HIV-1缺损慢病毒载体介导的高效基因转移与抑制HIV-1复制

合集下载

抗击艾滋病的新药研发进展

抗击艾滋病的新药研发进展

抗击艾滋病的新药研发进展艾滋病,一种由人类免疫缺陷病毒(HIV)引起的慢性传染病,近年来在全球范围内成为重大公共卫生问题。

随着科学技术的不断进步,医学界对于艾滋病的治疗与控制也取得了长足的进展。

抗击艾滋病的新药研发成为当前科学界和医学界关注的焦点之一。

本文将对目前抗击艾滋病新药的相关情况进行阐述。

一、基因编辑技术在抑制HIV扩散中的应用随着基因编辑技术的突飞猛进,科学家们开始尝试利用CRISPR-Cas9等工具直接干预感染者体内的HIV基因组,以达到控制或治愈艾滋病的目标。

通过设计特定的RNA片段,科学家可以将这些RNA导入到感染者体内,并指导CRISPR-Cas9识别和剪切感染者HIV基因组上特定位置上的DNA序列。

这一方法可以有效地使HIV失去复制和传播能力,为治疗提供了新的可能性。

二、靶向艾滋病病毒逆转录酶的药物开发在抗击艾滋病的新药研发中,逆转录酶是一个重要的靶点。

目前已有多种针对逆转录酶的抑制剂被开发出来并投入临床试验,显示出良好的抑制HIV复制的效果。

其中包括核苷类似物和非核苷类似物两种类型,分别通过干扰逆转录酶所需的协同活动和直接结合逆转录酶降低其催化活动。

这些药物的研发与使用使得感染者可以长期控制病情且不易产生耐药性。

三、广谱中和抗体在阻断HIV入侵中的应用广谱中和抗体是一种能够识别并结合多种HIV血清学亚型、有较强保护力、具有持久作用的免疫蛋白。

近年来,科学家们对该类抗体进行了深入研究,并取得了一系列重要进展。

通过基因工程技术,在实验室中生产这些高效抗体并将其应用于治疗中,可以有效地阻断HIV的入侵。

此外,研究人员还在探索抗体与其他药物联合使用的可能性,以进一步提高治疗效果。

四、HIV疫苗的开发与应用前景虽然目前尚未有能够预防或彻底治愈艾滋病的疫苗问世,但科学家们对于HIV 疫苗的研发仍然持续努力。

近年来,针对HIV不同蛋白质抗原的多价结合亲和力递交疫苗展示出了潜在的保护作用。

人类免疫缺陷病毒的治疗方法

人类免疫缺陷病毒的治疗方法

人类免疫缺陷病毒的治疗方法人类免疫缺陷病毒(Human Immunodeficiency Virus,HIV)是一种高度变异的病毒,它攻击人体免疫系统并最终导致获得性免疫缺陷综合征(Acquired Immunodeficiency Syndrome,AIDS)的发展。

这一传染性疾病自20世纪80年代以来对全球造成了巨大的影响。

虽然科学家们尚未找到根治HIV感染的方法,但在过去几十年里,随着科技和医学的进步,我们已经取得了重要突破,大大改善了HIV感染者的生活质量和预后。

一、抗逆转录病毒药物治疗抗逆转录病毒药物(Antiretroviral Therapy,ART)是目前用于治疗HIV感染和预防AIDS发展的主要手段之一。

该治疗方法通过抑制HIV在人体内复制和扩散的过程,控制病毒载量及保持免疫系统功能。

1.核苷酸逆转录酶抑制剂核苷酸逆转录酶抑制剂(Nucleoside Reverse Transcriptase Inhibitors,NRTIs)是最早开发的一类抗逆转录病毒药物。

它们通过抑制HIV逆转录酶活性,阻碍病毒基因组的合成。

常用的NRTIs药物有拉米夫定、吡嗪酮邬vir和阿巴卡韦。

2.非核苷酸逆转录酶抑制剂非核苷酸逆转录酶抑制剂(Non-Nucleoside Reverse Transcriptase Inhibitors,NNRTIs)是另一类用于治疗HIV感染的药物。

这些药物与逆转录酶结合,从而直接抑制其活性。

优点是易于使用,但缺点是容易产生耐药性。

伊曲替尼、尼拉韦林和依非替尼是常见的NNRTIs药物。

3.蛋白酶抑制剂蛋白酶抑制剂(Protease Inhibitors,PIs)针对HIV繁殖过程中蛋白质的产生起到作用。

它们可干扰HIV蛋白质在感染细胞内正常生成且不具备活性功能,并抑制新病毒的产生。

洛匹那韦、阿扎那韦和指令定是常用的PIs药物。

二、干预病毒进化的新途径HIV具有极高的变异性,这使得疫苗和治疗手段面临巨大挑战。

《慢病毒简介》课件

《慢病毒简介》课件
病毒感染性疾病的预防和治疗
利用慢病毒感染宿主细胞的特点,将抗病毒基因 导入细胞中,增强细胞对病毒的抵抗力,预防和 治疗病毒感染性疾病。
慢病毒与其他基因转移技术的比较
慢病毒与质粒DNA的比较
质粒DNA的基因转移效率相对较低,而慢病毒可以将外源基因高 效整合到宿主细胞基因组中,实现长期表达。
慢病毒与纳米材料的比较
通过构建基因敲除或敲入细胞系,可 以研究特定基因对细胞生长、分化和 凋亡等过程的影响。
基因治疗研究
慢病毒载体可以用于将正常基因导入到缺陷基因中,以纠正或补偿缺陷基因的功 能,为基因治疗提供了新的手段。
在基因治疗研究中,慢病毒载体被广泛应用于将治疗基因导入到患者体内,以治 疗遗传性疾病和恶性肿瘤等疾病。
慢病毒的基因组结构简单,易于操作和控制,降低了潜在的基因突变风 险。
慢病毒的包装和生产过程经过严格的质量控制,确保产品的安全性和稳 定性。
慢病毒的免疫原性
在某些情况下,慢病毒载体可能触发机体免疫系统对 载体抗原的免疫应答,但这种免疫反应通常较弱且可 控。
单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文 ,单击此处添加正文,文字是您思想的提炼,为了最 终呈现发布的良好效果单击此4*25}
慢病毒包装细胞选择
慢病毒包装需要选择特定的细胞 系作为包装细胞,常用的包装细 胞有293T、Hela和HepG2等。
这些细胞系能够表达慢病毒所需 的gag、pol和env基因,从而产 生具有感染能力的慢病毒颗粒。
在选择包装细胞时,需要考虑细 胞的生长特性和对转基因的兼容 性,以确保慢病毒的包装效率和
探索慢病毒与其他基因转移技术(如质粒、纳米材料等)的联
合应用,实治疗领域的应用前景

