研究生矩阵论课后习题答案(全)习题三

合集下载

研究生矩阵理论课后答案3章习题

研究生矩阵理论课后答案3章习题

#3-16:设若A,BHmn,且A正定,试证:AB与BA的特 征值都是实数. 证2:由定理3.9.1,PAP*=E,则 PABP-1=PAP*(P*)-1BP-1=(P-1)*BP-1=MHmn, 即AB相似于一个Hermite矩阵M. ∴ (AB)=(M)R,得证AB的特征值都是实数.又 因BA的非零特征值与AB的非零特征值完全相 同,故BA的特征值也都是实数. 证3:det(E-AB)=det(A(A-1-B)) =det A det(A-1-B)=0. 但det A >0,A-1正定和det(A-1-B)=0的根全为实 数(见例3.9.1的相关证明)
xa
i 1 j 1
n
n
i ij
yj
xa x ya
i ij j i j i j
n
n
n
n
i ij
yj
习题3-3(1)
#3-3(1):已知A= ,试求UUnn使U*AU=R为 上三角矩阵. 解:det(E-A)=(+1)3给出=-1是A的3重特征值. 显然,1=(0,1,0)T是A的一个特征向量.作酉矩阵 V=(1,2,3),2=(1,0,0)T,3=(0,0,1)T,则 V*AV=
习题3-19设A是正定Hermite矩阵且 AUnn,则A=E
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*) 其中1,…,n是A的特征值的任意排列. A 是正定蕴含 i>0,i=1,…,n AUnn 蕴含|i|=1,i=1,…,n 因此 i=1,i=1,…,n ∴ A=Udiag(1,…,n)U*=UEU*=UU*=E.
习题3-14
#3-14:若AHnn,A2=E,则存在UUnn使得 U*AU=diag(Er,-En-r).

《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2

《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2

= k1 1 ( 1 , ) k 2 2 ( 2 , ) = k1 H 1 k 2 H 2 故 是线性变换.又因为
( H , H ) ( ( , ) , ( , ) ) ( , ) ( , ) 2 ( 2 2 )
, (i 1, , n 2) .如此
又因为各行与第 n 1 行正交,故 ai ,n1 0 由下往上逐行递推,即得结果.
8
17. 证:因为
( A S )( A S ) ( A S ) ( A S ) ( A S )
1 T 1 T T
5. 证:由 ( ( ( 得
cos , ( , )
( ), ( ), (β),
(β))= ( , β) ( ))=( , ) (β))= (β, β)
. ( ), (β))/| ( ), (β)> ( ) || (β)) |
= (
= cos<
1
1
,使
1
( 1 ) 1 . 令
1
( j ) j ( j 2,3, , n) ,如果 j j , j 2,3, , n ,则
2
=
,结论
成立.否则可设 2 2 ,再作镜面反射
2

2 2 2 2
( ) 2( , ) ,

于是
2
( 2 ) 2 ,且可验算有
2
(1 ) 1 .
如此继续下去,设经 s 次正交变换
1 , 2 , n , 1 , 2 , , n
1 , 2 , 3, , n 1 , 2 , , n

矩阵论课后题答案(研究生用书)改

矩阵论课后题答案(研究生用书)改

⎞ ⎠

A
P
⎞ ⎠
⎠ ⎞
P

− 1
A

A
J
P
P
A P
J
A f f A f E E A A A A
⎞ ⎠
A
A
A
A
E
A
E

A
A A E
A

f A
A
A
A
A
A
E
A
E
E
A A


A A A
A
A
E
2
f
E
A
f A
⎞ ⎠
A
A A A E A
A
E
A
A
⎠ ⎞
E
A
E


⎞ ⎠
f A E
E

A
A
E
⎞ ⎠
f A E E E
0 0
x
x
x
A A
E
E E A A A A A E
⎞ ⎠
j
E
E A A A A
A
E E
A E
E A
A
A
E A
A
A
F
j
F
j
j
A
E
A
A
A A E A g A E A E A E A g A A E A E E A A A E
A
A
A
F
A
A
H
A
A A A A
F
A
H
A
A
A
A
A
A
F

