七年级数学上册全册单元试卷培优测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册全册单元试卷培优测试卷
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.
(1)如图①,当点E在线段AC上时,求证:.
(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.
(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.
(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.
【答案】(1)解:∵
∴
∵
∴
∴
(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H
∴
∵
∴
∴
∴
即
(3)解:过点G作交BE于点H
∴
∵
∴
∴
∴
即
故的关系仍成立
(4)不成立| ∠EGF-∠DEC+∠BFG=180°
【解析】【解答】解:(4)过点G作交BE于点H
∴∠DEC=∠EGH
∵
∴
∴∠HGF+∠BFG=180°
∵∠HGF=∠EGF-∠EGH
∴∠HGF=∠EGF-∠DEC
∴∠EGF-∠DEC+∠BFG=180°
∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°
【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,
,即可得到答案.(3)过点G作交BE于点H,得到
,因为,所以,得到,
即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.
2.已知线段AB=6.
(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;
(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。
【答案】(1)解:如图:点C、D为线段AB的三等分点,
可以组成的线段为:3+2+1=6(条),
∵AB=6,点C、D为线段AB的三等分点,
∴AC=CD=DB=2,AD=BC=4,
∴这些线段长度的和为:2+2+2+4+4+6=20.
(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,
∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);
根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:
A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;
∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;
②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;
③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;
④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;
∴这些线段长度的和为:48+24+12+4=88.
【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段的概念先找出所有线段,从而求得它们的和.
(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.
3.如图,O为直线AB上一点,∠BOC=α.
(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;
(2)若∠AOD= ∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;
(3)若∠AOD= ∠AOC,∠DOE= (n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).
【答案】(1)解:∵∠BOC=40°,OD平分∠AOC,
∴∠AOD=∠DOC=70°,
∵∠DOE=90°,则∠AOE=90°﹣70°=20°
(2)解:设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,
解得:x= ,
∴∠AOE=60﹣x=60﹣ =
(3)解:设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,
解得:x= ,
∴∠AOE= ﹣ =
【解析】【分析】(1)首先根据平角的定义,由∠AOC=∠AOB-∠BOC算出∠AOC的度
数,再根据角平分线的定义由∠AOD=∠DOC =∠AOC算出∠AOD的度数,最后根据∠AOE=∠DOE-∠AOD即可算出答案;
(2)可以用设未知数的方法表示角的度数之间的关系,更加清晰明了,设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解方程表示出x的值,再根据∠AOE=∠DOE-∠AOD即可用a的式子表示出∠AOE;
(3)用设未知数的方法表示角的度数之间的关系,更加清晰明了,设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解方程表示出x的值,再根据∠AOE=∠DOE-∠AOD即可用a的式子表示出∠AOE。
4.如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.
(1)图中共有________条线段;
(2)求AC的长;
(3)若点E在直线AB上,且EA=2cm,求BE的长.
【答案】(1)解:图中有四个点,线段有.
故答案为:6;
(2)解:由点D为BC的中点,得
BC=2CD=2BD,
由线段的和差,得
AB=AC+BC,即4CD+2CD=18,
解得CD=3,
AC=4CD=4×3=12cm
(3)解:①当点E在线段AB上时,由线段的和差,得
BE=AB﹣AE=18﹣2=16cm,
②当点E在线段BA的延长线上,由线段的和差,得
BE=AB+AE=18+2=20cm.
综上所述:BE的长为16cm或20cm.
【解析】【分析】(1)线段的个数为,n为点的个数.(2)由题意易推出CD的长
度,再算出AC=4CD即可.(3)E点可在A点的两边讨论即可.
5.已知线段AB= ,点P从点A出发沿射线AB以每秒3个单位长度的速度运动,同时点Q 从点B出发沿射线AB以每秒2个单位长度的速度运动,M、N分别为AP、BQ的中点,运动的时间为
(1)若求的值,并写出此时P、Q之间的距离;
(2)点M、N能否重合为一点,若能,请直接写出此时线段PQ与线段AB之间的数量关系;若不能,说明理由。
【答案】(1)解:设A点表示的数为原点,则B点表示的数为12,P点表示的数为3t,则M点表示的数为 t,点Q表示的数为12+2t,点N表示的数为12+t,
M在N左侧,MN=12+t- t=12- t,
∵MN= =4,
∴12- t=4,解得t=16;此时PQ的距离为 =4
M在N右侧,MN= t-12-t-= t-12,
∵MN= =4,
∴ t-12=4,解得t=32;此时PQ的距离为 =20
(2)解:AB的距离为a,则B点表示的数为a,P点表示的数为3t,则M点表示的数为t,点Q表示的数为a+2t,点N表示的数为a+t,
∵M,N重合
∴ t=a+t,
得t=2a,
则P点表示的数为3t=6a, Q表示的数为a+2t=5a,
∴PQ的距离为a,
故PQ=AB
【解析】【分析】(1)设A点表示的数为原点,则B点表示的数为12,P点表示的数为3t,则M点表示的数为 t,点Q表示的数为12+2t,点N表示的数为12+t,再根据
,分情况讨论即可.(2)AB的距离为a,则B点表示的数为a,P点表示的数为
3t,则M点表示的数为 t,点Q表示的数为a+2t,点N表示的数为a+t,根据MN重合可得出a,t之间的关系,即可解出PQ与AB之间的关系.