慢病毒载体的研究进展及应用

慢病毒载体的研究进展及应用

慢病毒载体的研究进展及应用张蕊;龚道清【摘要】慢病毒载体是近年来受到广泛关注的一种逆转录病毒载体,具有更安全、转移效率高、可将目的基因整合入宿主基因组和可感染非分裂期细胞等优点,因此有望成为理想的基因转移载体,并在临床和生产实践中广泛应用.作者主要以HIV-1为代表对慢病毒载体的构建及其在基因治疗和转基因动物生产中的应用作一综述.【期刊名称】《中国畜牧兽医》【年(卷),期】2010(037)006【总页数】5页(P227-231)【关键词】慢病毒;慢病毒载体;基因治疗;转基因动物【作者】张蕊;龚道清【作者单位】扬州大学动物科学与技术学院,扬州,225009;扬州大学动物科学与技术学院,扬州,225009【正文语种】中文【中图分类】S852.65慢病毒(Lentivirus)属于逆转录病毒科(Retroviridae),为RNA病毒,由于这类病毒的一个重要特点是病毒粒子中含有依赖RNA的多聚酶即逆转录酶,故现名为逆转录病毒。

慢病毒已经从绵羊(绵羊脱髓鞘性脑白质炎/慢性进行性肺炎病毒)、山羊(羊关节炎脑炎病毒)、牛(牛免疫缺损病毒)、马(马传染性贫血病病毒)、猫(猫免疫缺损病毒)、猴(猴免疫缺陷病毒)和人(人免疫缺陷病毒)中分离得到(Robl等,2007)。

慢病毒在宿主细胞内,能以病毒RNA为模板在自身反转录酶的作用下合成cDNA,再以此cDNA为模板合成双链DNA,经环化后通过病毒整合酶作用整合在宿主细胞的染色体上并长期表达(李跃萍等,2006)。

慢病毒以其基因组为基础去除部分基因代之以所需的目的基因和标记物,构建而成的慢病毒载体(Lentiviral vector)具有转移效率高、可整合入宿主细胞基因组、包装后更安全并可转染非分裂期细胞等优点,在基因治疗和转基因动物生产中得以广泛的使用。

1 慢病毒载体1.1 慢病毒的基本结构慢病毒载体种类很多,其中对HIV-1的结构和生物学特征的研究较多,而HIV-1型已成为目前较为常用的慢病毒载体系统。

慢病毒简介

慢病毒简介
Lentivirus preintegration complexes interact with the nuclear pore and undergo active transport into the nucleus of nondividing cells, where the proviral DNA is integrated into the genomic DNA of the host cell. This feature is the primary reason why lentiviruses are being developed as gene-transfer vectors for postmitotic cells in the CNS. 慢病毒整合前复合物与核孔相互作用进入细胞 核分裂的细胞,其中的前病毒DNA整合到宿主细 胞的基因组DNA并进行主动运输。此功能是为什 么慢病毒在有丝分裂后的细胞在中枢神经系统的 基因转移载体的主要原因。
5
3.2第二代HIV-1来源的慢病毒载体 1997年,Zufferey等将包装质粒上的vif、 vpr、vpu和nef基因(即辅助基因)敲除,从而 得到的,其他方面与第一代载体系统一致。
6
3.3第三代HIV-1来源的慢病毒载体 为减少复制型病毒的产生,可通过减少辅助质 粒与载体质粒的同源性,或者将gag/ pol和rev编 码序列隔离,分散在不同的质粒上。这样的包装系 统由四质粒代替原有的三质粒包装系统。
12
Self-inactivating (SIN) vectors reduce the probability of oncogenesis by pro-moter insertion. In SIN vectors, viral promoter activity is deleted from the inte-grated provirus by deletions in the U3 region of the 3’ long terminal repeat (LTR) that are copied during reverse transcription to the 5’LTR. 自身失活型(SIN)慢病毒载体3’端LTR的U3区 启动子发生失活突变后,在逆转录过程中转移至 5’LTR。这样的载体整合入靶细胞,将不会产生完 整长度的载体RNA,因此命名为“自身失活型载 体”。

慢病毒包装原理-介绍

慢病毒包装原理-介绍

慢病毒包装系统简介及应用一、慢病毒包装简介及其用途慢病毒( Lentivirus )载体是以 HIV-1 (人类免疫缺陷 I 型病毒)为基础发展起来的基因治疗载体。

区别一般的逆转录病毒载体,它对分裂细胞和非分裂细胞均具有感染能力。

慢病毒载体的研究发展得很快,研究的也非常深入。

该载体可以将外源基因有效地整合到宿主染色体上,从而达到持久性表达。

在感染能力方面可有效地感染神经元细胞、肝细胞、心肌细胞、肿瘤细胞、内皮细胞、干细胞等多种类型的细胞,从而达到良好的的基因治疗效果,在美国已经开展了临床研究,效果非常理想,因此具有广阔的应用前景。

目前慢病毒也被广泛地应用于表达 RNAi 的研究中。

由于有些类型细胞脂质体转染效果差,转移到细胞内的 siRNA 半衰期短,体外合成 siRNA 对基因表达的抑制作用通常是短暂的,因而使其应用受到较大的限制。

采用事先在体外构建能够表达 siRNA 的载体,然后转移到细胞内转录 siRNA 的策略,不但使脂质体有效转染的细胞种类增加,而且对基因表达抑制效果也不逊色于体外合成 siRNA ,在长期稳定表达载体的细胞中,甚至可以发挥长期阻断基因表达的作用。

在所构建的 siRNA 表达载体中,是由 RNA 聚合酶Ⅲ启动子来指导 RNA 合成的,这是因为 RNA 聚合酶Ⅲ有明确的起始和终止序列,而且合成的 RNA 不会带 poly A 尾。

当 RNA 聚合酶Ⅲ遇到连续 4 个或 5 个 T 时,它指导的转录就会停止,在转录产物 3' 端形成 1~4 个U 。

U6 和 H1 RNA 启动子是两种 RNA 聚合酶Ⅲ依赖的启动子,其特点是启动子自身元素均位于转录区的上游,适合于表达~ 21ntRNA 和~ 50ntRNA 茎环结构( stem loop )。

在 siRNA 表达载体中,构成 siRNA 的正义与反义链,可由各自的启动子分别转录,然后两条链互补结合形成 siRNA ;也可由载体直接表达小发卡状 RNA(small hairpin RNA, shRNA),载体包含位于 RNA 聚合酶Ⅲ启动子和 4 ~ 5 T转录终止位点之间的茎环结构序列,转录后即可折叠成具有 1~4 个 U 3 ' 突出端的茎环结构,在细胞内进一步加工成 siRNA 。

HIV-1耐药基因检测的研究进展

HIV-1耐药基因检测的研究进展

HIV-1耐药基因检测的研究进展陈瑶;吴英松【摘要】HIV-1耐药是影响艾滋病抗病毒治疗效果的主要因素.随着抗病毒疗法的普及和接受治疗者的增多,HIV-1耐药的问题日益凸显,使艾滋病治疗面临巨大的挑战.因此,了解各抗病毒药物治疗引起的HIV-1耐药突变位点并及时采用有效方法进行耐药基因检测对临床治疗具有重要指导意义.HIV-1耐药位点基因型检测方法因其快速准确的特点,目前是HIV-1耐药检测最常用也是最有前景的方法.本文对HIV-1耐药位点和耐药基因检测的研究进展做简单综述.【期刊名称】《分子诊断与治疗杂志》【年(卷),期】2017(009)002【总页数】5页(P142-146)【关键词】HIV-1;耐药位点;基因型;耐药检测【作者】陈瑶;吴英松【作者单位】南方医科大学检验与生物技术学院,广东,广州510515;南方医科大学检验与生物技术学院,广东,广州510515【正文语种】中文艾滋病(acquired immune deficiency syndrome,AIDS)是由人免疫缺陷病毒(human immunodefi⁃ciency virus,HIV)引起的传染病,目前世界范围内主要流行HIV⁃1。