研究生矩阵论课后习题答案(全)习题二

研究生矩阵论课后习题答案(全)习题二

习题二1.化下列矩阵为Smith 标准型:(1)222211λλλλλλλλλ⎡⎤-⎢⎥-⎢⎥⎢⎥+-⎣⎦; (2)22220000000(1)00000λλλλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (3)2222232321234353234421λλλλλλλλλλλλλλ⎡⎤+--+-⎢⎥+--+-⎢⎥⎢⎥+---⎣⎦;(4)23014360220620101003312200λλλλλλλλλλλλλλ⎡⎤⎢⎥++⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥---⎣⎦. 解:(1)对矩阵作初等变换133122222222111001100(1)c c r r λλλλλλλλλλλλλλλλλλλλλ+-⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥-−−−→-−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+---+⎣⎦⎣⎦⎣⎦23221311(1)1010000000(1)00(1)c c c c c c r λλλλλλλλλ+--⨯-⎡⎤⎡⎤⎢⎥⎢⎥−−−→-−−−→⎢⎥⎢⎥⎢⎥⎢⎥-++⎣⎦⎣⎦,则该矩阵为Smith 标准型为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+)1(1λλλ; (2)矩阵的各阶行列式因子为44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=,从而不变因子为222341234123()()()()1,()(1),()(1),()(1)()()()D D D d d d d D D D λλλλλλλλλλλλλλλλ===-==-==-故该矩阵的Smith 标准型为2210000(1)0000(1)0000(1)λλλλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦;(3)对矩阵作初等变换1332212132132222222222242322(2)2(2)323212332212435323443322421221762450110221c c c c r r r r c c c λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ-------⎡⎤⎡⎤+--+----⎢⎥⎢⎥+--+-−−−→---⎢⎥⎢⎥⎢⎥⎢⎥+-----⎣⎦⎣⎦⎡⎤-+--++-⎢⎥−−−−→--⎢⎥⎢⎥--⎣⎦3122131211342322(2)3232(1)32(5)(1)27624501100011245001000110010001001000100(1)(c c c r r r r r c c λλλλλλλλλλλλλλλλλλλλλλλλλ---+↔+--⨯-↔⎡⎤-+--++-⎢⎥−−−−−→--⎢⎥⎢⎥⎣⎦⎡⎤-+---++-⎢⎥−−−−→-⎢⎥⎢⎥⎣⎦⎡⎤--+⎢⎥−−−−−→-−−−→-⎢⎥⎢⎥-⎣⎦1)⎡⎤⎢⎥⎢⎥⎢⎥+⎣⎦故该矩阵的Smith 标准型为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--)1()1(112λλλ; (4)对矩阵作初等变换152323230100014360220002206200020101001010033122003312200c c c c λλλλλλλλλλλλλλλλλλλλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥+++⎢⎥⎢⎥⎢⎥⎢⎥−−−→⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦12213231322000100010002200000020002010100100000100001000c c r r c c c c λλλλλλλλλλλλλλ+-+-⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦2143145425222000101000000000000000000001000000010010000001r r c c c c c c c c λλλλλλλλλλ--↔-↔⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦在最后的形式中,可求得行列式因子3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===,于是不变因子为2541234534()()()()()1,()(1),()(1)()()D D d d d d d D D λλλλλλλλλλλλλ=====-==-故该矩阵的Smith 标准形为2100000100000100000(1)00000(1)λλλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦. 2.求下列λ-矩阵的不变因子:(1)210021002λλλ--⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦;(2)10010000λαββλαλαββλα+⎡⎤⎢⎥-+⎢⎥⎢⎥+⎢⎥-+⎣⎦; (3)100100015432λλλλ-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥+⎣⎦; (4)0012012012002000λλλλ+⎡⎤⎢⎥+⎢⎥⎢⎥+⎢⎥+⎣⎦. 解:(1)该λ-矩阵的右上角的2阶子式为1,故12()()1,D D λλ==而33()(2)D λλ=-,所以该λ-矩阵的不变因子为2123()()1,()(2)d d d λλλλ===-;(2)当0β=时,由于4243()(),()()D D λλαλλα=+=+,21()()1D D λλ==,故不变因子为12()()1d d λλ==,2234()(),()()d d λλαλλα=+=+当0β≠时,由于224()[()]D λλαβ=++,且该λ-矩阵中右上角的3阶子式为2(),βλα-+且4(2(),())1D βλαλ-+=,则3()1D λ=,故21()()1D D λλ==,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===224()[()]d λλαβ=++;(3)该λ-矩阵的右上角的3阶子式为1-,故123()()()1,D D D λλλ===而4324()2345D λλλλλ=++++,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ=== 4324()2345d λλλλλ=++++;(4)该λ-矩阵的行列式因子为123()()()1,D D D λλλ===44()(2)D λλ=+,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===44()(2)d λλ=+.3.求下列λ-矩阵的初等因子:(1)333232212322λλλλλλλλ⎡⎤++⎢⎥--+--+⎣⎦; (2)3223222212122122λλλλλλλλλλ⎡⎤-+--+⎢⎥-+--⎣⎦. 解:(1)该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλ==+-,故初等因子为21,(1)λλ+-;(2) 该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλλ=-=+-,故不变因子为12()1,()(1)(1),d d λλλλλ=-=+-因此,初等因子为1,1,1λλλ+--.4.