天津市第一中学2021届高三上学期第三次月考数学试题
第二关 以解析几何中与椭圆相关的综合问题为解答题-(原卷版)
![第二关 以解析几何中与椭圆相关的综合问题为解答题-(原卷版)](https://img.taocdn.com/s3/m/2b1012326ad97f192279168884868762caaebb12.png)
压轴解答题第二关 以解析几何中与椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.类型一 中点问题典例1已知椭圆()2222:10x y C a b a b+=>>的离心率13e =,焦距为2.(1)求椭圆C 的方程;(2)过点()0,2Q 作斜率为()0k k ≠的直线l 与椭圆C 交于A 、B 两点,若x 轴上的一点E 满足AE BE =,试求出点E 的横坐标的取值范围.【来源】河南省温县第一高级中学2021-2022学年高三上学期1月月考文科数学试题【举一反三】已知椭圆C :()222210y x a b a b+=>>的焦距与椭圆2213x y +=的焦距相等,且C 经过抛物线()212y x =- (1)求C 的方程;(2)若直线y kx m =+与C 相交于A ,B 两点,且A ,B 关于直线l :10x ty ++=对称,O 为C 的对称中心,且AOB 的面积为103,求k 的值. 类型二 垂直问题典例2 已知椭圆1C :22221x y a b +=(0a b >>)的离心率为22,1C 的长轴是圆2C :222x y +=的直径.(1)求椭圆的标准方程;(2)过椭圆1C 的左焦点F 作两条相互垂直的直线1l ,2l ,其中1l 交椭圆1C 于P ,Q 两点,2l 交圆2C 于M ,N 两点,求四边形PMQN 面积的最小值.【来源】广东省肇庆市2021届高三二模数学试题【举一反三】已知椭圆222:1(1)x C y a a+=>,离心率63e =.直线:1l x my =+与x 轴交于点A ,与椭圆C 相交于,E F 两点.自点,E F 分别向直线3x =作垂线,垂足分别为11,E F .(Ⅰ)求椭圆C 的方程及焦点坐标;(Ⅱ)记1AEE ,11AE F ,1AFF 的面积分别为1S ,2S ,3S ,试证明1322S S S 为定值. 类型三 面积问题典例3如图,已知椭圆221:12x y Γ+=和抛物线22:3x y Γ=,斜率为正的直线l 与y 轴及椭圆1Γ依次交于P 、A 、B 三点,且线段AB 的中点C 在抛物线2Γ上.(1)求点P 的纵坐标的取值范围;(2)设D 是抛物线2Γ上一点,且位于椭圆1Γ的左上方,求点D 的横坐标的取值范围,使得PCD 的面积存在最大值.【来源】浙江省2022届高三水球高考命题研究组方向性测试Ⅴ数学试题【举一反三】已知椭圆C :22221(x y a b a b+=>>0)的右焦点F 与右准线l :x =4的距离为2.(1)求椭圆C 的方程;(2)若直线():0m y kx t t =+≠与椭圆C 相交于A ,B 两点,线段AB 的垂直平分线与直线m 及x 轴和y 轴分别相交于点D ,E ,G ,直线GF 与右准线l 相交于点H .记AEGF ,ADGH 的面积分别为S 1,S 2,求12S S 的值.【来源】江苏省苏州中学等四校2021-2022学年高三下学期期初联合检测数学试题类型四 范围与定值问题典例4已知椭圆C :()2222 1x y a b c a b +=>>2()2,1P .(1)求C 的方程;(2)若A ,B 是C 上两点,直线AB 与曲线222x y +=相切,求AB 的取值范围. 【来源】重庆市2022届高三下学期开学考试数学试题【举一反三】已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(2,0)F ,过点F 且垂直于x 轴的直线与椭圆相交所得的弦长为2. (1)求椭圆C 的方程;(2)过椭圆内一点P (0,t ),斜率为k 的直线l 交椭圆C 于M ,N 两点,设直线OM ,ON (O 为坐标原点)的斜率分别为k 1,k 2,若对任意k ,存在实数λ,使得12k k k λ+=,求实数λ的取值范围. 【来源】江苏省扬州大学附中2021届高三下学期2月检测数学试题典例5 已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与短轴的两个端点组成的三角形是等腰直角三角形,点(10,1)P 是椭圆C 上一点. (1)求椭圆C 的标准方程;(2)设(,)R s t 是椭圆C 上的一动点,由原点O 向22()()4x s y t -+-=引两条切线,分别交椭圆C 于点P ,Q ,若直线,OP OQ 的斜率均存在,并分别记为12,k k ,求证:12k k ⋅为定值. 【来源】云南省昭通市2022届高三期末数学(理)试题【举一反三】已知椭圆2222:1(0)x y C a b a b +=>>经过两点33,2M ⎭,242N ⎝⎭. (1)求椭圆C 的方程:(2)A 、B 分别为椭圆C 的左、右顶点,点P 为圆224x y +=上的动点(P 不在坐标轴上),P A 与PB 分别与椭圆C 交E 、F 两点,直线EF 交x 轴于H 点,请问点P 的横坐标与点H 的横坐标之积是否为定值?若是,求出这个定值;若不是,说明理由.【来源】江西省景德镇市2022届高三第二次质检数学(理)试题【精选名校模拟】1.已知椭圆2222C :1(0)x y a b a b+=>>的离心率为12,直线1:22l y x =-+与椭圆C 有且仅有一个公共点A .(Ⅰ)求椭圆C 的方程及A 点坐标;(Ⅱ)设直线l 与x 轴交于点B .过点B 的直线与C 交于E ,F 两点,记点A 在x 轴上的投影为G ,T 为BG 的中点,直线AE ,AF 与x 轴分别交于M ,N 两点.试探究||||TM TN ⋅是否为定值?若为定值,求出此定值;否则,请说明理由.【来源】湖南省长沙市第一中学、广东省深圳实验学校2021届高三下学期联考数学试题2.如图,已知椭圆2222:1(0)x y C a b a b+=>>上一点(0,2)A ,右焦点为(c,0)F ,直线AF 交椭圆于B点,且满足||2||AF FB =, 33||2AB =.(1)求椭圆C 的方程;(2)若直线(0)y kx k =>与椭圆相交于,C D 两点,求四边形ACBD 面积的最大值. 【来源】黑龙江省漠河市高级中学2020-2021学年高三上学期第三次摸底考试文科数学试题3.已知椭圆22221(0)x y a b a b +=>>的左焦点为F ,离心率3e = 4.(Ⅰ)求椭圆的方程;(Ⅱ)过点F 的直线l 与椭圆交于M ,N 两点(非长轴端点),MO 的延长线与椭圆交于P 点,求PMN 面积的最大值,并求此时直线l 的方程.【来源】天津市十二区县重点学校2021届高三下学期毕业班联考(一)数学试题4.已知椭圆C :22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F 3G 是椭圆上一点,12GF F △的周长为643+.(1)求椭圆C 的方程;(2)直线l :y kx m =+与椭圆C 交于A ,B 两点,且四边形OAGB 为平行四边形,求证:OAGB 的面积为定值.【来源】陕西省宝鸡市2021届高三下学期高考模拟检测(二)文科数学试题5.已知椭圆()2222:10x y C a b a b +=>>的离心率22e =,过右焦点(),0F c 的直线y x c =-与椭圆交于A ,B 两点,A 在第一象限,且2AF =.(1)求椭圆C 的方程;(2)在x 轴上是否存在点M ,满足对于过点F 的任一直线l 与椭圆C 的两个交点P ,Q ,都有MP MQ ⋅为定值?若存在,求出点M 的坐标;若不存在,说明理由.【来源】河南省济源(平顶山许昌市)2021届高三第二次质量检测理科数学试题6.已知椭圆2222:1(0,0)x y C a b a b+=>>的离心率为12,并且经过()03P ,点.(1)求椭圆C 的方程;(2)设过点P 的直线与x 轴交于N 点,与椭圆的另一个交点为B ,点B 关于x 轴的对称点为B ',直线PB '交x 轴于点M ,求证:OM ON ⋅为定值. 【来源】北京平谷区2021届高三数学一模试题7.已知经过原点O 的直线与离心率为22的椭圆()2222:10x y C a b a b +=>>交于A ,B 两点,1F 、2F 是椭圆C 的左、右焦点,且12AF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)如图所示,设点P 是椭圆C 上异于左右顶点的任意一点,过点Р的椭圆C 的切线与2x =-交于点M .记直线1PF 的斜率为1k ,直线2MF 的斜率为2k ,证明:12k k ⋅为定值,并求出该定值. 【来源】广西南宁市2021届高三一模数学(文)试题8.设O 是坐标原点,以1F 、2F 为焦点的椭圆()2222:10x y C a b a b+=>>的长轴长为2,以12F F 为直径的圆和C 恰好有两个交点. (1)求C 的方程;(2)P 是C 外的一点,过P 的直线1l 、2l 均与C 相切,且1l 、2l 的斜率之积为112m m ⎛⎫-≤≤-⎪⎝⎭,记u 为PO 的最小值,求u 的取值范围.【来源】广东省深圳市2021届高三一模数学试题9.已知点(1,0)A ,点B 是圆221:(1)16O x y ++=上的动点,线段AB 的垂直平分线与1BO 相交于点C ,点C 的轨迹为曲线E . (1)求E 的方程(2)过点1O 作倾斜角互补的两条直线12,l l ,若直线1l 与曲线E 交于,M N 两点,直线2l 与圆1O 交于,P Q 两点,当,,,M N P Q 四点构成四边形,且四边形 MPNQ 的面积为831l 的方程. 【来源】广东省广州市2021届高三一模数学试题10.已知椭圆2222:1(0)x y C a b a b+=>>的离心率是12,椭圆C 过点31,2⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)已知12,F F 是椭圆C 的左、右焦点,过点2F 的直线l (不过坐标原点)与椭圆C 交于,A B 两点,求11F A F B ⋅ 的取值范围.【来源】东北三省三校(哈师大附中 东北师大附中 辽宁省实验中学 )2020-2021学年高三下学期第一次联合模拟考试文科数学试题11.已知椭圆2222:1x y C a b+=7,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M ,N 两点,直线m 的方程为:2x a =-,过点M 作ME 垂直于直线m 交直线m 于点E .(1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标; ②点O 为坐标原点,求OEN 面积的最大值.【来源】广东省广州市执信中学2022届高三下学期二月月考数学试题12.已知()12,0A -,()22,0A 分别为椭圆C :()222210x y a b a b +=>>的左、右顶点,点31,2H ⎛⎫ ⎪⎝⎭在椭圆上.过点1,02D ⎛⎫⎪⎝⎭的直线交椭圆于两点P ,Q (P ,Q 与顶点1A ,2A 不重合),且直线1A P 与2A Q ,1A Q 与2A P 分别交于点M ,N . (1)求椭圆C 的方程(2)设直线1A P 的斜率为1k ,直线1A Q 的斜率为2k . ①证明:12k k ⋅为定值; ②求DMN 面积的最小值.【来源】山东省潍坊市2021-2022学年高三上学期期末数学试题13.已知椭圆()2222:10x y E a b a b+=>>的右焦点为F ,点A ,B 分别为右顶点和上顶点,点O 为坐标原点,11e OF OA FA+=,OAB 2,其中e 为E 的离心率. (1)求椭圆E 的方程;(2)过点O 异于坐标轴的直线与E 交于M ,N 两点,射线AM ,AN 分别与圆22:4C x y +=交于P ,Q 两点,记直线MN 和直线PQ 的斜率分别为1k ,2k ,问12k k 是否为定值?若是,求出该定值;若不是,请说明理由.【来源】四川省绵阳市2021-2022学年高三上学期第二次诊断性考试理科数学试题14.已知点M 是椭圆C :()222210y x a b a b +=>>上一点,1F ,2F 分别为椭圆C 的上、下焦点,124F F =,当1290F MF ∠=︒,12F MF △的面积为5.(1)求椭圆C 的方程:(2)设过点2F 的直线l 和椭圆C 交于两点A ,B ,是否存在直线l ,使得2OAF 与1OBF △(O 是坐标原点)的面积比值为5:7.若存在,求出直线l 的方程:若不存在,说明理由.【来源】江西省赣州市2022届高三上学期期末数学(文)试题15.已知椭圆2222:1(0)x yC a ba b+=>>过点3P⎛⎝⎭3(1)求椭圆C的方程;(2)在y轴上是否存在点M,过点M的直线l交椭圆C于A,B两点,O为坐标原点,使得三角形AOB的面积1tan2=-∠S AOB若存在,求出点M的坐标;若不存在,说明理由.【来源】江西省赣州市2022届高三上学期期末数学(理)试题。
安徽省六安市六安第一中学2024-2025学年高三上学期第四次月考(11月)数学试题(含答案)
![安徽省六安市六安第一中学2024-2025学年高三上学期第四次月考(11月)数学试题(含答案)](https://img.taocdn.com/s3/m/a5f7035e366baf1ffc4ffe4733687e21af45fff3.png)
六安一中2025届高三年级第四次月考数学试卷时间:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是两个不同的平面,是两条不同的直线,下列命题不正确的是( )A.若,则B.若,则C.若,则D.若,则2.如图所示,在四棱锥中,底面是正方形,为中点,若,则( )A. B.C. D.3.某学校高二年级选择“物化生”,“物化地”和“史地政”组合的同学人数分别为240,90和120.现采用分层抽样的方法选出30位同学进行某项调查研究,则“史地政”组合中选出的同学人数为( )A.8B.12C.16D.64.已知数列的首项,则( )A.48B.80C.63D.655.已知等差数列满足,前项和为,若,则与最接近的整数是( )A.5B.4C.2D.16.已知数列满足,若对于任意都有,则实数的取值范围是(),αβ,m n m ∥,n m α⊥n α⊥,m m αβ⊥⊥α∥β,m m αβ⊥⊂αβ⊥m ∥,n ααβ⋂=m ∥nP ABCD -ABCD E PD ,,PA a PB b PC c === BE =111222a b c -+ 111222a b c -- 131222a b c -+ 113222a b c -+ {}n a 110,1n n a a a +==++8a ={}n a 131,3a a ==n n S 12111n nT S S S =+⋯+9T {}n a *712,8,2,8n n a n n a n a n -⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N *n ∈N 1n n a a +>aA. B. C. D.7.在棱长为2的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为B.存在点使得异面直线与所成角为C.存在点使得二面角的平面角为D.当时,平面截正方体所得的截面面积为8.已知一圆柱的轴截面为正方形,母线长为,在该圆柱内放置一个棱长为的正四面体,并且正四面体在该圆柱内可以任意转动,则的最大值为()A.1B.2C.D.4二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图的形状出现在南宋数学家杨辉所著的《详解九章算法∙商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,,设第层有个球,从上往下层球的总数为,则( )A. B.C. D.1,12⎛⎫⎪⎝⎭113,220⎛⎫ ⎪⎝⎭13,120⎛⎫ ⎪⎝⎭31,2⎛⎫ ⎪⎝⎭1111ABCD A B C D -M 11A C M BM AC 90 M BM AC 30 M M BD C --451114A M AC =BDM 92a a ⋯n n a n n S 34S a =132n n n a a ++-=11n n a a n +-=+1055a =10.在边长为6的菱形中,,现将沿折起到的位置,使得二面角是锐角,则三棱锥的外接球的表面积可以是( )A.B.C.D.11.对于棱长为1(单位:)的正方体容器(容器壁厚度忽略不计),下列说法正确的是( )A.底面半径为高为的圆锥形罩子(无底面)能够罩住水平放置的该正方体B.C.该正方体内能同时整体放入两个底面半径为高为的圆锥D.的圆锥三、填空题:本题共3小题,每小题5分,共15分.12.已知一组数据的平均数是1,则这组数据的中位数为__________.13.已知四棱锥平面,底面是为直角,的直角梯形,如图所示,且为的中点,则到直线的距离为__________.14.若在长方体中,.则四面体与四面体公共部分的体积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设三角形的内角的对边分别为且.(1)求角的大小;(2)若,求三角形的周长.16.(本小题满分15分)已知无穷等比数列的前项和为(1)求的值;ABCD π3A ∠=ABD V BD PBD V P BD C --P BCD -58π45π48π55πm 1m,1m 0.5m,0.8m 31,2,0,1,,1x -,A EBCD AE -⊥BCDE EBCD E ∠EB ∥DC 224,CD EB AE DE ====F AD F BC 1111ABCD A B C D -13,2,4AB BC AA ===11ABB C 11AC BD ABC A B C 、、a b c 、、()2sin 2AB C +=A 3,b BC =ABC {}n a n 3nn S b=+1,b a(2)设,求数列的前项和.17.(本小题满分15分)如图所示,在三棱柱中,平面,点是的中点(1)证明:;(2)求与平面所成角的正弦值.18.(本小题满分17分)如图1,在等腰梯形中,,点在以为直径的半圆上,且,将半圆沿翻折如图2.(1)求证:平面;(2)当多面体的体积为32时,求平面与平面夹角的余弦值.19.(本小题满分17分)若存在非零常数,使得数列满足,则称数列为“数列”.(1)判断数列:是否为“数列”,并说明理由;(2)若数列是首项为1的“数列”,数列是等比数列,且与满足,求的值和数列的通项公式;(3)若数列是“数列”,为数列的前项和,,证明:221,1,2,3,n n c a n n =+-= {}n c n n T 111ABC A B C -112,AC BC AB AB ===⊥ABC 1,AC AC D ⊥AC 11AC B C ⊥1A D 11BB C C ABCD AD ∥,8,4,60BC AD BC DAB ∠===,E F AD »»»AE EFFD ==AD EF ∥ABCD ABE DCF -ABE CDF t {}n a ()11231,n n a a a a a t n n +-=≥∈N {}n a ()H t 1,3,5,11,152()2H {}n a ()H t {}n b {}n a {}n b 212321log ni n n i aa a a ab ==+∑ t {}n b {}n a ()H t n S {}n a n 11,0a t >>1e n S nn n t S S -+>--六安一中2025届高三年级第四次月考数学试卷参考答案1.D2.C3.A4.C5.C6.C7.D8.D9.ACD 10.AD 11.BD 12.【答案】114.15.(1)因为为的内角,所以,因为,所以可化为:,即,即解得:,即.(另解:由;得.)(2)由三角形面积公式得代入得:,所以,故为正三角形,,周长等于16.(1)当时,,因为是等比数列,所以,又因为,所以(2)由(1)知,43,,A B C ABC V ()sin sin B C A +=21cos sin22A A -=()2sin 2A B C +=)sin 1cos A A =-sin A A =πππ4πsin ,3333A A ⎛⎫⎛⎫+=+∈ ⎪ ⎪⎝⎭⎝⎭π2π33A +=π3A =2sin 2sincos 222A A A A =⋅=πtan 226A A ==11sin ,322b c A b ⋅==1π13sin 232c ⨯⋅=a c =ABC V 3a b c ===9.2n ≥1123n n n n a S S --=-=⨯{}n a 12a =113a S b ==+1b =-123n n a -=⨯因为,且,所以是以6为首项,9为公比的等比数列,.17.解析:(1)由题意,平面平面,所以,又,且平面,所以平面,因为平面,所以.(2)法一(坐标法):由(1)知,又,所以,以为原点建立如图所示的空间直角坐标系,则,,所以,,设平面的法向量为,则,所以,从而故直线与平面法二(几何法):取中点,则,26a =2229n na a +={}2n a ()()2421321n n T a a a n ⎡⎤=+++++++-⎣⎦()291236919124n n n n n -⋅=⨯+=-+-1AB ⊥,ABC AC ⊂ABC 1AC AB ⊥1AC AC ⊥11AB AC ⊂、1111,AB C AB AC A ⋂=AC ⊥11AB C 11B C ⊂11AB C 11AC B C ⊥11AC B C ⊥BC ∥11B C AC BC ⊥C ()()()()10,0,0,2,0,0,0,2,2,0,2,0C B B A ()0,1,0D ()()()12,0,0,2,2,2,0,1,0CB BB DA ==-=()()()1110,1,02,2,22,3,2DA DA AA DA BB =+=+=+-=-11BC C C (),,n x y z =1202220n CB x n BB x y z ⎧⋅==⎪⎨⋅=-++=⎪⎩ ()0,1,1n =- 111cos ,DA n DA n DA n⋅===⋅1A D 11BB C C 11C A M CM ∥1A D记与面所成角为,则由知解得,又,所以18.(1)连由等边三角形可知分布在同一个圆周上,且,则六边形为正六边形,面面(2)在图1中连交于,则,连交于,则,故在图2中面面记面与面所成角为,则故,即面面法一(几何法):延长交于延长交于则为面与面交线且取中点,连接,则即为面与面所成角在中,,故,故面与面所成角的余弦值为法二(坐标法):以为坐标原点,所在的直线为轴,建立空间直角坐标系,则,CM 11BB C C θ1111112sin A CC B BM CC B Bd d CMCMθ--==111111A B C C C A B C V V --=11111111133B C C A A B C S d S AB ⋅=⋅1A d =CM ===sin θ=OB OC 、A B C D F E 、、、、、AE EF FD DC CB BA =====ABCDFE EF ∴∥AD ∥,BC EF ⊄ABCD,BC ⊂ABCD EF ∴∥ABCDEB AD 1O AD EB ⊥FC AD 2O AD FC ⊥AD ⊥1,EO B AD ⊥2FO CABE CDF θ1212,6sin EO B FO C EO B FO C S S ∠∠θθ====V 1221ABE DCF EO B FO C D FO CA EOB V V V V ----=++锥112121132sin 3233EO B EO B FO C S AO S EF S DO θ=⨯+⨯+⨯==V πsin 1,2θθ==AEFD ⊥ABCDAB DC 、,Q F AE D 、,P PQ ABE CDF 8,8AP AQ PD QD ====PQ M AM DM 、AMD ∠ABE CDF AMD V 8AM DM AD ===1cos 5AMD ∠==ABE CDF 151O 111,,O B O D O E ,,x y z ()()(()()(0,2,0,,0,0,,4,0,0,6,0,0,4,A B E C D F -,有令得同理可得面法向量,设面与面所成角为,故19.【详解】(1)根据”数列“的定义,则,故,因为成立,成立,不成立,所以不是”数列“.(2)由是首项为2的”数列“,则,由是等比数列,设公比为,由,则.两式作差可得,即,由是”数列“,则,对于恒成立,所以,即对于恒成立,则,即,因为解得,,又由,则,即,故所求的,数列的通项公式.(3)设函数,则,令,解得,当时,,则在区间单调递减,且,又由是”数列",即,对于恒成立,()(2,0,0,2,AB AE ==2020AB n y AE n y ⎧⋅=+=⎪⎨⋅=+=⎪⎩1,x=()1,n =CDF ()m =ABE CDF α1cos 5m n m n α⋅==⋅ ()H t 2t =11232n n a a a a a +-= 212a a -=3212a a a -=43211113542a a a a -=-⨯⨯=-≠1,3,5,11,152()2H {}n a ()H t 231,21a t a t =+=+{}n b q 212321log nn n i iaa a a ab ==+∑ 121231211log n i n n n i a a a a a a b +++==+∑ ()2112312121log log n n n n n a a a a a a b b +++=-+- ()21123121log n n n a a a a a a q ++=-+ {}n a ()H t 1123n n a a a a a t +-= 1,n n ≥∈N ()()211121log n n n a a t a q +++=--+()12121log log n n n t a t b b +++=+-1,n n ≥∈N ()()22321log 1log t a t q t a t q ⎧+-=⎪⎨+-=⎪⎩()()222(1)log 121log t t qt t t q ⎧+-=⎪⎨++-=⎪⎩0t ≠1,2t q =-=2111211,log a a a b ==+11b =12n n b -=1t =-{}n b 12n n b -=()ln 1f x x x =-+()11f x x'=-()0f x '=1x =1x >()0f x '<()ln 1f x x x =-+()1,∞+()1ln1110f =-+={}n a ()H t 1123n n a a a a a t +-= 1,n n ≥∈N因为,则,再结合,反复利用,可得对于任意的,则,即,则,即,相加可得,则,又因为在上单调递增,所以,又,所以,即,故.11,0a t >>211a a t =+>121,0,1a t a >>>1123n n a a a a a t +=+ 1,,1n n n a ≥∈>N ()()10n f a f <=ln 10n n a a -+<ln 1n n a a <-1122ln 1,ln 1,,ln 1n n a a a a a a <-<-⋯<-1212ln ln ln n n a a a a a a n +++<+++- ()12ln n n a a a S n <- ln y x =()0,x ∞∈+12en S nn a a a -< 1123n n a a a a a t +-= 1e n S nn a t -+-<1en S nn n S S t -+--<1en S nn n t S S -+>--。
天津市第一中学2021届高三上学期摸底考(零月考)化学试题 Word版含答案
![天津市第一中学2021届高三上学期摸底考(零月考)化学试题 Word版含答案](https://img.taocdn.com/s3/m/1162cc3b71fe910ef12df8c1.png)
天津一中 2020-2021-1 高三年级化学学科 0 月考试卷本试卷分为第 I 卷(选择题)、第II 卷(非选择题)两部分,共100 分,考试用时60 分钟。
第 I 卷 1 至 2 页,第 II 卷 3 至 4 页。
考生务必将答案涂写规定的位置上,答在试卷上的无效。
祝各位考生考试顺利!C:12 N:14 O:16 Na:23 Mg :24 Fe :56第Ⅰ卷选择题(单选)(共 12 道题,每题 3 分,共 36 分)1.化学与生活、生产密切相关。
下列说法正确的是 A.气象报告中的“PM2.5”是指一种胶体粒子 B.石英玻璃主要成分是硅酸盐,可制作化学精密仪器 C.“熬胆矾铁釜,久之亦化为铜”,该过程发生了置换反应 D.“天宫一号”使用的碳纤维,是一种新型有机高分子材料2. 下列说法错误的是A.淀粉和纤维素均可水解产生葡萄糖B.油脂的水解反应可用于生产甘油C.氨基酸是组成蛋白质的基本结构单元 D.淀粉、纤维素和油脂均是天然高分子3.设 N A 为阿伏加德罗常数的值。
下列叙述正确的是 A.标准状况下,22.4L CCl4 所含分子数为N A B.常温常压下,7.8g Na2O2 晶体中阳离子和阴离子总数为0.3N A C.7.8g 苯中含有的碳碳双键数为0.3N AD.室温下,1L pH=13 的 NaOH 溶液中,由水电离的OH- 数目为 0.1N A4.探究浓硫酸和铜的反应,下列装置或操作正确的是2 2 2 2 A .用装置甲进行铜和浓硫酸的反应B .用装置乙收集二氧化硫并吸收尾气C .用装置丙稀释反应后的混合液D .用装置丁测定余酸的浓度5. 吡啶()是类似于苯的芳香化合物,2-乙烯基吡啶(VPy )是合成治疗矽肺病药物的原料,可由如下路线合成。
下列叙述正确的是A .Mpy 只有两种芳香同分异构体B .Epy 中所有原子共平面C .Vpy 是乙烯的同系物D .反应②的反应类型是消去反应6. 反应 M n O + 4 H Cl(浓) Δ M n Cl + Cl ↑ +2 H O 量之比是 中,氧化产物与还原产物的物质的 A .1∶2B .1∶1C .2∶1D .4∶17.用如下图所示的装置进行实验(夹持仪器略去,必要时可加热),其中 a 、b 、c 中分别盛 有试剂 1、2、3,能达到相应实验目的的是8. 对于下列实验,能正确描述其反应的离子方程式是A.用 Na2SO3 溶液吸收少量Cl2:3SO2-+Cl2+H2O = 2HSO-+2Cl-+SO2-3 3 4B.向 CaCl2 溶液中通入 CO2:Ca2++H2O+CO2=CaCO3↓+2H+C.向 H2O2 溶液中滴加少量FeCl3:2Fe3+ +H2O2=O2↑+2H++2Fe2+D.同浓度同体积NH4HSO4 溶液与 NaOH 溶液混合:NH++OH -=NH3·H2O9. 下列离子在溶液中能共存,加OH- 有沉淀析出,加H+能放出气体的是- 2+ + - -A. Na+、Ca2+、Cl-、HCO3B. Ba 、K 、Cl 、NO3+ 2- -+ 2+ - 2-C. Ba2+、NH4 、CO3、NO3D. Na 、Cu 、Cl 、SO410. 由一种阳离子与两种酸根离子组成的盐称为混盐。
2021届重庆市第一中学校高三上学期第三次月考数学试题(解析版)
![2021届重庆市第一中学校高三上学期第三次月考数学试题(解析版)](https://img.taocdn.com/s3/m/527a054adcccda38376baf1ffc4ffe473368fdd2.png)