HIV耐药是由于病毒基因发生突变,使得药物作用靶点的生化特点或者结构特征发生改变,导致病毒对抗病毒药物敏感性降低,或者失去敏感性[1⁃3]。

随着高效联合抗逆转录病毒(highly active antiretroviral therapy,HAART)药物的广泛应用,导致HIV⁃1病毒发生突变。

耐药突变株在药物选择压力下逐渐成为优势病毒株,导致耐药菌株感染的病例不断出现。

因此,作为帮助临床医生选择联合用药方案的重要工具,耐药检测就显得十分重要。

目前HIV⁃1耐药检测方法主要有表型检测和基因型检测。

其中,基因型检测因其快速准确的特点,成为调整治疗方案的首选[3]。

随着抗病毒治疗的发展及新型靶点抗病毒药物的临床应用,已确定了200多个各种类型HIV⁃1耐药相关的基因突变,它们对于耐药及病毒的生物学特性产生不同程度的影响[4⁃5]。

抗HIV-1基因治疗新进展

抗HIV-1基因治疗新进展

抗HIV-1基因治疗新进展田雅茹;焦艳梅;张彤;吴昊【摘要】虽然高效抗反转录病毒治疗(highly active anti-retroviral therapy,HAART)取得了显著的成果,但是抗人类免疫缺陷病毒(human immunodeficiency virus,HIV)药物治疗仍有其局限性(如引起毒素蓄积和病毒突变).基因治疗在理论上具有较好的抗HIV能力,可以通过持续干扰病毒复制,提供了阻止HIV进行性感染的希望.本篇综述主要探讨当前多种基因治疗策略及其最新进展.【期刊名称】《首都医科大学学报》【年(卷),期】2014(035)001【总页数】7页(P101-107)【关键词】获得性免疫缺陷综合征;人类免疫缺陷病毒1型;基因疗法;慢病毒载体【作者】田雅茹;焦艳梅;张彤;吴昊【作者单位】首都医科大学附属北京佑安医院感染中心,北京,100069;首都医科大学附属北京佑安医院感染中心,北京,100069;首都医科大学附属北京佑安医院感染中心,北京,100069;首都医科大学附属北京佑安医院感染中心,北京,100069【正文语种】中文【中图分类】R512.91获得性免疫缺陷综合征(acquired immune deficiency syndrome,AIDS)是人类感染人类免疫缺陷病毒(human immunodeficiency virus,HIV)后导致免疫缺陷,并发一系列机会性感染及肿瘤,严重者可导致死亡的综合征。

该病传播速度快、病死率高,是危害极大的传染性疾病之一。

HIV主要有2种类型:HIV-1和HIV-2,其中HIV-1是引起艾滋病的主要病原。

因此,目前艾滋病的防治研究主要是针对HIV-1进行的。

自从20世纪90年代后高效抗反转录病毒治疗(highly active antiretroviral therapy,HAART)应用于艾滋病的临床,使HIV-1患者的病毒载量下降及CD4+T细胞水平升高[1],降低了HIV的发病率和病死率,显著地改变了HIV-1感染者发展到AIDS的进程,但是HAART需要坚持终身用药,这会引发药物不良反应、病毒耐药突变和经济负担等问题[2]。

人类免疫缺陷病毒的治疗进展与病毒学特性

人类免疫缺陷病毒的治疗进展与病毒学特性

人类免疫缺陷病毒的治疗进展与病毒学特性人类免疫缺陷病毒(HIV)是一种致命的病毒,已经成为全球性的公共卫生问题。

自从上世纪80年代以来,大量的科学研究和进展改变了我们对这种病毒的认识,并为治疗提供了新的方法和途径。

本文将探讨人类免疫缺陷病毒的治疗进展以及其特性。

一、HIV的病毒学特性人类免疫缺陷病毒属于逆转录病毒,在感染宿主细胞后会将自身RNA转录成DNA,并插入宿主细胞基因组中。

这个过程被称为逆转录,使得HIV能够长期留在宿主细胞内,并进行复制与传播。

HIV主要侵袭人体免疫系统中的T淋巴细胞(CD4细胞),导致机体免疫功能受损,增加感染其他风险。

此外,HIV还具有高度变异性,使得我们难以开发出针对所有亚型和突变株有效的治疗方法。

二、抗逆转录药物:革命性的治疗突破抗逆转录药物是HIV治疗的主要手段之一,其通过抑制HIV逆转录酶和整合酶等关键酶的活性,阻断病毒的复制过程。

最早的抗逆转录药物是核苷类似物,例如其他病毒感染所用到的杂环核苷类似物。

虽然这些药物对HIV复制有一定效果,但容易产生耐药性。

随后出现了更加强效与安全的非核苷类似物药物(NNRTI),如依非那韦、噻夫定等。

这些药物靶向不同于核苷类似物,具有更高选择性和较低的副作用。

在20世纪90年代末和21世纪初,高度活性抗逆转录疗法(HAART)被引入临床实践中。

该疗法采用多种抗逆转录药物联合使用,并结合时机紧密、因人而异、个体化治疗策略。

HAART成功地提高了艾滋病患者的存活率和生活质量。

然而,由于长期使用抗逆转录药物易产生耐药性和副作用,且无法根除病毒,患者需要终身服药。

因此,寻找更有效的治疗方法仍然是一项重要的任务。

三、基因治疗:突破性的疾病管理基因治疗是新一代HIV治疗策略的关键领域之一。

通过介导其DNA插入宿主细胞中特定基因位点或改变宿主细胞与HIV互作的蛋白质表达,基因治疗可以阻断HIV复制及传播过程。

目前,人类临床试验已经证实了CRISPR-Cas9等基因编辑技术在清除感染宿主细胞中的HIV-DNA方面具有重大潜力。

HIV-1感染的T细胞免疫应答与病毒免疫逃逸

HIV-1感染的T细胞免疫应答与病毒免疫逃逸

HIV-1感染的T细胞免疫应答与病毒免疫逃逸万延民;仇超(综述);张晓燕;徐建青(审校)【期刊名称】《病毒学报》【年(卷),期】2008(24)4【总页数】8页(P326-333)【关键词】细胞免疫应答;HIV-1;持续性感染;清除病毒;逃逸;免疫反应;体液免疫;抑制作用【作者】万延民;仇超(综述);张晓燕;徐建青(审校)【作者单位】复旦大学上海市公共卫生临床中心,上海201508;复旦大学上海医学院医学分子病毒学重点实验室,上海200032;Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM) Saint-Luc;Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal;中国疾病预防控制中心传染病预防控制国家重点实验室、性病艾滋病预防控制中心;复旦大学医学微生物学研究所生物医学研究院,上海200032【正文语种】中文【中图分类】Q78;S942.5【相关文献】1.HIV-1感染疾病缓慢进展者CD8+T淋巴细胞非细胞毒性免疫应答作用的研究[J], 潘莹;耿文清;崔华露;姜拥军;尚红2.中国HIV-1 C/B'重组毒株和B'毒株感染者Nef特异性T细胞免疫应答的研究[J], 刘宏伟;邵一鸣;洪坤学;马军;袁霖;刘沙;陈健平;张远志;阮玉华;王哲3.人类免疫缺陷病毒-1单纯及合并丙型肝炎病毒感染中人类免疫缺陷病毒-1特异性T淋巴细胞免疫应答 [J], 唐漾波;占晗琳;曹孟丽;赵稳;平岖4.HIV-1感染者全基因多肽特异性T细胞免疫应答的初步研究 [J], 黄相刚;仇超;万延民;徐建青5.HIV-1 Gag复制缺陷腺病毒疫苗继续显示出的持续性抗-HIV的细胞免疫应答[J],因版权原因,仅展示原文概要,查看原文内容请购买。