求下列矩阵的Jordan 标准形:(1)131616576687⎡⎤⎢⎥---⎢⎥⎢⎥---⎣⎦;(2)452221111-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦;(3)3732524103-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4)111333222-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦;(5)03318621410⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦;(6)1234012300120001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 解:(1)设该矩阵为A ,则210001000(1)(3)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥-+⎣⎦,故A 的初等因子为2(1)(3)λλ-+,则A 的Jordan 标准形为300011001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (2)设该矩阵为A ,则310001000(1)E A λλ⎡⎤⎢⎥-→⎢⎥⎢⎥-⎣⎦,故A 的初等因子为3(1)λ-,从而A 的Jordan 标准形为110011001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(3)设该矩阵为A ,则210001000(1)(1)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥-+⎣⎦,故A 的初等因子为1,,,i i λλλ-+-从而A 的Jordan 标准形为1000000i i ⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (4)设该矩阵为A ,则21000000E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥⎣⎦,故A 的初等因子为2,λλ,从而A 的Jordan 标准形为000001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (5)设该矩阵为A ,则210001000(1)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥+⎣⎦,故A 的初等因子为2,(1)λλ+,从而A 的Jordan 标准形为000011001⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (6)设该矩阵为A ,则1234012300120001E A λλλλλ----⎡⎤⎢⎥---⎢⎥-=⎢⎥--⎢⎥-⎣⎦, 该λ-矩阵的各阶行列式因子为123()()()1,D D D λλλ===44()(1)D λλ=-,则不变因子为123()()()1,d d d λλλ===44()(1)d λλ=-,故初等因子为4(1)λ-,则A 的Jordan 标准形为1100011000110001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 5.设矩阵142034043A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦,求5A .解:矩阵A 的特征多项式为2()(1)(5)A f I A λλλλ=-=--,故A 的特征值为11λ=,235λλ==.属于特征值11λ=的特征向量为1(1,0,0)Tη=,属于235λλ==的特征向量为23(2,1,2),(1,2,1)T Tηη==-.设123121[,,]012021P ηηη⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,100050005⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,则1A P P -=Λ.,故4455144441453510354504535A P P -⎡⎤⨯⨯-⎢⎥=Λ=-⨯⨯⎢⎥⎢⎥⨯⨯⎣⎦. 6.设矩阵211212112A --⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,求A 的Jordan 标准形J ,并求相似变换矩阵P ,使得1P AP J -=.解:(1) 求A 的Jordan 标准形J .221110021201011200(1)I A λλλλλλ-⎡⎤⎡⎤⎢⎥⎢⎥-=-+→-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦,故其初等因子为21,(1)λλ--,故A 的Jordan 标准形100011001J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.(2)求相似变换矩阵P .考虑方程组()0,I A X -=即1231112220,111x x x -⎡⎤⎛⎫⎪⎢⎥-= ⎪⎢⎥ ⎪⎢⎥--⎣⎦⎝⎭解之,得12100,111X X ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.其通解为1122k X k X +=1212k k k k ⎛⎫⎪⎪ ⎪-⎝⎭,其中21,k k 为任意常数.考虑方程组1122312111222,111x k x k x k k -⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥---⎣⎦⎝⎭⎝⎭11212121211111122200021110002k k k k k k k k k --⎡⎤⎡⎤⎢⎥⎢⎥-→-+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,故当1220k k -=时,方程组有解.取121,2k k ==,解此方程组,得3001X ⎛⎫⎪= ⎪ ⎪⎝⎭.则相似变换矩阵123100[,,]010111P X X X ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦.7.设矩阵102011010A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,试计算8542234A A A A I -++-. 解: 矩阵A 的特征多项式为3()21A f I A λλλλ=-=-+,由于8542320234(21)()(243710)f λλλλλλλλλ-++-=-++-+,其中532()245914f λλλλλ=+-+-. 且32A A I O -+=,故8542234A A A A I -++-=2348262437100956106134A A I --⎡⎤⎢⎥-+=-⎢⎥⎢⎥-⎣⎦.8.证明:任意可逆矩阵A 的逆矩阵1A -可以表示为A 的多项式. 证明:设矩阵A 的特征多项式为12121()n n n A n n f I A a a a a λλλλλλ---=-=+++++,则12121n n n n n A a A a A a A a I O ---+++++=,即123121()n n n n n A A a A a A a I a I ----++++=-,因为A 可逆,故(1)0nn a A =-≠,则11231211()n n n n nA A a A a A a I a -----=-++++9.设矩阵2113A -⎡⎤=⎢⎥⎣⎦,试计算4321(5668)A A A A I --++-.解: 矩阵A 的特征多项式为2()57A f I A λλλλ=-=-+,则227A A I O -+=,而432225668(57)(1)1λλλλλλλλ-++-=-+-+-,故14321111211(5668)()12113A A A A I A I ----⎡⎤⎡⎤-++-=-==⎢⎥⎢⎥-⎣⎦⎣⎦. 10.已知3阶矩阵A 的三个特征值为1,-1,2,试将2nA 表示为A 的二次式. 解: 矩阵A 的特征多项式为()(1)(1)(2)A f I A λλλλλ=-=-+-,则设22()()n f g a b c λλλλλ=+++,由(1)0,(1)0,(2)0,f f f =-==得21,1,422.n a b c a b c a b c ++=⎧⎪--=⎨⎪++=⎩解之,得2211(21),0,(24)33n n a b c =-==--,因此2222211(21)(24)33n n n A aA bA cI A I =++=---.11.求下列矩阵的最小多项式:(1)311020111-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(2)422575674-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (3)n 阶单位阵n I ;(4)n 阶方阵A ,其元素均为1;(5)0123103223013210a a a a a a a a B a a a a a a a a ⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥--⎣⎦. 解:(1) 设311020111A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 231110002002011100(2)I A λλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥-=-→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,故该矩阵的最小多项式为2(2)λ-.(2) 设422575674A -⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,则 2(2)(511)I A λλλλ-=--+,故该矩阵有三个不同的特征值,因此其最小多项式为2(2)(511)λλλ--+(3) n 阶单位阵n I 的最小多项式为()1m λλ=-. (4) 因为1()n I A n λλλ--=-,又2A nA =,即2A nA O -=,故该矩阵的最小多项式为()n λλ-.(5)因为22222200123[2()]I B a a a a a λλλ-=-++++,而2222200123()2()m a a a a a λλλ=-++++是I B λ-的因子,经检验知()m λ是矩阵B 的最小多项式.。