2021届重庆市第一中学校高三上学期第三次月考数学试题一、单选题1.复数z 满足21iz i=-,则复数z 的虚部为()A .﹣1B .1C .iD .﹣i【答案】B【分析】利用复数的除法运算化简211ii i=-+-,再利用复数的代数形式求出结果.【详解】解:∵()()()()2121211112i i i i i z i i i i ++====-+--+,则复数z 的虚部为1.故选:B .【点睛】本题考查复数的除法运算.复数的除法运算关键是分母“实数化”,其一般步骤如下:(1)分子、分母同时乘分母的共轭复数;(2)对分子、分母分别进行乘法运算;(3)整理、化简成实部、虚部分开的标准形式.2.已知集合{}22,A xx x Z =<∈∣,则A 的真子集共有()个A .3B .4C .6D .7【答案】D【分析】写出集合{1,0,1}A =-,即可确定真子集的个数.【详解】因为{}22,{1,0,1}A xx x Z =<∈=-∣,所以其真子集个数为3217-=.故选:D.【点睛】本题考查集合的真子集个数问题,属于简单题.3.已知某圆锥的母线长为4,底面圆的半径为2,则圆锥的全面积为()A .10πB .12πC .14πD .16π【答案】B【分析】首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.【详解】底面周长是:2×2π=4π,则侧面积是:14π48π2⨯⨯=,底面积是:π×22=4π,则全面积是:8π+4π=12π.故选B .【点睛】本题考查了圆锥的全面积计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的()倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.22【答案】B【分析】把已知数据代入公式计算12E E .【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg0.1E E =,∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈.故选:B .【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.5.向量,a b 满足||1a = ,a 与b 的夹角为3π,则||a b - 的取值范围为()A .[1,)+∞B .[0,)+∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎫+∞⎪⎢⎪⎣⎭【答案】D【分析】把||a b -用数量积表示后结合函数的性质得出结论.【详解】22222||()2121cos 3a b a b a a b b b b π-=-=-⋅+=-⨯⨯+ 21b b -+= 2134423b ⎛⎫=+≥⎪⎝⎭- ,所以3||2a b -≥ .1||2b = 时取得最小值.故选:D .【点睛】本题考查平面向量的模,解题关键是把模用向量的数量积表示,然后结合二次函数性质得出结论.6.已知三棱锥P ABC -,过点P 作PO ⊥面,ABC O 为ABC ∆中的一点,,PA PB PB PC ⊥⊥,PC PA ⊥,则点O 为ABC ∆的()A .内心B .外心C .重心D .垂心【答案】D【分析】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,可得BC ⊥PA ,由PO ⊥平面ABC 于O ,BC ⊂面ABC ,PO ⊥BC ,可得BC ⊥AE ,同理可以证明CO ⊥AB ,又BO ⊥AC .故O 是△ABC 的垂心.【详解】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,∴BC ⊥PA ,∵PO ⊥平面ABC 于O ,BC ⊂面ABC ,∴PO ⊥BC ,∴BC ⊥平面APE ,∵AE ⊂面APE ,∴BC ⊥AE ;同理可以证明CO ⊥AB ,又BO ⊥AC .∴O 是△ABC 的垂心.故选D .【点睛】本题主要考查了直线与平面垂直的性质,解题时要注意数形结合,属于基本知识的考查.7.设sin5a π=,b =,2314c ⎛⎫= ⎪⎝⎭,则()A .a c b <<B .b a c <<C .c a b<<D .c b a<<【答案】C【分析】借助中间量1和12比较大小即可.【详解】解:由对数函数y x =在()0,∞+单调递增的性质得:1b =>=,由指数函数12xy ⎛⎫= ⎪⎝⎭在R 单调递减的性质得:2413311142212c ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<=,由三角函数sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增的性质得1sin sin 562a ππ=>=.所以c ab <<.故选:C.【点睛】本题考查利用函数的单调性比较大小,考查运算能力,化归转化思想,是中档题.本题解题的关键在于借助中间量1和12,尤其在比较a 与c 的大小时,将c 变形得24331142c ⎛⎫⎛⎫= ⎪ =⎪⎝⎭⎝⎭,进而与12比较大小是重中之核心步骤.8.已知三棱锥P ABC -的四个顶点均在同一个确定的球面上,且BA BC ==,2ABC π∠=,若三棱锥P ABC -体积的最大值为3,则其外接球的半径为()A .2B .3C .4D .5【答案】A【分析】由题意分析知三棱锥P ABC -体积的最大时,P ,O ,O '共线且O P '⊥面ABC ,P 在大于半球的的球面上,根据棱锥体积公式求得||O P ',进而应用勾股定理求外接球的半径.【详解】由题意知:AC 中点O '为面ABC 外接圆圆心,若外接球球心为O ,半径为R ,三棱锥P ABC -体积的最大时,P ,O ,O '共线且O 在P ,O '之间,∴1||33P ABC ABC V S O P -'=⋅⋅= ,1||||32ABC S BA BC =⋅⋅= ,即||3O P '=,||||32AC O C '==,所以()22222'|||'|33O C OC OO R R =-=--=,解得2R =,故选:A【点睛】关键点点睛:理解三棱锥P ABC -体积的最大时P 的位置及与球心、底面外接圆圆心的关系,结合棱锥体积公式、勾股定理求球体半径.二、多选题9.设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中错误..的是()A .若,,//m n m n αβ⊂⊂,则//αβB .若,m n m α⊂⊥,则n α⊥C .若,m n αα^Ì,则m n ⊥D .若//,,m n αβαβ⊂⊂,则//m n【答案】ABD【分析】根据空间线、面关系,结合空间关系相关图例以及线线、线面、面面间的平行、垂直判定与性质,即可知选项的正误.【详解】A :,,//m n m n αβ⊂⊂,α、β不一定平行,错误.B :,m n m α⊂⊥,n 不一定垂直于α,错误.C :由线面垂直的性质:,m n αα^Ì,则必有m n ⊥,正确.D ://,,m n αβαβ⊂⊂,m 、n 不一定平行,错误.故选:ABD10.下列函数中,在(0,1)内是减函数的是()A .||12x y ⎛⎫= ⎪⎝⎭B .212log y x =C .121=+y x D .2log sin y x=【答案】ABC【分析】根据复合函数的单调性判断确定选项中各函数是否为减函数即可.【详解】A :1(2t y =为减函数,||t x =在(0,1)上为增函数,所以||12x y ⎛⎫= ⎪⎝⎭为减函数;B :12log y t =为减函数,2t x =在(0,1)上为增函数,所以212log y x =为减函数;C :1y t =为减函数,21t x =+在(0,1)上为增函数,所以121=+y x 为减函数;D :2log y t =为增函数,sin t x =在(0,1)上为增函数,所以2log sin y x =为增函数;故选:ABC【点睛】结论点睛:对于复合函数的单调性有如下结论1、内外层函数同增或同减为增函数;2、内外层函数一增一减为减函数;11.下列关于函数1()2sin 26f x x π⎛⎫=+⎪⎝⎭的图像或性质的说法中,正确的为()A .函数()f x 的图像关于直线83x π=对称B .将函数()f x 的图像向右平移3π个单位所得图像的函数为12sin 23y x π⎛⎫=+ ⎪⎝⎭C .函数()f x 在区间5,33ππ⎛⎫-⎪⎝⎭上单调递增D .若()f x a =,则1cos 232a x π⎛⎫-=⎪⎝⎭【答案】AD 【分析】令1262x k πππ+=+得到对称轴,即可判断A ;根据平移变换知识可判断B ;求出其单调增区间即可判断C ;利用配角法即可判断D.【详解】对于A ,令1262x k πππ+=+()k ∈Z ,解得22()3x k k Z ππ=+∈,当1k =时,得83x π=,故A 正确;对于B ,将函数()f x 的图像向右平移3π个单位,得112sin[()]2sin 2362y x x ππ=-+=,故B 错误;对于C ,令122()2262k x k k Z πππππ-+<+<+∈4244()33k x k k Z ππππ⇒-+<<+∈,故C 错误;对于D ,若12sin()26x a π+=,则11cos()sin[()]23223x x πππ-=+-=1sin()262ax π+=,故D 正确.故选:AD【点睛】方法点睛:函数()sin (0,0)y A x B A ωϕω=++>>的性质:(1)max min =+y A B y A B =-,.(2)周期2π.T ω=(3)由()ππ2x k k +=+∈Z ωϕ求对称轴(4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.12.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有()A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】由()()f x f x x '<知:()()0xf x f x x'-<,令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >;A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+;B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+;C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <;D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小.故选:ABC【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<,1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=.2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.三、填空题13.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【解析】由题意,根据球的体积公式343V R π=,则343233R ππ=,解得2R =,又根据球的表面积公式24S R π=,所以该球的表面积为24216S ππ=⋅=.14.设向量a ,b 不平行,向量a b λ+ 与2a b + 平行,则实数λ=_________.【答案】12【解析】因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则{12,k k λ==,所以12λ=.【解析】向量共线.15.一般把数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则第21行从左至右的第4个数字应是____________.【答案】228【分析】由题知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,从左到右第4个数字为228.【详解】观察数据可知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,所以第21行从左到右第4个数字为228.故答案为:228.【点睛】关键点睛:本题考查合情推理、数列的前n 项和,解题关键要善于观察发现数据特征,考查了学生的逻辑思维能力、数据处理能力、运算求解能力,综合性较强,属于较难题型.四、双空题16.已知等比数列{}n a 的公比为q ,且101a <<,20201a =,则q 的取值范围为______;能使不等式12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立的最大正整数m =______.【答案】(1,)+∞4039【分析】根据已知求得1a 的表达式,由此求得q 的取值范围.根据12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立列不等式,化简求得m 的取值范围,从而求得最大正整数m .【详解】由已知201911201911a qa q =⇒=,结合101a <<知2019101q <<,解得1q >,故q 的取值范围为(1,)+∞.由于{}n a 是等比数列,所以1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列.要使12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立则1212111m ma a a a a a +++≤+++ 即()111111111m m a q a q q q⎛⎫-⎪-⎝⎭≤--,将120191a q=代入整理得:40394039m q q m ≤⇒≤故最大正整数4039m =.故答案为:(1,)+∞;4039【点睛】本小题主要考查等比数列的性质,考查等比数列前n 项和公式,属于中档题.五、解答题17.在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,M 是线段AB 的中点,1160,22,2,DAB AB CD DD C M ∠=︒====(1)求证:1//C M 平面11A ADD ;(2)求异面直线 CM 与1DD 所成角的余弦值.【答案】(1)证明见解析;(2)14.【分析】(1)易得1111//,C D MA C D MA =,则四边形11AMC D 为平行四边形,得到11//C M D A ,再利用线面平行的判定定理证明.(2)由//CM DA ,将异面直线CM 与1DD 成的角,转化为 DA 与1DD 相交所成的角,然后在1ADD ,利用余弦定理求解.【详解】(1)因为四边形ABCD 是等腰梯形,且2AB CD =,所以//AB DC .又由M 是AB 的中点,因此//CD MA 且CD MA =.如图所示:连接1AD ,在四棱柱1111ABCD A B C D -中,因为1111//,CD C D CD C D =,可得1111//,C D MA C D MA =,所以四边形11AMC D 为平行四边形.因此11//C M D A ,又1C M ⊄平面11A ADD ,1D A ⊂平面11A ADD ,所以1//C M 平面11A ADD .(2)因为//CM DA ,所以异面直线CM 与1DD 成的角,即为 DA 与1DD 相交所成的直角或锐角,在1ADD中,1C M =,所以111,2AD AD DD ===,由余弦定理可得:22211111cos 24AD DD AD ADD AD DD +-∠==-⋅,所以异面直线CM 和1DD 余弦值为14.【点睛】方法点睛:判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).18.已知数列{}n a 满足:13a =,且对任意的n *∈N ,都有1,1,n n a a +成等差数列.(1)证明数列{}1n a -等比数列;(2)已知数列{}n b 前n 和为n S ,条件①:()1(21)n n b a n =-+,条件②:11n n n b a +=-,请在条件①②中仅选择一个条件作为已知条件.............来求数列{}n b 前n 和n S .【答案】(1)证明见解析;(2)答案不唯一,具体见解析.【分析】(1)由条件得121n n a a +=-,利用等比数列定义可得证.(2)选条件①得(21)2nn b n =+,选条件②得1(1)()2nn b n =+⋅利用错位相减法可得解.【详解】(1)由条件可知112n n a a ++=,即121n n a a +=-,∴()1121n n a a +-=-,且112a -=∴{}1n a -是以112a -=为首项,2q =为公比的等比数列,∴12nn a -=,∴()21nn a n N*=+∈(2)条件①:()1(21)(21)2nn n b a n n =-+=+,123325272(21)2nn S n =⋅+⋅+⋅+++⋅ 23412325272(21)2n n S n +=⋅+⋅+⋅+++⋅利用错位相减法:123413222222222(21)2nn n S n +-=⋅+⋅+⋅+⋅++⋅+⋅- 118(12)6(21)212n n n S n -+--=++⋅--化简得()12(21)2n n S n n N +*=-+∈条件②:11(1)()12nn n n b n a +==+⋅-231111234(1)2222n nS n =⋅+⋅+⋅+++⋅ 234111111234(1)22222n n S n +=⋅+⋅+⋅+++⋅ 利用错位相减法:23411111111(1)222222n n n S n +=++++-+⋅ 1111[1()]11421(1)12212n n n S n -+-=+-+⋅-化简得()13(3)(2n n s n n N *=-+∈【点睛】错位相减法求和的方法:如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b 的前n 项和时,可采用错位相减法,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解;在写“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式19.已知椭圆C 的两个焦点分别为12(1,0),(1,0)F F -,短轴的两个端点分别为12,B B .且122B B =.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 与椭圆C 相交于P ,Q 两点,且11F P FQ ⊥ ,求直线l 的方程.【答案】(1)2212x y +=;(2)10x +-=,或10x -=.【分析】(1)由题干条件可得c 和b 的值,进而求出2a 的值,从而求出椭圆方程;(2)首先考虑斜率不存在的情况,不符合题意;当斜率存在时,联立方程,可得()22121222214,2121k k x x x x k k -+=⋅=++,又110F P FQ ⋅= ,向量坐标化可得()()()2221212111110k x x k x x k F P FQ ⋅--==++++uuu r uuu r ,代入1212,x x x x +⋅,化简,即可求出k 的取值,从而求出直线方程.【详解】解(1)由条件可知:1c =,又122B B =,所以1b =,则22a =,所以椭圆C 的方程为2212x y +=(2)当直线l 的斜率不存在时,其方程为1x =,不符合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,22(1)12y k x x y =-⎧⎪⎨+=⎪⎩得()()2222214210k x k x k +-+-=,()2810k ∆=+>,设()()1122,,,P x y Q x y ,则()22121222214,2121k k x x x x k k -+=⋅=++,()()1111221,,1,F P x y F Q x y =+=+ ,∵110F P FQ ⋅= ,即()()()()()22212121212111110x x y y k x x k x x k +++=+--+++=,即()()()222222221411()102121k k kk k k k -+--++=++化简得:2201172k k =+-解得217,77k k ==±.故直线l的方程为10x +-=,或10x --=.【点睛】方法点睛:(1)将向量转化为坐标的关系;(2)联立直线和椭圆,求出两根之和,两根之积;(3)将两根之和和两根之积代入坐标关系中,解出k .20.已知()cossin 222x x x f x ⎛⎫=+ ⎪⎝⎭,记ABC 的内角,,A B C 的对边分别为,,a b c .(1)求()f B 的取值范围;(2)当4a =,433b =,且()f B 取(1)中的最大值时,求ABC 的面积.【答案】(1)30,12⎛+ ⎝⎦;(2)833或433【分析】(1)利用公式对函数化简,根据B 角的范围,求函数值域.(2)由(1)求出B 的大小,利用正弦定理和三角形面积公式即可求出结果.【详解】(1)2()cossin sin cos 222222x x x x x x f x ⎛⎫=+=+ ⎪⎝⎭13(cos 1)3sin sin 2232x x x π+⎛⎫=+=++ ⎪⎝⎭因为B 为三角形的内角,所以(0,)B π∈所以4,333B πππ⎛⎫+∈ ⎪⎝⎭,所以3()0,12f B ⎛∈+ ⎝⎦(2)34()11,,23333f B B B ππππ⎛⎫⎛⎫=++=+∈ ⎪ ⎝⎭⎝⎭,,326B B πππ∴+==,由正弦定理得:4343sin 1sin sin sin 22a b A A B A =⇒=⇒=()0,,3A A ππ∈∴=,或23A π=,若3A π=,则2C π=,183sin 23ABC S ab C ==若23π=A ,则6π=C,1sin 23==ABC S ab C 【点睛】本题考查了三角恒等变换、正弦定理和三角形面积公式等基本数学知识,考查了数学运算能力和逻辑推理能力,属于中档题目.21.在直三棱柱111ABC A B C -中,112,120,,AB AC AA BAC D D ==∠=分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交,AB AC 于点,M N .(1)证明:平面1A MN ⊥平面11ADD A ;(2)求二面角1A A M N --的余弦值.【答案】(1)证明见解析;(2)155.【分析】(1)根据线面垂直的判定定理即可证明MN ⊥平面ADD 1A 1;又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)建立空间坐标系,利用向量法求出平面的法向量,利用向量法进行求解即可.【详解】(1)证明:∵AB=AC ,D 是BC 的中点,∴BC ⊥AD ,∵M ,N 分别为AB ,AC 的中点,∴MN ∥BC ,∴MN ⊥AD ,∵AA 1⊥平面ABC,MN ⊂平面ABC ,∴AA 1⊥MN ,∵AD,AA 1⊂平面ADD 1A 1,且AD∩AA 1=A ,∴MN ⊥平面ADD 1A 1∴,又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)设AA 1=1,如图:过A 1作A 1E ∥BC ,建立以A 1为坐标原点,A 1E ,A 1D 1,A 1A 分别为x ,y ,z 轴的空间直角坐标系如图:则A 1(0,0,0),A(0,0,1),∵P 是AD 的中点,∴M ,N 分别为AB ,AC 的中点.则31,,122M ⎛⎫ ⎪ ⎪⎝⎭,31,,122N ⎛⎫- ⎪ ⎪⎝⎭,则131,,122A M ⎛⎫= ⎪ ⎪⎝⎭,()10,0,1A A =,)NM = ,设平面AA 1M 的法向量为(),,m x y z=,则100m AM m A A ⎧⋅=⎪⎨⋅=⎪⎩,得10220x y z z ++=⎨⎪=⎩,令1x =,则y =,则()1,m =,同理设平面A 1MN 的法向量为(),,n x y z=,则100n A M n NM ⎧⋅=⎨⋅=⎩,得310220x y z ++=⎪⎨⎪=⎩,令2y =,则1z =-,则()0,2,1n =-,则()15cos ,5m n m n m n ⋅===-⋅,∵二面角A-A 1M-N 是锐二面角,∴二面角A-A 1M-N 的余弦值是155.【点睛】本题主要考查直线垂直的判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.22.已知21()(1)2xf x e ax b x =---.其中常数 2.71828e ≈⋅⋅⋅⋅⋅⋅.(1)当2,4a b ==时,求()f x 在[1,2]上的最大值;(2)若对任意0,()a f x >均有两个极值点()1212,x x x x <,(ⅰ)求实数b 的取值范围;(ⅱ)当a e =时,证明:()()12f x f x e +>.【答案】(1)max ()1f x e =-;(2)(ⅰ)1b >;(ⅱ)证明见解析.【分析】(1)由题得2()4(1)x f x e x x =---,()24x f x e x '=--,()2x f x e ''=-,由[1,2]x ∈,可得()0f x ''>,即()'f x 在[1,2]上单增,且2(2)80f e -'=<,即()0f x '<,可知()f x 在[1,2]上单减,求得max ()(1)1f x f e ==-.(2)(ⅰ)利用两次求导可得(,ln )x a ∈-∞时,()'f x 单减;(ln ,)x a ∈+∞时,()'f x 单增,再由()f x 有两个极值点,知(ln )ln 0f a a a a b =--<',即ln b a a a >-恒成立,构造函数()ln g a a a a =-,利用导数求其最大值,可得实数b 的取值范围;(ⅱ)设()()(2),(1)h x f x f x x ''=--<,求导可得()h x 在(,1)-∞单增,得到()(2)f x f x ''<-,可得()()112f x f x ''<-,()()122f x f x ''->,结合()'f x 在(1,)+∞上单增,可得()()122f x f x >-,得到()()()()2222122222222x x f x f x f x f x e e ex ex e -+>-+=+-+-,构造22()22x x M x e e ex ex e -=+-+-,(1)x >,再利用导数证明()2(1)M x M e >=,即可得到()()12f x f x e+>【详解】(1)由2,4a b ==得,2()4(1)x f x e x x =---,求导()24x f x e x '=--,()2x f x e ''=-,[1,2]x ∈ ,2[,]x e e e ∴∈,20x e ∴->,即()0f x ''>()f x '∴在[1,2]上单增,且2(2)80f e -'=<,即[1,2]x ∀∈,()0f x '<,()f x ∴在[1,2]上单减,max ()(1)1f x f e ∴==-.(2)(ⅰ)求导()x f x e ax b '=--,因为对任意0,()a f x >均有两个极值点12,x x ,所以()0f x '=有两个根,求二阶导()x f x e a ''=-,令()0f x ''=,得ln x a=当(,ln )x a ∈-∞时,()0f x ''<,()'f x 单减;当(ln ,)x a ∈+∞时,()0f x ''>,()'f x 单增,由()0f x '=有两个根12,x x ,知(ln )ln 0f a a a a b =--<',即ln b a a a >-对任意0a >都成立,设()ln g a a a a =-,求导()ln g a a '=-,令()0g a '=,得1a =,当(0,1)x ∈时,()0g a '>,()g a 单增;当(1,)x ∈+∞时,()0g a '<,()g a 单减,max (()1)1g g a =∴=,1b ∴>又0,,()ba b f e x f x a -⎛⎫''-=>→+∞→+∞ ⎪⎝⎭Q ,所以实数b 的取值范围是:1b >.(ⅱ)当a e =时,()x f x e ex b '=--,()x f x e e ''=-,令()0f x ''=,得1x =当(,1)x ∈-∞时,()0f x ''<,()'f x 单减;当(1,)x ∈+∞时,()0f x ''>,()'f x 单增,又12,x x 是()0f x '=的两根,且12x x <,121,1x x <∴>,121x ∴->设()()(2),(1)h x f x f x x ''=--<,即22(2)2()2,(1)xxx xe ex b ee x b e e ex e x h x --⎡⎤=-=-------+<⎣⎦,则2()2220x x h x e e e e e -=+->-='()h x ∴在(,1)-∞单增,()(1)0h x h ∴<=,即()(2)f x f x ''<-又11,x <,()()112f x f x ''∴<-,()()122f x f x ''∴->又()f x ' 在(1,)+∞上单增,122x x ∴->,即1222x x x <-<,又()f x 在()12,x x 上单减,()()122f x f x ∴>-()()()()2222122222222x x f x f x f x f x e e ex ex e-∴+>-+=+-+-令22()22x x M x e e ex ex e -=+-+-,(1)x >则2()22x x M x e e ex e -'=--+,2()20x x M x e e e -''=+-≥()M x '∴在(1,)+∞单增,且(1)0M '=,()0M x '∴>,故()M x 在(1,)+∞单增又21x > ,()2(1)M x M e ∴>=,即()()12f x f x e+>【点睛】方法点睛:本题考查利用导数研究函数的单调性,求极值,最值,以及证明不等式,证明不等式的方法:若证明()()f x g x <,(,)x a b ∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知(,)x a b ∈时,有()0F x <,即证明了()()f x g x <,考查学生的函数与方程思想,化归与转化思想,考查逻辑思维能力与推理论证能力,属于难题.。
第三关 以棱柱、棱锥与球的组合体为背景的选择题-高考数学备考优生百日闯关系列(原卷版)
![第三关 以棱柱、棱锥与球的组合体为背景的选择题-高考数学备考优生百日闯关系列(原卷版)](https://img.taocdn.com/s3/m/6982c9bddc88d0d233d4b14e852458fb770b38c2.png)
专题一 压轴选择题第三关 以棱柱、棱锥与球的组合体为背景的选择题【名师综述】球作为立体几何中重要的旋转体之一,成为考查的重点.要熟练掌握基本的解题技巧.还有球的截面的性质的运用,特别是其它几何体的内切球与外接球类组合体问题,以及与球有关的最值问题,更应特别加以关注的.试题一般以小题的形式出现,有一定难度.解决问题的关键是画出正确的截面,把空间“切接”问题转化为平面“问题”处理.类型一 四面体的外接球问题典例1.已知三棱锥P ABC -的顶点P 在底面的射影O 为ABC 的垂心,若ABC 的面积为,ABC S OBC 的面积为,OBC S PBC 的面积为PBC S ,满足2ABC OBC PBC S S S ⋅=△△△,当,,PAB PBC PAC 的面积之和的最大值为8时,则三棱锥P ABC -外接球的体积为( )A .43πB .83πC .163πD .323π 【来源】山西省晋中市2022届高三上学期1月适应性调研数学(理)试题【举一反三】在四边形ABCD 中(如图1所示),AB AD =,45ABD ∠=,2BC BD CD ===,将四边形ABCD 沿对角线BD 折成四面体A BCD '(如图2所示),使得90A BC ∠=',E ,F ,G 分别为棱BC ,A D ',A B '的中点,连接EF ,CG ,则下列结论错误的是( ).A .A C BD '⊥B .直线EF 与CG 45C .C ,E ,F ,G 四点不共面D .四面体A BCD '外接球的表面积为8π【来源】陕西省2022届高三上学期元月联考理科数学试题类型二 三棱柱的外接球问题典例2.已知各顶点都在同一球面上的正四棱柱的底边长为a ,高为h ,球的体积为86π,则这个正四棱柱的侧面积的最大值为( ) A .482 B .242 C .962 D .122【来源】内蒙古包头市2020-2021学年高三上学期期末考试数学(文)试题【举一反三】在平面内,已知动点P 与两定点A ,B 的距离之比为()0,1λλλ>≠,那么点P 的轨迹是圆,此圆称为阿波罗尼斯圆.在空间中,也可得到类似结论.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,2AB BC ==,12BB π=,90ABC ∠=︒,点M 为AB 的中点,点P 在三棱柱内部或表面上运动,且2PA PM =,动点P 形成的曲面将三棱柱分成两个部分,体积分别为1V ,()212V V V <,则12V V =( )A .12B .13C .14D .15【来源】贵州省贵阳市2021届高三适应性考试数学(理)试题(一)类型三 四棱锥的外接球问题典例3.在四棱锥P ABCD -中,底面ABCD 为等腰梯形,PB ⊥底面ABCD .若1PB AB CD AD ====, 2BC =,则这个四棱锥的外接球表面积为( )A .3πB .4πC .5πD .6π【来源】四川省成都市第七中学2021-2022学年高三下学期入学考试文科数学试题【举一反三】已知四棱锥P ABCD -中,底面ABCD 是矩形,侧面PAD 是正三角形,且侧面PAD ⊥底面ABCD ,2AB =,若四棱锥P ABCD -82π,则该四棱锥的表面积为( ) A .3B .63C .83D .103【来源】山西省吕梁市2021届高三上学期第一次模拟数学(理)试题类型四 几何体的内切球问题典例4.已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球和内切球分别为球1O ,球2O ,则球1O 上的点到球2O 上的点的距离的最大值为( )A .3B 153C 153D 153【来源】江西省乐平市第一中学2021届高三上学期联考理科数学试题【举一反三】由棱长都为1的4个正四面体和1个正八面体,组合成一个正四面体,再将此正四面体削切、打磨成最大的球,则该球体积为( )A 6B 6C .354D 646 【来源】湖南省长沙市雅礼中学2020届高三下学期5月质量检测文科数学试题【精选名校模拟】1.已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( )A .128πB .132πC .144πD .156π【来源】湖北省武汉市武昌区2020-2021学年高三上学期1月质量检测数学试题2.已知直四棱柱1111ABCD A B C D -,其底面ABCD 是平行四边形,外接球体积为36π,若1AC BD ⊥,则其外接球被平面11AB D 截得图形面积的最小值为( )A .8πB .24310πC .8110πD .6π【来源】安徽省蚌埠市2020-2021学年高三上学期第二次教学质量检查理科数学试题3.已知三棱锥P ABC -的底面是正三角形,PA a =,点A 在侧面PBC 内的射影H 是PBC 的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的表面积为( )A .343aB .23a πC .332a πD .212a【来源】安徽省黄山市2020-2021学年高三上学期第一次质量检测理科数学试题4.在三棱锥P ABC -中,22AB AC ==,120BAC ∠=,26PB PC ==,25PA =,则该三棱锥的外接球的表面积为( )A .40πB .20πC .80πD .60π【来源】江西省名校2021届高三上学期第二次联考数学(理)试题5.已知直三棱柱111ABC A B C -的底面是正三角形,23AB =,D 是侧面11BCC B 的中心,球O 与该三棱柱的所有面均相切,则直线AD 被球O 截得的弦长为( )A .1010B .105C .31010D .31056.如图,在三棱锥P ABC -,PAC △是以AC 为斜边的等腰直角三角形,且22CB =,6AB AC ==,二面角P AC B --的大小为120︒,则三棱锥P ABC -的外接球表面积为( )A 510B .10πC .9πD .(423π+7.已知三棱锥P ABC -的顶点P 在底面的射影O 为ABC 的垂心,若2ABC OB PBC C S S S ⋅=,且三棱锥P ABC -的外接球半径为3,则PAB PBC PAC S S S ++△△△的最大值为( )A .8B .10C .18D .22【来源】吉林省梅河口市第五中学2020-2021学年高三上学期第三次月考数学(理)试题8.已知三棱锥P ABC -的各顶点都在同一球面上,且PA ⊥平面ABC ,若该棱锥的体积为233,2AB =,1AC =,60BAC ∠=︒,则此球的表面积等于( )A .5πB .8πC .16πD .20π【来源】河南省河南大学附属中学2021-2022学年高三上学期11月月考数学文科试题9.我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B 455πC .30πD .45π【来源】江西宜春市2021届高三上学期数学(文)期末试题10.在菱形ABCD 中,3A π=,3AB =△ABD 沿BD 折起到△PBD 的位置,二面角P BD C--的大小为23π,则三棱锥P BCD -的外接球的表面积为( ) A .23πB .27πC .72πD .112π 【来源】山西省长治市第二中学校2021届高三上学期9月质量调研数学(文)试题多选题11.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑(biēnào ).如图,三棱锥D ABC -为一个鳖臑,其中DA ⊥平面ABC ,AB BC ⊥,2DA AB BC ===,AM DC ⊥,M 为垂足,则( )A .AM ⊥平面BCDB .DC 为三棱锥D ABC -的外接球的直径C .三棱锥M ABD -的外接球体积为43πD .三棱锥M ABC -的外接球体积与三棱锥M ABD -的外接球体积相等【来源】河北省张家口市2022届高三上学期期末数学试题12.已知边长为a 的菱形ABCD 中,3ADC π∠=,将ADC 沿AC 翻折,下列说法正确的是( )A .在翻折的过程中,直线AD ,BC 始终不可能垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38a C .在翻折过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(1483)a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '3 【来源】江苏省南京市第二十九中学2021-2022学年高三上学期12月月考数学试题。
天津市和平区天津一中2024届高三上学期第三次月考数学试题
![天津市和平区天津一中2024届高三上学期第三次月考数学试题](https://img.taocdn.com/s3/m/e7d9497d66ec102de2bd960590c69ec3d5bbdb9c.png)
天津市和平区天津一中2024届高三上学期第三次月考数
学试题
学校:___________姓名:___________班级:___________考号:___________
(1)求cos B ;
(2)求a ,c 的值;
(3)求()sin B C -的值.