慢病毒包装原理-介绍PDF.pdf

慢病毒包装原理-介绍PDF.pdf

慢病毒包装系统简介及应用一、慢病毒包装简介及其用途慢病毒( Lentivirus )载体是以 HIV-1 (人类免疫缺陷 I 型病毒)为基础发展起来的基因治疗载体。

区别一般的逆转录病毒载体,它对分裂细胞和非分裂细胞均具有感染能力。

慢病毒载体的研究发展得很快,研究的也非常深入。

该载体可以将外源基因有效地整合到宿主染色体上,从而达到持久性表达。

在感染能力方面可有效地感染神经元细胞、肝细胞、心肌细胞、肿瘤细胞、内皮细胞、干细胞等多种类型的细胞,从而达到良好的的基因治疗效果,在美国已经开展了临床研究,效果非常理想,因此具有广阔的应用前景。

目前慢病毒也被广泛地应用于表达 RNAi 的研究中。

由于有些类型细胞脂质体转染效果差,转移到细胞内的 siRNA 半衰期短,体外合成 siRNA 对基因表达的抑制作用通常是短暂的,因而使其应用受到较大的限制。

采用事先在体外构建能够表达 siRNA 的载体,然后转移到细胞内转录 siRNA 的策略,不但使脂质体有效转染的细胞种类增加,而且对基因表达抑制效果也不逊色于体外合成 siRNA ,在长期稳定表达载体的细胞中,甚至可以发挥长期阻断基因表达的作用。

在所构建的 siRNA 表达载体中,是由 RNA 聚合酶Ⅲ启动子来指导 RNA 合成的,这是因为 RNA 聚合酶Ⅲ有明确的起始和终止序列,而且合成的 RNA 不会带 poly A 尾。

当 RNA 聚合酶Ⅲ遇到连续 4 个或 5 个 T 时,它指导的转录就会停止,在转录产物 3' 端形成 1~4 个U 。

U6 和 H1 RNA 启动子是两种 RNA 聚合酶Ⅲ依赖的启动子,其特点是启动子自身元素均位于转录区的上游,适合于表达~ 21ntRNA 和~ 50ntRNA 茎环结构( stem loop )。

在 siRNA 表达载体中,构成 siRNA 的正义与反义链,可由各自的启动子分别转录,然后两条链互补结合形成 siRNA ;也可由载体直接表达小发卡状 RNA(small hairpin RNA, shRNA),载体包含位于 RNA 聚合酶Ⅲ启动子和 4 ~ 5 T转录终止位点之间的茎环结构序列,转录后即可折叠成具有 1~4 个 U 3 ' 突出端的茎环结构,在细胞内进一步加工成 siRNA 。

过表达TrxR1重组HEK293细胞株的构建和鉴定

过表达TrxR1重组HEK293细胞株的构建和鉴定

硫氧还蛋白还原酶1(TrxR1)属于吡啶核苷酸二硫化物氧化还原酶家族,作为目前已知的唯一能够还原硫氧还蛋白(Trx )的酶,TrxR1可以将氧化型的Trx 还原成还原型Trx [1]。

还原型的Trx 能够还原多种蛋白的二硫键,进而调控细胞的多种生物进程,如细胞增殖、分化以及凋亡等等[2]。

肿瘤细胞的代谢水平远高于正常细胞,因而在细胞内会产生大量活性氧[3]。

因此,肿瘤细胞往往会通过诱导抗氧化酶的表达来维持自身的氧化还原稳态,而TrxR1是其中一种被诱导的抗氧化酶。

近年来研究发现,TrxR1在多种肿瘤组织和细胞中高表达,如乳腺癌[4]、胃癌[5]、肺癌[6]和肠癌[7]等,并通过蛋白激酶B (PKB,又名AKT )、丝裂原活化蛋白激酶(MAPK )及信号传导及转录激活蛋白3(Stat3)等信号通路促进肿瘤细胞增殖、抑制凋亡及诱导耐药,是一个理想的抗肿瘤药物开发靶点[3,8]。

目前靶向TrxR1的药物具有丰富的骨架结构,但尚无进入临床使用的TrxR1靶向药物,其中一大制约因素就是Construction and identification of a HEK293cell line with stable TrxR1overexpressionLÜXiaomei 1,ZHOU Zhiyin 1,ZHU Li 1,ZHOU Ji 2,HUANG Huidan 1,ZHANG Chao 1,LIU Xiaoping 11Center of Drug Screening and Evaluation,Wannan Medical College,Wuhu 241000,China;2Center for Reproductive Medicine,First Affiliated Hospital of Wannan Medical College,Wuhu 241000,China摘要:目的构建稳定过表达硫氧还蛋白还原酶1(TrxR1)的HEK293细胞株,为TrxR1的功能研究以及靶向TrxR1药物筛选提供细胞模型。

HIV—1感染的基因治疗

HIV—1感染的基因治疗

HIV—1感染的基因治疗
陈嵩
【期刊名称】《国外医学:流行病学.传染病学分册》
【年(卷),期】1996(023)004
【摘要】自发现I型人免疫缺陷病毒和由它引发的艾滋病以来,由于目前尚无有效的抗HIV-I感染的化学药物和疫苗,人们开始重视探索HIV感染的基因治疗的基因治疗的新途径。

【总页数】4页(P148-151)
【作者】陈嵩
【作者单位】第三军医大学西南医院全军传染病中心
【正文语种】中文
【中图分类】R512.910.5
【相关文献】
1.我首创HIV感染基因治疗新法 [J], 赵春燕
2.多价抗CCR5核酶抗HIV感染基因治疗切实可行 [J],
3.抗HIV-1病毒感染的基因治疗 [J], 郭晓华
4.HIV感染基因治疗新思路 [J], 粟斌; 吴昊泉; 吴昊; 张彤
5.肿瘤和HIV—1感染基因治疗新方法 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

