似,但上、下层平行,B、N原子相互交替B NH 3BO 3的层状结构(见图1),其层状六方氮化硼的晶胞如图2所示。
层内B -N 核间距为145 pm ,面间距为333 pm 。
请回答下列问题:⑴写出晶胞中B 、N 原子的原子坐标。
B 原子: ,N 原子 。
⑵试列出求算层状六方氮化硼晶体的密度的计算式:(阿伏加德罗常数用N A 表示) 。
⑶在高压(60 kpa )、高温(2000℃)下,层状六方氮化硼晶体可转化为立方氮化硼, 它与金刚石有类似结构。
若立方氮化硼晶胞的边长为a pm ,试列出求算立方氮化硼晶体 中B -N 键键长的计算式: 。
九.(8分)正硼酸(H 3BO 3)是一种片层状结构白色晶体,层内的H 3BO 3分子通过氢键相连(如右图)。
1.正硼酸晶体属于 晶体;2.片层内微粒间的作用力是上面?片层间微粒间的作用力又是上面?3.含1mol H 3BO 3的晶体中有 mol 氢键;4.以1个片层为研究对象,画出其二维晶胞,并指出其所包含的内容。
十.(11分)Ar 、Xe 、CH 4、Cl 2等分子能和水形成气体水合物晶体。
在这种晶体中,水分子形成三维氢键骨架体系。
在骨架中有空穴,它可以容纳这些气体小分子形成笼型结构。
(1)甲烷的气体水合物晶体成为可燃冰。
已知每1m 3这种晶体能释放出164m 3的甲烷气体。
试估算晶体中水与甲烷的分子比。
(不足的数据由自己假定,只要假设合理均按正确论)(2)X -射线衍射分析表明,该晶体属于立方晶系,a =1200pm (即晶胞为立方体,边长为1200pm )。
晶胞中46个水分子围成两个五角十二面体和六个稍大的十四面体(2个六角形面,12个五角形面),八个CH 4分子可以进入这些多面体笼中。
计算甲烷和水的分子数之比和该晶体的密度。
(3)已知Cl 2的气体水合物晶体中,Cl 2和H 2O 的分子数之体为1︰8,在其晶体中水分子所围成的笼型结构与可燃冰相同。
推测它的结构。
十一.近年来对于三价铜的研究日益深入,特别随着是钇钡铜氧化物的研究的深入,三价铜化合物越来越受到化学家的重视。
起初发现的三价铜化合物为离子化合物,三价铜存在于阴离子[Cu2O6]6-中,目前所发现的三价铜配合物都是四配位的。
1.画出[Cu2O6]6-的结构;2.一种三价铜的稀土化合物LaCuO3的晶格属立方晶系,氧离子位于棱心,阳离子各占据氧离子所构成的空隙中,其中三价铜离子的配位数是La(Ⅲ)的一半,试画出LaCuO3的晶胞。
十二.(12分)Q为多核电中性对称配合物,化学式可写成M3A3Cl3,其中M为中心原子,A为一有机配体(由常见元素组成)。
A为中性配体,不带电荷,M的质量分数为30.70%。
空气中灼烧有白烟和刺激性气体生成,A中也有一C3轴。
将Q溶解在液氨中得R,分离溶液后蒸馏结晶再灼烧,得红褐色固体氧化物。
R可由一常见白色难溶物(氯化物)溶解在液氨中制得。
1.M为何种元素,指出其配位数;2.推出A的化学式;3.画出Q的结构。
十三.(8分)发光材料Y2O2S的晶体属三方晶系,它的六方晶胞参数为:a=378.8pm,c=659.1pm。
在晶体中,每个Y原子由3个S原子和4个O原子和它配位,Y原子坐标为±(1/3,2/3,0.71),O原子坐标为±(1/3,2/3,0.36),试画出Y2O2S的晶胞。
十四.(14分)钛酸锶是电子工业的重要原料,与BaTO3相比,具有电损耗低,色散频率高,对温度、机械应变、直流偏场具有优良稳定性。
因此可用于制备自动调节加热元件、消磁元器件、陶瓷电容器、陶瓷敏感元件等。
制备高纯、超细、均匀SrTiO3的方法研究日益受到重视。
我国研究者以偏钛酸为原料常压水热法合成纳米钛酸锶,粒子呈球形,粒径分布较均匀,平均22nm。
已知SrTiO3立方晶胞参数a=390.5pm。
1.写出水热法合成纳米钛酸锶的反应方程式;2.SrTiO3晶体的结构可看作由Sr2+和O2-在一起进行(面心)立方最密堆积(ccp),它们的排列有序,没有相互代换的现象(即没有平均原子或统计原子),它们构成两种八面体空隙,一种由O2-构成,另一种由Sr2+和O2-一起构成,Ti4+只填充在O2-构成的八面体空隙中。
(1)画出该SrTiO3的一个晶胞(Ti4+用小球,O2-用大○球,Sr2+用大球)(2)容纳Ti4+的空隙占据所有八面体空隙的几分之几?(3)解释为什么Ti4+倾向占据这种类型的八面体空隙,而不是占据其他类型的八面体空隙?(4)通过计算说明和O2-进行立方密堆积的是Sr2+而不是Ti4+的理由(已知O2-半径为140pm)3.计算22nm(直径)粒子的质量,并估算组成原子个数。
十五.(11分)硫化锰MnS是赭色物质,用碱金属硫化物沉淀制得。
1.计算纯水中MnS的溶解度?已知MnS的K sp为3×10-14,H2S的K1和K2分别为1.0×10-7和1.2×10-132.α-MnS晶体属于立方晶系,用X射线粉末法测得该晶体晶胞参数a=522.4pm;(1)26℃测得该晶体的密度为4.05g/m3,请计算一个晶胞中的离子数;(2)若某α-MnS纳米颗粒形状为立方体,边长为α-MnS晶胞边长的10倍,请估算其表面原子占总原子数的百分比。
(已知S2-的半径0.184nm)十六.(6分)金属M的晶格是面心立方,密度为8.90g/cm3,计算:1.Ni晶体中最邻近的原子之间的距离。
2.能放入Ni晶体空隙中的最大原子半径是多少?。