17.如图,^AE 平面ABCD ,//CF AE ,//AD BC ,AD AB ^,1AB AD CF ===,2
AE BC ==
(1)求证:BF //平面
ADE ;(2)求直线
CE 与平面BDE 所成角的正弦值;(3)求点F 到平面BDE 的距离.
又()10f =,123x x x <<,所以12301x x x <<=<,所以131x x =,所以1231x x x =.
【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:
(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;
(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.
(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。
天津市第一中学2021届高三上学期第二次月考地理试题 Word版含答案
![天津市第一中学2021届高三上学期第二次月考地理试题 Word版含答案](https://img.taocdn.com/s3/m/23bffe4d24c52cc58bd63186bceb19e8b8f6ecb6.png)
2022-2021-1天津一中高三班级地理学科二月考检测试卷一、选择题(每题1.5分,共45分)右图是以极点为中心的东半球图。
此刻,曲线MN上各点太阳高度为0°,MN与EP相交于N点,该季节,北美大陆等温线向南凸出。
读图回答1~2题。
1.由图文信息可知( )A.M位于N的西北方向 B.悉尼正值少雨的季节C.此季节是南极考察的最佳时期D.这一天甲地日出时刻早于乙地2.图示时刻( )A.东经10°各地处于夜B.澳大利亚与巴西不在同一日C.全球属于夜的范围大于昼D.地球位于公转轨道远日点四周右图所示地区为完整的昼半球,读图完成3-4题。
3.下列关于图中标注的四个点的说法,正确的是()A.X、Y、P三点的太阳高度相同B.Y、P两点的地方时相同C.X、Y两点的地方时相同D.A点太阳高度达到一年中最大值4.下列四幅图能够正确反映Y点位置的是()读某区域等温线图(图中等值线a>b),回答5-6题。
5.图中乙河流域的气候类型是()A.亚热带季风气候B.温带海洋性气候C.地中海气候D.热带沙漠气候6.对于乙河流量大小及影响乙河流量缘由的组合叙述正确的是()A.乙河全年流量稳定,受降水影响很小B.乙河7月为枯水期,受副热带高压把握C.乙河1月为汛期,受西风带把握D.乙河7月为汛期,受西风带把握读世界某区域示意图及印度洋沿赤道纵剖面图,回答7-8题。
7.当上面右图中a处的上升流最猛烈时,下列四幅图中能反映北印度洋地区季节的是()8.关于下列地区地理特征的叙述,正确的是()A.M地区的自然带呈现地带性分布规律 B.N地区处在板块消亡边界C.J地区分布有大面积的热带荒漠 D.K地区为热带草原气候黄河多年平均年输沙量达16亿吨,居世界大江大河之冠,而黄河多年平均径流量仅为500多亿立方米。
形成黄河水沙极不平衡,使黄河下游河道不断向“槽高、滩低、堤根洼”的“二级悬河”进展。
据此回答9~11题。
9.下列四幅图中,可表示黄河下游的是(实线为河流,虚线为潜水线,单位:米)()10.黄河水输沙力量强大,主要取决于黄土高原()。
天津市经济技术开发区第一中学2021届高三上学期10月月考数学试题 Word版含解析
![天津市经济技术开发区第一中学2021届高三上学期10月月考数学试题 Word版含解析](https://img.taocdn.com/s3/m/337db2c7afaad1f34693daef5ef7ba0d4a736d89.png)
当 时, 时, ,当 时, , 是极大值点.
∴ 极大值 .
(3)由(2)知 时, 的极大值为 ,
∴ ,即 ,
设 ,易知函数 在 上是增函数,而 ,
∴由 得 .
【点睛】本题考查用导数研究函数的极值,掌握导数与极值的关系是解题关键.本题属于中档题.
2Hale Waihona Puke .已知函数(1)若 ,求函数 在 处的切线方程;
(2)讨论函数 的单调性;
(3)若关于 的不等式 恒成立,且 的最小值是 ,求证: .
【答案】(1) ;(2)答案见解析;(3)证明见解析.
【答案】
【解析】
【分析】
不等式变形为 ( ),然后求出函数 的最小值即可得.
【详解】∵ ,∴不等式 可化为 ,
设 , ,
当 时, , 递减, 时, , 递增,
∴ ,
不等式 在 上恒成立,则 .
故答案为: .
【点睛】本题考查不等式恒成立问题,解题方法是分离参数法,转化为求函数的最值.
16.函数 是定义在 上的奇函数,对任意的 ,满足 ,且当 时, ,则 __________.
故选:D.
【点睛】本题考查命题的真假判断,考查了充分不必要条件的定义,命题的否定,基本不等式,函数的奇偶性与对称性等知识,属于中档题.
8.将函数 的图象上所有点的纵坐标缩短为原来的 ,再把所得图象上的所有点向右平移 个单位长度后,得到函数 的图象,若函数 在 处取得最大值,则函数 的图象()
A 关于点 对称B. 关于点 对称
10.函数 ,若函数 恰有 个零点,则 的取值范围为()
A. 或 B. 或 C. D.
【答案】D
【解析】
【分析】
天津市南开大学附属中学2021届高三上学期第二次月考数学试卷(理科) Word版含解析
![天津市南开大学附属中学2021届高三上学期第二次月考数学试卷(理科) Word版含解析](https://img.taocdn.com/s3/m/609661a503d276a20029bd64783e0912a2167c98.png)
天津市南开高校附属中学2021届高三上学期其次次月考数学试卷(理科)一、选择题(每题5分,共40分)1.(3分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i2.(3分)“a3>b3”是“log3a>log3b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(3分)设变量x,y 满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.54.(3分)若﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,则ab=()A.15 B.﹣l5 C.±l5 D.105.(3分)已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不行能是()A.B.πC.2πD .6.(3分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m⊥α,n⊥m则n∥αB.若α⊥β,β⊥γ则α∥βC.若m⊥β,n⊥β则m∥n D.若m∥α,m∥β,则α∥β7.(3分)已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,设a n=g(n)﹣g(n﹣1)(n∈N*),则数列{a n}是()A.等差数列B.等比数列C.递增数列D.递减数列8.(3分)在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD 是正三角形,则•的值为()A.﹣2 B.2C.D .二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)为了解某校高中同学的近视眼发病率,在该校同学中进行分层抽样调查,已知该校2022-2021学年高一、2022-2021学年高二、2021届高三分别有同学800名、600名、500名.若2021届高三同学共抽取25名,则2022-2021学年高一同学共抽取名.10.(5分)如图是一个空间几何体的三视图,则该几何体的体积大小为.11.(5分)已知=(3,﹣2).=(1,0),向量λ与﹣2垂直,则实数λ的值为.12.(5分)对于任意x∈R,满足(a﹣2)x2+2(a﹣2)x﹣4<0恒成立的全部实数a构成集合A,使不等式|x ﹣4|+|x﹣3|<a的解集为空集的全部实数a构成集合B,则A∩∁R B=.13.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为.14.(5分)若a是1+2b与1﹣2b 的等比中项,则的最大值为.三、解答题:本大题共6小题,共80分,解题应写出文字说明、证明过程或演算步骤.15.(16分)已知函数.(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x )在区间上的值域.16.(16分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.17.(16分)如图所示,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD 上一点,PE=2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D﹣AC﹣E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.18.(16分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设的前n项和S n.19.(16分)已知数列{a n},a1=1,前n项和S n满足nS n+1﹣(n+3)S n=0,(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=4()2,求数列{(﹣1)n b n}的前n项和T n;(Ⅲ)设C n=2n (﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.20.(16分)已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.天津市南开高校附属中学2021届高三上学期其次次月考数学试卷(理科)参考答案与试题解析一、选择题(每题5分,共40分)1.(3分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i考点:复数相等的充要条件.专题:数系的扩充和复数.分析:依据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z的值.解答:解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(3分)“a3>b3”是“log3a>log3b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:函数的性质及应用;简易规律.分析:依据指数函数和对数函数的图象和性质,求出两个命题的等价命题,进而依据充要条件的定义可得答案.解答:解:“a3>b3”⇔“a>b”,“log3a>log3b”⇔“a>b>0”,故“a3>b3”是“log3a>log3b”的必要不充分条件,故选:B点评:推断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤推断命题p与命题q所表示的范围,再依据“谁大谁必要,谁小谁充分”的原则,推断命题p与命题q的关系.3.(3分)设变量x,y 满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.5考点:简洁线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的学问,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.4.(3分)若﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,则ab=()A.15 B.﹣l5 C.±l5 D.10考点:等比数列的性质;等差数列的性质.专题:等差数列与等比数列.分析:利用等差数列与等比数列的性质可求得a=﹣5,b=﹣3,从而可得答案.解答:解:∵﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,∴2a=﹣1﹣9=﹣10,b2=9,∴a=﹣5,b=﹣3(b为第三项,b<0),∴ab=15.故选:A.点评:本题考查等差数列与等比数列的性质,b=﹣3的确定是易错点,属于中档题.5.(3分)已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不行能是()A.B.πC.2πD .考点:三角函数的最值.专题:计算题.分析:结合三角函数R上的值域[﹣2,2],当定义域为[a,b],值域为[﹣2,1],可知[a,b]小于一个周期,从而可得.解答:解:函数y=2sinx在R上有﹣2≤y≤2函数的周期T=2π值域[﹣2,1]含最小值不含最大值,故定义域[a,b]小于一个周期b﹣a<2π故选C点评:本题考查了正弦函数的图象及利用图象求函数的值域,解题的关键是生疏三角函数y=2sinx的值域[﹣2,2],而在区间[a,b]上的值域[﹣2,1],可得函数的定义域与周期的关系,从而可求结果.6.(3分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m⊥α,n⊥m则n∥αB.若α⊥β,β⊥γ则α∥βC.若m⊥β,n⊥β则m∥n D.若m∥α,m∥β,则α∥β考点:空间中直线与平面之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:对选项逐一分析,依据空间线面关系,找出正确选项.解答:解:对于A,直线n有可能在平面α内;故A 错误;对于B,α,γ还有可能相交,故B 错误;对于C,依据线面垂直的性质以及线线平行的判定,可得直线m,n平行;对于D,α,β有可能相交.故选C.点评:本题主要考查了平面与平面之间的位置关系,考查空间想象力量、运算力量和推理论证力量,属于基础题.7.(3分)已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,设a n=g(n)﹣g(n﹣1)(n∈N*),则数列{a n}是()A.等差数列B.等比数列C.递增数列D.递减数列考点:等比关系的确定.专题:计算题.分析:依据g(n)的通项公式可求得g(1),g(2),g(3)直至g(n),进而可求a1,a2,a3,┉,a n进而发觉数列{a n}是等比数列解答:解:已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,则g(1)=b+1,g(2)=b2+b+1,g(3)=b3+b2+b+1,┉,g(n)=b n+┉+b2+b+1.a1=b,a2=b2,a3=b3,┉,a n=b n故数列{a n}是等比数列点评:本题主要考查等比关系的确定.属基础题.8.(3分)在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD 是正三角形,则•的值为()A.﹣2 B.2C.D .考点:平面对量数量积的运算.专题:平面对量及应用.分析:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.由A(0,3),C(4,0),可得.由于,可得=0.利用•==即可得出.解答:解:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.∵A(0,3),C(4,0),∴.∵,∴=0.∴•====8﹣=.故选:C.点评:本题考查了向量垂直与数量积的关系、数量积运算性质、向量的三角形法则,考查了推理力量与计算力量,属于中档题.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)为了解某校高中同学的近视眼发病率,在该校同学中进行分层抽样调查,已知该校2022-2021学年高一、2022-2021学年高二、2021届高三分别有同学800名、600名、500名.若2021届高三同学共抽取25名,则2022-2021学年高一同学共抽取40名.考点:分层抽样方法.专题:概率与统计.分析:依据分层抽样在各部分抽取的比例相等求解.解答:解:依据分层抽样在各部分抽取的比例相等,分层抽样抽取的比例为=,∴2022-2021学年高一应抽取的同学数为800×=40.故答案为:40.点评:本题考查了分层抽样的定义,娴熟把握分层抽样的特征是关键.10.(5分)如图是一个空间几何体的三视图,则该几何体的体积大小为.考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球.代入长方体的体积公式和球的体积公式,即可得到答案.解答:由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球.所以长方体的体积为2×2×1=4,半球的体积为,所以该几何体的体积为.故答案为:.点评:本题考查的学问点是由三视图求体积,其中依据已知中的三视图推断出几何体的外形是解题的关键.11.(5分)已知=(3,﹣2).=(1,0),向量λ与﹣2垂直,则实数λ的值为.考点:数量积推断两个平面对量的垂直关系.专题:计算题.分析:由题意得(λ)•(﹣2)=λ+(1﹣2λ)﹣2=13λ+3(1﹣2λ)﹣2=0,解得λ值,即为所求.解答:解:由题意得(λ)•(﹣2)=λ+(1﹣2λ)﹣2=13λ+3(1﹣2λ)﹣2=0,解得λ=﹣,故答案为﹣.点评:本题考查两个向量的数量积公式的应用,两个向量垂直的性质,求得13λ+3(1﹣2λ)﹣2=0,是解题的关键.12.(5分)对于任意x∈R,满足(a﹣2)x2+2(a﹣2)x﹣4<0恒成立的全部实数a构成集合A,使不等式|x ﹣4|+|x﹣3|<a的解集为空集的全部实数a构成集合B,则A∩∁R B=(1,2].考点:交、并、补集的混合运算.专题:集合.分析:分a﹣2为0与不为0两种状况求出(a﹣2)x2+2(a﹣2)x﹣4<0恒成立a的范围,确定出A ,求出访不等式|x﹣4|+|x﹣3|<a的解集为空集的全部实数a的集合确定出B,求出B补集与A的交集即可.解答:解:(a﹣2)x2+2(a﹣2)x﹣4<0,当a﹣2=0,即a=2时,﹣4<0,满足题意;当a﹣2≠0,即a≠2时,依据题意得到二次函数开口向下,且与x轴没有交点,即a﹣2<0,△=4(a﹣2)2+16(a﹣2)<0,解得:a<2,﹣2<a<2,综上,a的范围为﹣2<a≤2,即A=(﹣2,2],使不等式|x﹣4|+|x﹣3|<a的解集为空集的全部实数a构成的B=(﹣∞,1),∴∁R B=[1,+∞),则A∩∁R B=(1,2].故答案为:(1,2]点评:此题考查了交、并、补集的混合运算,娴熟把握各自的定义是解本题的关键.13.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为4.考点:与圆有关的比例线段.专题:计算题.分析:连接OC,BE,由圆角定定理,我们可得BE⊥AE,直线l是过C的切线,故OC⊥直线l,△OBC 为等边三角形,结合等边三角形的性质及30°所对的直角边等于斜边的一半,我们易求出线段AE的长.解答:解:连接OC,BE,如下图所示:则∵圆O的直径AB=8,BC=4,∴△OBC为等边三角形,∠COB=60°又∵直线l是过C的切线,故OC⊥直线l又∵AD⊥直线l∴AD∥OC故在Rt△ABE中∠A=∠COB=60°∴AE=AB=4故答案为:4点评:本题考查的学问点是切线的性质,圆周角定理,其中依据切线的性质,圆周角定理,推断出△ABE 是一个∠B=30°的直角三角形是解答本题的关键.14.(5分)若a是1+2b与1﹣2b的等比中项,则的最大值为.考点:等比数列的性质.专题:综合题;等差数列与等比数列.分析:由a是1+2b与1﹣2b的等比中项得到4|ab|≤1,再由基本不等式法求得的最大值.解答:解:a是1+2b与1﹣2b的等比中项,则a2=1﹣4b2⇒a2+4b2=1≥4|ab|.∴.∵a2+4b2=(|a|+2|b|)2﹣4|ab|=1.∴≤=∵∴≥4,∴的最大值为=.故答案为:.点评:本题考查等比中项以及不等式法求最值问题,考查同学分析解决问题的力量,属于中档题.三、解答题:本大题共6小题,共80分,解题应写出文字说明、证明过程或演算步骤.15.(16分)已知函数.(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x )在区间上的值域.考点:三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的对称性.专题:三角函数的图像与性质.分析:(1)先依据两角和与差的正弦和余弦公式将函数f(x)开放再整理,可将函数化简为y=Asin(wx+ρ)的形式,依据T=可求出最小正周期,令,求出x的值即可得到对称轴方程.(2)先依据x的范围求出2x ﹣的范围,再由正弦函数的单调性可求出最小值和最大值,进而得到函数f(x)在区间上的值域.解答:解:(1)∵=sin2x+(sinx﹣cosx)(sinx+cosx)===∴周期T=由∴函数图象的对称轴方程为(2)∵,∴,由于在区间上单调递增,在区间上单调递减,所以当时,f(x)取最大值1,又∵,当时,f(x )取最小值,所以函数f(x )在区间上的值域为.点评:本题主要考查两角和与差的正弦公式和余弦公式,以及正弦函数的基本性质﹣﹣最小正周期、对称性、和单调性.考查对基础学问的把握状况.16.(16分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.考点:余弦定理;平面对量数量积的运算;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)利用平面对量的数量积运算法则化简•=2,将cosB的值代入求出ac=6,再利用余弦定理列出关系式,将b,cosB以及ac的值代入得到a2+c2=13,联马上可求出ac的值;(Ⅱ)由cosB的值,利用同角三角函数间基本关系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,进而求出cosC的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.解答:解:(Ⅰ)∵•=2,cosB=,∴c•acosB=2,即ac=6①,∵b=3,∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,∴a2+c2=13②,联立①②得:a=3,c=2;(Ⅱ)在△ABC中,sinB===,由正弦定理=得:sinC=sinB=×=,∵a=b>c,∴C为锐角,∴cosC===,则cos(B﹣C)=cosBcosC+sinBsinC=×+×=.点评:此题考查了正弦、余弦定理,平面对量的数量积运算,以及同角三角函数间的基本关系,娴熟把握定理是解本题的关键.17.(16分)如图所示,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD 上一点,PE=2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D﹣AC﹣E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.考点:用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定.专题:计算题;证明题;综合题.分析:(I)依据勾股定理的逆定理,得到△PAD是以PD为斜边的直角三角形,从而有PA⊥AD,再结合PA⊥CD,AD、CD 相交于点D,可得PA⊥平面ABCD;(II)过E作EG∥PA 交AD于G,连接BD交AC于O,过G作GH∥OD,交AC于H,连接EH.利用三垂线定理结合正方形ABCD的对角线相互垂直,可证出∠EHG为二面角D﹣AC﹣E的平面角.分别在△PAB中和△AOD中,求出EH=,GH=,在Rt△EHG中利用三角函数的定义,得到tan∠EHG==.最终由同角三角函数的关系,计算得cos∠EHG=.(III)以AB,AD,PA为x轴、y轴、z轴建立空间直角坐标系.分别给出点A、B、C、P、E的坐标,从而得出=(1,1,0),=(0,,),利用向量数量积为零的方法,列方程组可算出平面AEC的一个法向量为=(﹣1,1,﹣2 ).假设侧棱PC上存在一点F,使得BF∥平面AEC ,则=+=(﹣λ,1﹣λ,λ),且有⋅=0.所以⋅=λ+1﹣λ﹣2λ=0,解之得λ=,所以存在PC的中点F,使得BF∥平面AEC.解答:解:(Ⅰ)∵PA=AD=1,PD=,∴PA2+AD2=PD2,可得△PAD是以PD为斜边的直角三角形∴PA⊥AD﹣﹣﹣(2分)又∵PA⊥CD,AD、CD 相交于点D,∴PA⊥平面ABCD﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)过E作EG∥PA 交AD于G,∵EG∥PA,PA⊥平面ABCD,∴EG⊥平面ABCD,∵△PAB中,PE=2ED∴AG=2GD,EG=PA=,﹣﹣﹣﹣﹣﹣(5分)连接BD交AC于O,过G作GH∥OD,交AC于H,连接EH.∵OD⊥AC,GH∥OD∴GH⊥AC∵EG⊥平面ABCD,HG是斜线EH在平面ABCD内的射影,∴EH⊥AC,可得∠EHG为二面角D﹣AC﹣E的平面角.﹣﹣﹣﹣﹣(6分)∴Rt△EGH中,HG=OD=BD=,可得tan∠EHG==.由同角三角函数的关系,得cos∠EHG==.∴二面角D﹣AC﹣E 的平面角的余弦值为﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)以AB,AD,PA为x轴、y轴、z轴建立空间直角坐标系.则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),E(0,,),=(1,1,0),=(0,,)﹣﹣﹣(9分)设平面AEC 的法向量=(x,y,z),依据数量积为零,可得,即:,令y=1,得=(﹣1,1,﹣2 )﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)假设侧棱PC上存在一点F ,且=λ,(0≤λ≤1),使得:BF∥平面AEC ,则⋅=0.又∵=+=(0,1,0)+(﹣λ,﹣λ,λ)=(﹣λ,1﹣λ,λ),∴⋅=λ+1﹣λ﹣2λ=0,∴λ=,所以存在PC的中点F,使得BF∥平面AEC.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)点评:本题给出一个特殊的棱锥,通过证明线面垂直和求二面角的大小,着重考查了用空间向量求平面间的夹角、直线与平面平行的判定与性质和直线与平面垂直的判定与性质等学问点,属于中档题.18.(16分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设的前n项和S n.考点:等差数列与等比数列的综合;数列的求和.专题:计算题.分析:(I)依据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;(II)先求出数列{b n}的通项公式,然后求出﹣S n﹣(﹣2S n),即可求得的前n项和S n.解答:解:(I)设等比数列{a n}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20∴∴或∵数列{a n}单调递增∴a n=2n(II)∵a n=2n∴b n ==﹣n•2n∴﹣s n=1×2+2×22+…+n×2n①∴﹣2s n=1×22+2×23+…+(n﹣1)×2n+n2n+1②∴①﹣②得,s n=2+22+23+…+2n﹣n•2n+1=2n+1﹣n•2n+1﹣2点评:本题考查了等比数列的通项公式以及数列的前n项和,对于等差数列与等比数列乘积形式的数列,求前n项和一般实行错位相减的方法.19.(16分)已知数列{a n},a1=1,前n项和S n满足nS n+1﹣(n+3)S n=0,(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=4()2,求数列{(﹣1)n b n}的前n项和T n;(Ⅲ)设C n=2n (﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.考点:数列的求和;数列的函数特性;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)对已知等式整理成数列递推式,然后用叠乘法,求得S n,最终利用a n=S n﹣S n﹣1求得答案.(Ⅱ)依据(Ⅰ)中a n,求得b n,设出C n,分n为偶数和奇数时的T n.(Ⅲ)依据数列为递减数列,只需满足C n+1﹣C n<0,求得﹣的最大值,即可求得λ的范围.解答:解:(Ⅰ)由已知=,且S1=a1=1,当n≥2时,S n=S1••…•=1•••…•=,S1也适合,当n≥2时,a n=S n﹣S n﹣1=,且a1也适合,∴a n =.(Ⅱ)b n=4()2=(n+1)2,设C n=(﹣1)n(n+1)2,当n为偶数时,∵C n﹣1+C n=(﹣1)n﹣1•n2+(﹣1)n•(n+1)2=2n+1,T n=(C1+C2)+(C3+C4)+…(C n﹣1+C n)=5+9+…+(2n﹣1)==,当n为奇数时,T n=T n﹣1+C n =﹣(n+1)2=﹣,且T1=C1=﹣4也适合.综上得T n =(Ⅲ)∵C n=2n (﹣λ),使数列{C n}是单调递减数列,则C n+1﹣C n=2n (﹣﹣λ)<0,对n∈N*都成立,则(﹣)max<λ,∵﹣==,当n=1或2时,(﹣)max =,∴λ>.点评:本题主要考查了数列的求和问题,求数列通项公式问题.对于利用a n=S n﹣S n﹣1肯定要a1对进行验证.20.(16分)已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.考点:利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:压轴题.分析:(Ⅰ)首先求出函数的导数,然后依据导数与函数单调区间的关系确定t的取值范围,(Ⅱ)运用函数的微小值进行证明,(Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定.解答:(Ⅰ)解:由于f′(x)=(2x﹣3)e x+(x2﹣3x+3)e x,由f′(x)>0⇒x>1或x<0,由f′(x)<0⇒0<x<1,∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,∵函数f(x)在[﹣2,t]上为单调函数,∴﹣2<t≤0,(Ⅱ)证:由于函数f(x)在(﹣∞,0)∪(1,+∞)上单调递增,在(0,1)上单调递减,所以f(x)在x=1处取得微小值e,又f(﹣2)=13e﹣2<e,所以f(x)在[﹣2,+∞)上的最小值为f(﹣2),从而当t>﹣2时,f(﹣2)<f(t),即m<n,(Ⅲ)证:由于,∴,即为x02﹣x0=,令g(x)=x2﹣x ﹣,从而问题转化为证明方程g(x)==0在(﹣2,t)上有解并争辩解的个数,由于g(﹣2)=6﹣(t﹣1)2=﹣,g(t)=t(t﹣1)﹣=,所以当t>4或﹣2<t<1时,g(﹣2)•g(t)<0,所以g(x)=0在(﹣2,t)上有解,且只有一解,当1<t<4时,g(﹣2)>0且g(t)>0,但由于g(0)=﹣<0,所以g(x)=0在(﹣2,t)上有解,且有两解,当t=1时,g(x)=x2﹣x=0,解得x=0或1,所以g(x)=0在(﹣2,t)上有且只有一解,当t=4时,g(x)=x2﹣x﹣6=0,所以g(x)=0在(﹣2,t)上也有且只有一解,综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足,且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,当1<t<4时,有两个x0适合题意.点评:本小题主要考查导数的概念和计算,应用导数争辩函数单调性的方法及推理和运算力量.。
广东省肇庆市第一中学2025届高三上学期10月月考数学试题
![广东省肇庆市第一中学2025届高三上学期10月月考数学试题](https://img.taocdn.com/s3/m/760ef0ad0408763231126edb6f1aff00bfd5704d.png)
广东省肇庆市第一中学2025届高三上学期10月月考数学试
题
学校:___________姓名:___________班级:___________考号:___________