矩阵论第三章答案

矩阵论第三章答案
d1 (λ ) = L = d n −1 (λ ) = 1 , d n (λ ) = (λ − a )
n
因此初等因子只有一个,即有 (λ − a )n .
11. 证:
A( λ )与 B( λ )相抵当且仅当它们有相同的不变因
子,当且仅当它们的各阶行列式因子相同.
1 1 ⎤ ⎡λ − 2 ⎢ 12. 解 : ( 1 ) 因 为 λI − A = ⎢ − 2 λ + 1 2 ⎥ ⎥ 的初等因子为 ⎢ − 1 λ − 2⎥ ⎣ 1 ⎦
0 0 ⎤ r2 − (− 1)r3 ⎡1 0 0 ⎤ c 2 − (2λ − 1)c1 ⎡1 ⎢0 ⎥ ⎢ 2 λ − λ ⎥ ⎯⎯ ⎯ λ2 ⎥ ⎯⎯ ⎯ ⎯→ ⎢ ⎯→ ⎢0 λ ⎥ 2 2 2 ⎥ ⎢ ⎥ c3 + (− λ )c1 ⎢ ( ) r + 1 − λ r 0 λ − λ − λ − λ 0 0 − λ − λ 3 2 ⎣ ⎦ ⎣ ⎦
2. 解 : ( 1)因为 A 的特征矩阵为
⎡λ + 1 ⎤ ⎢ ⎥ λ+2 ⎢ ⎥ A(λ ) = λI − A = ⎢ ⎥ λ −1 ⎢ ⎥ λ − 2⎦ ⎣
所以 A( λ )的行列式因子为
⎡1⎤ A=⎢ ⎥ ⎣1⎦
不变因子为
d 1 (λ ) = D1 (λ ) = 1, d 4 (λ ) = D4 (λ ) D3 (λ ) d 2 (λ ) = d 3 (λ ) = 1,
10. 解:
因为 A(λ ) = (λ − a )n ,所以 Dn (λ ) = (λ − a )n ,又因
c1 λ − a c2 O
O
= c1c 2 L c n −1 ≠ 0 ,
λ − a c n −1

研究生矩阵论课后习题答案(全)习题一

研究生矩阵论课后习题答案(全)习题一
A = ∑∑ aij Fij ,故 F11 ,L , F1n , F22 , L , F2 n , L , Fnn 是 R n×n 中全体对称矩阵所构
i =1 j =1 n n
成的线性空间的一组基,该线性空间的维数是
n(n + 1) . 2
② 令 Gij = Eij − E ji (i < j ) , 则 Gij 是 反 对 称 矩 阵 , 易 证

(1)设 Eij 是第 i 行第 j 列的元素为 1 而其余元素全为 0 的 n 阶方阵.
①令 Fij = ⎨
⎧ Eii , i = j , 则 Fij 是对称矩阵, 易证 F11 ,L , F1n , F22 , L , F2 n , ⎩ Eij + E ji , i ≠ j
L , Fnn 线 性 无 关 , 且 对 任 意 n 阶 对 称 矩 阵 A = (aij ) n×n , 其 中 aij = a ji , 有
1(1 − 1) 2 a ) = ( a, b) 2
= k o ( a, b) + l o ( a, b) = k o α + +l o α ;
⑧ k o (α ⊕ β ) = k o (a + c, b + d + ac)
k (k − 1) (a + c) 2 ) 2 k (k − 1) 2 k (k − 1) 2 = (ka + kb, (kb + a ) + (kd + c ) + (ka)(kc)) 2 2 k (k − 1) 2 k (k − 1) 2 = (ka, kb + a ) ⊕ (kc, kd + c ) 2 2 = (k (a + b), k (b + d + ac) +