人类免疫缺陷病毒的抗病毒疗法研究

人类免疫缺陷病毒的抗病毒疗法研究

人类免疫缺陷病毒的抗病毒疗法研究人类免疫缺陷病毒(HIV)是一种严重威胁全球健康的病毒。

截至目前,尚未找到能够根治HIV感染的方法,但科学家们在抗病毒疗法方面取得了显著进展。

本文将深入探讨当前用于治疗HIV感染的抗病毒疗法以及新型治疗方法的潜在发展方向。

一、常规抗病毒治疗方法1. 抑制逆转录酶:逆转录酶是HIV复制过程中关键的酶类。

逆转录酶抑制剂(NRTIs)和非核苷类逆转录酶抑制剂(NNRTIs)是常见的抑制该酶类的药物。

它们通过干扰逆转录过程,阻止HIV合成其基因材料。

2. 抑制融合:HIV进入宿主细胞需要通过融合宿主细胞膜和HIV表面蛋白质之间的相互作用完成。

针对这一过程,可采用抑制剂来阻止该融合步骤,如核苷酸类似物Fuzeon。

3. 抑制整合:HIV基因组需要整合到宿主细胞的DNA中,才能完成复制过程。

整合抑制剂如Integrase Inhibitors可以防止HIV基因组整合进入宿主细胞的DNA 中。

二、新型抗病毒治疗方法的发展1. 基因编辑:近年来,CRISPR-Cas9技术的出现给基因编辑带来了革命性的突破。

该技术被广泛应用于各个领域,包括HIV治疗。

利用CRISPR-Cas9系统可以精确切割并修改HIV感染者体内的病毒基因组,达到清除或静默HIV的目的。

2. 新一代逆转录酶抑制剂:最新开发的药物类似于传统逆转录酶抑制剂,但具有更高效和更低耐药性。

这些药物对不同亚型和变异株都显示出较好的抗病毒活性。

3. 免疫治疗:免疫治疗是一种通过增强患者免疫系统反应来控制HIV感染或消除隐匿感染的方法。

例如,单克隆抗体疗法可以针对HIV感染过程中产生的特定蛋白质进行干预,并阻止病毒进一步复制。

4. 疫苗研发:开发一种可防止人类免疫缺陷病毒感染或控制病情进展的有效疫苗一直是科学家们的追求。

近年来,一些候选疫苗在临床试验中取得了一定成功,并为未来治疗提供了希望。

三、面临的挑战与展望1. 耐药性问题:由于HIV具有高度变异性,患者对抗病毒药物的耐药性不断出现,这给治疗HIV感染带来了巨大挑战。

慢病毒载体及其应用的研究进展_毛颖佳

慢病毒载体及其应用的研究进展_毛颖佳

中国图书分类号Q782R392.11文献标识码A文章编号1004-5503(2009)02-0196-05【综述】慢病毒载体及其应用的研究进展毛颖佳综述郑源强石艳春审校【摘要】与其他载体相比,慢病毒载体具有携带基因片段容量大、转染效率高、可感染分裂细胞及非分裂细胞、目的基因可在宿主细胞中长时间稳定表达以及安全性好等诸多优点,现已成为转移目的基因的理想载体。