因此函数()f x 的周期为8,
当(0,4]x Î时,令2()02x f x x =-=,显然可得2x =或4x =,
当[]0,4x Î时,函数2y x =的函数值由200=增加到224=,增加到2416=,而函数2x y =的函数值由021=增加到224=,增加到4216=,
而我们知道函数2x y =与函数2y x =的增长速度不一样,且当自变量越大时,函数2x y =增
的速度远大于函数2y x =的速度,
因此当(0,4]x Î时,函数22()x f x x =-只有两个零点,且()()016416f f =-=,()()440f f -==,由()()()(4)16164f x f x f x f x ++=Þ=--,
当(4,8]x Î时,由()()()241641642x f x f x x -=--=--+,因为当(4,8]x Î时,()241640,21x x ---³>,所以此时()0f x >,因此此时函数()f x 没有零点,
又20248253¸=,因此在[]0,2024上函数有2532506´=个零点,当[]0,4x Î时,有两个零点2和4,
当(4,8]x Î时,无零点,由函数的周期性可知:当[)4,0x Î-时,有一个零点4-,因此有[4,2024]-上,有个507零点.故选:B 9.ABC
【分析】利用基本不等式中“1”的妙用即可得出A 正确,将等式整理变形可得。
专题16 数列(解答题)(12月)(人教A版2019)(解析版)
![专题16 数列(解答题)(12月)(人教A版2019)(解析版)](https://img.taocdn.com/s3/m/98a9472f81c758f5f71f6744.png)
专题16 数 列(解答题)1.已知等差数列{}n a 的前n 项和为n S ,10n n a a +->,23a =,且1a ,3a ,712a +成等比数列.(1)求n a 和n S ; (2)设n b =,数列{}n b 的前n 项和为n T ,求证:112n T ≤<. 【试题来源】广东省湛江市2021届高三上学期高中毕业班调研测试题【答案】(1)21n a n =-,2n S n =;(2)证明见解析.【解析】(1)设等差数列{}n a 的公差为d ,首项为1a , 由10n n a a +->,得0d >,则223173,(12),a a a a =⎧⎨=+⎩所以121113,(2)(126).a d a d a a d +=⎧⎨+=++⎩ 解得11a =,2d =,所以21n a n =- ,()21212n n n S n +-==.(2)因为111(1)1n b n n n n ===-++. 所以1111111111112233411n T n n n =-+-+-++-=-<++. 因为111nT n =-+单调递增.所以112n T T ≥=,综上,112T ≤<.【名师点睛】数列求和的方法:(1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些像可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列:或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如a n =(−1)n f(n)类型,可采用两项合并求解.2.n S 为等差数列{}n a 的前n 项和,已知71a =,432S =-. (1)求数列{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(理)【答案】(1)213n a n =-;(2)212n n S n =-,6n =时,n S 的最小值为36-.【解析】(1)设{}n a 的公差为d ,由71a =,432S =-,即1161434322a d a d +=⎧⎪⎨⨯+=-⎪⎩,解得1112a d =-⎧⎨=⎩, 所以()11213n a a n d n =+-=-. (2)()221111122n n n S na d n n n n n -=+=-+-=-, ()2212636n S n n n =-=--,所以当6n =时,n S 的最小值为36-. 3.已知数列{}n a 的前n 项和为n S ,112a =,且10n n S a +-=(*n N ∈). (1)求数列{}n a 的通项公式; (2)若()21log nn b n a =-+⋅,数列()*N 1n n b ⎧⎫⎬⎭∈⎨⎩的前n 项和为n S ,求证:112n S ≤<.【试题来源】四川省内江市第六中学2020-2021学年高三上学期第三次月考(文) 【答案】(1)12n na =;(2)证明见解析. 【解析】(1)因为10n n S a +-=①,所以()11102n n S a n --+-=≥②,①-②得112n n a a -=,2n ≥; 所以数列{}n a 是首项和公比都为12的等比数列,于是1111222n n n a -⎛⎫=⨯=⎪⎝⎭,*n N ∈.(2)由(1)得()()21log 1n n b n a n n =-+⋅=+,所以()111111n b n n n n ==-++, 所以12111111*********11n n S b b b n n n =+++=-+-++-=-++. 又易知函数()111f x x =-+在[)1,+∞上是增函数,且()1f x <,而112S =, 所以112n S ≤<. 【名师点睛】裂项相消法求数列和的常见类型: (1)等差型111111n n n n a a da a ++⎛⎫=- ⎪⎝⎭,其中{}n a 是公差为()0d d ≠的等差数列; (2=(3)指数型()11nn n a a a a +-=-;(4)对数型11log log log n aa n a n na a a a ++=-. 4.已知数列{}n a 前n 项和n S 满足()2*n S n n N =∈(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【试题来源】甘肃省张掖市第二中学2020-2021学年高二第一学期期中考试(文) 【答案】(1)21n a n =-;(2)n 21nT n =+. 【解析】(1)当1n =时,111a S ==,当2n ≥时,()22121n S n n n =-=-+,121n n n a S S n -=-=-, 当1n =时上式也符合.所以21n a n =-. (2)由题意知,可设111111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭n 12111111(1)()()23352121n T b b b n n ⎡⎤=+++=-+-++-⎢⎥-+⎣⎦则n 11122121n T n n ⎛⎫=-= ⎪++⎝⎭. 5.从①前n 项和()2n S n p p R =+∈②611a =且122n n n a a a ++=+这两个条件中任选一个,填至横线上,并完成解答.在数列{}n a 中,11a =,________,其中n *∈N . (1)求数列{}n a 的通项公式;(2)若1a ,n a ,m a 成等比数列,其中m ,n *∈N ,且1m n >>,求m 的最小值. (注:如果选择多个条件分别解答,那么按第一个解答计分)【试题来源】广东省深圳、汕头、潮州、揭阳名校2021届高三上学期联考 【答案】(1)答案见解析;(2)答案见解析.【解析】选择①:(1)当1n =时,由111S a ==,得0p =.当2n ≥时,由题意,得()211n S n -=-,所以()1212n n n a S S n n -=-=-≥.经检验,11a =符合上式,所以()*21n a n n =-∈N .(2)由1a ,n a ,m a 成等比数列,得21nm a a a =, 由(1)得()*21n a n n =-∈N,即()()221121n m -=⨯-.化简,得2211221222m n n n ⎛⎫=-+=-+ ⎪⎝⎭. 因为m ,n 是大于1的正整数,且m n >,所以当2n =时,m 有最小值5. 选择②:(1)由122n n n a a a ++=+,得121 n n n n a a a a +++-=-, 所以数列{}n a 是等差数列.设数列{}n a 的公差为d . 因为11a =,61511a a d =+=,所以2d =. 所以()()*1121n a a n d n n =+-=-∈N .(2)因为1a ,n a ,m a 成等比数列,所以21nm a a a =,即()()221121n m -=⨯-. 化简,得2211221222m n n n ⎛⎫=-+=-+ ⎪⎝⎭.因为m ,n 是大于1的正整数,且m n >,所以当2n =时,m 有最小值5.【名师点睛】()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩,检验11a =是否符合通项是解题的关键. 6.在数列{}n a 中,12a =,1541n n a a n +=-+,*n N ∈. (1)证明:数列{}n a n -是等比数列; (2)求{}n a 的前n 项和n S .【试题来源】河南省焦作市2020-2021学年高二(上)期中(理) 【答案】(1)证明见解析;(2)()1(1)5142n n n +-+. 【解析】(1)1541n n a a n +=-+,*n N ∈,1(1)5()n n a n a n +∴-+=-.因为111a -=, ∴数列{}n a n -是首项为1,公比为5的等比数列,(2)由(1)可得15n n a n --=,15n n a n -∴=+,{}n a ∴的前n 项和211555(12)n n S n -=+++⋯⋯++++⋯⋯+()115(1)51(1)1(1)(51)15251242nnn n n n n n n ⨯-+-++=+=+=-+-- 7.n S 为等差数列{}n a 的前n 项和,已知410a =-,864S =-. (1)求数列{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(文)【答案】(1)426n a n =-;(2)2224n S n n =-,6n =时,n S 的最小值为72-.【解析】(1)设{}n a 的公差为d ,由410a =-,864S =-得11310878642a d a d +=-⎧⎪⎨⨯+=-⎪⎩, 解得1224a d =-⎧⎨=⎩,所以{}n a 的通项公式为()2241426n a n n =-+-=-;(2)由(1)得()()1244822422n n n a a n n S n n +-===-, 又222242(6)72n S n n n -=--=,所以当6n =时,n S 取得最小值,最小值为72-.8.已知正项等比数列{}n a 的前n 项和为n S ,且满足22S a +是12a 和4a 的等差中项,12a =. (1)求数列{}n a 的通项公式;(2)令222log n n n b a a =+,求数列{}n b 的前n 项和n T .【试题来源】天津市滨海新区大港一中2021届高三(上)第一次月考【答案】(1)2nn a =;(2)12443n n n +-++.【解析】(1)正项等比数列{}n a 的前n 项和为n S ,且满足22S a +是12a 和4a 的等差中项, 设公比为q ,则22142()2S a a a +=+,整理得12142(2)2a a a a +=+,由于12a =,即32(24)42q q +=+,即34q q =,因为0q >,所以解得2q ,所以2nn a =.(2)由于222log 24nn n b a a n =+=+,所以12324446424n n T n =++++++++12(2462)(444)n n =++++++++4(41)(1)41n n n -=++-12443n n n +-=++.9.已知数列{}n a 是公差不为零的等差数列,92a =-,且满足3a ,13a ,8a 成等比数列. (1)求数列{}n a 的通项公式;(2)设12n n n n b a a a ++=,数列{}n b 的前n 项和为n S ,求使得n S 最小的n 的值. 【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(文) 【答案】(1)329n a n =-;(2)7【解析】(1)设数列{}n a 的公差为d ()0d ≠,因为92a =-,3a ,13a ,8a 成等比数列,所以21338a a a =,即()()()224262d d d -+=----,整理得230d d -=, 解得3d =或0d =(舍去).故()99329n a a n d n =+-=-. (2)当19n ≤≤时,0n a <,当10n ≥时,0n a >,因为12n n n n b a a a ++=,当17n ≤≤时,0n b <,当10n ≥时,0n b >, 而且()()8891052110b a a a ==-⨯-⨯=,9910112148b a a a =-⨯⨯==-, 因此97S S >,所以使得n S 最小的n 为7.10.已知各项均为正数的等差数列{}n a 和等比数列{}n b 满足111a b ==,且236a a ⋅=,238b b a ⋅=(1)求数列{}n a ,{}n b 的通项公式. (2)若2221log n n n c a b +=⋅,求12n c c c +++….【试题来源】黑龙江宾县第一中学2020-2021学年高三第一学期第二次月考(理) 【答案】(1)n a n =,12n n b -=;(2)()21nn +.【解析】(1)因为{}n a 为等差数列,且11a =,所以可设公差为d , 则()11n a n d =+-,所以21a d =+,312a d =+. 因为236a a ⋅=,所以()()1126d d ++=,解得1d =或52d =-. 又等差数列{}n a 各项均为正数,所以52d =-不合题意,舍去,所以n a n =. 因为{}n b 为等比数列,且11b =,所以可设公比为(0)q q ≠,则1n n b q -=.因为2388b b a ⋅==,所以128q q ⋅=,解得2q,满足各项均为正数,所以12n n b -=.(2)由(1)知1,2n n n a n b -==,所以2221log n n n c a b +=⋅()121n n =+111=21n n ⎛⎫- ⎪+⎝⎭.所以12n c c c +++111111122231n n ⎛⎫=-+-++- ⎪+⎝⎭11121n ⎛⎫=⋅- ⎪+⎝⎭()21n n =+.11.在等比数列{}n a 中,已知11a =,48a =. (1)求数列{}n a 的通项n a ;(2)在等差数列{}n b 中,若15b a =,82b a =,求数列{}n b 前n 项和n S . 【试题来源】甘肃省临夏州临夏中学2019-2020学年高二(上)第二次月考(文) 【答案】(1)12n na ;(2)217n S n n =-.【解析】(1)设等比数列{}n a 的公比为q ,由题设知3418a q a ==, 2q ∴=,因此12n na ;(2)由(1)可得415216b a ===,822b a ==,∴公差81281b b d -==--,2(1)16(2)172n n n S n n n -∴=+⨯-=-. 12.已知数列{}n a 满足12a =,()121n n n a a n++=.设nn a b n=. (1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和为n S .【试题来源】黑龙江省哈尔滨市第三中学2020-2021学年高三上学期期中考试(文) 【答案】(1)证明见解析;(2)()1122n n S n +=-+.【解析】(1)由()121n n n a a n++=,可得121n n a an n+=⋅+,即12n n b b += 则数列{}n b 是以1121a b ==为首项,2为公比的等比数列; (2)由(1)可得,2nn n a b n ==,2n n a n ∴=⋅,23122232...2n n S n =⨯+⨯+⨯++⨯,则有()23412122232 (122)nn n S n n +=⨯+⨯+⨯++-⨯+⨯,两式作差得()231111212222 (22222212)n n n n n n nS n n n ++++--=++++-⨯=-⨯=--⨯-()1122n n S n +∴=-+.13.在数列{}n a 中,11a =,24a =,2134n n n a a a ++=-. (1)求证:数列{}1n n a a +-是等比数列;(2)若数列{}n a 的前n 项和为n S ,且22n S m m ≥-对任意正整数n 恒成立,求实数m 的取值范围.【试题来源】河南省商丘市虞城高级中学2020~2021学年高三11月质量检测(理)【答案】(1)证明见详解;(2)1⎡⎣.【解析】(1)由2134n n n a a a ++=-,得214133n n n a a a ++=-. 则()1112111141113333n n n n n n n n nn n n n a a a a a a a a a a a a a ++++++++----===---,所以数列{}1n n a a +-是以213a a -=为首项,13为公比的等比数列. (2)由(1)得11211333n n n n a a -+-⎛⎫-=⨯=⎪⎝⎭.当2n ≥时,()()()()12132431n n n a a a a a a a a a a -=+-+-+-+⋅⋅⋅+-01231111133333n -=+++++⋅⋅⋅+2111119134122313n n --⎛⎫- ⎪⎛⎫⎝⎭=+=-⨯ ⎪⎝⎭-.当1n =时,11a =适合11191223n n a -⎛⎫=-⨯ ⎪⎝⎭.所以11191223n n a -⎛⎫=-⨯ ⎪⎝⎭,所以1111927111273122432413nnn S n n ⎛⎫- ⎪⎛⎫⎝⎭=-⨯=⨯+-⎪⎝⎭-. 因为11191223n n a -⎛⎫=-⨯ ⎪⎝⎭是关于n 的递增数列,且110a =>,所以n S 也关于n 单调递增,从而n S 的最小值为11S =.因为22n S m m ≥-恒成立.所以212m m ≥-,解得11m ≤≤.即实数m的取值范围是1⎡+⎣.【名师点睛】根据数列不等式恒成立求参数时,一般通过分离参数,得到参数大于某个式子或小于某个式子恒成立的问题,再根据分离后的式子,由函数(或数列)的性质求出最值,即可求解参数范围.14.已知等差数列{}n a 满足323a a -=,2414a a +=. (1)求{}n a 的通项公式;(2)设n S 是公比为正数的等比数列{}n b 的前n 项和,若22b a =,46b a =,求7S . 【试题来源】湖北省荆州市滩桥高级中学2019-2020学年高二下学期期末(文) 【答案】(1)32n a n =-;(2)254. 【解析】(1)设等差数列{}n a 的公差为d ,因为32243,14-=+=a a a a .所以3d =,12414a d +=,解得11a =, 所以()1132n a a n d n =+-=-; (2)设等比数列{}n b 的公比为q ,则2124b b q a ===,341616b b q a ===,解得122b q =⎧⎨=⎩或122b q =-⎧⎨=-⎩, 因为公比为正数,所以122b q =⎧⎨=⎩,所以()7721225412S ⨯-==-. 15.已知数列{}n a 为正项等比数列,12a =,数列{}n b 满足25b =,且11122332(21)2n n n a b a b a b a b n ++++⋅⋅⋅+=+-.(1)求数列{}n a 和{}n b 的通项公式; (2)若11{}n n b b +的前n 项和n T ,求n T 的取值范围. 【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题【答案】(1)2nn a =,21n b n =+;(2)[11,)156. 【解析】(1)令1n =,则2112(21)26a b =+-=,所以13b =,令2n =,则112226a b a b +=,所以2220a b =,因为25b =,所以24a =, 设数列{}n a 的公比为q ,则212a q a ==,所以2n n a =. 因为11122332(21)2n n n a b a b a b a b n ++++⋅⋅⋅+=+-,①当2n ≥时,112233112(23)2nn n a b a b a b a b n --+++⋅⋅⋅+=+-,② 由①-②得1[2(21)2][2(23)2](21)2n n nn n a b n n n +=+--+-=+,所以21n b n =+,当1n =时也成立,所以21n b n =+,(2)由(1)可知111111()(21)(23)22123n n b b n n n n +==-++++, 所以1111111[()()()]235572123n T n n =-+-+⋅⋅⋅+-++111()2323n =-+, 因为n T 随着n 的增大而增大,当1n =时,1115T =,当n →+∞时,16n T →, 所以n T 的取值范围是11[,)156. 【名师点睛】数列求和的方法常用的有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组求和法;(5)倒序相加法.要根据数列通项的特征,灵活选择方法求和. 16.已知数列{}n a 的前n 项和为n S ,且312n n S a =-*()n N ∈. (1)求数列{}n a 的通项公式;(2)在数列{}n b 中,15b =,1n n n b b a +=+,求数列{}n b 的通项公式.【试题来源】安徽省马鞍山市和县第二中学2020-2021学年高一上学期期中联考(理)【答案】(1)123n n a -=⋅;(2)134n n b -=+.【解析】(1)当n =1时,11312a a =-, 所以 a 1=2. 当2n ≥时,因为312n n S a =- ①,1131(2)2n n S a n --=-≥ ②,①-②得133(1)(1)22n n n a a a -=---,即13n n a a -=所以 数列{}n a 是首项为2,公比为3的等比数列,所以123n n a -=⋅.(2)因为1n n n b b a +=+,所以当2n ≥时,2123n n n b b --=+⋅ ,……,13223b b =+⋅,2123b b =+⋅,相加得 12111132(333)523413n n n n b b ----=+⋅+++=+⋅=+-.当n =1时,111345b -+==,所以 134n n b -=+.【名师点睛】递推数列求数列通项公式,对于形如a (n+1)=a n +f (n )或者a (n+1)-a n =f (n )的关系式,其中f (n )可以为常数(此时为等差数列)、也可以是关于n 的函数如一次函数、分式函数、二次函数和指数函数等,此时求解通项公式时均可使用累加法.17.已知正项数列{}n a 的前n 项和为n S ,且满足:11a =,211n n n a S S ++=+.(1)求数列{}n a 的通项公式; (2)设()()121213n n n a n n a b a a +=-+,求数列{}n b的前n 项和n T .【试题来源】湖南省长沙市长郡中学2020-2021学年高三上学期月考(三)【答案】(1)n a n =;(2)()1114213n n T n ⎡⎤=-⎢⎥+⋅⎣⎦.【解析】(1)由211n n n a S S ++=+,又有21n n n a S S -=+,()2n ≥,两式相减得()22112n n n n a a a a n ++-=+≥,因为0n a >,所以()112n n a a n +-=≥,又11a =,22121a a a a =++,解得22a =,满足11n n a a +-=,因此数列{}n a 是等差数列,首项1a 为1,公差d 为1, 所以()11n a a n d n =+-=; (2)()()1121213n n n b n n +=⋅-+()()113111114212134213213n n n n n n n -⎡⎤⎛⎫=-⋅=-⎢⎥ ⎪-+-⋅+⋅⎝⎭⎢⎥⎣⎦,所以 ()()1201121111111111...41333433534213213n n n n T b b b n n -⎡⎤⎛⎫⎛⎫=+++=-+-++-⎢⎥ ⎪ ⎪⋅⋅⋅⋅-⋅+⋅⎝⎭⎝⎭⎣⎦()1114213n n ⎡⎤=-⎢⎥+⋅⎣⎦. 【名师点睛】常见的数列中可进行裂项相消的形式:(1)()11111n n n n =-++;(2)211114122121n n n ⎛⎫=- ⎪--+⎝⎭; (31=-(4)()()1121121212121n n n n n ++=-----. 18.已知数列{}n a 中,11a =,13nn n a a a +=+. (1)求证:112n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)数列{}n b 满足()312nn n n nb a =-⋅,数列{}n b 的前n 项和为n T ,若不等式1(1)2n n n nT λ--<+对一切*n ∈N 恒成立,求λ的取值范围. 【试题来源】河南省南阳市第一中学校2020-2021学年高三上学期第四次月考(文) 【答案】(1)证明见解析,231n na =-;(2)23λ-<<. 【解析】(1)由13n n n a a a +=+得13131n n n n a a a a ++==+,即11111322n n a a +⎛⎫+=+ ⎪⎝⎭, 又111322a +=,所以112n a ⎧⎫+⎨⎬⎩⎭是以32是为首项,3为公比的等比数列. 所以111333222n n n a -+=⨯=,即231n n a =-. (2)()12231nnnn n b an n --⋅==, 所以0122111111123(1)22222n n n T n n --=⨯+⨯+⨯+⋯+-⨯+⨯, 211111112(1)22222n n n T n n -=⨯+⨯++-⨯+⨯. 两式相减得121011111222222222n n n n T n n -+=+++⋯+-⨯=-,所以1242n n n T -+=-,所以12(1)42nn λ--<-. 令()()*1242n f n n -=-∈N ,易知()f n 单调递增,若n 为偶数,则()21242f n λ-<-≤,所以3λ<; 若n 为奇数,则()11242f n λ--<-≤,所以2λ-<,所以2λ>-. 综上所述23λ-<<.【名师点睛】利用构造等比数列可求解形如递推关系1n n a pa q -=+的通项公式;根据数列的单调性求数列的最值,可求得参数的取值范围.19.已知n S 为等差数列{}n a 的前n 项和,满足410S =,55a =,n T 为数列{}n b 的前n 项和,满足()4413nn T =-,*n ∈N . (1)求{}n a 和{}n b 的通项公式; (2)设211log n n n n c b a a +=+,若数列{}n c 的前n 项和100n C <,求n 的最大值. 【试题来源】河南省南阳市第一中学校2020-2021学年高三上学期第四次月考(文) 【答案】(1)*n a n n N =∈,,4n nb ,*n N ∈;(2)9.【解析】(1){}n a 为等差数列,因为410S =,55a =,所以14610a d +=,145a d +=,解得11a =,1d =,所以*n a n n N =∈,.因为()4413n n T =-,所以当2n ≥时,()()11444141433n n n n n n b T T --=-=---=; 当1n =时,114b T ==.综上,4n n b ,*n N ∈.(2)()2111log 4211nn c n n n n n ⎛⎫=+=+- ⎪++⎝⎭,所以()12111111212312231n n C c c c n n n ⎛⎫=+++=+++++-+-++- ⎪+⎝⎭()()111111n n n n n n n ⎛⎫=++-=++ ⎪++⎝⎭,所以()11nn C n n n =+++, 因为()11001n nC n n n =++<+, 当1n ≥时,()1111n C n n n =++-+为关于n 的递增数列,8999010010C C <=+<,101011010011C =+>,所以n 的最大值为9. 【名师点睛】已知数列的通项和前n 项和的递推关系,常采用多递推一项再相减的思想;通过研究数列的单调性,进而研究数列项的最值或解不等式,是常用的方法.20.在①112n n a a +=-,②116n n a a +-=-,③a n +1=a n +n -8这三个条件中任选一个,补充在下面的问题中,若问题中的S n 存在最大值,则求出最大值;若问题中的S n 不存在最大值,请说明理由.问题:设S n 是数列{a n }的前n 项和,且a 1=4,_________,求{a n }的通项公式,并判断S n 是否存在最大值.【试题来源】湖北省宜昌市秭归县第一中学2020-2021学年高二上学期期中 【答案】答案不唯一,具体见解析 【解析】选①因为112n n a a +=-,a 1=4,所以{a n }是首项为4,公比为12-的等比数列,所以13114()()22n n n a --=⨯-=-.当n 为奇数时,14[1()]812(1)13212n n nS --==++,因为81(1)32n +随着n 的增加而减少,所以此时S n 的最大值为S 1=4.当n 为偶数时,81(1)32n n S =-,且818(1)4323n n S =-<<.综上,S n 存在最大值,且最大值为4.选②因为116n n a a +-=-,a 1=4,所以{a n }是首项为4,公差为16-的等差数列,所以11254(1)()666n a n n =+--=-+.由125066n -+≥,得n ≤25,所以S n 存在最大值,且最大值为S 25(或S 24),因为2525241254()5026S ⨯=⨯+⨯-=,所以S n 的最大值为50.选③因为a n +1=a n +n -8,所以a n +1-a n =n -8,所以a 2-a 1=-7,a 3-a 2=-6,…,a n -a n -1=n -9,则12132n a a a a a a -=-+-+…21(79)(1)171622n n n n n n a a --+---++-==,又a 1=4,所以217242n n n a -+=.当n ≥16时,a n >0,故S n 不存在最大值.21.已知数列{}n a 中,11a =,1(1)(2)1n n n a n a ++-+=*()n N ∈,n S 为数列{}n a 的前n项和.数列{}n b 满足*1()n nb n N S =∈.(1)证明:数列{}n a 是等差数列,并求出数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n T .问是否存在正整数,(3)p q p q <<,使得3,,p q T T T 成等差数列?若存在,求出,p q 的值;若不存在,请说明理由.【试题来源】江苏省无锡市锡山高级中学2020-2021学年高二上学期期中 【答案】(1)证明见解析,n a n =;(2)存在,11,5q p ==或27,6q p == 【解析】(1)1(1)(2)1n n n a n a ++-+=,则()()1111211212n n a a n n n n n n +-==-++++++, 设1n n a c n =+,则112c =,11112n n c c n n +-=-++,1122111111111123211n n n n n nc c c c c c c c n n n n ---=-+-+⋅⋅⋅+-+=-+⋅⋅⋅+-+=-=+++,故11n n a nc n n ==++,n a n =,11n n a a --=,故数列{}n a 为等差数列.(2)()12n n n S +=,()1211211⎛⎫===- ⎪++⎝⎭n nb S n n n n , 故1111122122311n n T n n n ⎛⎫=-+-+⋅⋅⋅+-=⎪++⎝⎭. 