研究生矩阵论课后习题答案(全)习题四

研究生矩阵论课后习题答案(全)习题四

习题四1.求下列微分方程组的通解(1)⎪⎩⎪⎨⎧+=+=;34,2212211x x dt dxx x dt dx (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-+=+=. ,3233212321,x x dt dx x x x dt dxx x dt dx解:(1)设,3421⎪⎪⎭⎫⎝⎛=A ⎪⎪⎭⎫⎝⎛=21x x x ,则原方程组可写为 Ax dtdx=, 矩阵A 的特征方程为0)1)(5(3421=+-=----=-λλλλλA I ,则矩阵A 的特征值为51=λ,12-=λ,求得矩阵A 的特征向量分别为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛11,21,令⎥⎦⎤⎢⎣⎡-=1211P ,则⎥⎦⎤⎢⎣⎡-=-1211311P ,有 Λ=⎥⎦⎤⎢⎣⎡-=-10051AP P ,1-Λ=P P A , 则⎥⎦⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-==------Λt t tt t t tt t t t Ate e e e e e e e e e PPe e55555122231121100121131. 故该方程组的通解为⎪⎪⎭⎫⎝⎛--+-++=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡+--+==------t t t t t t ttt t tt At e c c e c c e c c e c c c c e e e e e e e e c e x )2()22()2()(31222312152121521215555其中21,c c 为任意常数.(2)设,110111110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=A ⎪⎪⎪⎭⎫⎝⎛=321x x x x ,则原方程可写为Ax dtdx=, 矩阵A 的特征方程为0)1(2=-=-λλλA I ,则矩阵A 的特征值为01=λ,132==λλ.A 的属于特征值01=λ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-=1121η,由方程组⎩⎨⎧+==32322ηηηηηA A 解得A 的属于特征值132==λλ的广义特征向量为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,10132ηη.令[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==111101112,,321ηηηP ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1113121011P ,有11,100110000--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=PJP A J AP P ,由于⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t t tJt e te e e 000001, 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==-1113121010000011111011121t t tJt At e te e P Pe e ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--+-+-+-=t t tt t tt tt t t tt te e te te e e e e te e te te e 21111222,故方程组的通解为⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--+-+-+-==32121111222c c c te e te te e e e e te e te te e c e x t t tt t tt tt t t tt At ,其中321,,c c c 为任意常数.2.求微分方程组Ax dtdx=满足初始条件ξ=)0(x 的解: (1)⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=33,3421ξA ,(2)⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=001,102111121ξA .解:(1)由第1题知⎥⎦⎤⎢⎣⎡+--+=----t t t tt t tt Ate e e e e e e e e555522231,故微分方程组Ax dtdx=满足初始条件ξ=)0(x 的解为 ⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+--+==------t t t t t t ttt t tt Ate e e e e e e e e e e e e x 555555423322231ξ. (2)矩阵A 的特征方程为0)1)(3(2=+-=-λλλA I ,故矩阵A 的特征值为31=λ,132-==λλ.A 的属于特征值31=λ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛=2121η,由方程组⎩⎨⎧-=-=32322ηηηηηA A 解得A 的属于特征值132-==λλ的广义特征向量为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=021,21232ηη,令[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==022211122,,321ηηηP ,则⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=-24025122312811P,有 11,100110003--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=PJP A J AP P ,又 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---t t t t Jt e te e e e 000003, 故微分方程组Ax dtdx=满足初始条件ξ=)0(x 的解为 ξξ1-==P Pe e x Jt At ⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=---00124025*******000022211122813t t t te te e e⎪⎪⎪⎭⎫⎝⎛--+=---t t tt t t e e e e e e 44224481333. 3.求)(t Bu Ax dtdx+=满足条件ξ=)0(x 的解: (1)⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=-21,)(,41,3421c c e t u B A tξ (2)⎪⎪⎪⎭⎫⎝⎛-==⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101,1)(,262,0061011016ξt u B A解:(1)由第1题知⎥⎦⎤⎢⎣⎡+--+=----t t t tt t t t Ate e e e e e e e e555522231, 则⎪⎪⎭⎫⎝⎛--+-++=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡+--+=------t t t t t t ttt t tt Ate c c e c c e c c e c c c c e e e e e e e e e )2()22()2()(31222312152121521215555ξ,⎪⎪⎭⎫⎝⎛++-=⎪⎪⎭⎫⎝⎛-⎥⎦⎤⎢⎣⎡+--+=------------------v t t v t t v v v t v t v t v t v t v t v t v t v t A e e e e e e e e e e e e e e v Bu e6565)()(5)()(5)()(5)()(5)(6636314222231)(故 ⎥⎥⎦⎤⎢⎢⎣⎡+-+--=-----⎰t t t t t ttv t A e e te e e te dv v Bu e 550)(62121631)( 则该方程组的解为⎪⎪⎪⎪⎭⎫⎝⎛++--++---+++=+=-----⎰t t t t t t tv t A At te e c c e c c te e c c e c c dv v Bu e e t x 2])12()122[(312])212()21[(31)()(21521215210)(ξ(2)矩阵A 的特征方程为0)3)(2)(1(=+++=-λλλλA I ,则A 的特征值为11-=λ,3,232-=-=λλ,求得其特征向量分别为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=231,341,651321ηηη.令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-139********,2363451111P P ,有 11,300020001--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=PJP A J AP P ,又 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---t t t Jt e e e e 32000000, 则ξξ1-=P Pe e Jt At ⎪⎪⎪⎭⎫⎝⎛-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---101139248111000002363451112132t t te e e ⎪⎪⎪⎭⎫ ⎝⎛+-+-+-=------t t tt t t e e e e e e 32323289121243 , ⎪⎪⎪⎭⎫ ⎝⎛++-++-++-=⎪⎪⎪⎭⎫ ⎝⎛=---------------------)(3)(2)()(3)(2)()(3)(2)(1)()(2663852262)(v t v t v t v t v t v t v t v t v t v t J v t A e e e e e e e e eP Pe v Bu e故 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+--=----------⎰373236453131)(3232320)(t t t tt t t tt tv t A e e e e e e e e e dv v Bu e则该方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+--+⎪⎪⎪⎭⎫ ⎝⎛+-+-+-=+=----------------⎰37323645313189121243)()(3232323232320)(t tt tt t t tt t t t t tttv t A At e e e e e e e e e e e e e e e dv v Bu e e t x ξ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+-++-=---------3732212611165313114323232t t t tt t t tt e e e e e e e e e .4.