本文主要就慢病毒载体及其在基因治疗、生物医药与科学研究等领域的研究进展作一综述。

【关键词】慢病毒载体;基因治疗Progress in Study on Lentiviral Vectors and Their ApplicationMAO Ying-jia,ZHENG Yuan-qiang,SHI Yan-chun(Research Center of Molecular Biology,Inner Mongolia Medi-cal College,Huhehot010059,China)【Abstract】Nowadays lentiviral vectors(LVs)is the only desire ideal genetic vector system which affords both efficient and sta-ble gene delivery.In contrast to other vectors,LVs can persist in dividing and non-dividing cells.Their virtues also include large ca-pacity of interested gene fragment and satisfied safety.The development of LVs and their application in gene therapy,biological prod-ucts and scientific research are reviewed in this paper.【Key words】Lentiviral vector;Gene therapy慢病毒(Lentivirus)属逆转录病毒科(Retrovidae),为RNA病毒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V IROLOGICA S INICA, August 2007, 22 (4):266-279Received: 2007-02-06, Accepted: 2007-05-10* Foundation items: National Institute of Health (S11 NS43499); RCMI (G12RR/AI03061, USA. )** Corresponding author: Tel: +86-716-8115716, Fax: +86-716-8228212, E-mail: zenglingbing@ZENG et al. Efficient Gene Transfer and Inhibition of HIV-1 Replication 267genes into living cells to achieve therapeutic purpose has now become a clinical reality (3). The first successful attempt of using molecular-based ther- apeutic techniques for the treatment of human recessive hereditary deficiency was documented in 2000 when Cavazzana-Calvo and his co-workers demonstrated they were able to overcome severe combined immunodeficiency (SCID-X1), an X-linked inherited disorder in children, through retrovirus- mediated transfer of complementary DNA containing a gamma c and ex vivo infection of CD34+ cells (8). Successful completion of this clinical gene therapy showed great promise for the use of gene therapy to provide full correction of genetic disease phenotype and associated clinical benefits. Today, human gene therapy represents a promising new form of medicine which is under active development. The potential application of gene transfer technology has now been extended to the treatment of a variety of diseases including infectious diseases, AIDS, neurological disorders and cancer (7, 20, 27, 35).Successful gene therapy approaches are largely dependent on the development of safe and efficient gene-delivery systems to transport therapeutic genes into the target destination. The vectors, or gene delivery systems, play a crucial role as effective tools for genetic modification of the majority of somatic cells in vitro and in vivo in the development of human gene therapy protocols (12, 25, 42). Vectors derived from a variety of viruses including retroviruses, adenoviruses, adeno-associated viruses, baculoviruses and herpesviruses, are currently being developed and evaluated for their potential use as gene transfer vehicles (27). Among these viral vectors, gene- transfer vectors based on lentiviruses, particularly HIV-1-derived vectors, have been widely used for gene therapy applications since their initial constr- uction in 1991 (36) and the interest in using such systems in applied settings will continue to grow (18, 31, 46). Present studies have shown that HIV-1-based vectors are attractive gene delivery tools due to their relatively large coding capacity, efficient gene transfer, ability to establish long-lasting transgene expression, ability to integrate into genomes of nondividing cells and to inhibit wild type HIV-1 replication in the absence of any anti-HIV-1 insert (2, 4, 5, 11, 42). Because of the potential for possible clinical gene transfer applications in the future, lentiviral vectors mediated gene transfer have been tested for their ability to infect various types of cells in vitro, in vivo and ex vivo, including hepatocytes (19, 41), hematopoietic cells (1, 14), stem cells (30, 40), monocyte-derived dendritic cells (22), lymphocytes (13, 47), monocytes/ macrophages (29, 34, 38), and neurons (33, 44). All these cells are important targets in human gene therapy (4, 25, 35).To further explore the use of a lentiviral vector as a potential gene transfer tool in human gene therapy, it would be necessary and important to develop an in vitro transfection protocol for consistent production of high yields of vector virus. The objectives of this study are directed towards optimization of in vitro protocols for DLV vector production and vector mediated gene transduction. We have established a method for preparation of high-titer vector and vector concentration through a simple one-step ultracentrifu- gation. Constructed HIV-1-based vectors pseudotyped with a VSV-G envelope protein are highly infectious to human T-cell lines and cells derived from a variety of mammalian species. DLV-mediated gene delivery268V IROLOGICA S INICA V ol.22, No 4into human T-cells facilitate a stable and long-term transgene expression and transductant cells become refractory to the infection by wild type HIV-1, suggesting that the transduced cells are protected from HIV-1 infection. We also demonstrated that these vectors are likely to be safe to use since we detected no generation of replication-competent virus (RCV) through vector recombination in transduced cells.MATERIALS AND METHODSPlasmidsAll three HIV-1-based defective vectors, DHIV (DHIV-Rev+), DHIV-Rev- and DHIV-CTE, encoding selected cis-acting elements,express a reporter gene, green fluorescent protein (GFP), under the control of HIV-1 LTR. The vector, DHIV-Rev+, has deletions that affect structural (gag/pol and env) and accessory genes (vif, vpr, and nef), but contains all cis-acting elements required for vector packaging and tran- sduction (43). The vector, DHIV-Rev-, has a deletion in the second coding exon of Rev in DHIV-Rev+. The rev-independent vector, DHIV-CTE, was produced by replacing the RRE in DHIV-Rev- with the constitutive transport element (CTE) from Moson-Pfizer monkey virus (26, 29). All plasmids were prepared using Qiagen plasmid-Prep kits (Qiagen). DNA yield was determined by measuring the concentration of DNA in the elute by recording the absorbance at 260 nm in a Beckman DU-640 spectrophotometer (Beckman).Cell culturesHuman T-cell line, CEM (human T4-lympho- blastoid cell line, obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH), COS-7 (Africa green monkey kidney cell) and Sup-T1 (Non-Hodgkin’s T-cell lymphoma cells) were propagated in RPMI-1640 medium (Sigma), while 293T (Human embryonic kidney cell), NIH3T3 (Mouse embryo cell), MT-2 (Human T-cell leukemia cell) and PA 317 (Mouse embryo hybridoma cell) cells were maintained in Debecco’s Modified Eagle’s Medium (Sigma) and Vero (Monkey kidney cell), HeLa (Human cervix epithelial adenocarcinoma cell), WI38 (Human lung fibroblast cell) and HTB-14 (Human glioblastoma cell)cells were maintained in Minimum Essential Medium Eagle (Sigma). All these cell cultures were incubated at 37°C with 5% CO2 in proper media supplemented with 10% heat-inactivated fetal bovine serum (FBS) (HyClone), 100U/mL penicillin, 100ug/mL streptomycin, and 0.292mg/mL L-glutamine (Sigma). Cells were observed and documented using a phase-contrast inverted micros- cope (Olympus IX70).Vector productionHIV-1-based vectors pseudotyped with VSV-G were produced by transiently transfecting human embryonic kidney 293T cells with a packaging construct, a VSV-G envelope construct and a transfer construct containing GFP gene (43). Twenty four hours before transfection, 293T packaging cells at exponential growth phase were subcultured in T-75 flasks (Corning) at a density of 6×106 cells/flask and incubated at 37°C with 5% CO2. The growth medium was replaced with fresh medium 2-3 h prior to the transfection. DNA mixture containing 6.25 µg packaging plasmid, 6.25 µg transfer plasmid and 2.50 µg VSV-G plasmid was prepared per TC-75 cm2 flask and added to the cell monolayer drop-by-drop. Chloroquine solution was added immediately after to yield a final concentration of 25 µM/mL. Eight hours following the transfection, the growth medium wasZENG et al. Efficient Gene Transfer and Inhibition of HIV-1 Replication 269replaced with 8 mL/flask of fresh DMEM supplem- ented with 2% FBS. Vector production at post transfection days 1, 2, 3 was titered in CEM cells using 10-fold serial dilution method. Vector titer was determined by visually counting the GFP positive cells of the endpoint dilution using fluorescence micros- copy (23, 28).Vector concentrationPreparation of large-scale production of HIV-1 based vectors was conducted in TC-150 cm2 flasks (Corning) using the same protocol. 