3,,p q T T T 成等差数列,则32p q T T T =+,即423112p q p q =+++, 化简整理得到:5730pq p q +--=,即()()7532p q -+=-,3p q <<,故58q +>,且*,p q N ∈,故516q +=或532q +=,故11,5q p ==或27,6q p ==.22.在①123,1,a a a +成等差数列;②430S =;③12364a a a =三个条件中任选一个补充在下面的问题中,并作答.(注:如果选择多个条件分别作答,按第一个解答计分)已知n S 是数列{}n a 的前n 项和.若12()n n S a a n N *=-∈,10a ≠,且满足(1)求数列{}n a 的通项公式;(2)设11b =,*1()n n n b b a n N +-=∈,求数列{}n b 的通项公式. 【试题来源】江苏省无锡市锡山高级中学2020-2021学年高二上学期期中【答案】(1)2nn a =;(2)21n n b =-.【解析】(1)因为12n n S a a =-,所以1112n n S a a ++=-,所以()1111122n n n n n a S S a a a a +++--==--,化简得12n n a a +=,若选择①:因为123,1,a a a +成等差数列,所以()21321a a a +=+即()1112214a a a +=+,解得12a =,所以数列{}n a 是以2为首项,公比为2的等比数列,所以2nn a =;若选择②:因为2413411530a a a a S a =+++==,所以12a =,所以数列{}n a 是以2为首项,公比为2的等比数列,所以2nn a =; 若选择③:因为31231864a a a a ==,所以12a =,所以数列{}n a 是以2为首项,公比为2的等比数列,所以2nn a =; (3)由(1)得2nn a =,则12n n n b b +-=,所以当2n ≥时,()()()()2311213243112222n n n n b b b b b b b b b b --+-+-+-+⋅⋅⋅+-=+++⋅⋅⋅+= ()1122112n n ⋅-==--,当1n =时,11b =满足上式,所以21nn b =-.23.阅读本题后面有待完善的问题,在下列三个关系①1112n n a a +=+,②12n n a a +=+,③21n n S a =-中选择一个作为条件,补充在题中横线标志的__________处,使问题完整,并解答你构造的问题.(如果选择多个关系并分别作答,在不出现逻辑混乱的情况下,按照第一个解答给分)设数列{}n a 的前n 项和为n S ,11a =,对任意的*N n ∈,都有_________;等比数列{}n b 中,对任意的*N n ∈,都有0n b >,2123n n n b b b ++=+,且11b =,问:是否存在*N k ∈,使得对任意的*N n ∈,都有n k k n a b a b ≤?若存在,试求出k 的值;若不存在,试说明理由. 【试题来源】江苏省南京市三校2020-2021学年高三上学期期中联考 【答案】答案见解析【解析】设等比数列{}n b 的公比为q .因为对任意的*n ∈N ,都有2123n n n b b b ++=+,所以223q q =+,解得1q =-或32. 因为对任意的*n ∈N ,都有0n b >,所以0q >,从而32q =. 又11b =,所以132n n b -⎛⎫= ⎪⎝⎭.显然,对任意的*n ∈N ,0n b >.所以,存在*n ∈N ,使得对任意的*n ∈N ,都有n k k n a b a b ≤,即n kn ka ab b ≤. 记nn na cb =,*n ∈N .下面分别就选择①②③作为条件进行研究. ①因为对任意的*n ∈N ,都有1112n n a a +=+,即()11222n n a a +-=-.又11a =,即1210a -=-≠,所以20n a -≠,从而12122n n a a +-=-,所以数列{}2n a -是等比数列,公比为12,得1122n n a -⎛⎫-=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭.所以1123n n n n n a c b --==,从而()1112321n n n nc c ++-=-. 由()1121122132n nn n +--≤⇔≥⇔≥,得12c c =,当1n ≥时,1n n c c +<, 所以,当1n =或2时,n c 取得最大值,即nna b 取得最大值. 所以对任意的*n ∈N ,都有2121n n a a a b b b ≤=,即11n n a b a b ≤,22n n a b a b ≤, 所以存在1k =,2,使得对任意的*n ∈N ,都有n k k n a b a b ≤. ②因为对任意的*n ∈N ,都有12n n a a +=+,即12n n a a +-=,所以数列{}n a 是等差数列,公差为2.又11a =,所以12(1)21n a n n =+-=-.所以12(21)03n n n n a c n b -⎛⎫==-> ⎪⎝⎭,从而12(21)3(21)n n c n c n ++=-. 由2(21)51253(21)2n n n n +≤⇔≥⇔≥-,得当2n ≤时,1n n c c +>;当3n ≥时,1n n c c +<,所以,当3n =时,n c 取得最大值,即nna b 取得最大值. 所以对任意的*n ∈N ,都有33n n a a b b ≤,即33n n a b a b ≤. 所以存在3k =,使得对任意的*N n ∈,都有n k k n a b a b ≤. ③因为对任意的*N n ∈,都有21n n S a =-,所以1121n n S a ++=-, 从而()1111212122n n n n n n n a S S a a a a ++++=-=---=-,即12n n a a +=.又110a =>,所以0n a >,且12n na a +=, 从而数列{}n a 是等比数列,公比为2,得12n na .所以1304n n n n a c b -⎛⎫==> ⎪⎝⎭,从而1314n n c c +=<,所以1n n c c +<, 所以,当1n =时,n c 取得最大值,即nna b 取得最大值. 所以对任意的*N n ∈,都有11n n a a b b ≤,即11n n a b a b ≤. 所以存在1k =,使得对任意的*N n ∈,都有n k k n a b a b ≤. 24.已知数列{}n a 的前n 项和为n S ,且21(*)n n S a n N =-∈ (1)求1a 和2a 的值;(2)证明数列{}n a 是等比数列,并求出{}n a 的通项公式;(3)设13log n n b a =,n n n c a b =,求数列{}nc 的前n 项和n T .【试题来源】广东省东莞市第四高级中学2020-2021学年高二上学期期中【答案】(1)113a =;219a =;(2)证明见解析,13n n a =;(3)n T =332443nn +-⨯. 【解析】(1)1121S a =-,得113a =,当2n =时,2221S a =-,所以1222()1a a a +=-,解得219a =.(2)由21n n S a =-,1121(2)n n S a n --=-≥, 两式相减得11(2)3n n a a n -=≥,即11(2)3n n a n a -=≥, 所以数列{}n a 是以首项为13,公比为13的等比数列,得13n n a =. (3)13log n n b a n ==,3n n nnn c a b ==, 则12n n T c c c =+++=21111112(1)3333n n n n -⨯+⨯++-⨯+⨯,得3×n T =21231333n-n++++,上两式相减得 2×n T =1+211113333n n n -+++-=311)233n n n--(, 得n T =13133244323443n n nn n-+--=-⨯⨯⨯. 【名师点睛】已知条件是n S 和n a 的关系的,可用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求通项公式.如果一个数列的结构是等差数列乘以等比数列,则数列求和采用错位相减求和法. 25.设数列{}n a 的前n 项和为n S ,且22n n S n a +=-.(1)证明数列{}1n a +是等比数列,并求出数列{}n a 的通项公式;(2)若数列{}n b 中,12b =,12n n b b +=-,求数列{}n n a b +的前n 项和n T . 【试题来源】云南省德宏州2020届高三上学期期末教学质量检测(文)【答案】(1)证明见解析;121n n a +=-;(2)n T 2224n n +=+-.【解析】(1)证明:当1n =时,13a =,当2n ≥时,22n n S n a +=- ①,11(1)22n n S n a --∴+-=- ②, 由①-②得121n n a a -+=, 1221n n a a -∴+=+,即1121n n a a -+=+,故数列{}1n a +是以2为公比,首项为114a +=的等比数列,112n n a +∴+=,得121n n a +=-.(2)由题得12nnb b ,故{}n b 是以2为公差,2为首项的等差数列,2n b n ∴=.()231(242)222n n T n n +∴=++⋅⋅⋅++++⋅⋅⋅+-()412(1)22212n n n n n --=+⨯+--2224n n +=+-.【名师点睛】本题考查数列求通项公式与求和问题,求数列和常用的方法: (1)等差+等比数列:分组求和法;(2)倒序相加法; (3)11n n n b a a +=(数列{}n a 为等差数列):裂项相消法; (4)等差⨯等比数列:错位相减法.26.已知数列{}n a 满足12a =,1(1)2(2)n n n a n a ++=+ (1)求数列{}n a 的通项公式;(2)设n S 是数列{}n a 的前n 项和,求证:2nn S a <.【试题来源】浙江省温州市2020-2021学年高三上学期11月高考适应性测试(一模) 【答案】(1)1(1)2n n a n -=+⋅;(2)证明见解析.【解析】(1)因为1(1)2(2)n n n a n a ++=+,所以12(2)(1)n n a n a n ++=+,则 1123411123134512(1)2(2)234n n n n n a a a a n a a a n n a a a a n ---+⎛⎫=⋅⋅⋅=⋅⋅⨯⨯⨯⨯=+⋅≥ ⎪⎝⎭当1n =时,12a =满足上式,所以1(1)2n n a n -=+⋅.(2)0121223242(1)2n n S n -=⋅+⋅+⋅+⋅+⋅①,123122232422(1)2n n n S n n -=⋅+⋅+⋅++⋅++⋅②,①-②得123122222(1)2n n n S n --=+++++-+⋅,化简得()12122(1)2212---=+-+⋅=-⋅-n nn nS n n ,所以2nn S n =⋅,又2(1)2220nnnn n a S n n -=+⋅-⋅=>,所以2n n S a <.【名师点睛】本题考查根据递推关系式求数列的通项公式,考查错位相减法求和,难度一般.(1)当数列{}n a 满足()1n na f n a +=时,可采用累乘法求通项公式; (2)当数列n n n c ab =⋅,其中{}n a 和{}n b 分别为等差数列与等比数列时,采用错位相减法求和.27.已知数列{}n a 满足122nn n a a a +=+,且12a =,数列{}n b 满足1n n n n b b a b +-=,且12b =,(n *∈N ). (1)求证:数列1na 是等差数列,并求通项n a ; (2)解关于n 的不等式:22n a nb <.【试题来源】江苏省盐城市一中、射阳中学等五校2020-2021学年高二上学期期中联考 【答案】(1)证明见解析,2n a n=;(2){}2,3,4n ∈. 【解析】(1)由122nn n a a a +=+,且12a =知,0n a >, 故有11112n n a a +-=得,所以数列1na 是等差数列, 由于1111,22d a ==,所以12n n a =,即2n a n=; (2)由1n n n n b b a b +-=得,121n n n b n a b n++=+=,由累乘法得,(1)n b n n =+ 则不等式22na nb <可化为2(1)nn n <+,即(1)12nn n +>, 令(1),2n nn n c n N *+=∈,则1n c >. 当1n =时,11c =,不符合;当2n =时,2312c =>,符合;当3n =时,3312c =>,符合;当4n =时,4514c =>,符合; 当5n =时,515116c =<,不符合;而当5,n n N *≥∈时,()()1111(2)1(2)(1)0222n n n nn n n n n n n c c ++++++-+-=-=<故当5,n n N *≥∈不符合;综上所述,{}2,3,4n ∈.28.已知数列1n n a ⎧⎫⎨⎬-⎩⎭的前n 项和为n ,数列{}n b 满足11b =,1n n n b b a +-=,*n N ∈.(1)求数列{}n a ,{}n b 的通项公式; (2)若数列{}n c 满足22nnn a c b =,*n N ∈,求满足126316n c c c +++≤的最大整数n . 【试题来源】浙江省杭州地区重点中学2020-2021学年高三上学期期中 【答案】(1)1n a n =+()n N ∈,(1)2n n nb +=()n N ∈;(2)证明见解析 【解析】(1)因为1212111n nn a a a +++=---①, 2n ≥时,1211211111n n n a a a --+++=----②,由-①②得11n na =-,所以1(2)n a n n =+≥, 当1n =时,1111a =-,12a =符合1n a n =+,所以1n a n =+()n N ∈,因为11n n n b b a n +-==+,所以()()()121321n n n b b b b b b b b -=+-+-++-1121n b a a a -=++++(1)122n nn +=+++=, 当1n =时,11b =也符合,(1)2n n nb +=. (2)因为22224(21)(1)n n n a n c b n n +==+,22224(21)114()(1)(1)n n c n n n n +==-++, 所以,12216341(1)16n c c c n ⎛⎫+++=-≤ ⎪+⎝⎭,21631(1)64n -≤+,211(1)64n ≥+,2(1)64n +≤,所以()18n +≤即7n ≤. 所以满足126316n c c c +++≤的最大整数n 为7. 29.已知数列{a n }中,已知a 1=1,a 2=a ,a n +1=k (a n +a n +2)对任意n ∈N *都成立,数列{a n }的前n 项和为S n .(1)若{a n }是等差数列,求k 的值; (2)若a =1,k =-12,求S n . 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (文)【答案】(1)12k =;(2)()2,21,,2n n n k S k n n k*-=-⎧=∈⎨=⎩N . 【解析】(1)若{}n a 是等差数列,则对任意*n N ∈,121n n n n a a a a +++-=-, 即122n n n a a a ++=+,所以()1212n n n a a a ++=+,故12k =. (2)当12k =-时,()1212n n n a a a ++=-+,即122n n n a a a ++=--. 所以()211n n n n a a a a ++++=-+,故()32211n n n n n n a a a a a a ++++++=-+=+, 所以,当n 是偶数时,()()()1234112341n n n n n S a a a a a a a a a a a a --=++++++=++++++()122na a n =+=, 当n 是奇数时,()23212a a a a +=-+=-,()()()12341123451n n n n n S a a a a a a a a a a a a a --=++++++=+++++++11(2)22n n -=+⨯-=- 综上,()2,21,,2n n n k S k n n k*-=-⎧=∈⎨=⎩N .30.已知等差数列{}n a 的前n 项和为n S ,918a =,10110S =. (1)求数列{}n a 的通项公式n a ;(2)设1n nb S =,求数列{}n b 的前n 项和n T . 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (文) 【答案】(1)2n a n =;(2)1n nT n =+. 【解析】(1)设等差数列{}n a 的公差为d ,由911018181045110a a d S a d =+=⎧⎨=+=⎩,解得12a d ==,所以,()112n a a n d n =+-=,故数列{}n a 的通项公式2n a n =; (2)由(1)可得()()2212n n n S n n +==+, 所以()111111n n b S n n n n ===-++, 所以111111111122334111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭. 【名师点睛】数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和; (3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法.31.已知等比数列{}()n a n N*∈满足234a aa =,13223a a a +=.(1)定义:首项为1且公比为正数的等比数列为“M -数列”,证明:数列{}n a 是“M -数列”;(2)记等差数列{}n b 的前n 项和记为n S ,已知59b =,864S =,求数列{}21n n b a -的前n 项的和n T .【试题来源】内蒙古呼和浩特市2021届高三质量普查调研考试(理) 【答案】(1)证明见解析;(2)()4727nn T n =-+.【解析】(1)由题意可设公比为q ,则23311a q a q =,得11a =,211123a a q a q +=得1q =或2q,所以数列{}n a 是“M -数列”.(2)设数列{}n b 的公差为d ,易得()458464b b S +==得47b =, 所以542d b b =-=,得21n b n =-,由(1)知若1q =,则2143n n b a n -=-,所以()214322n n n T n n +-==-,若2q,则12n na ,所以()121432n n nb a n --=-⋅,所以()()0221125292472432n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-+-①, 所以()()2312125292472432n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-②,①-②得()()231125292472432n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-+-,所以()()1812143212n n nT n ---=+---,所以()4727nn T n =-+.32.在①535S =,②13310a a +=,③113n a n a +=+这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是各项均为正数的等差数列,其前n 项和为n S ,________,且1a ,412a ,9a 成等比数列.(1)求数列{}n a 的通项公式; (2)设()1nn n b a =-,求1ni i b =∑.【试题来源】江苏省南通市平潮高级中学2020-2021学年高二上学期期中【答案】(1)32n a n =-;(2)13,213,2n i i nn b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数 【解析】{}n a 是各项均为正数的等差数列,1a ,412a ,9a 成等比数列. 所以241914a a a =⋅,即()()2111348a d a a d +=⋅+,整理可得221132690a a d d +-=,若选①:535S =,则1545352a d ⨯+=,即127a d +=, 由127a d +=可得172a d =-代入221132690a a d d +-=可得2230d d --=,解得3d =或1d =-(舍),所以11a =, 所以()11332n a n n =+-⨯=-,若选②:13310a a +=,即152d a =-,代入221132690a a d d +-=得2111762450a a -+=,即 ()()11117450a a --=解得113a d =⎧⎨=⎩或145175017a d ⎧=⎪⎪⎨⎪=-<⎪⎩不符合题意;若选③:113n a n a +=+,则419a a =+,9124a a =+, 代入241914a a a =⋅可得21126270a a +-= 解得113a d =⎧⎨=⎩或1273a d =-⎧⎨=⎩不符合题意;综上所述:113a d =⎧⎨=⎩,32n a n =-,(2)()()132nn b n =--,()()()()()12311231111111nn nin n i b a a a a a --==-+-+-+-+-∑()()()()114710135132n nn n -=-+-++--+--当n 为偶数时,13322ni i n n b ==⨯=∑,当n 为奇数时,()11131322ni i n nb =--=-+-⨯=∑,所以13,213,2ni i nn b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数.【名师点睛】本题得关键点是分别由条件①②③结合1a ,412a ,9a 成等比数列计算出1a 和d 的值,由{}n a 是各项均为正数的等差数列,所以10a >,0d >,第二问中()1nn nb a =-正负交错的数列求和,需要用奇偶并项求和,注意分n 为奇数和偶数讨论.33.已知函数f (x )=x a ( a 为常数,a >0且a ≠1 )(1)在下列条件中选择一个条件___ (仅填序号),使得依次条件可以推出数列{a n }为等差数列,并说明理由;①数列{f (n a )}是首项为4,公比为2的等比数列; ②数列{f (n a )}是首项为4,公差为2的等差数列;③数列{f (n a )}是首项为4 ,公比为2的等比数列的前n 项和构成的数列;(2)在(1)的选择下,若a =2,b =12n⎛⎫ ⎪⎝⎭(n ∈*N ),求数列{n a .n b }的前n 项和n S , 【试题来源】江苏省南京师大附中2020-2021学年高三上学期期中 【答案】(1) 选①,理由见解析(2)332n n +-【解析】(1)②③不能推出数列{a n }为等差数列,①能推出数列{a n }为等差数列. 若选①,数列{f (n a )}是首项为4,公比为2的等比数列, 所以f (n a )1+1422n a n n a -==⨯=, 解得1log 2(1)log 2n n a a a n +==+,故数列{a n }为等差数列,若选②,数列{f (n a )}是首项为4,公差为2的等差数列, 所以()42(1)22n f a n n =+-=+,即22na a n =+,解得log 22)a n a n =+(,故数列{a n }不为等差数列,若选③,数列{f (n a )}是首项为4 ,公比为2的等比数列的前n 项和构成的数列,因为首项为4 ,公比为2的等比数列的前n 项和为4(12)4(21)12n n n S -==--,所以()4(21)na n n f a a==-,解得log 4(21)n n a a =-,显然数列{a n }不为等差数列.(2)由(1)及a =2可得1n a n =+,所以11(1)22nn n n n a b n +⎛⎫=+⋅= ⎪⎝⎭, 234345n+112222n n S =+++++,345111345n+1222222n n S +∴=+++++, 两式相减可得23451111111112222222n n n n S ++∴=++++++-。
2022-2023学年天津市南开中学高三上学期阶段性测试(三)数学试卷含详解
![2022-2023学年天津市南开中学高三上学期阶段性测试(三)数学试卷含详解](https://img.taocdn.com/s3/m/e25282c1162ded630b1c59eef8c75fbfc77d94ee.png)
天津市南开中学2023届高三阶段性测试(三)数学试题一、选择题(每题5分,共45分)1.设i 为虚数单位,则复数21i z =+的虚部是()A.i- B.1- C.iD.12.集合{}24A x x =>,{}51B x x =-<<,则()R A B ⋂=ð()A.{}52x x -<<- B.{}22x x -<< C.{}21x x -<< D.{}21x x -≤<3.已知直线()1:120l a x ay -+=,()()2:22110l a x a y -+++=,则1a =是12//l l 的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要4.623x x ⎛⎫- ⎪⎝⎭展开式中的常数项是()A.135-B.135C.1215D.1215-5.已知2log a =0.42b =,1313c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是()A.b a c<< B.a c b<< C.a b c<< D.b<c<a6.将函数()π2sin 23f x x ⎛⎫=-⎪⎝⎭的图象纵坐标不变,横坐标缩小为原来的12,再向左平移π6个单位,得到函数()g x 的图象,则下列说法正确的是()A.()g x 的图象关于点7π,024⎛⎫⎪⎝⎭对称B.()g x 的图象关于直线π6x =对称C.()g x 过点π,28⎛⎫⎪⎝⎭D.()g x 在区间π0,24⎛⎫⎪⎝⎭上单调递增7.设抛物线()2:20C y px p =>的焦点为F ,C 上一点B ,满足直线FB 与y 轴正半轴交于点M ,且B 在F ,M 之间,若2FB BM =,且点B 到抛物线准线的距离为43,则点M 的纵坐标为()A.1B.C.32D.8.已知双曲线()2222:10,0x y H a b a b-=>>的右焦点为F ,关于原点对称的两点A ,B 分别在双曲线的左、右两支上,0AF FB ⋅= ,32BF FC =,且点C 在双曲线上,则双曲线的离心率为()A.B.375C.2D.39.已知函数(),42426xx x f x x ⎧-<<⎪+⎪=≤<,若方程()20f x ax +=有5个不等实根,则实数a 的取值范围是()A.1,43⎛⎫⎧⎫-∞-- ⎪⎨⎬ ⎪⎩⎭⎝⎭ B.11,34⎡⎤--⎢⎥⎣⎦C.12,34⎡⎢⎣⎦D.21,43⎛⎫⎧⎫+∞⋃ ⎪⎨⎬ ⎪⎩⎭⎝⎭二、填空题(每题5分,共30分)10.某校为了解学生关于校本课程的选课意向,计划从高一、高二这两个年级共500名学生中,采用分层抽样的方法抽取50人进行调査.已知高一年级共有300名学生,那么应抽取高一年级学生的人数为_________11.一批产品分为一,二,三3个等级,其中一级品的个数是二级品的两倍,三级品的个数是二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则1533P ξ⎛⎫≤≤= ⎪⎝⎭______.12.等差数列{}n a 中,31a =,5672a a a -+=,则数列(){}cos πn a 的前2023项和为______.13.已知a ,b 都是正数,则222a ba b a b+++的最小值是______.14.已知圆C 的圆心为()2,1C ,且有一条直径的两个端点分别在两坐标轴上,若直线:420l x y λ-+=与C 交于,A B 两点,120ACB ∠= ,则实数λ=__________.15.如图,在ABC 中,3B π=,2AB =,点M 满足13AM AC = ,43BM AC ⋅= ,O 为BM 中点,点N在线段BC 上移动(包括端点),则OA ON ⋅的最小值是______.三、解答题(共75分,16题14分,17-19题每题15分,20题16分)16.在ABC ,中,记角A ,B ,C 的对边分别为a ,b ,c,已知cos a cC C b++=.(1)求角B ;(2)已知点D 在AC 边上,且4=AD,BD =6AB =,求ABC 的面积.17.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,AB BC ⊥,AD BC ∥,3AD =,2PA BC ==,1AB =,PB =(1)求证:PB ⊥平面ABCD ;(2)求平面PCD 与平面ABCD 夹角的余弦值;(3)若点E 在棱PA 上,且BE ∥平面PCD ,求线段BE 的长.18.已知椭圆C 中心在原点,右焦点()2,0F ,离心率为12.(1)求椭圆C 的标准方程;(2)若椭圆左右顶点分别为1A 和2A ,B 为椭圆位于第二象限的一点,在y 轴上存在一点N ,满足BF NF ⊥,设12A A B △和1A FN △的面积分别为1S 和2S ,当12:3:2S S =时,求直线1A B 的斜率.19.已知公差不为零的等差数列{}n a ,{}n b 为等比数列,且满足11a b =,442b a =,2352b b a +=+,2a ,4a ,8a 成等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若不等式()94N *2n nn T n λ++≥-∈恒成立,求实数λ的取值范围.20.已知函数()e sin xf x k x =-.(1)当1k =,π0,2x ⎛⎫∈ ⎪⎝⎭时,求()f x 的单调区间;(2)若()f x 在区间π0,2⎛⎫⎪⎝⎭内存在极值点α.①求实数k 的取值范围;②求证:()f x 在区间()0,π内存在唯一的β,使()1fβ=,并比较β与2α的大小,说明理由.天津市南开中学2023届高三阶段性测试(三)数学试题一、选择题(每题5分,共45分)1.设i 为虚数单位,则复数21i z =+的虚部是()A.i - B.1- C.iD.1B【分析】利用复数的除法化简复数z ,结合复数的定义可得出合适的选项.【详解】因为()()()21i 21i 1i 1i 1i z -===-++-,因此,复数z 的虚部为1-.故选:B.2.集合{}24A x x =>,{}51B x x =-<<,则()R A B ⋂=ð()A.{}52x x -<<- B.{}22x x -<< C.{}21x x -<< D.{}21x x -≤<D【分析】解出集合A ,利用补集和交集的含义即可得到答案.【详解】24x >,则2x >或<2x -,则{2A xx =<-∣或2}x >,R {22}A x x =-≤≤∣ð,{51}B x x =-<<∣,则()R {21}A B xx ⋂=-≤<∣ð,故选:D.3.已知直线()1:120l a x ay -+=,()()2:22110l a x a y -+++=,则1a =是12//l l 的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要A【分析】根据12//l l 求出实数a 的值,再利用集合的包含关系判断可得出结论.【详解】若12//l l ,则()()()11222a a a a -+=-,解得1a =或15a =-,当1a =时,直线1l 的方程为0y =,直线2l 的方程为12y =-,此时12//l l ;当15a =-时,直线1l 的方程为30x y +=,直线2l 的方程为12450x y ++=,此时12//l l .因为{}11,15⎧⎫-⎨⎬⎩⎭,因此,1a =是12//l l 充分不必要条件.故选:A.4.623x x ⎛⎫- ⎪⎝⎭展开式中的常数项是()A.135-B.135C.1215D.1215-B【分析】由二项展开式通项公式确定常数项的项数,从而得结论.