求方程te y y y y -=+'+''+'''6116满足0)0()0()0(=''='=y y y 的解.解:令y x y x y x ''='==321,,,则⎪⎩⎪⎨⎧+---='''='='='-,6116 , ,32133221t e x x x y x x x x x 写成向量方程组为t Be Ax x -+=',其中⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=100,6116100010B A .对于矩阵A ,有J PAP=-1,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-321,132********,9413211111J P P于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---t tt Jt e e e e 32, 1-=P Pe e Jt At⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+--+--+--+-+-+-+-=---------------------------t t t tt t t t t t t t t t t t t t t t t t t t tt t e e e e e e e e e e e e e e e e e e e e e e e e e e e 3232323232323232329827325182463491656126238526621由于⎪⎪⎪⎭⎫ ⎝⎛=000)0(x ,则⎰⎰----=+=tv v t A t v v t A At dv Be e dv Be e x e t x 0)(0)()0()(⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-----+--+--=---------)1(29)1(8)1(23)1(4)1(21)1(221232232232t t tt t t t t t t t t tt t e e e e te e e e e te e e e e te故原方程的解为t t t t t t t t t e e e te e e e e te x y 322321414321)]1(21)1(2[21--------+-=-+--==5.试证明:若A 为2阶方阵,其特征值为21,λλ,特征向量为21,P P ,则方程Ax dtdx= 的解一定能表示成221121P e c P e c x t t λλ+=,其中21,c c 由下式确定:2211)0(P c P c x +=,然后利用这一结论求解定解问题:⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡--=11)0(,651021x x x dt dx 的解,并将这一结论推广到n 阶方阵情形.(1)证明:令],[21P P P =,则,,121211--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=P P A AP P λλλλ于是x P P dt dx121-⎥⎦⎤⎢⎣⎡=λλ, x P dt dx P 1211--⎥⎦⎤⎢⎣⎡=λλ 令,1x P y -=则dtdxP dt dy 1-=,微分方程化为 y dt dy ⎥⎦⎤⎢⎣⎡=21λλ 其解为⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=2121c c e e y t tλλ, 故方程Ax dtdx=的解一定能表示成 221121212121],[c e c P e c c c e e P P Py x t t t tλλλλ+=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡== 若是定解问题,则21,c c 由2211)0(P c P c x +=确定.(2)解:矩阵⎥⎦⎤⎢⎣⎡--6510的特征值为5,121-=-=λλ,特征向量分别为⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=51,1121P P , 则方程组⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--=216510x x dt dx 的通解为⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-------t t t t t te c e c e c e c e c e c 52152152155111,由于⎪⎪⎭⎫⎝⎛=11)0(x ,则⎩⎨⎧=--=+1512121c c c c , 解之,得⎪⎩⎪⎨⎧-==212321c c , 故原方程组的解为⎪⎪⎪⎪⎭⎫⎝⎛+--=⎪⎪⎭⎫ ⎝⎛----t t t t e e ee x x 552125232123. (3) n 阶方阵的情形:设微分方程组Ax dtdx=, 其中系数矩阵A 为n 阶可对角化矩阵,其特征值为n λλλ,,,21 ,特征向量分别为n P P P ,,,21 ,则该方程组的通解为n t n t P e c P e c P e c x n t λλλ+++= 221121,其中n c c c ,,,21 为任意常数.若为定解问题,则常数n c c c ,,,21 可由初始条件确定.6.已知),(0t t Φ是方程组)()()(t x t A dtt dx = 的转移矩阵,试证)(),(),(0000t A t t t t dt d ΦΦ-=. 证明:由于I t t t t =ΦΦ),(),(00,两边对0t 求导得,0),(),(),(),(000000=ΦΦ+ΦΦdt t t d t t t t dt t t d , 由于),(0t t Φ是方程组)()()(t x t A dtt dx =的转移矩阵,则 ),()(),(00t t t A dtt t d Φ=Φ, ),()(),(0000t t t A dt t t d Φ=Φ, 故0),()(),(),(),(000000=ΦΦ+ΦΦt t t A t t t t dt t t d , 两边右乘),(),(001t t t t Φ=Φ-,得 0)(),(),(0000=Φ+Φt A t t dt t t d , 即)(),(),(0000t A t t t t dt d ΦΦ-=. 7.求时变系统⎪⎩⎪⎨⎧===00)()()(x t x t x t A dtdx t t 的解,其中0),(x t A 分别如下:(1)⎪⎪⎭⎫ ⎝⎛=-101)(t e t A ,0,1100=⎪⎪⎭⎫ ⎝⎛=t x (2)⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+=111,000)1(100110)(022x t t t A [该题有误: )()()()(1221t A t A t A t A ≠](3)0,11,21)(00=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=t x t t t A 解:(1)对任意的21,t t ,有)()(101)()(122121t A t A e e t A t A t t =⎥⎦⎤⎢⎣⎡+=--, 故方程组的转移矩阵为+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++=⎰=Φ⎰⎰⎰30200)()(!31)(!21)()0,(0t t t dv v A dv v A dv v A dv v A I e t t由于⎥⎦⎤⎢⎣⎡-=-⎰t e t dv v A t t01)(0, ⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-⎰22200)1(2!21)(!21t e t t dv v A t t ,⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-⎰323300)1(3!31)(!31t e t t dv v A t t , ……… ⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛--⎰n t n n n t t e nt t n dv v A n 0)1(!1)(!110 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-++++++++=- 323232!31!2110)1)(!31!211(!31!211)0,(t t t e t t t t t t t t Φ ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=-t t t t t t te e e e e e e 010)1(. 故该方程组的解为 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-=Φ=t t t t t e e e e e x t t x 121101)0,()(0 (3) 由于)(t A 各元素在区间],0[t 上有界,则该方程组的转移矩阵为⎰⎰⎰++=t v t dv v A dv v A dv v A I t 00221101)()()()0,(Φ ⎰⎰⎰++21033002211)()()(v t v dv v A dv v A dv v A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++++++= 4233428123122181231t t t t t t t t 故该方程组的解为⎪⎪⎪⎪⎭⎫ ⎝⎛+-+-+-++-+-=Φ= 43243208123218121231)0,()(t t t t t t t t x t t x 8.求下列定解问题的解:⎪⎩⎪⎨⎧=+=,00)(),()()()(x t x t u t B t x t A dt dx 其中(1)0,11,1)()(,101)(00=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡=-t x t t u t B e t A t (2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+=111,01)()(,000)1(100110)(022x t t u t B t t t A 解:(1)由于系统所对应的齐次系统的转移矩阵为 ⎥⎦⎤⎢⎣⎡-=Φ----00000),(20t t t t t t t e e e e t t , 则该系统的解为⎰Φ+Φ=t dv v Bu v t x t t x 00)(),()0,()( dv v e e e e e e e t v t v v t v t t t t⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡-=⎰----10110102 ⎰⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-=----t v t v v t v t t dv e e e ve e 021 ⎪⎪⎪⎭⎫ ⎝⎛---++⎪⎪⎭⎫ ⎝⎛-=-1223211t t t t e t e e e ⎪⎪⎭⎫ ⎝⎛---+=-112321t e e t t。