293T packaging cells were seeded at 1.2 - 1.5×107 cells/flask in 25 mL DMEM medium 24 h prior to transfection and 6-10 flasks were used each time. Transfection was conducted using double concentrated DNA mixture and vector produced from different batches were stored at –80°C. To concentrate DLV, vectors stored at –80°C were thawed and pooled. Following a low speed centrifugation (1 800×g) for 30 min at 4°C, recovered supernatant was filtered through a 0.45 µm filter unit to remove cellular debris (Nalgene). Filtrate containing the vector was ultra-centrifuged at 113 000×g for 2.5 h at 4°C using a Beckman SW28 rotor. Vector pellet in each tube was resuspended in 0.2mL RPMI-1640 medium containing no FBS or antibiotics. V ector aliquots (0.1-0.2 mL/tube) were stored at –80°C for future titration and transduction.Transduction efficiency of DLV in CEM cellsThe transduction efficiency of HIV-1-based defective vectors for human T-cells (CEM) was tested using different vector multiplicities of infection (MOI) of 1, 5, 20 and 50. CEM cells at their exponential growth phase were harvested and counted. For DLV trans- duction, 1.0×105 cells were pelleted in a 1.5-mL sterile tube and resuspended with 0.5 mL of diluted DLV stocks. Following 1 hr vector adsorption at the presence of 8 µg/mL polybrene at 37 °C and gently tapping the tube every 15 min, the cells were washed once, and then resuspended with 1.0 mL medium supplemented with 5% heat inactivated FBS and seeded into 2 wells of a 24-well plate (0.5 mL/well). Following seventy-two hours incubation, GFP positive cells were visually counted under a fluorescence microscopy and the transduction efficiency were determined by recording the percentage of the GFP+ cells within a transduced cell population. Transduction with DLV in different cell lines11 cell lines commonly used for gene transduction including CEM, MT2, Sup-T1, COS-7, PA317, 293T, NIH3T3, HeLa, Vero, WI38 and HTB-14 were tested and compared for their sensitivity to DLV infection in vitro. All the cells were harvested at their exponential growth phase and the concentration was adjusted to 2.0×105 cells/mL. A DLV stock was 10-fold diluted (10-1to10-6) with medium containing 8μg/mL Polybrene. DLV transduction was conducted by resuspending different cell lines with 1.0 mL of the same DLV dilution. Following 1 h adsorption, infected cell suspension was inoculated into a 96-well plate, with 0.1 mL/well cells (2.0×104 cells/well), and 4 wells/dilution/cell line. The 96-well plates were covered with sensitive films and incubated at 37°C with 5% CO2. At post infection day 3, GFP+ cells were visually counted under a fluorescence micros- copy and the sensitivity of these cells to DLV infection was determined by examining the calculated vector titer (averaged of 4 well at endpoint dilution). GFP+ cell Cloning and long-term expression of GFP CEM cells transduced with three HIV-1-based defective vectors were cloned using the limited270V IROLOGICA S INICA V ol.22, No 4dilution method. In brief, transduced cells were diluted with the conditioned RPMI growth medium to the concentration of 10 cells/mL, and then inoculated at 0.1 mL/well into a 96-well plate. Following a period of 4-day cultivation at 37°C, GFP positive clones derived from a single cell were identified, transferred into a 12-well plate after 7-10 days and then transferred into TC-25 cm2 flasks (Corning). The long-term expression of GFP gene was determined by microscopical examination of transduced cells at different passage times (1 week to 1.5 year) and/or by PCR and RT-PCR detection.Assays for replication-competent virus (RCV)To evaluate if replication-competent virus is generated in transduced cells through vector recombi- nation, two independent methods were used: 1) p24 assay to measure virus production in transduced cells. In brief, medium specimens were collected from DLV-transduced CEM cells at different passages (10~40 passages) and stored at –80°C. RCV gene- ration in the medium was determined by measuring viral p24 antigen production (Coulter, Beckman). 2) Infectivity assay to measure infectious RCV. In this assay, collected medium specimens were filtrated through 0.22 µM filters to remove cellular debris and dead cells. Recovered filtrates were diluted with equal volume of fresh growth medium RPMI-1640 (for CEM and Sup-T1 cells) or DMEM (for MT-2 cells) and then used to infect these indicator cells for a period of at least 1 month. The emergence of GFP positive cells was checked every other day under a fluorescence microscopy.Inhibition of wild type HIV-1 replicationThree cell populations (including a DLV-transduced GFP+ clone, normal CEM, a mixed cell population containing 1/2 GFP+ clone and 1/2 normal CEM cells) were infected with a same HIV-1 stock (MOI = 0.1) in the presence of 8 µg/mL polybrene. Following 1 h adsorption at 37°C, cells were washed twice with DPBS and seeded into TC-25 cm2 flasks. Syncytial formation induced by HIV-1 infection was examined daily and viral replication was assayed by measuring p24 viral antigen production (ELISA kit from Coulter). Cell viability was determined by trypan blue staining and GFP+ cells were visually counted using fluor- escence microscopy.Vector mobilizationMeasurement of DLV mobilization was conducted in two ways. 1) Direct measurement of the increase of GFP+ cells in a transduced CEM population. DLV- transduced CEM cells and a GFP+ clone were mixed with normal CEM cells to generate two sets of CEM populations containing 10%, 30% and 50% GFP+ cells. These cells together with normal CEM and GFP+ clone were super-infected with wild-type HIV-1 -IIIB at a MOI of 0.1. The vector mobilization was determined by the increase of the number of counted GFP+ cells within the cell population. 2) Infection of normal CEM cells with conditioned medium. Culture supernatant from the above super-infected groups was collected and centrifuged at 1 800 g, 4°C for 30 min, then filtered through a 0.22 µm filter (Costar). Conditioned media were prepared by mixing with these cell-free culture supernatants with fresh medium at the ratio of 1:1. Normal CEM cells were cultured with this conditioned media and the emergence of GFP positive cells were checked by fluorescent microscopy.RESULTSZENG et al. Efficient Gene Transfer and Inhibition of HIV-1 Replication 271Vector production and concentrationThe DLV pseudotyped with the VSV-G envelope protein used in this study was generated in 293T cells according to the well-established calcium phosphate co-precipitation method. Transfection was evidenced by the presence of large percentage of GFP+cells (>70%) at day 1 post-transfection which extended to the whole cell population by day 3. This was accompanied by rapid increase of vector yield from 5.6×106 IU/mL at day 1 to 10.7×106 IU/mL at day 3 (Fig. 1A). To define the vector production by time, vector generated from each post-transfection day was separately quantified. Although many vectors were assembled shortly after transfection (5-7.5×106 IU/mL at day 1), the majority of vectors were produced at day 2 (>10×106 IU/mL) as shown in Fig. 1B. Vector production dropped to less than 6×106 IU/mL at day 3. Because of the cellular fusion and detachment of large percent of transfected cells, vector production was dramatically reduced at transfection day 4 and subsequent days (data not shown).To define the localization of DLV , we com- paratively analyzed daily production of DLV releasedinto cell culture medium (cell-free vector) and vectors associated with the packaging cells (cell-associated vector). The majority of assembled DLV (>97.5%) was released in the cell-free form in the cell culture medium while only a small portion of vector (<2.5%) was associated with the packaging cells (Fig. 1B). This led to the exclusion of the cellular pellet to be used for vector isolation and concentration.To generate high-titer vector stocks, we have established a one-step ultracentrifugation protocol to concentrate vector produced in large-scale or from different batches of viral transfection. As shown in Table 1, the vector virus was effectively concentrated using this method and concentrated vector yielded a final titer up to 9.83±2.25×108 IU/mL. This vector concentration method is relative simple, rapid, easily reproducible, and it allowed a high recovery rate of infectious vector (90%) (Table 1). DLV-mediated transduction efficiencyAll three DLV vectors were capable of infecting CEM cells and they shared the same pattern of transduction efficiency, which is largely related to theconcentration of DLV stocks.Fig. 1. DLV (DHIV-Rev -) production in 293T packaging cell line DLV vector was produced under the same transfection protocol and titration of vector by limited dilution infectivity assay using CEM cells. A: Accumulative DLV production measured at selected post transfection time. B: Comparative analysis of vector produced in cell-free medium supernatant and associated within the 293T packaging cells at different post transfection times. The result of each test represented an average of three experiments.272V IROLOGICA S INICA V ol.22, No 4Table 1. DLV production in 293T cells and concentration by ultracentrifugationBefore concentration After concentrationDHIV-Rev- Titers(IU/mL) V olume(mL)Titers(IU/mL)V olume(mL)Increase intiter(×times)Decrease involume(×times)Recovery rate(%)Test 1 5.0 × 106 500 7.5× 108 3.0 150.0 166.7 90.0 Test 2 7.5 × 106 415 1.0× 109 2.7 133.3 153.7 86.7 Test 3 1.0 × 107 430 1.2× 109 3.0 120.0 143.3 83.7As shown in Fig. 2, approximately 30% cells were successfully transduced when a low-titer of DLV stock was used (MOI = 1.0). This transduction efficiency increased to about 60% at a MOI of 5 and reached over 80% at a MOI of 20, indicating that the transduction efficiency is directly correlated with DLV titer. More than 90% of CEM cells became GFP+ when a more concentrated DLV preparation (MOI = 50) was used for the transduction. In addition, human glioblastoma cells (HTB-14) available in this labo- ratory were also tested for their susceptibility for DLV transduction. We demonstrated that DLV were highly infectious to HTB-14 cells with a transduction efficiency of 50% at MOI of 1.0 and over 90% at MOI 20 (data not shown). This finding may suggest DLV have the ability to transduce human microglial cells,Fig. 2. Transduction efficiency with DLV in human T- lymphocyte