【详解】由二项展开式通项公式可得()66316623C C 3rr r r rr r T x x x --+⎛⎫=-=- ⎪⎝⎭,令630r -=解得2r =,所以常数项()2236C 3135T =-=,故选:B5.已知2log a =0.42b =,1313c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是()A.b a c << B.a c b<< C.a b c<< D.b<c<aC【分析】利用对数函数与指数函数的性质,以及指数幂的运算公式即可求解.【详解】由题知,2220log 1log log 1=<,即:01a <<,又0.40221b =>=,所以b a >;()15150.462264b ===,1515315511324333c --⎡⎤⎛⎫⎛⎫⎢⎥==== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴1515b c <,∴b c <,所以:a b c <<.故选:C.6.将函数()π2sin 23f x x ⎛⎫=-⎪⎝⎭的图象纵坐标不变,横坐标缩小为原来的12,再向左平移π6个单位,得到函数()g x 的图象,则下列说法正确的是()A.()g x 的图象关于点7π,024⎛⎫⎪⎝⎭对称B.()g x 的图象关于直线π6x =对称C.()g x 过点π,28⎛⎫⎪⎝⎭D.()g x 在区间π0,24⎛⎫⎪⎝⎭上单调递增D【分析】利用函数图象变换可求得函数()g x 的解析式,利用正弦型函数的对称性可判断AB 选项;计算出π8g ⎛⎫⎪⎝⎭的值,可判断C 选项;利用正弦型函数的单调性可判断D 选项.【详解】将函数()π2sin 23f x x ⎛⎫=-⎪⎝⎭的图象纵坐标不变,横坐标缩小为原来的12,可得到函数π2sin 43y x ⎛⎫=-⎪⎝⎭的图象,再将所得图象向左平移π6个单位,可得到函数()πππ2sin 42sin 4633g x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦的图象,对于A 选项,7π3π2sin 2242g ⎛⎫==-⎪⎝⎭,A 错;对于B 选项,π2sin π06g ⎛⎫==⎪⎝⎭,B 错;对于C 选项,ππππ2sin 2cos 18233g ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,C 错;对于D 选项,当π024x <<时,πππ4332x <+<,所以,函数()g x 在区间π0,24⎛⎫⎪⎝⎭上单调递增,D 对.故选:D.7.设抛物线()2:20C y px p =>的焦点为F ,C 上一点B ,满足直线FB 与y 轴正半轴交于点M ,且B 在F ,M 之间,若2FB BM =,且点B 到抛物线准线的距离为43,则点M 的纵坐标为()A.1B.C.32D.D【分析】作1BB 垂直于准线于1B ,根据线段比例关系得到6B px =,则14623p p BB =+= ,解出p 值,则得到B 点坐标,则可求出M 点纵坐标.【详解】如图所示,作1BB 垂直于准线于1B ,由已知得,02p F ⎛⎫⎪⎝⎭,由2FB BM =,则2FB BM =,得B 的横坐标为236p p =,则14623p p BB =+= ,则2p =,故抛物线方程为:24y x =,所以13B x =,代入抛物线方程得233B y =,所以123,33B ⎛⎫ ⎪ ⎪⎝⎭,再根据2FB BM =,则33233223M B y y ==⨯=故选:D .8.已知双曲线()2222:10,0x y H a b a b-=>>的右焦点为F ,关于原点对称的两点A ,B 分别在双曲线的左、右两支上,0AF FB ⋅= ,32BF FC =,且点C 在双曲线上,则双曲线的离心率为()A.2B.375C.102D.233B【分析】令双曲线左焦点F ',利用给定条件证得四边形AFBF '为矩形,再利用双曲线定义结合勾股定理列式求解作答.【详解】令双曲线右焦点(c,0)F ,则其左焦点(,0)F c '-,连接,,AF BF CF ''',如图,显然AB 与FF '互相平分于点O ,即四边形AFBF '为平行四边形,又0AF FB ⋅=,则90AFB ∠= ,因此四边形AFBF '为矩形,令||BF m =,由32BF FC =得3||2CF m =,由双曲线定义知,3||2,||22BF a m CF a m ''=+=+,在Rt ' BCF 中,222||||||CF BC BF ''=+,即22235(2)()(2)22a m m a m +=++,解得25m a =,在Rt BFF '△中,122||,||,||255BF a BF a FF c ''===,而222||||||FF BF BF ''=+,于是得222212(2)()()55c a a =+,解得c =,所以双曲线的离心率5c e a ==.故选:B9.已知函数(),42426xx x f x x ⎧-<<⎪+⎪=≤<,若方程()20f x ax +=有5个不等实根,则实数a 的取值范围是()A.1,43⎛⎫⎧⎫-∞-- ⎪⎨⎬ ⎪⎩⎭⎝⎭ B.11,34⎡⎤--⎢⎥⎣⎦ C.12,34⎡⎢⎣⎦D.21,43⎛⎫⎧⎫+∞⋃ ⎪⎨⎬ ⎪⎩⎭⎝⎭A【分析】分析可知0x =满足方程()20f x ax +=,当0x ≠时,分析可知0a ≠,由()20f x ax +=可得出()()4,4014,0226x x x x x x a x ⎧-+-<<⎪-=+<<⎨≤<,令()()()4,404,0226x x x g x x x x x ⎧-+-<<⎪=+<<⎨≤<,则直线1=-y a 与函数()g x 的图象有4个交点,数形结合可求得实数a 的取值范围.【详解】0x =满足方程()20f x ax +=,当0x ≠时,若0a =,由()0f x =可得0x =,不合乎题意,故0a ≠,由()20f x ax +=可得()1,4002426x x x x a x ⎧-<<<<⎪+⎪-=⎨≤<或,即()()4,4014,026x x x x x x a x ⎧-+-<<⎪-=+<<⎨≤<,令()()()4,404,0226x x x g x x x x x ⎧-+-<<⎪=+<<⎨≤<,当26x ≤<时,()g x =因为内层函数()239u x =--+在[)2,3上单调递增,在()3,6上单调递减,外层函数y =在其定义域上为增函数,、所以,函数()g x 在[)2,3上单调递增,在()3,6上单调递减,且当26x ≤<时,由y =可得()2239x y -+=,由题意可知,直线1=-y a与函数()g x 的图象有4个交点,如下图所示:由图可知,当10a <-<或13a -=时,即当4a <-或13a =-时,直线1=-y a与函数()g x 的图象有4个交点,故选:A.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题(每题5分,共30分)10.某校为了解学生关于校本课程的选课意向,计划从高一、高二这两个年级共500名学生中,采用分层抽样的方法抽取50人进行调査.已知高一年级共有300名学生,那么应抽取高一年级学生的人数为_________30【分析】利用分层抽样各层比例相同列出方程,从而得解.【详解】根据题意,设应抽取高一年级学生的人数为x ,则50500300x=,解得30x =,所以应抽取高一年级学生的人数为30.故答案为:30.11.一批产品分为一,二,三3个等级,其中一级品的个数是二级品的两倍,三级品的个数是二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则1533P ξ⎛⎫≤≤=⎪⎝⎭______.47【分析】设二级品有k 个,则一级品有2k 个,三级品有2k个,总数为72k ,从而可得概率,进而得分布列后可求解.【详解】设二级品有k 个,则一级品有2k 个,三级品有2k个,总数为72k ,则随机变量ξ的分布列为:ξ123P472717()1541337P P ξξ⎛⎫≤≤=== ⎪⎝⎭.故答案为:4712.等差数列{}n a 中,31a =,5672a a a -+=,则数列(){}cos πn a 的前2023项和为______.12##0.5【分析】利用等差数列的基本性质求出6a ,进而求出数列{}n a 的通项公式,设()cos πn n b a =,对任意的N k ∈,计算出616263646566k k k k k k b b b b b b +++++++++++的值,进而可求得数列(){}cos πn a 的前2023项和.【详解】由题意可得5676622a a a a a -+=-=,则62a =,所以,等差数列{}n a 的公差为631633a a d -==-,所以,()333n n a a n d =+-=,所以,()πcos πcos 3n n a =,令πcos3n n b =,对任意的N k ∈,616263646566k k k k k k b b b b b b +++++++++++()()π2π4π5πcos 2πcos 2πcos 2ππcos 2πcos 2πcos 2π2π3333k k k k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111102222=---++=,因为202363371=⨯+,则数列(){}cos n a π的前2023项和为()2023123456111337337022S b b b b b b b =++++++=⨯+=.故答案为:12.13.已知a ,b 都是正数,则222a ba b a b+++的最小值是______.1-【分析】设2a b x +=,2a b y +=,解出1(2)3a y x =-,1(2)3b x y =-,代入化简得14233y xx y ⎛⎫+- ⎪⎝⎭,利用基本不等式即可求出最值.【详解】因为,a b 均为正实数,故设2a b x +=,2a b y +=,则0,0x y >>联立解得1(2)3a y x =-,1(2)3b x y =-,21(2)(2)23322y x x y a b a b a b x y--∴+=+++14221421331333y x x y y xx y x y ⎛⎫⎛⎫⎛⎫--=+=+-≥= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当42y x x y =,即x =,即)22a b a b +=+时取等号,1-.14.已知圆C 的圆心为()2,1C ,且有一条直径的两个端点分别在两坐标轴上,若直线:420l x y λ-+=与C 交于,A B 两点,120ACB ∠= ,则实数λ=__________.1-或11-【分析】根据直线与圆相交,圆心到直线的距离与半径的关系,即可求解.【详解】圆C 的一条直径的两个端点分别在两坐标轴上,∴该圆一定过原点,∴半径为r ==,又圆心为()2,1C ,故圆C 的方程为22(2)(1) 5.x y -+-=120,ACB CA CB ∠=== 圆心C 到直线l 的距离为1,2d r =2=,解得1λ=-或11λ=-.故答案为:-1或-1115.如图,在ABC 中,3B π=,2AB =,点M 满足13AM AC = ,43BM AC ⋅= ,O 为BM 中点,点N在线段BC 上移动(包括端点),则OA ON ⋅的最小值是______.2936-【分析】本题采用建系法,设(,0)C t ,利用向量共线得到223,33t M ⎛⎫+ ⎪ ⎪⎝⎭,再写出223,33t BM ⎛+= ⎝⎭,(1,AC t =- ,从而得到方程(2)(1)4233t t +--=,解出t 即可求出O坐标为5,63O ⎛⎫ ⎪ ⎪⎝⎭,再设(),0N n ,03n ≤≤,写出1,63OA ⎛= ⎝⎭,5,63ON n ⎛⎫=-- ⎪ ⎪⎝⎭,则OA ON ⋅ 的函数表达式,利用函数单调性即可求出最值.【详解】以B 为原点,BC 所在直线为x 轴建立如图所示直角坐标系,设(,0)C t ,0t >,2,,3AB B A π==∴ ,设(,)M x y,(1,AM x y ∴=--,(1,AC t =-,13AM AC = ,11(1)3x t ∴-=-,23t x +=,1(3y -=⨯,3y =,223,33t M ⎛+∴ ⎝⎭,223,33t BM ⎛+∴= ⎝⎭,(1,AC t =- ,43BM AC ⋅= ,即(2)(1)4233t t +--=,解得3t =,523,33M ⎛∴ ⎝⎭,因为O 为BM 中点,53,63O ⎛⎫∴ ⎪ ⎪⎝⎭,设(),0N n ,03n ≤≤,123,63OA ⎛⎫∴= ⎪ ⎪⎝⎭ ,53,63ON n ⎛⎫=-- ⎪ ⎪⎝⎭ ,152129663636OA ON n n ⎛⎫∴⋅=--=- ⎪⎝⎭ ,03n ≤≤ 所以当0n =时min1292963636n ⎛⎫-=- ⎪⎝⎭,即min29()36OA ON ⋅=- ,故答案为:2936-.三、解答题(共75分,16题14分,17-19题每题15分,20题16分)16.在ABC ,中,记角A ,B ,C 的对边分别为a ,b ,c,已知cos a cC C b++=.(1)求角B ;(2)已知点D 在AC 边上,且4=AD,BD =6AB =,求ABC 的面积.(1)π3;(2).【分析】(1)由正弦定理可得sin cos sin sin sin B C B C A C +=+,再利用sin sin()A B C =+,化简进而求出角B ;(2)设,CD x BC y ==,首先利用余弦定理求出7cos 14ADB ∠=,则cos 14BDC ∠=-,在BCD △和ABC 中分别利用余弦定理得到2222282(4)366y x xx y y⎧=++⎨+=+-⎩,解出,x y ,最后再利用三角形面积公式即可.【小问1详解】因为cos a cC C b++=,由正弦定理可得sin cos sin sin sin B C B C A C +=+,因为A B C π=--,所以sin sin()A B C =+,sin cos sin sin B C B C C =+,因为sin 0C >,cos 1B B =+,即2sin 16B π⎛⎫-= ⎪⎝⎭,则π1sin 62B ⎛⎫-= ⎪⎝⎭又0πB <<,所以ππ5π,666B ⎛⎫-∈- ⎪⎝⎭,故66B ππ-=,则3B π=.【小问2详解】设,CD x BC y ==,在ADB 中利用余弦定理得2227cos14ADB ∠==,cos cos 14BDC ADB ∴∠=-∠=-,在BCD △中,由余弦定理得2222cos y x BDC =+-⨯⋅∠,即22282y x x =++①在ABC 中,由余弦定理得()222π4626cos3x y y +=+-⨯⨯⋅即22(4)366x y y +=+-②将①式代入②式化简得8x y +=③联立①③解得26x y =⎧⎨=⎩,故6AB AC AC ===,故136622ABC S =⨯⨯⨯= .17.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,AB BC ⊥,AD BC ∥,3AD =,2PA BC ==,1AB =,PB =(1)求证:PB ⊥平面ABCD ;(2)求平面PCD 与平面ABCD 夹角的余弦值;(3)若点E 在棱PA 上,且BE ∥平面PCD ,求线段BE 的长.(1)见解析;(2)105;(3)73.【分析】(1)根据平面PAB ⊥平面ABCD ,得到BC ⊥平面PAB ,则BC PB ⊥,再利用勾股定理得到PB AB ⊥,最后利用线面垂直的判定定理即可证明;(2)建立空间直角坐标系B xyz -,易知平面ABCD 的一个法向量为(0,0,1)n =,求出平面PCD 的一个法向量为3,3,2)m =,代入公式即可求解;(3)根据点E 在棱PA ,得到,[0,1]AE AP λλ=∈,又//BE 平面,PCD m为平面PCD 的一个法向量,代入数量积公式即可求解λ值.【小问1详解】平面PAB ⊥平面ABCD ,且平面PAB ⋂平面ABCD AB =,又 BC AB ⊥,且BC ⊂平面ABCD ,BC ∴⊥平面PAB ,PB ⊂ 平面PAB ,BC PB ∴⊥.在PAB 中,2,3,1PA PB AB === ,222PA AB PB ∴=+,PB AB ∴⊥,AB BC B ⋂= ,且,AB BC ⊂平面ABCD ,PB ⊥平面ABCD .【小问2详解】由(1)知,,PB BC AB 两两互相垂直,所以,建立空间直角坐标系B xyz -,如图所示:所以(1,0,0),(0,0,0),(0,2,0),(1,3,0),(0,0,3),(1,1,0),(0,2,3)A B C D P CD PC --=-=-.易知平面ABCD 的一个法向量为(0,0,1)n =.设平面PCD 的一个法向量为(,,)m x y z =,则00m CD m PC ⎧⋅=⎪⎨⋅=⎪⎩ ,即23x y y z =⎧⎪⎨=⎪⎩,令2z =,则(3,3,2)m = .则210cos ,||||5334n m n m n m ⋅〈〉==⋅++,即平面PCD 与平面ABCD 夹角的余弦值为105.【小问3详解】因为点E 在棱PA ,所以,[0,1]AE AP λλ=∈.因为3)AP = .所以(3),(1,0,3)AE BE BA AE λλλλ==+=-.又因为//BE 平面,PCD m为平面PCD 的一个法向量,所以0BE m ⋅= ,3(1)30λλ-+=,所以13λ=.所以23,0,33BE ⎛⎫=- ⎪ ⎪⎝⎭,所以7||3BE BE == .18.已知椭圆C 中心在原点,右焦点()2,0F ,离心率为12.(1)求椭圆C 的标准方程;(2)若椭圆左右顶点分别为1A 和2A ,B 为椭圆位于第二象限的一点,在y 轴上存在一点N ,满足BF NF ⊥,设12A A B △和1A FN △的面积分别为1S 和2S ,当12:3:2S S =时,求直线1A B 的斜率.(1)2211612x y +=(2)32【分析】(1)直接代入公式及性质即可求解;(2)设出坐标,利用面积关系求出坐标再求斜率即可.【小问1详解】由题知,2c =,12c a =,222a b c =+解得:4a =,b =,所以椭圆C 的标准方程为:2211612x y +=.【小问2详解】设(),B m n ,()0,N t ,则0m <,0n > BF NF ⊥,∴2BF n k m =-,2NF tk =-∴122n t m =--- ,化简得:()220m t n-=<.由112142S A A n n =⨯⨯=,()216212m S A F t n-=⨯⨯=,12:3:2S S =,化简得:()2492n m =-①,又因为B 为椭圆位于第二象限的一点,所以有:2211612m n +=②,联立①②解得:2m =-,3n =,即()2,3B -.所以,()1303242A B k -==---,因此,当12:3:2S S =时,直线1A B 的斜率为:32.19.已知公差不为零的等差数列{}n a ,{}n b 为等比数列,且满足11a b =,442b a =,2352b b a +=+,2a ,4a ,8a 成等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若不等式()94N *2n n n T n λ++≥-∈恒成立,求实数λ的取值范围.(1)2n a n =,2nn b =(2)1,64⎡⎫+∞⎪⎢⎣⎭【分析】(1)利用通项公式以及等比中项公式即可求解;(2)利用错位相减法求和,再利用导数讨论单调性求最值即可.【小问1详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .11a b =,442b a =,2352b b a +=+,∴()31123b q a d =+①,211142b q b q a d +=++②,2a ,4a ,8a 成等比数列,∴2428a a a = ,∴()()()211137a d a d a d +=++③,由①②③解得:12d a ==,12q b ==,∴2n a n =,2n n b =.【小问2详解】由(1)知:22n nn a nb =所以:312123n n na a a a Tb b b b =++++ ,即:12321222322222n n n T ⨯⨯⨯⨯=++++ ①,所以:23411212223222222n n n T +⨯⨯⨯⨯=++++ ②,由①-②得:1231122222222222n n n n T +⨯=++++- ,11111222212212n n n n T +⎡⎤⎛⎫- ⎪⎢⎥⨯⎝⎭⎢⎥=⨯-⎢⎥-⎢⎥⎣⎦化简得:1242n n n T -+=-()N*n ∈,由942n n n T λ++≥-,即19222n n n n λ-+++≥,所以1295222n n n n n n λ-++-≥-=.令()52x x f x -=()N *x ∈,则()ln 215ln 22xx f x -++'= ,由()0f x '=解得:15ln 2x =+()6,7∈,所以,10,5ln 2x ⎛⎫∈+ ⎪⎝⎭时,()0f x ¢>,()f x 单调递增,15,ln 2x ⎛⎫∈++∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减,又 N *x ∈,()()16764f f ==∴()()1764f x f ≤=,∴164λ≥.所以,若不等式()94N *2n n n T n λ++≥-∈恒成立,实数λ的取值范围为:1,64⎡⎫+∞⎪⎢⎣⎭.20.已知函数()e sin xf x k x =-.(1)当1k =,π0,2x ⎛⎫∈ ⎪⎝⎭时,求()f x 的单调区间;(2)若()f x 在区间π0,2⎛⎫⎪⎝⎭内存在极值点α.①求实数k 的取值范围;②求证:()f x 在区间()0,π内存在唯一的β,使()1f β=,并比较β与2α的大小,说明理由.(1)增区间为π0,2⎛⎫⎪⎝⎭,无减区间(2)①()1,+∞;②证明见解析,2βα<【分析】(1)当1k =时,利用导数符号与函数的单调性的关系可求得函数()f x 的单调区间;(2)①由()e cos cos x f x x k x ⎛⎫'=- ⎪⎝⎭,令()ecos x g x x =,其中π02x <<,利用导数分析函数()g x 的单调性,利用极值点的定义以及数形结合可得出实数k 的取值范围;②将问题转化为证明出函数()2esin 1xm x k x =--在区间()0,π内存在唯一的零点β,利用导数结合①中的结论,可以证明;表示出()2m α,构造函数()2e 2e sin 1xx h x x =--,其中π02x <<,利用导数分析函数()h x 在π0,2⎛⎫⎪⎝⎭上的单调性,可得出()()00h x h >=,从而可得出()()20m m αβ>=,再利用函数()m x 的单调性,比较后可得出结论.【小问1详解】解:当1k =时,若π0,2x ⎛⎫∈ ⎪⎝⎭,()e sin x f x x -=,则()e cos 1cos 0xf x x x '=->->,所以,函数()f x 的增区间为π0,2⎛⎫⎪⎝⎭,无减区间.【小问2详解】解:①因为π02x <<,()e e cos cos cos xxf x k x x k x ⎛⎫'=-=-⎪⎝⎭,令()e cos xg x x =,其中π02x <<,则()()2e cos sin 0cos x x x g x x+'=>,所以,函数()g x 在π0,2⎛⎫⎪⎝⎭上单调递增,作出函数()g x 与y k =的图象如下图所示:由图可知,当1k ≤时,对任意的π0,2x ⎛⎫∈ ⎪⎝⎭,()e cos 0cos x f x x k x ⎛⎫'=->⎪⎝⎭,则函数()f x 在π0,2⎛⎫⎪⎝⎭上为增函数,不合乎题意;当1k >时,由图可知,直线y k =与函数()g x 的图象有且只有一个交点,设交点的横坐标为α,当0x α<<时,()e cos 0cos x f x x k x ⎛⎫'=-<⎪⎝⎭,当π2x α<<时,()e cos 0cos x f x x k x ⎛⎫'=->⎪⎝⎭,此时函数()f x 在π0,2⎛⎫ ⎪⎝⎭只有一个极值点,且为极小值点,综上所述,实数k 的取值范围是()1,+∞;②要证明存在唯一的()0,πβ∈,使得()1fβ=,令()()1e sin 1x m x f x k x =-=--,只需证明存在唯一的()0,πβ∈,使得()0m β=,因为()()e cos x m x k x f x ''=-=,由①可知,函数()m x 在()0,α上单调递减,在π,2α⎛⎫ ⎪⎝⎭上单调递增,又当ππ2x <<时,()e cos 0x m x k x '=->,所以,函数()m x 在()0,α上单调递减,在(),πα上单调递增,当0x α<<时,()()00m x m <=,且()()00m m α<=,又因为()ππe 10m =->,所以,函数()m x 在()0,α内无零点,在(),πα内存在唯一零点,即存在唯一的()0,πβ∈使得()0m β=,即()1fβ=,由①可知,e cos 1k αα=>,所以,()2222esin 21e 2sin cos 1e 2e sin 1m k k ααααααααα=--=--=--,令()2e 2e sin 1x x h x x =--,其中π02x <<,则()()()22e2e sin cos 2e e sin cos x x x x h x x x x x '=-+=--,令()e sin cos x p x x x =--,其中π02x <<,则()e cos sin 1cos sin 0x p x x x x x '=-+>-+>,所以,函数()p x 在π0,2⎛⎫ ⎪⎝⎭上为增函数,故当π02x <<时,()()00p x p >=,故当π02x <<时,()0h x '>,所以,函数()h x 在π0,2⎛⎫ ⎪⎝⎭上为增函数,因为π02α<<,()20m α>,所以,()()20m m αβ>=,因为()m x 在(),πα上为增函数,且()2,παα∈,(),πβα∈,所以,2βα<.【点睛】关键点点睛:本题要比较β与2α的大小关系,关键就是构造出合适的函数()g x ,转化为比较()2g α、()g β的大小关系,结合函数()g x 的单调性求解.。
天津市静海区第一中学2024届高三上学期12月月考数学试题含答案解析
![天津市静海区第一中学2024届高三上学期12月月考数学试题含答案解析](https://img.taocdn.com/s3/m/2343bf43ba68a98271fe910ef12d2af90342a858.png)
静海一中2023-2024第一学期高三数学(12月)学生学业能力调研试卷命题人:李静审题人:陈中友考生注意:本试卷分第Ⅰ卷基础题(133分)和第Ⅱ卷提高题(14分)两部分,共147分.3分卷面分.知识技能学习能力内容集合简单逻辑函数圆锥曲线立体几何数列基本不等式平面向量三角函数复数关键环节分数10153520205518514第Ⅰ卷基础题(共131分)一、选择题(每小题5分,共45分)1.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B =ð()A.{3}B.{1,6}C.{5,6}D.{1,3}2.设数列{}n a的公比为q ,则“10a>且01q <<”是“{}n a 是递减数列”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数()242log 2xf x x x+=-的大致图象是()A. B. C. D.4.设0.32,sin28,ln2a b c === ,则()A.c b a <<B.b c a <<C.a b c<< D.b a c<<5.已知2243x y ==,则3y xxy-的值为()A.1B.0C.1-D.26.若三棱锥-P ABC 中,已知PA ⊥底面ABC ,120BAC ∠=︒,2PA AB AC ===,若该三棱雉的顶点都在同一个球面上,则该球的表面积为()A.B.18πC.20πD.7.已知函数()3sin cos cos22f x x x x =+,则下列说法不正确的是()A.函数()f x 的最小正周期为πB.函数()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称C.函数()f x 的图象可由πsin 3y x ⎛⎫=+⎪⎝⎭的图象上所有点横坐标缩短为原来的12,纵坐标不变得到D.函数()f x 的图象可由sin2y x =的图象上所有点向左平移π6个单位得到8.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 与双曲线的一条渐近线平行的直线交双曲线于点P ,若213PF PF =,则双曲线的离心率为()A.3B.C.D.29.设a R ∈,函数2sin 2,0()474,0x x f x x x a x π<⎧=⎨-+-≥⎩,若()f x 在区间(),a ∞-+内恰有5个零点,则a 的取值范围是()A .7511,2,424⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭B.75,22,42⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦C.37511,,2424⎛⎤⎡⎫⋃⎪⎥⎢⎝⎦⎣⎭D.375,2,242⎛⎤⎛⎤⋃⎥⎝⎦⎝⎦二、填空题:每小题5分,共30分.10.已知复数2i2i 1a +-是纯虚数,则实数=a ______.11.抛物线28y x =,过焦点的弦AB 长为8,则AB 中点M 的横坐标为____.12.已知圆()22200x ax y a =+->截直线0x y -=所得弦长是,则a 的值为______.13.设数列{}n a 的通项公式为()π21cos 2n n a n =-⋅,其前n 项和为n S ,则20S =__________14.已知0m >,0n >,21m n +=,则()()11m n mn++的最小值为______.15.如图是由两个有一个公共边的正六边形构成的平面图形Γ,其中正六边形边长为1,设AG xAB y AI =+,则x y +=______;P 是平面图形Γ边上的动点,则GE AP ⋅的取值范围是______.三、解答题:(本大题共5小题,共72分)16.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A C =,150B =︒,ABC 的面积(1)求a 的值;(2)求sin A 的值;(3)求sin 26A π⎛⎫+⎪⎝⎭的值.17.如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ABCD ⊥面,M 是棱PD 的中点,且2AB AC PA ===,BC =(I )求证:CD PAC ⊥面;(Ⅱ)求二面角M AB C --的大小;(Ⅲ)若N 是AB 上一点,且直线CN 与平面MAB 成角的正弦值为5,求AN NB 的值.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,左右顶点分别为A ,B .已知椭圆的离心率为12,||3AF =.(1)求椭圆的方程;(2)已知P 为椭圆上一动点(不与端点重合),直线BP 交y 轴于点Q ,若四边形OPQA 的面积是三角形BFP 面积的3倍,求直线BP 的方程.19.已知数列{}{},,n n n a b S 是数列{}n a 的前n 项和,已知对于任意N*n ∈,都有323n n a S =+,数列{}n b 是等差数列,131log b a =,且2465,1,3b b b ++-成等比数列.(1)求数列{}n a 和{}n b 的通项公式.(2)记211,N n n n n nb d n b b a *++-=∈,求数列{}n d 的前n 项和n T .(3)记2,,n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数,求211n k k k c c +=∑.第Ⅱ卷提高题(共14分)20.已知函数()()e 11xf x a x =+--,其中a ∈R .(1)当3a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)讨论函数()f x 的单调性;(3)当1a >时,证明:()ln cos f x x x a x >-.静海一中2023-2024第一学期高三数学(12月)学生学业能力调研试卷命题人:李静审题人:陈中友考生注意:本试卷分第Ⅰ卷基础题(133分)和第Ⅱ卷提高题(14分)两部分,共147分.3分卷面分.