矩阵论课后习题答案

矩阵论课后习题答案

第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。

(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。

(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。

上海交大研究生矩阵理论答案

上海交大研究生矩阵理论答案

习题cosnx sin nx 1 • (1) 因sinnx cosnx cosx sin xsin x cosxcos(n 1)x sin(nsin(n 1)x cos(n1)x,故由归纳法知1)xA ncosnx sin nxsin nx cosnx(2)直接计算得A4故设n 4k r(r 0,1,2,3),贝UA n4k r k r A A ( 1) A ,即只需算出A2, A3即可。

(3 )记J=,则J n 1C n ana A n(aE J)n c n aJ n ii 0 —2 n 2 C n a C;a nna2 •设A P011(a 1,0),则由A2a 1时,其中B 1 注:而由a 0时,P为任意满秩矩阵,而,B2 ,艮A2E无实解,A n E的讨论雷同。

3•设A为已给矩阵,由条件对任意n阶方阵性方程AX XA=0有n2个线性无关的解,不可能。

0 m知22CnC1aM 。

C:a n1na11所以所求矩阵为PB i P ,2X有AX=XA,即把X看作n个未知数时线由线性方程组的理论知其系数矩阵为零矩阵,通过直接检验即发现 A 为纯量矩阵。

a n a n 1 L a i 04 •分别对(A B )和 A 作行(列)初等变换即可。

C5 •先证A 或B 是初等到阵时有 AB B A ,从而当A 或B 为可逆阵时有 AB B A 。

*d考虑到初等变换 A 对B 的n 1阶子行列式的影响及 A A 1即可得前面提到的结果。

0 0,(这里P ,Q 满秩),则由前讨论只需证下式成立即可:求证。

其中ij 为Kronecker 符号。

对这里的第I 个方程乘以nw j 1 n 1 a ij w j 1 n i ,即得 a ij - w j 1 n 1 i 。

n注:同一方程式的全部本原根之和为0,且w m 也是本原根下设PAQ E rE r 0*E r 0B B(1)r<n-1时,因秩小于n-1的n 阶方阵的n-1*E r 0 0 0**E r 0 (2) r=n -1 时,,B0 00 10 0bBL b n^11^12Lbl nE r 0b21 b 22L b2n»2心22Lb 2n斗,故0 0MMb n1bn2L bnn0 0 L 0阶子式全为 Bn1BM 20 B.nn0,结论显然;,但E r 0 0 0Bn1B n2 MB nn6 •由 r(A) r(A )及AX 0 (AX) AX 0 , AX 0 与 A AX 0同解,此即所7 •设其逆为a ij ,则当I 固定时由可逆阵的定义得个方程a 1 a i2w j 1 1a i3 wj1 2L a in w j 1 n 1j ,j 1,2,L n ,n l然后全加起来得2 ,故dimU I W 2,dim U dimU dimW dim U I习题11 •因x 1 x 1 x ,所以V 中零元素为1 , X 的负元素为—,再证结合律、交换律和X分配律。

《矩阵论》习题答案

《矩阵论》习题答案

第一章第一章第6题实数域R 上的全体n 阶对称(反对称)矩阵,对矩阵的加法和数量乘法。

解:实数域R 上的全体n 阶矩阵,对矩阵的加法和数量乘法构成R 上的线性空间nn R ⨯,记{}{}A A R A A W A A R A A V T n n T n n -=∈==∈=⨯⨯,/;,/ 以为,对任意的,,,,B B A A V B A T T ==∈则(),B A B A T+=+即V B A ∈+,所以V 对加法运算是封闭的;对任意的A A R k V A T =∈∈,,,则(),,V kA kA kA T∈=即所以V 对数乘运算封闭;所以,V 是nn R⨯的一个线性子空间,故V 构成实数域R 上的一个线性空间。