cell line CEM. Each transduction was conducted with the use of 1.0×105 cells and transduction efficiency was determined at post infection day 3. The result of each test represented an average of two experiments. which are very important target cells of HIV-1 infection in the human central nervous system. Transduction of vectors in different cell lines Infectivity of these DLV to other cell lines were determined and compared by the titration of the same DLV preparation in ten different cells derived from human and other mammalian species. All these cells appeared to be susceptible to DLV infection. However, efficiency of DLV-mediated gene transduction of these cells differed remarkably (>10 000 times). As shown in Fig. 3, human lymphoid cells (CEM, MT-2, SupT1 and HTB-14) were the most sensitive to DLV infection while HeLa, 293T and WI38 cells were comparatively less sensitive, and murine-derived NIH3T3 and PA317 cells were the least sensitive. The ability to infect a wide spectrum of cell types suggests the potential use of these DLV pseudotyped with VSV-G in gene transfer for human and other mammalian species.Cloning of transduced cells and long-term expression of the GFP geneCloning culture of DLV-transduced CEM cells were conducted in 96-well plates using the limited dilution method. The GFP positive cell clones derived from individual transduced cells were cultured with conditioned medium prepared from normal CEM cultures. By days 10-14, clonal cultures formed sizable cell colonies, then were transferred to a 12-well plate for 7-10 days before propagated in TC-25 cm2 flasks. Clonal cells were subcultured more than 60 times inZENG et al. Efficient Gene Transfer and Inhibition of HIV-1 Replication 273vitro in a period of 1.5 years and showed no change in GFP expression in transduced cells (Fig.4A, fluorescence light; 4B, normal light). This long-termstable transgene expression was also demonstrated byanalyzing nucleic acid extracted from transducedCEM cells by RT-PCR (Fig. 4C).Fig. 3. Transduction of different cell lines with DLV. Cells were harvested at their exponential growth phase and adjusted to a concentration of 2.0×105 cells/mL. 1 mL of this cell preparation was pelleted down an Eppendorf tube and for each vector 6 tubes of this cell pellet were prepared. Master preparation of DLV was 10-fold serially diluted (10-1 to 10-6) with serum-free medium containing 8ug/mL Polybrene. Infection of cells with DLV was conducted by resuspending the prepared cell pellet with 1.0 mL DLV preparation from 10-1 to 10-6, separately. Following 1 h adsorption, infected cells was inoculated into a 96-well plate at a concentration of 0.1 mL/well for cells (2.0×104 cells/well) and 4 wells/dilution of vector for each cell line. The 96-well plate was covered with sensitive film and incubated at 37°C with 5% CO 2. At day 3 post infection, GFP+ cells were visually counted and documented under either normal or fluorescent light (Olympus IX 70) by using mounted Olympus digital camera and software MagnaFire. The infectivity of DLV to 11 cells to DLV was determined by comparing vector titer (average of GFP positive cells from4 wells at the endpoint dilution).Fig. 4. Stable long-term expression of GFP gene in DLV-transduced CEM cells. A: Photomicrograph of GFP+ transductant CEM cells at passage 60 under fluorescence light; B: Photomicrograph of GFP+ transductant CEM cells at passage 60 under normal light; C: RT-PCR detection of transgene (GFP) expression in transductant CEM cells. Lane 1: 1kb plus DNA ladder (Invitrogen); 2: Total RNA from the 9th passage DLV-transduced CEM; 3: Total RNA fron the 48th DLV-transduced CEM; 4: Untransduced CEM; 5: Negative Control (water); 6: Positive control (plasmid DHIV-Rev-). Gel running: 2% agarose, 50V 90min, EB staining, Bio-Rad FX molecular imager scanning. Target fragment size: 373bp.274V IROLOGICA S INICA V ol.22, No 4Generation of replication-competent virus (RCV) The potential for the generation of RCV through vector recombination during vector production, tran- sduction and long-term culture of transduced cells was investigated using both p24 ELISA and viral infectivity assays. We have detected no RCV in all the samples we tested (data not shown). Initially, we examined the conditioned media collected from both early (8-10 passages) and later (>40 passages) cultures of different clones of DLV-transduced CEM cells and p24 antigen was not detected in these clones over a period of 1 year. The medium samples were then tested for infectious virus by inoculating the media to several human T-lymphocytes including CEM, Sup- T1 and MT-2 cells. Following in vitro cultivation for at least one month, these cultures showed neither any GFP+cells nor p24 production. Over a dozen of the transduced cultures were analyzed and generation of RCV was not detected (Data not shown). In addition, the negative detection of RCV was not due to the use of lower DLV preparations since present study included the use of 5 different DLV stocks with an average vector titer of more than 109 IU/mL. Inhibition of wild-type HIV-1 replication and vector mobilizationThe lentiviral vector-mediated inhibitory effect on viral replication was demonstrated by challenging transduced CEM with a wild type HIV-1 strain (Fig.5). When normal CEM was infected with HIV-1, viral replication was detected shortly (<day 5) and followed by rapid increase of viral p24 production which was evidenced by the massive formation of typical ballooning-shaped cells (syncytia). Viral replication reached a peak by post infection day 15 and then slowed down gradually due to the death of affected cells. When the same HIV-1 stock was inoculated into a transduced (50% GFP+) CEM population, HIV-1 replication was partially inhibited. This limited anti- HIV-1 infection was determined by the delayed detection of viral replication, reduced viral production (p24) and limited level of syncytial formation. In comparison, HIV-1 replication was completely inhi- bited when GFP+ clones were challenged with the same viral stock. Similar results were also obtainedFig. 5. Inhibitory effect of DLV on HIV-1IIIB replication. Viral infection of normal CEM (CEM-N) was monitored and compared with the same infection conducted in both a DLV-transduced CEM clone (GFP+ clone) and a cell population composing of equal number of normal CEM and GFP+ cells. Data show HIV-1 replication was significantly suppressed in the mixed culture and completely inhibited in the GFP+ clone.ZENG et al. Efficient Gene Transfer and Inhibition of HIV-1 Replication 275when these clones were challenged with a more concentrated HIV-1 dose (MOI = 1.0). Further analysis of these infected cells revealed that GFP+ clones showed a consistent high percentage of cell viability (>92%) during the course of infection. In contrast, HIV-1 infection resulted in significant drop of cell viability to less than 15% for control CEM at postinfection day 21 as compared to 60% for the mixed population (Fig. 6A). The percentage of GFP+ cells gradually increased from the initial 50% to 80% following HIV-1 infection while no change wasobserved for the uninfected population (Fig. 6B). These data clearly suggest the resistance of GFP+ cells to HIV-1 infection and possibly vector mobi- lization.To define vector mobilization to untransduced cells, partially transduced CEM cells containing 10%, 30% and 50% GFP+ cells were infected with a low dose of HIV-1 (MOI = 0.01). We observed that the initial percentage of GFP+ cells increased very slowly for the 10% GFP+ population but rapidly increased for the 50% GFP+ group, and reached more than 75% by day 21. Examination of the normal CEM cells cultured with the conditioned media prepared from 50% GFP+ cells infected with HIV-1 revealed theappearance of GFP+ cells (Data not shown). This phenomenon was also observed when Sup-T1 and MT-2 cells were cultured with the cell-free condi- tioned medium. These data indicated the generation of replication-competent DLV in the HIV-1 infected transductant cultures, which confirmed the mobil- zation of DLV .DISCUSSIONThe application of viral vectors as a gene transfer systems play a crucial role in the development ofhuman gene therapy protocols. Lentiviral vectors based on the HIV-1-genome are emerging as the most attractive and promising vehicles for delivering therapeutic genes into human target cells. These vectors have the ability to efficiently integrate into a wide variety of cells and provide a highly efficient, stable environment for long-term transgene expression. One of major factors affecting DLV-mediated gene transduction of target cells is the production of high titer vector virus. 293T packaging cell line derived from human kidney has been the most widely used vector-producing system for HIV-1-based vector (5,10,17,23,26,29,34,37). To enhance the productionof high-titer of DLV in 293T cells, it is very importantFig. 6. Comparative analysis of cell viability and percentage of a transduced CEM cell population (50% GFP+) infected (I) or Uninfected (UI) with HIV-1IIIB . A: Kinetics of cell viability of a 50% GFP+ CEM cells compared to normal CEM cells. B: Percentage of GFP+ cells gradually increased with HIV-1 infection compared to no change for the uninfected cell population. CEM/GFP-I = HIV-1 infected transducatant CEM (50% GFP+) cells, CEM-GFP-UI = Transductant CEM (50% GFP+) cells without HIV-1 infection, CEM-I = normal CEM cells infected with HIV-1.。

相关文档
最新文档