知识技能学习能力内容集合简单逻辑函数圆锥曲线立体几何数列基本不等式平面向量三角函数复数关键环节分数10153520205518514第Ⅰ卷基础题(共131分)一、选择题(每小题5分,共45分)1.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B =ð()A.{3} B.{1,6}C.{5,6}D.{1,3}【答案】B 【解析】【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.2.设数列{}n a 的公比为q ,则“10a >且01q <<”是“{}n a 是递减数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据题意,结合等比数列的通项公式,分别验证充分性以及必要性,即可得到结果.【详解】由等比数列的通项公式可得,111n nn a a a q q q-=⋅=⋅,当10a >且01q <<时,则10a q >,且n y q =单调递减,则1n n aa q q=⋅是递减数列,故充分性满足;当1n n a a q q =⋅是递减数列,可得1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩,故必要性不满足;所以“10a >且01q <<”是“{}n a 是递减数列”的充分不必要条件.故选:A3.函数()242log 2xf x x x+=-的大致图象是()A. B. C. D.【答案】D 【解析】【分析】方法一:根据函数的奇偶性及函数值的符号排除即可判断;方法二:根据函数的奇偶性及某个函数值的符号排除即可判断.【详解】方法一:因为202xx+>-,即()()220x x +⋅-<,所以22x -<<,所以函数()242log 2xf x x x+=-的定义域为()2,2-,关于原点对称,又()()242()log 2xf x x f x x--=-=-+,所以函数()f x 是奇函数,其图象关于原点对称,故排除B C ,;当()0,2x ∈时,212x x+>-,即42log 02xx +>-,因此()0f x >,故排除A.故选:D.方法二:由方法一,知函数()f x 是奇函数,其图象关于原点对称,故排除B C ,;又()211log 302f =>,所以排除A.故选:D.4.设0.32,sin28,ln2a b c === ,则()A.c b a <<B.b c a <<C.a b c <<D.b a c<<【答案】B 【解析】【分析】根据给定条件,利用指数、对数函数、正弦函数的性质,借助“媒介数”比较判断作答.【详解】00.32,si 2n n212i 81s 30a b >=<===2e <<,则1ln 212<<,即112c <<,所以b<c<a .故选:B5.已知2243xy==,则3y xxy-的值为()A.1B.0C.1- D.2【答案】C 【解析】【分析】利用指数与对数互化的公式表示出224log 3,log 3x y ==,再利用换底公式和对数的运算性质化简计算.【详解】因为2243x y ==,所以224log 3,log 3x y ==,由换底公式和对数的运算性质可得33333322433131813log 2log 24log 8log 24log log 1log 3log 3243y x xy x y -=-=-=-=-===-.故选:C6.若三棱锥-P ABC 中,已知PA ⊥底面ABC ,120BAC ∠=︒,2PA AB AC ===,若该三棱雉的顶点都在同一个球面上,则该球的表面积为()A.B.18πC.20πD.【答案】C 【解析】【分析】由题设知三棱锥-P ABC 是相应正六棱柱内的一个三棱锥,由此知该三棱锥的外接球即为该六棱柱的外接球,求出正六棱柱的外接球半径即可得.【详解】三棱锥-P ABC 中,已知PA ⊥底面ABC ,120BAC ∠=︒,2PA AB AC ===,故该三棱锥为图中正六棱柱内的三棱锥-P ABC ,所以该三棱锥的外接球即为该六棱柱的外接球,所以外接球的直径2R ==,则R =所以该球的表面积为224π4π20πS R ==⋅=.故选:C.7.已知函数()3sin cos cos22f x x x x =+,则下列说法不正确的是()A.函数()f x 的最小正周期为πB.函数()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称C.函数()f x 的图象可由πsin 3y x ⎛⎫=+⎪⎝⎭的图象上所有点横坐标缩短为原来的12,纵坐标不变得到D.函数()f x 的图象可由sin2y x =的图象上所有点向左平移π6个单位得到【答案】B 【解析】【分析】首先化简函数()f x ,再根据三角函数的性质,求最小正周期判断A ,整体代入法判断对称中心判断B ,利用函数图象变换法则即可判断CD.【详解】()313πsin cos cos2sin 2cos 2sin 22223f x x x x x x x ⎛⎫=+=+=+ ⎪⎝⎭,所以函数的最小正周期2ππ2T ==,故A 正确;当π6x =时,πππ2π3sin 2sin 066332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以π,06⎛⎫⎪⎝⎭不是函数()f x 的一个对称中心,故B 错误;由πsin 3y x ⎛⎫=+ ⎪⎝⎭的图象上所有点横坐标缩短为原来的12,纵坐标不变得到πsin(23y x =+,故C 正确;将sin2y x =的图象上所有点向左平移π6个单位得到ππsin[2(sin(2)63y x x =+=+,故D 正确.故选:B8.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 与双曲线的一条渐近线平行的直线交双曲线于点P ,若213PF PF =,则双曲线的离心率为()A.3B.C.D.2【答案】C 【解析】【分析】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,运用双曲线的定义和条件可得1||3PF a =,2||PF a =,12||2F F c =,再由渐近线的斜率和余弦定理,结合离心率公式,计算即可得到所求值.【详解】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,由双曲线的定义可得12||||2PF PF a -=,由12||3||PF PF =,可得1||3PF a =,2||PF a =,12||2F F c =,由12tan bF F P a ∠=可得12cos aF F P c ∠=,在三角形12PF F 中,由余弦定理可得:222121221212||||||2||||cos PF PF F F PF F F F F P =+-⋅∠,即有2229422aa a c a c c=+-⨯⨯,化简可得223c a =,所以双曲线的离心率==ce a.故选:C .9.设a R ∈,函数2sin 2,0()474,0x x f x x x a x π<⎧=⎨-+-≥⎩,若()f x 在区间(),a ∞-+内恰有5个零点,则a 的取值范围是()A.7511,2,424⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭ B.75,22,42⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦C.37511,,2424⎛⎤⎡⎫⋃⎪⎥⎢⎝⎦⎣⎭D.375,2,242⎛⎤⎛⎤⋃⎥⎝⎦⎝⎦【答案】D 【解析】【分析】解法一:利用排除法,分别令94a =和138a =求解函数的零点进行判断,解法二:分类讨论,分()f x 在区间(),0a -有5个零点且在区间[)0,∞+没有零点,()f x 在区间(),0a -有4个零点且在区间[)0,∞+有1个零点和()f x 在区间(),0a -有3个零点且在区间[)0,∞+有2个零点三种情况求解即可【详解】法一(排除法):令94a =,则2sin 2,0()42,0x x f x x x x π<⎧=⎨--≥⎩,当0x <时,()f x 在区间9,04⎛⎫- ⎪⎝⎭有4个零点,当0x ≥时,()020f =-<,Δ240=>,()f x 在区间[)0,∞+有1个零点,综上所述,()f x 在区间(),a ∞-+内有5个零点,符合题意,排除A 、C.令138a =,则2sin 2,0()14,02x x f x x x x π<⎧⎪=⎨-+≥⎪⎩,当0x <时,()f x 在区间13,08⎛⎫- ⎪⎝⎭有3个零点,当0x ≥时,()1002f =>,Δ140=>,()f x 在区间[)0,∞+有2个零点,综上所述,()f x 在区间(),a ∞-+内有5个零点,符合题意,排除B ,故选D.法二(分类讨论):①当()f x 在区间(),0a -有5个零点且在区间[)0,∞+没有零点时,满足0532a ∆<⎧⎪⎨-≤-<-⎪⎩,无解;②当()f x 在区间(),0a -有4个零点且在区间[)0,∞+有1个零点时,满足()000522f a ⎧⎪∆>⎪<⎨⎪⎪-≤-<-⎩,解得522a <≤;③当()f x 在区间(),0a -有3个零点且在区间[)0,∞+有2个零点时,满足()000322f a ⎧⎪∆>⎪≥⎨⎪⎪-≤-<-⎩,解得3724a <≤,综上所述,a 的取值范围是375,2,242⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦,故选:D.二、填空题:每小题5分,共30分.10.已知复数2i2i 1a +-是纯虚数,则实数=a ______.【答案】1【解析】【分析】由复数的除法运算、纯虚数的概念即可求得参数a .【详解】由题意()()()()()()2i 2i+12241i 41i2i 222i 12i 12i+14155a a a a a a +-++++-===-----,由题意复数2i 2i 1a +-是纯虚数,则2205a-=且4105a +-=,解得1a =.故答案为:1.11.抛物线28y x =,过焦点的弦AB 长为8,则AB 中点M 的横坐标为____.【答案】2【解析】【分析】利用梯形中位线定理,结合抛物线的定义,先求出弦AB 的中点M 到准线的距离,最后求出弦AB 的中点M 的横坐标.【详解】抛物线28y x =的准线l 的方程为:2x =-,焦点为(2,0)F ,分别过,,A B M ,作,,AC l BD l MH l ⊥⊥⊥,垂足为,,C D H ,在直角梯形ABDC 中,2AC BDMH +=,由抛物线的定义可知:,AC AF BD BF ==,因此有4222AC BDAF BFAB MH ++====,所以点M 的横坐标为422-=.故答案为:2.12.已知圆()22200x ax y a =+->截直线0x y -=所得弦长是,则a 的值为______.【答案】2【解析】【分析】化圆的方程为标准方程,可得圆心和半径,求得圆心到直线0x y -=的距离d ,代入弦长公式,即可求得答案.【详解】圆()22200x ax y a =+->可变形为:222()x a y a -+=,所以圆心为(,0)a ,半径r a =,所以圆心到直线0x y -=的距离22d ==,根据弦长公式可得2==,因为0a>,解得2a=.故答案为:213.设数列{}n a的通项公式为()π21cos2nna n=-⋅,其前n项和为n S,则20S=__________【答案】20【解析】【分析】先由()πcos2nf n=的周期性及函数值特点,分析数列{}n a的特点1234n n n na a a a++++++=()1,5,9,13,16n=,;再根据这个特点求解即可.【详解】由()πcos2nf n=可得:周期为2π4π2T==,()π1cos02f==,()2π2cos12f==-,()3π3cos02f==,()4π4cos12f==.因为()π21cos2nna n=-⋅,所以123n n n na a a a++++++()()()()()()()1π2π3ππ21cos221cos241cos261cos2222n n nnn n n n+++=-⋅++-⋅++-⋅+-⋅4=,()1,5,9,13,16n=,所以数列{}n a的前n项和具有周期为4的周期性,且这样一个周期内的和为4,所以204520S=⨯=.故答案为:2014.已知0m>,0n>,21m n+=,则()()11m nmn++的最小值为______.【答案】8+8【解析】【分析】对代数式结合已知等式进行变形,再利用基本不等式进行求解即可.【详解】因为21m n+=,所以()()()()1122262238m n m m n n m n n m n mmnmnm nmn++++++⎛⎫⎛⎫==++=++ ⎪⎪⎝⎭⎝⎭,因为0m >,0n >,所以62n m m n +≥=,当且仅当62n m m n =时取等号,即23n m =-=时,()()11m nmn++有最小值8+,故答案为:8+【点睛】关键点睛:利用等式把代数式()()11m n mn++变形为628n m mn++.15.如图是由两个有一个公共边的正六边形构成的平面图形Γ,其中正六边形边长为1,设AG xAB y AI =+,则x y +=______;P 是平面图形Γ边上的动点,则GE AP ⋅的取值范围是______.【答案】①.1②.3,32⎡⎤-⎢⎥⎣⎦【解析】【分析】以I 为原点,建立平面直角坐标系,根据,,G B I 三点共线,得到1x y +=,设(,)P x y ,求得()2GE AP x ⋅=+ ,令z x =+,转化为求该直线在y 轴上截距的取值范围,得到目标函数的最优解,代入即可求解.【详解】以I 为原点,,BG IO 所在的直线分别为,x y 轴,建立平面直角坐标系,如图所示,因为,,G B I 三点共线,且AG xAB y AI =+,所以1x y +=,由正六边形的内角均为120 ,且边长为1,可得3331((,,)2222G E A --,设(,)P x y ,可得31,),(,2222GE AP x y ==-+,则31,(,()22222GE AP x y x ⋅=⋅-+=+ ,令z x =,则3()3y x z =--,当该直线经过点C 时,截距最大,对应的z 最大,此时·GE AP最大值为3,当该直线经过点(G 时,截距最小,对应的z 最小,此时·GE AP的最小值为32-,所以·GE AP3,32⎡⎤∈-⎢⎥⎣⎦.故答案为:1;3[,3]2-.三、解答题:(本大题共5小题,共72分)16.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A C =,150B =︒,ABC 的面积(1)求a 的值;(2)求sin A 的值;(3)求sin 26A π⎛⎫+⎪⎝⎭的值.【答案】(1);(2)2114;(3)1314.【解析】【分析】(1)已知条件结合三角形面积公式和正弦定理即可求a ;(2)由余弦定理求出b ,再根据正弦定理即可求出sin A ;(3)根据sin A 求出cos A ,再由正弦和角公式、正余弦二倍角公式即可求值.【小问1详解】∵sin A C =,∴由正弦定理得a =,又ABC 的1sin1502ac ︒=,解得2c =,∴a =;【小问2详解】由余弦定理有2222cos150b a c ac =+-︒,∴b =.由正弦定理sinsin sin 14a b A A B =⇒==.【小问3详解】∵B =150°,∴A <90°,∴由sin A =14得,cos 14A =,∴sin 22sin cos 14A A A ==,211cos 22cos 114A A =-=.∴13sin 2sin 2cos cos 2sin 66614A A A πππ⎛⎫+=+= ⎪⎝⎭.17.如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ABCD ⊥面,M 是棱PD 的中点,且2AB AC PA ===,BC =(I )求证:CD PAC ⊥面;(Ⅱ)求二面角M AB C --的大小;(Ⅲ)若N 是AB 上一点,且直线CN 与平面MAB 成角的正弦值为5,求AN NB 的值.【答案】(I )见解析;(Ⅱ)4π;(Ⅲ)1.【解析】【分析】【详解】试题分析:(I),,所以平面PAC;(II)建立空间直角坐标系,求出两个法向量,平面MAB的法向量,是平面ABC的一个法向量,求出二面角;(III)设,平面MAB的法向量,解得答案.试题解析:证明:(I)连结AC.因为为在中,,,所以,所以.因为AB//CD,所以.又因为地面ABCD,所以.因为,所以平面PAC.(II)如图建立空间直角坐标系,则.因为M是棱PD的中点,所以.所以,.设为平面MAB 的法向量,所以,即,令,则,所以平面MAB 的法向量.因为平面ABCD ,所以是平面ABC 的一个法向量.所以.因为二面角为锐二面角,所以二面角的大小为.(III)因为N 是棱AB 上一点,所以设,.设直线CN 与平面MAB 所成角为,因为平面MAB 的法向量,所以.解得,即,,所以.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,左右顶点分别为A ,B .已知椭圆的离心率为12,||3AF =.(1)求椭圆的方程;(2)已知P 为椭圆上一动点(不与端点重合),直线BP 交y 轴于点Q ,若四边形OPQA 的面积是三角形BFP 面积的3倍,求直线BP 的方程.【答案】(1)22143x y +=(2)32(2)4y x =±-【解析】【分析】(1)根据已知线段长度与离心率,求解出,a c 的值,然后根据222a b c =+求解出b 的值,则椭圆方程可求;(2)根据条件将问题转化为三角形ABQ 与三角形OBP 的面积比,由此得到关于,P Q y y 的关系式,通过联立直线与椭圆方程求得对应坐标,然后求解出参数值得P 的坐标,则可求BP 直线方程.【小问1详解】因为,12c e a ==,||3AF =,所以2,3a c a c =+=,所以2,1a c ==,所以b ==所以椭圆方程为22143x y +=;【小问2详解】如图,因为四边形OPQA 与三角形BFP 的面积之比为3:1,所以三角形ABQ 与三角形OPB 的面积比为5:2,所以152122QP AB y OB y ⋅=⋅,所以54Q P y y =,显然直线BP 的斜率不为0,设直线BP 的方程为2x my =+,联立2223412x my x y =+⎧⎨+=⎩,所以()2234120m y my ++=,所以21234P m y m =-+,2Q y m=-,所以22512434m m m -=-+,解得223m =±,当m =22:23BP x y =+,当3m =-时,:23BP x y =-+,故直线BP的方程为(2)4y x =±-.19.已知数列{}{},,n n n a b S 是数列{}n a 的前n 项和,已知对于任意N*n ∈,都有323n n a S =+,数列{}n b 是等差数列,131log b a =,且2465,1,3b b b ++-成等比数列.(1)求数列{}n a 和{}n b 的通项公式.(2)记211,N n n n n nb d n b b a *++-=∈,求数列{}n d 的前n 项和n T .(3)记2,,n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数,求211n k k k c c +=∑.【答案】(1)3nn a =,21n b n =-(2)1122(21)3n nT n =-+⋅(3)175402591648n n +-+⋅【解析】【分析】(1)首先根据n a 与n S 的关系得到n a ,再根据等比数列的性质即可得到n b ;(2)利用裂项相消法即可得结果;(3)将分组求和与错位相减法相结合即可得结果.【小问1详解】当1n =时,11323a a =+,解得13a =.当2n ≥时,11323n n a S --=+,所以113233n n nn n a a a a a --=⇒=-,即{}n a 是以首先13a =,公比为3的等比数列,即3nn a =.因为131log 3b ==,2465,1,3b b b ++-成等比数列,所以()()()2426153b b b +=+-,即()()()213115153d d d ++=+++-,解得2d =.所以()12121n b n n =+-=-.【小问2详解】由(1)得2112(2)2(21)(21)3n n nn n n b n d b b a n n ++-+-==-+⋅()()()()122111212132213213n n n n n n n n -⎡⎤+==-⎢⎥-+⋅-⋅+⋅⎢⎥⎣⎦,则123n nd d d d T +++⋅⋅⋅+=0112231111111111[()()()()]2133333535373(21)3(21)3n n n n -=-+-++⋅⋅⋅+-⨯⨯⨯⨯⨯⨯-⋅+⋅0111()213(21)3n n =-⨯+⋅1122(21)3nn =-+⋅【小问3详解】1223221211k k n n nk c c c c c c c c=++=+++∑ ,因为()()()()2121212221221211021332193n n n n n n n n n n c c c c c c c n n -+-+-++=+=-+=-⋅,设()219nn d n =-⋅,前n 项和为n K ,则()121939219nn K n =⨯+⨯++-⨯ ,()()23191939239219n n n K n n +=⨯+⨯++-⨯+-⨯ ,()()()()12118119892992199221919n n n n n K n n -++--=+++--⋅=+⨯--⋅- 1458593232n n n K +-=+⋅.所以211110754025931648n n n k k k c c n K +=+-==+⋅∑第Ⅱ卷提高题(共14分)20.已知函数()()e 11xf x a x =+--,其中a ∈R .(1)当3a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)讨论函数()f x 的单调性;(3)当1a >时,证明:()ln cos f x x x a x >-.【答案】(1)30x y -=(2)答案见解析(3)证明见解析【解析】【分析】(1)求出()0f ',利用导数几何意义结合点斜式方程即可求出切线方程;(2)求出导函数,按照1a ≥和1a <分类讨论研究函数的单调性即可;(3)把原不等式作差变形得()()e cos 1ln 0,0,x a x x x x x x ∞++--->∈+,结合()cos cos a x x x x +>+,把不等式证明转化为e cos 1ln 0x x x x +-->问题,构造函数,求导,利用函数的单调性求得最值即可证明.【小问1详解】当3a =时,()e 21x x x f =+-,()e 2x f x '=+,所以()00e 23f '=+=,又()00e 10f =-=,由导数的几何意义知,曲线()y f x =在点()()0,0f 处的切线方程为()030y x -=-,即30x y -=.【小问2详解】因为()()e 11x f x a x =+--,所以()e 1xf x a =+-',当1a ≥时,()e 10xf x a =+->',函数()f x 在R 上单调递增;当1a <时,由()e 10x f x a =+->',得()ln 1x a >-,函数()f x 在区间()()ln 1,a ∞-+上单调递增,由()()e 10x f x a =+-<',得()ln 1x a <-,函数()f x 在区间()(),ln 1a -∞-上单调递减.【小问3详解】要证()ln cos f x x x a x >-,即证()()e 11ln cos ,0,x a x x x a x x ∞+-->-∈+,即证()()e cos 1ln 0,0,xa x x x x x x ∞++--->∈+,设()cos k x x x =+,则()1sin 0k x x ='-≥故()k x 在()0,∞+上单调递增,又()010k =>,所以()1k x >,又因为1a >,所以()cos cos a x x x x +>+,所以()e cos 1ln e cos 1ln x xa x x x x x x x x ++--->+--,①当01x <≤时,因为e cos 10,ln 0x x x x +->≤,所以e cos 1ln 0x x x x +-->;②当1x >时,令()e cos ln 1x g x x x x =+--,则()e ln sin 1xg x x x '=---,设()()h x g x '=,则()1e cos xh x x x=--',设()1e cos x m x x x =--,则()21e sin x m x x x =++',因为1x >,所以()0m x '>,所以()m x 即()h x '在()1,+∞上单调递增,所以()()1e 1cos10h x h >=--'>',所以()h x 在()1,+∞上单调递增,所以()()1e sin110h x h >=-->,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()1e cos110g x g >=+->,即e cos 1ln 0x x x x +-->.综上可知,当1a >时,()e cos 1ln e cos 1ln 0x xa x x x x x x x x ++--->+-->,即()ln cos f x x x a x >-.【点睛】方法点睛:利用导数证明不等式的常见形式是()()f x g x >,一般可构造“左减右”的函数,即先将不等式()()f x g x >移项,构造函数()()()h x f x g x =-,转化为证不等式()0h x >,进而转化为证明min ()0h x >,因此只需在所给区间内判断()h x '的符号,从而得到函数()h x 的单调性,并求出函数()h x 的最小值即可.。
天津市第一中学2022届高三上学期第三次月考语文试题 Word版含答案
![天津市第一中学2022届高三上学期第三次月考语文试题 Word版含答案](https://img.taocdn.com/s3/m/3472c426ef06eff9aef8941ea76e58fafab04594.png)
Evaluation Only. Created with Aspose.Words. Copyright 2003-2016 Aspose Pty Ltd.天津一中、益中学校2020-2021-1高三班级语文学科三月考质量调查试卷本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间150分钟。
考生务必将答案涂写答题纸或答题卡的规定位置上,答在试卷上的无效。
祝各位考生考试顺当!第Ⅰ卷(36分)一、(12分,每小题3分)1.下列各句中,没有错别字且加点字的注音全都正确的一项是A.吐.(tǔ)槽社会不公,埋怨怀才不遇,因而踟.(c hí)蹰不前,这不过是找一个堂皇的借口而已。
当你拂去往日心灵的积弊与尘垢,用婴儿水晶般的瞳孔端详世界的时候,你会发觉即使是在严冬季节,周遭仍旧暗涌着奇迹抽芽带来的层层新绿。
B.中华文明硕果累累(lěi),仰韶的彩陶、良渚(z hǔ)的玉器、唐之金银、宋之陶瓷,元明清不胜枚举,这些手艺不经意间将生活艺术化,让后人仰而视之,诚惶诚恐。
C.雄心期决胜,壮志在必克。
我们要多些一往无前的进取意识、乘.(chénɡ)势而上的机遇意识、敢于担当的责任意识,汇聚全体国民的磅礴力气,再接再厉,砥砺攻艰,铿(kēng)锵前行,争取更大的成功。
D.站在兵马俑(yǒng)坑前,我们观察的秦朝文物几近全部。
细心倾听,甚至可以听见金戈铁马的嘶杀声。
这令人震惊的兵马俑,不过是秦文明中的沧海一粟(sù)。
2.依次填入下面横线上的词语最恰当的一项是(1)为了搞清事故的缘由,公安部门打算立案。
(2)我们必需学会如何在纷繁简单的干扰中剥离出“演绎”的成分,去伪存真,真相,呈现出万事万物的真实状态。
(3)为了弄清这句话的出处,推断对方说法的真伪,老先生跑了很多图书馆,了大量的文献资料。
A.侦查厘清披阅B.侦查理清批阅C.侦察理清披阅D.侦察厘清批阅3.下列各句中,没有语病的一句是A.蓟县滑雪场九成以上受伤者为初学滑雪者,大部分在未接受专业指导或训练的情况下直接进入中高级滑道,从而导致自己受伤或撞伤他人概率更大。
精品解析:天津市第一中学2021届高三上学期第一次月考化学试题(原卷版)
![精品解析:天津市第一中学2021届高三上学期第一次月考化学试题(原卷版)](https://img.taocdn.com/s3/m/e8ea8c42f705cc17552709fd.png)
天津一中 2020-2021-1 高三年级 化学学科 1 月考试卷本试卷分为第 I 卷(选择题)、第 II 卷(非选择题)两部分,共 100 分,考试用时60 分钟。
第 I 卷 1 至 2 页,第 II 卷 3 至 4 页。
考生务必将答案涂写规定的位置上,答 在试卷上的无效。
祝各位考生考试顺利!H :1 N :14 O :16 Na :23 S :32 Cl :35.5 Fe :56 Cu :64第Ⅰ卷 选择题 (单选)(共 15 道题,每题 3 分,共 45 分)1. 化学与生活、科技及环境密切相关。
下列说法正确的是( ) A. 为了防止感染“新冠病毒”,坚持每天使用无水酒精杀菌消毒 B. 港珠澳大桥使用的超高分子量聚乙烯纤维属于无机非金属材料 C. “玉兔号”月球车太阳能电池帆板的材料是二氧化硅D. 在食品袋中放入盛有硅胶和铁粉的透气小袋,可防止食物受潮、氧化变质 2. 下列与阿伏加德罗常数的值(N A )有关的说法正确的是( )A. 标准状况下,足量的铜与一定量的浓硝酸反应,生成 224ml 气体,转移电子数为0.01 N AB. 8.0 g Cu 2S 和 CuO 的混合物中含有铜原子数为 0.1N AC. 在密闭容器中加入 0.5 mol N 2 和 1.5 mol H 2,充分反应后可得到 NH 3 分子数为N AD. 标准状况下,11.2L Cl 2 溶于水呈黄绿色,溶液中 Cl -、ClO -、HClO 的微粒总数之和为 N A 3. 用下列实验装置和方法进行相应实验,能达到实验目的的是( )A. 用图甲装置制备干燥的氨气B. 用乙装置收集并测量 Cu 与浓硝酸反应产生的气体及体积C. 用图丙装置除去 CO 2 中含有的少量 HClD. 用图丁装置制取并收集 SO 24. 常温下,下列各组离子一定能在指定溶液中大量共存的是()A. “84”消毒液中,SiO2-3、CO2-3、Na+、K+B. 0.1mol/LNaA1O2溶液中:HCO-3、NH+4、SO2-4、Na+C. 与Al 反应能放出H2的溶液中:Fe2+、K+、NO-3、SO2-4D. 水电离的c(H+)=1×10-13mol/L 的溶液中:K+、Na+、AlO-2、CO2-35. LiAlH4、LiH 既是金属储氢材料又是有机合成中的常用试剂。
天津市滨海新区塘沽第一中学2023届高三三模数学试题
![天津市滨海新区塘沽第一中学2023届高三三模数学试题](https://img.taocdn.com/s3/m/58461800a22d7375a417866fb84ae45c3b35c2cf.png)
三、双空题 13.盒子里装有同样大小的 4 个白球和 3 个黑球,甲先从中取 2 球(不放回),之后 乙再从盒子中取 1 个球.(1)则甲所取的 2 个球为同色球的概率为____________;
(2)设事件 M 为“甲所取的 2 个球为同色球”, N 事件为“乙所取的球与甲所取的
球不同色”,则在事件 M 发生的条件下,求事件 N 发生的概率 P ( N M ) = __________
,
b
=
lnπ
,c
3
=
æ çè
4 5
ö ÷ø
4
,则(
)
A. a < c < b
B. c < a < b
C. b < a < c
D. c < b < a
6.点 F 是抛物线 x2 = 8 y 的焦点,A 为双曲线 C: x2 8
-
y2 b
= 1的左顶点,直线 AF 平
行于双曲线 C 的一条渐近线,则实数 b 的值为( )
AD × BC =
__________;若点 D 在边 BC 上(不包含端点),延长 AD 到 P,使得 AP = 9 ,且满足
uuur PA =
uuur mPBLeabharlann +æ çè
3 2
-
m
ö ÷ø
uuur PC
(m 为常数),则
uuur uuur DA + DB
= ____________.