同理可证,W 也是一个线性空间。

P41第一章第8题(参考P10例题 1.2.5) 证明:存在1k ,2k ,3k ,4k 使得112233440k k k k αααα+++=即11111k ⎡⎤⎢⎥⎣⎦+21101k ⎡⎤⎢⎥⎣⎦+31110k ⎡⎤⎢⎥⎣⎦+41011k ⎡⎤⎢⎥⎣⎦=0 解12341231341240000k k k k k k k k k k k k k +++=⎧⎪++=⎪⎨++=⎪⎪++=⎩ 得12340k k k k ====所以1α,2α,3α,4α线性无关P42第1章第12题解:因为A=x 1α1+x 2α2+x33α+x 4α4即x 1+x 2+x 3+x 4=1x 1+x 2+x 3=2x 1+x 3+x 4=-2x 1+x 2+x 4=0⇒x 1=-2x2=3x 3=1 x 4=-1所以A 的坐标为[x 1,x 2,x 3,x 4]T=[-2,3,1,-1]TP42第一章第13题 答案 f(x)=3+1-n 2x( 泰勒展开))(f x '=2(n-1)2-n x(x)f ''=2(n-1)(n-2)3-n x …… )1(f -n (x)=2(n-1)! )(f n (x)=0f(1)=5 )1(f '=2(n-1) (1)f ''=2(n-1)(n-2) …… )1(f -n (1)=2(n-1)!f(x)=f(1)+ )1(f '(x-1)+!21(1)f ''2)1(-x +……+)!1(1-n )1(f -n (1)1)1(--n x =5+2(n-1)(n-2)+!2)2)(1(2--n n 2)1(-x +……+)!1()1(2--n n !1)1(--n x=5+211-n C (x-1)+221-n C 2)1(-x +……+211--n n C 1)1(--n x取f(x)=3+1-n 2x在基1, (x-1), 2)1(-x , ……,1)1(--n x 下的坐标为(5 , 211-n C , 221-n C ,…… , 211--n n C T)教材P42习题14:求基T)0,0,0,1(1=α,T)0,0,1,0(2=α,T )0,1,0,0(3=α,T)1,0,0,0(4=α,到基T )1,1,1,2(1-=β,T )0,1,3,0(2=β,T )1,2,3,5(3=β,T )3,1,6,6(4=β的过度矩阵,确定向量T x x x x ),,,(4321=ξ在基1β,2β,3β,4β,下的坐标,并求一非零向量,使它在这两组基下的坐标相同。

河海大学研究生矩阵论习题答案

河海大学研究生矩阵论习题答案

对 k R ,有
kf t 1 kf t dt k f t dt k f t 1
b b a a
对于 g t Ca, b,有
f t g t 1 f t g t dt f t dt g t dt
又已知
T
2

2
0 ,故 T , , 2 2 .
证 :( 1 ) 充 分 性 . 由 C C=I 及 坐 标 变 换 公 式 C 可 得
T
16 .

2 2
T C C T C T C T 2 ,即
M max hi .再由
i

则有
M max hi .对任给正数 ,取 M ,则当 max hi 时,
i
i
4
结论恒成立. 13. 证: (1)设 x1 , 面又有
x2 , , xn ,且 max xi xi 0 ,则
T B T
可 得
i j i j , 由
bii bij b ji b jj 2


bij 0i j, i, j 1,, n ,故有 B=I,也就是 CTC=I.)
(2) 取正交矩阵
1 2 1 C 2 0
n
4 . 证 法 提 示 : 与 上 题 类 似 . 图 形 在 第 一 象 限 的 部 分 由 x1 1,
x2 1 和
2 x1 x2 1 所围成. 3
5 . 证 : 考 虑 0, 1 ,
T
1, 0T , 则 当 p

矩阵论课后参考答案(第一二三四

矩阵论课后参考答案(第一二三四

;
则 TE 11 E 11ca
b d


a11E 11
a21E 12
a31E 21
a41E 22

a0
b 0



a11 a 31
a a
21 41

所以
a 11

a ,a 21
b,a31

0,a 41

0
同理可得: a12 c,a22 d ,a32 0,a42 0
x k11 k22 l11 l22

k1 k2 2l1 l2 0
kk212k1kl12k273lll221

l2 0
0

0
,故有
kk12

l2 4l2
l1 3l2
即 x k11 k22 l2 (42 1) l2 (5,2,3,4)
1 1 3 C 1 2 5
1 3 6
17.证明:秩为 1 的 n(n>1)阶阵 A 的最小多项式是 2 (trA) 。
证明:由题知 n 阶矩阵 A 的秩为 1,则说明 A 有 n-1 重 0 特征根
与一个特征根 0 。又因存在 特征多项式可写为
n
i tr(A) ,故可知 0 tr( A) ,故 A 的
且对角元全为 0,则其维数为
dim(V ) (n 1) (n 2) 1 (n 1)((n 1) 1) n(n 1)
2
2
其基为 n(n 1) 个 n n 阶的矩阵,故基可写为
2
0 1 0 0 0 0 1 0
1 0
0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档