试卷第41 页,共33 页
P,点
M,N
在
x
轴上,
PM∥QN,且直线 PM 与直线 QN 间的距离为 c,四边形 PQNM 的面积为 3c. (i)求直线 PF 的斜率; (ii)求椭圆的方程.
天津市第一中学2022届高三上学期第二次月考英语试题 Word版含答案
![天津市第一中学2022届高三上学期第二次月考英语试题 Word版含答案](https://img.taocdn.com/s3/m/338f35cee109581b6bd97f19227916888486b9bc.png)
天津一中2021—2022学年度高三班级其次次月考英语学科试卷本试卷分为第I卷(选择题)、第II卷(非选择题)两部分,共150分,考试用时120分钟。
考生务必将答案涂写答题纸和答题卡的规定位置上,答在试卷上的无效。
祝各位考生考试顺当!第I卷(选择题,共115分)第一部分:听力测试(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Why can’t the woman help the man?A. She is too busy at the moment.B. She doesn’t know where the station is.C. She just wants to play a trick on him.2. Why didn’t the man take any pictures of the tower?A. He ran to see a filmB. He didn’t take his camera.C. There was no film left.3. How long is the river?A. About 2,500 miles.B. About 625 miles.C. About 835 miles.4. What will the man do for the woman?A. Renew two books at the library.B. Return two books at the library.C. Borrow two books at the museum.5. What does the woman mean?A. John has lost some weight.B. John is slightly overweight.C. John has stopped dieting. 其次节(共10个小题,每小题1.5分,满分15分)听下面几段材料。
天津市南开中学2021届高三上学期第三次月考数学卷含解析.docx
![天津市南开中学2021届高三上学期第三次月考数学卷含解析.docx](https://img.taocdn.com/s3/m/ce7c3939effdc8d376eeaeaad1f34693daef1034.png)
天津市南开中学2021届高三年级第三次月考数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A = {x||x|<2},集合B = {x|-3<%<1),则A^\B=() A. (-1,0,1} B. (-2,1]c. [-3,1]D. --------- B分析: 根据已知条件,直接求集合的交集即可.解答:因^jA = {x\\x\<2} = {x\-2<x<2], B = (x| -3< x< 1}, .•- Ap|8 = (-2,1], 故选:B.2,下列函数中,在区间(0, +oo)上单调递增的是()A.--------- A分析: 画出每个函数图象,即得解. 解答:尸U =五,广2-'= (?)',>=1°顼C. y=l°gE2D. 1尸一X[-3,2]B. y=—,它们的图象如图所示: x由图象知,只有y= J 在(0, +8)上单调递增.Ji故选:A.点拨:本题主要考查函数的图象和单调性,意在考查学生对这些知识的理解掌握水平.cin 3x3.函数y = ---------- ,尤£(—4*)图象大致为()1 + cos x分析: 根据函数的奇偶性和函数图像上的特殊点对选项进行排除,由此得出正确选项. 解答:f(x)= Sin3x ,/■(—》)= _ Sin3x故函数为奇函数,图像关于原点对1 + cos X1 + cos X.71sin — 17 1—— =—>0排除3选项.由、 兀 J31 + cos — 1 + 丑 6 2.5丸 sin —— 1 7 1----- = 〉。
,排除C 选项,故本小题选D. 1 + cos-1一重6 2点拨:本小题主要考查函数图像的识别,考查函数的奇偶性的判断方法,属于基础题.4.已知公差不为0的等差数列{%}的首项%=3,若代,a 3, %成等比数列,贝1J {%}的前5项之和为()A. -23B. -25C. -43D. -45-------- D71 称,排除A 选项.由 5兀分析:首先根据题意得到(%)2=角%,解得d = —6,再计算S5即可.解答:根据题意,但,&3,%成等比数列,艮叽%)2=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津一中2010-2021 高三年级三月考数学试卷本试卷分为第 I 卷(选择题)、第II 卷(非选择题)两部分,共150 分,考试用时 120 分钟考生务必将答案涂写在规定的位置上,答在试卷上的无效。
祝各位考生考试顺利! 一.选择题1.已知集合M = {x | x2 -x0} ,N = {-1 ,0,1,2} ,则M N = ( )A.{-1 ,0,1} B.{-1 ,0} C.{0 ,1} D.{1 ,2}2.已知命题p :| x -1|> 1 ,命题q : lnx 1 ,则p 是q 成立的( )A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件的图象大致是( )3.函数f ( x) = x3e x -1A.B.C.D.4.某学校共有学生 4000 名,为了了解学生的自习情况,随机调查了部分学生的每周自习时间(单位:小时),制成了如图所示的频率分布直方图,样本数据分组为[17.5 ,20) ,[20 ,22.5) ,[22.5 ,25) ,[25 ,27.5) ,[27.5 ,30] .根据直方图,估计该校学生中每周自习时间不少于 22.5 小时的人数是( )A.2800 B.1200 C.140 D.602 3 5.已知直三棱柱 ABC - A 1 B 1C 1 的 6 个顶点都在球 O 的球面上,若 AB = 1 , AC = 3 ,AB ⊥ AC , AA 1 = 4 ,则球 O 的表面积为 ( )A . 5πB .10πC . 20πD .20 5π31 1 6.已知 a = ( 1 )- 3 , b = log2 , c = (1) 2 ,则 a , b , c 的大小关系是 ()13 A . a < b < cB . b < a < cC . c < a < bD . b < c < a7.已知双曲线 E : x 2 y 2- = 1(a > 0, b > 0) 的右焦点为 F (c , 0)(c > 0) ,过 F 作直线 l ,若 la 2b 2 与双曲线 E 有且只有一个交点,且 l 与 y 轴的交点为 P (0, -2c ) ,则双曲线 E 的离心率为 ( )A . 3B . 5C . 6D . 3 + 18.已知函数 f ( x ) =3 sin x + cos x ( x ∈ R ) ,将 y = f ( x ) 的图象上所有点的横坐标缩短到原来的 1 倍(纵坐标不变),再将得到的图象上所有点向右平行移动 π个单位长度,得到2 6y = g ( x ) 的图象,则以下关于函数 y = g ( x ) 的结论正确的是 ( )A .若 x 1 , x 2 是 g ( x ) 的零点,则 x 1 - x 2 是 2π 的整数倍B .函数 g ( x ) 在区间 [- π , π] 上单调递增4 4C .点 ( 3π, 0) 是函数 g ( x ) 图象的对称中心4D . x = π是函数 g ( x ) 图象的对称轴3⎧ x 2 - 2kx + 2k , x 19.已知 k ∈ R ,设函数 f ( x ) = ⎨ ⎩( x - k - 1)e x + e 3, x > 1 ,若关于 x 的不等式 f ( x )0 在 x ∈ R 上恒成立,则 k 的取值范围为 ( )A . [0 , e 2 ]B . [2 , e 2 ]C . [0 , 4]D . [0 , 3] 二.填空题10.已知复数 z 满足 (1 + i ) z = 3 + i (i 为虚数单位),则复数 z 的虚部是, | z |=.11.圆 x 2 + y 2- 4x + 6 y - 7 = 0 被直线 ax - y + 1 = 0 截得的弦长为 8,则 a =.12.若 ( x 3-的展开式中第 7 项为常数项,则常数项为 (用数字填写答案)13.某大学志愿者协会有 6 名男同学,4 名女同学,在这 10 名同学中,3 名同学来自数学学院,其余 7 名同学来自物理、化学等其他互不相同的七个学院,现从这 10 名同学中 随机选取 3 名同学,到希望小学进行支教.选出的 3 名同 学是来自互不相同学院的概率为 ;设 X 为选出的 3 名同学中女同学的人数,则 X 的数学期望为 .14 . 已 知 x > 0 , y > 0 , 且 x + 2 y = 1 , 则2 + 1 -16( x - 2 y )2 的最小值为 .x y15.如图,在 ∆ABC 中, AB = 2 , AC = 1 , D , E 分别是直线 AB , AC 上的点, AE = 2BE , CD = 4 AC ,且 BD CE = -2 ,则 ∠BAC = .若 P是线段 DE 上的一个动点,则 BP CP 的最小值为 .三.解答题16 . 已 知 ∆ABC 的 内 角 A 、 B 、 C 的 对 边 分 别 为 a 、 b 、 c , 满 足 已 知c cos B + b cos C = a .2 c os A(1)求角 A 的大小;(2)若 cos B = ,求 sin(2B + A ) 的值;3(3)若 ∆ABC 的面积为 , a = 3 ,求 ∆ABC 的周长.317 . 如 图 , 在 直 三 棱 柱 ABC - A 1 B 1C 1 中 , AC ⊥ BC , 且 AC = BC = CC 1 = 2 , M 是 AB 1 , A 1 B 的交点, N 是 B 1C 1 的中点. (1)求证: MN ⊥ 平面 A 1 BC ;(2)求平面 AA 1 B 与平面 A 1 BC 锐二面角的大小;(3)求直线 NB 与平面 A 1 BC 夹角的正弦值.x18.设椭圆2 y 2+ =1(a >b > 0)的左焦点为,下顶点为,上顶点为,是等边a2 b2三角形.(Ⅰ)求椭圆的离心率;(Ⅱ)设直线,过点且斜率为的直线与椭圆交于点异于点,线段的垂直平分线与直线交于点,与直线交于点,若.(ⅰ)求的值;(ⅱ)已知点,点在椭圆上,若四边形为平行四边形,求椭圆的方程. 19.设{a n} 是等比数列,{b n } 是递增的等差数列,{b n } 的前项和为S n (n ∈N,,,.(1)求{a n } 与{b n} 的通项公式;*) ,(2)设d n =a n +b n ,数列{d n } 的前 n项和为,求满足T n > 2n+1+1成立的的最小值.⎧a n b n ,n为奇数=⎪c(3)对任意的正整数n ,设c n⎨(3b n - 2)a n⎪,n为偶数,求数列{ n }的前 2n 项和.⎩b n b n+220. 已知函数f ( x) = ( x+b)(e x -a) (b > 0) 在点(-1, f (-1)) 处的切线方程为(e -1) x+ey +e -1 = 0 .(1)求,;(2)设曲线y = f ( x) 与x 轴负半轴的交点为点y =h( x) ,求证:对于任意的实数x ,都有f ( x) ≥h( x) ;(3)若关于x 的方程f ( x) =m 有两个实数根,证明:.参考答案1.【分析】先求出集合M ,再利用集合的交集的定义求解.【解答】解:集合M = {x | x2 -x0} = {x | 0x1} ,∴M N = {0 ,1} ,故选:C .2.【分析】分别求出关于p ,q 成立的x 的范围,根据集合的包含关系判断充分必要条件即可.【解答】解:命题p :| x -1|> 1 ,故:x > 2 或x < 0 ,命题q : lnx 1 ,故x e ,则p 是q 成立的必要不充分条件,故选:B .3.【分析】利用特殊点,即可判断;【解答】解:由x = 0 不在定义域内,x =-1 时函数值为正数,图象在x 轴的上方;当x趋向正无穷时,由于指数增长较快,因此函数值趋向于 0.故选:A .4.【分析】由频率分布直方图计算该校学生中每周自习时间不少于 22.5 小时的频率和频数.【解答】解:由频率分布直方图知,该校学生中每周自习时间不少于 22.5 小时的频率为1 - (0.02 + 0.10) ⨯ (20 -17.5) = 1 - 0.3 = 0.7 ,所有估计该校学生中每周自习时间不少于 22.5 小时的人数是4000 ⨯ 0.7 = 2800(人) .故选:A .5.【分析】由题意画出图形,利用勾股定理可求出外接球的半径,代入球的表面积公式得答案.【解答】解:由直棱柱的外接球的半径与底面三角形的外接圆的半径和棱柱高的一半构成直角三角形.AB =1 ,AC = 3 ,AB ⊥AC ,∴外接圆的半径r =1 BC =1 ⨯12 + ( 3)2 =1,22球心到底面的距离h = 1AA1 = 2 ,2∴球的半径满足R2 =r 2 +h2 =12 + 22 = 5 ,∴球O 的表面积为4πR2 =20π.故选:C .2 2 336.1 - 1 1 1 【分析】可以得出 ( ) 3 > 1, l og 12 < 0, 0 < ( ) 2< 1 ,然后即可得出 a , b , c 的大小关系.2 3 3 1 1 【解答】解: ( 1 )- 3 > ( 1 )0 = 1 , log 2 < log 1 = 0 , 0 < (1 ) 2 < (1 )0 = 1 , 1 1 3 3∴ b < c <a . 故选: D . 7.【分析】利用已知条件求出双曲线的渐近线的斜率,然后转化求解离心率即可.x 2 y 2【解答】解:双曲线 E : - = 1(a > 0, b > 0) 的右焦点为 F (c , 0)(c > 0) ,过 F 作直a 2b 2 线 l ,若 l 与双曲线 E 有且只有一个交点,且 l 与 y 轴的交点为 P (0, -2c ) ,可得直线 PF 与双曲线的一条渐近线平行,所以 b= 2 ,ab 2 b 2c 2 可得 = 4 ,所以1 + = 5 ,即 = 5 , a 2 a 2 a 2 所以 e = 故选: B . 8.【分析】由题意利用函数 y = A s in(ω x + ϕ ) 的图象变换规律,求得 g ( x ) 的解析式,再利用 正弦函数的性质,得出结论.【解答】解:函数 f ( x ) = x + cos x = 2 sin( x + π)( x ∈ R ) ,6将 y = f ( x ) 的图象 上所有点 的横坐标 缩短到原 来的 1 2倍(纵坐标不 变 ),可得 y = 2sin(2 x + π) 的图象;6再将得到的图象上所有点向右平行移动 π个单位长度,6得到 y = g ( x ) = 2 sin(2 x - π) 的图象,6 则关于函数 y = g ( x ) ,若 x 1 , x 2 是 g ( x ) 的零点,则 x 1 - x 2 是半个周期 π 的整数倍,故 A 错误; 在区间 [- π , π ] 上, 2x - π ∈ [- 2π , π] ,函数 g ( x ) 没有单调性,故 B 错误;4 4 6 3 3令 x =3π ,求得 g ( x ) = 2 s in4π= -3 ≠ 0 ,故 C 错误;4 3 令 x = π ,求得 g ( x ) = 2 ,为最大值,故 x = π是函数 g ( x ) 图象的对称轴,故 D 正确,3 3 故选: D . 9.【分析】当 x 1 时, f (x ) = x 2- 2kx + 2k ,分 k < 1 、 k 1 两类讨论,可求得 k 0 ;当 x > 1 时,f (x ) = (x - k - 1)e x + e 3,分 k 1 、 k > 1 两类讨论,可求得 k 3 ;取其公共部分即可得 到答案. 【解答】解:(1)当 x 1 时, f (x ) = x 2 - 2kx + 2k , ∴ f ( x ) 的对称轴为 x = k ,开口向上.①当 k < 1 时, f ( x ) 在 (-∞, k ) 递减, (k ,1) 递增, ∴ 当 x = k 时, f ( x ) 有最小值,即 f (k )0 ,∴ 0k < 1 ; ②当 k 1 时, f ( x ) 在 (-∞,1) 上递减,∴ 当 x = 1 时, f ( x ) 有最小值,即 f (1) = 1 , ∴10 显然成立,此时 k 1 . 综上得, k 0 ;(2)当 x > 1 时, f (x ) = (x - k - 1)ex+ e 3 ,∴ f '(x ) = (x - k )e x,① ' 当 k 1 时, f ( x ) 在 (1, +∞) 上递增,∴ f ( x ) > f (1) = -ke + e 30 ,∴ k e 2 ,∴ 此时 k 1 ; ② ' 当 k > 1 时, f ( x ) 在 (1, k ) 递减, (k , +∞) 递增,∴ f (x ) f (k ) = -e k + e 30 ,∴ k 3 , ∴ 此时1 < k 3 . 综上: 0k 3 ,关于 x 的不等式 f ( x )0 在 x ∈ R 上恒成立,则 k 的取值范围为 0k 3 , 故选: D . 10.【分析】把已知等式变形,再由复数代数形式的乘除运算化简求得复数 z 的虚部,然后利 用复数模的计算公式求 | z | . 【解答】解:由 (1 + i ) z = 3 + i ,得 z = 3 + i = (3 + i )(1 - i )= 2 - i ,∴ 复数 z 的虚部是 -1 , | z |= 故答案为: -1 ; 5 . 11.1 + i 22+ (-1)2 =(1 + i )(1 - i )5 . 【分析】把圆的一般方程化为标准方程,求出圆心坐标,再由题意利用点到直线的距离公 式,求得 a 的值.【解答】解:圆 x 2 + y 2 - 4x + 6 y - 7 = 0 ,即 ( x - 2)2 + ( y + 3)2= 20 , 它的圆心 (2, -3) 到直线 ax - y + 1 = 0 的距离为 | 2a + 3 + 1 | = 2a 2 + 19 10 10 3 7 3 7 3 7 3 7 C 3 7 3 7C C C C C C C C C ∴ a = - 3,4 故答案为: - 3.412. 【分析】求出展开式的第 7 项,令 x 的指数为 0,即可求得 n 值,从而可得常数项.【解答】解: ( x 3 n的展开式中第 7 项为常数项, 6 ( 3 )n -6 ( 1 )6( 1)6 6 3n - 27 ∴T 7 = C nx- = - C n x , ∴ 3n - 27 = 0 ,解得 n = 9 , 故常数项为 (-1)6 C 6= 84 . 故答案为:84.13.【分析】从这 10 名同学中随机选取 3 名同学,到希望小学进行支教.基本事件总数 n = C 3,设“选出的 3 名同学是来自互不相同学院”为事件 A ,事件 A 包含的基本事件个 数 m = C 1C 2 + C 0C 3 ,由此能求出选出的 3 名同学是来自互不相同学院的概率;随机变量 X 的所有可能值为 0,1,2,3,分别求出相应的概率,由此能求出随机变量 X 的分布列和 数学期望. 【解答】解:从这 10 名同学中随机选取 3 名同学,到希望小学进行支教. 基本事件总数 n = C 3, 设“选出的 3 名同学是来自互不相同学院”为事件 A , 事件 A 包含的基本事件个数 m = C 1C 2 + C 0C 3, 则选出的 3 名同学是来自互不相同学院的概率为:P (A ) = C 1C 2 + C 0C 3 3 10= 49 .60 随机变量 X 的所有可能值为 0,1,2,3,P ( X = 0) =P ( X = 1) = 0 3 4 6 3 10 1 2 4 6 3 10 C 2C 1 = 1, 6 = 1 , 23 P ( X = 2) =4 6 = , 3 10 3 0 P ( X = 3) = 4 6 1010 =1 ,30所以随机变量X 的分布列是:E(X) =0⨯+1⨯+2⨯+3⨯=.6 2 10 30 5( ( 14.【分析】利用基本不等式求出结果即可.2 + 1 -16( x - 2 y )2 = 1-16[( x + 2 y )2 - 8xy ] 【解答】x y xy= 1 + 128xy -16 ≥ 16 2 xy 答案为:16 . 15.【分析】由题可知 AE = 2 A B , AD = 5 A C ,由 BD CE = -2 ,2 可得 11AB A C - 5 A C 2- 2 A B = -2 ,代入相应数 据即 可求得 cos ∠BAC 的值,从而求得 ∠BAC ;设 EP = λ ED , λ ∈[0 , 1] ,根据平面向量的混合运算可推出BP CP = 21λ 2 - 12λ + 7 ,再利用配方法即可得解.【解答】 解: AD = 5 A C ,BD CE = -2 ,AE = 2BE , CD = 4 A C , ∴ AE = 2 A B , ∴ ( A D - AB )( A E - AC ) = (5 A C - AB )(2 A B - AC ) 2 = 11AB A C - 5 A C 2- 2 A B = 11⨯ 2 ⨯1⨯ cos ∠BAC - 5 ⨯1 - 2 ⨯ 4 = 22 c os ∠BAC - 13 = -2 , 解得 cos ∠BAC = 1,2∠BAC ∈ (0,π ) ,∴∠BAC = π.3设 EP = λ ED , λ ∈[0 ,1] , 14 ∴ BP CP = (BE + EP )(CD + DP ) = [ AE + λ ( A D - AE )][ AD + (1 - λ )( A E - AD )]2 5= ( 1 - λ )(1 - λ ) AE 2 + λ (λ - 1 ) A D 2 + 17 λ - 1- 2λ 2 ) AD A E 2 5 10 10= 16( 1 - λ )(1 - λ ) + 25λ (λ - 1 ) + 17 λ - 1- 2λ 2 ) ⨯ 5 ⨯ 4 ⨯ cos π2 5 10 103 = 21λ 2 - 12λ + 7= 21(λ -6 )2 + 37 . 21 7∴ 当 λ = 6 时, BP CP 有最小值,为 37 .21 7 故答案为: 37.7 16.【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式,结合 sin A ≠ 0 , 可求 cos A = 1,结合范围 0 < A < π ,可求 A 的值.2(2)由已知利用同角三角函数基本关系式可求 sin B 的值,利用二倍角公式,两角和 的正弦函数公式即可求解.(3)由已知利用三角形的面积公式可求 bc 的值,进而根据余弦定理可求 b + c 的值, 即可得解 ∆ABC 的周长.【解答】解:(1) c cos B + b cos C =由正弦定理得 sin C cos B + sin B cos C = a,2 c os Asin A ,2 c os A从而有 sin(B + C ) = s in A ≠ 0 ,∴ cos A = 1,2 0 < A < π , ∴ A = π ;3sin A 2 c os A⇒ sin A = sin A ,2 c os A(2)由已知得, sin B =3 ∴ sin 2B = 2 s in B cos B =, cos 2B = 2 c os 2 B - 1 = - 1, 3 3∴ sin(2B + A ) = sin(2B + π ) = sin 2B cos π + cos 2B sin π = 2 ,3 3 3 6 (3) S = 1 bc sin A = 1 bc =∴ bc = 16,32 2 23 由余弦定理得, a 2 = b 2 + c 2 - 2bc cos A = (b + c )2 - 2bc - 2bc cos A , 即 9 = (b + c )2 - 3 ⨯ 16,解得 b + c = 5 ,3 ∴ ∆ABC 的周长为 a + b + c = 8 . 17.【分析】(Ⅰ)以 C 为原点,分别以 CB 、 CC 1 、 CA 为 x 、y 、 z 轴建立 坐 标系,用 坐 标表示点 与 向量 A 1 B 、 CB 、MN ,可得 MN ⊥ A 1 B , MN ⊥ CB , 从而可得 MN ⊥ 平面 A 1 BC ;(Ⅱ) 作 CH ⊥ AB 于 H 点,则 平面 A 1 BA 的一个 法向 量为CH = (1, 0,1) ,平面 A 1 BC 的一个法向量为 MN = (0,1, -1) ,利 用向量的夹角公式,即可求得平面 AA 1 B 与平面 A 1 BC 夹角.【解答】(1)证明:以 C 为原点,分别以 CB 、 CC 1 、 CA 为 x 、 y 、 z 轴建立坐标 系,则由 AC = BC = CC 1 = 2 ,知 A 1 (0 ,2, 2) , B 1 (2 ,2, 0) , B (2 ,0, 0) , C 1 (0 , 2, 0) ,∴ M (1 ,1,1) , N (1 ,2, 0) ,∴ A 1 B = (2 . -2 , -2) , CB = (2 ,0, 0) , MN = (0 ,1, -1) , (3 分)∴ MN A 1 B = 0 - 2 + 2 = 0 , MN CB = 0 + 0 + 0 = 0 ,∴ MN ⊥ A 1 B , MN ⊥ CB ,∴ MN ⊥ 平面 A 1 BC ;(6 分)(2)作CH ⊥AB 于H 点, 平面ABC ⊥平面ABB1 A1 ,∴C H ⊥平面A1BA ,故平面A1BA 的一个法向量为CH = (1, 0,1) ,而平面A1BC 的一个法向量为MN = (0,1, -1) ,(9 分)∴c os <CH , MN >=|CH MN| CH || MN ||=12<CH,MN >∈(0,π) ,2π∴平面AA1B 与平面A1BC 夹角的大小为.3(12 分)(3)BN=(-1,2,0)设 BN 与平面A1BC 夹角为θsin θ=| cos <MN ,BN >|= =518.= n19.(II)因为 d n = a n + b nnn (n + 1) 所以 T n = 2(2 -1) +2因此 T n > 2n +1+ 1 解得 n > 2 n ∈ N *∴ n ≥ 3 即满足条件 的最小值为 3 .⎧a n b n , n 为奇数 = ⎪(3)因为 c n ⎨ (3b n - 2)a n , n 为偶数 ,⎪ ⎩ 当 n 为偶数时, c b n bn + 2 (3b - 2) a n(3n - 2)2n 2=n + 2 2n n = = - , b b n n + n + nn n + 2 22 n + 2( 2) 2 记 N= c 2 + c 4 + + c 2 n = - 2 ;2n + 2当 n 为奇数时, c = a b = n ⋅ 2n , n n n记 3 5 2 n -1M = c 1 + c 3 + c 5 + ... + c 2 n -1 = 1⋅ 2 + 3 ⋅ 2 + 5 ⋅ 2 + ... + (2n - 1) ⋅ 2 ①则 4M = 1⋅ 23 + 3 ⋅ 25 + 5 ⋅ 27 + ... + (2n -1) ⋅ 22 n +1② ① - ②得 -3M = 2 + 2 ⋅ 23 + 2 ⋅ 25 + 2 ⋅ 27 + ... + 2 ⋅ 22 n -1 - (2n -1) ⋅ 22 n +1⎪24 (1-22n-2 )= 2 + 24 + 26 + 28 +...+22n -(2n -1)⋅22n+1 = 2 +-(2n -1)⋅22n+11-2224 (1 - 22 n-2 ) 10 ⎛5 ⎫= 2 +- (2n -1) ⋅22 n+1 =-+ - 2n ⎪⋅22 n+1 ,1 - 22所以M =10+⎛2n-5 ⎫⋅22n+1 ,3 ⎝3 ⎭9 ⎝3 9 ⎭2n 52n+12=2n+ 28因此数列{c n }的前2n 项和为(- ) ⋅2+-.20.3 9 2n + 2 9(1)将代入切线方程中,有.,即.又,所以若,则,与矛盾,故.2))可知,令f (x)= 0 ,有x =-1 或x = 0故曲线与轴负半轴的唯一交点为.曲线在点,则.令,则,所以F '(x)= f '(x)-f '(-1)=e x (x+ 2)-1 ,.e当时,若x ∈(-∞, -2] ,F '(x)< 0 ,若x ∈(-2, -1) ,F '(x)=ex(x+3)> 0 , F '(x)在x ∈(-2, -1)时单调递增,F '(x)<F '(-1)= 0 .故,在上单调递减,当时,由F '(x)=e x (x+3)> 0 知F '(x)在x ∈(-1, +∞)时单调递增,F '(x)>F '(-1)= 0 ,在上单调递增.所以,即(3),设的根为,则,又单调递减,且所以.m =h (x1' )=f (x1 )≥h (x1 ),设曲线在点处的切线方程为,有,令,,当时,,故函数在,所以当,当,所以函数在区间上单调递减,在区间所以即,设,则,故.又,。