6.如图,OB是∠AOC的平分线,OD是∠COE的平分线.
(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD是多少度?
(2)如果∠AOE=160°,∠COD=30°,∠AOB那么是多少度?
【答案】(1)解:因为OB是∠AOC的平分线,OD是∠COE的平分线.
所以∠AOB=∠BOC=40°,∠COD=∠DOE=30°.
∠BOD=∠BOC+∠COD=40°+30°=70°
(2)解:因为∠AOB=∠BOC,∠COD=∠DOE=30°,∠AOE=160°
∠AOE=∠AOB+∠BOC+∠COD+∠DOE
160°=2∠AOB+30°+30°,所以∠AOB=50°
【解析】【分析】(1)根据角平分线定义和已知条件可得∠AOB=∠BOC=40°,∠COD=∠DOE=30°,由∠BOD=∠BOC+∠COD即可求得答案.
(2)根据角平分线定义和已知条件可得∠AOB=∠BOC,∠COD=∠DOE=30°,再由∠AOE=∠AOB+∠BOC+∠COD+∠DOE即求得答案.
7.如图,已知∠AOB=α°,∠COD在∠AOB内部且∠COD=β°.
(1)①若α,β满足|α-2β|+(β-60)2=0,则①α=________;
②试通过计算说明∠AOD与∠COB有何特殊关系________;
(2)在(1)的条件下,如果作OE平分∠BOC,请求出∠AOC与∠DOE的数量关系;
(3)若α°,β°互补,作∠AOC,∠DOB的平分线OM,ON,试判断OM与ON的位置关系,并说明理由.
【答案】(1)120°;解:∵∠AOB=α°=120°,∠COD=β°=60°,
∴∠AOD=∠AOB-∠DOB=120°-∠DOB,∠COB=∠COB+∠DOB=60°+∠DOB,
∴∠AOD+∠COB=180°,即∠AOD与∠COB互补
(2)解:设∠AOC=θ,则∠BOC=120°-θ.
∵OE平分∠BOC,∴∠COE= ∠BOC= (120°-θ)=60°- θ,∴∠DOE=∠COD-∠COE=60°-60°+ θ= θ= ∠AOC;
(3)解:OM⊥ON.理由如下:
∵OM,ON分别平分∠AOC,∠DOB,
∴∠COM= ∠AOC,
∴∠DON= ∠BOD,
∴∠MON=∠COM+∠COD+∠DON
= ∠AOC+ ∠BOD+∠COD
= (∠AOC+∠BOD)+∠COD
= (∠AOB-∠COD)+∠COD
= (∠AOB+∠COD)
= (α°+β°)
∵α°,β°互补,
∴α°+β°=180°,
∴∠MON=90°,
∴OM⊥ON
【解析】【解答】(1)①由题意得:α-2β=0,β=60°,解得:α=120°;
【分析】(1)①由绝对值和偶次方的非负性可得α-2β=0,β-60°=0,解方程可求得α和β的度数;
②由①可知α和β的度数分别为:β=60°,α=120°;即所以∠AOB+∠COD=α+β=180°;而由图中角的构成可得∠AOD=∠AOB-∠BOD;∠COB=∠COD+∠BOD,所以∠∠AOD+∠COB=∠AOB-∠BOD+∠COD+∠BOD=∠AOB+∠COD=180°;
(2)由角平分线的定义可得∠COE=∠BOE= ∠BOC,由图中角的构成可得∠DOE=∠COD-∠EOC,代入整理结合(1)中求得的度数即可得解;
(3)由角平分线的定义可得∠COM= ∠AOC,∠DON= ∠BOD,由图中角的构成和已知条件可求得∠MON=90°;由垂线的定义即可判断OM⊥ON。
8.一副直角三角板(其中一个三角板的内角是45°,45°,90°,•另一个是30°,60°,90°)
(1)如图①放置,AB⊥AD,∠CAE=________,BC与AD的位置关系是________;
(2)在(1)的基础上,再拿一个30°,60°,90°的直角三角板,如图②放置,将AC′边和AD 边重合, AE是∠CAB′的角平分线吗,如果是,请加以说明,如果不是,请说明理由. (3)根据(1)(2)的计算,请解决下列问题:
如图③∠BAD=90°,∠BAC=∠FAD= (是锐角),将一个45°,45°,90°直角三角板的一直角边与AD边重合,锐角顶点A与∠BAD的顶点重合,AE是∠CAF的角平分线吗?如果是,请加以说明,如果不是,请说明理由.
【答案】(1)15°;BC与AD相互平行
(2)解:AE是∠CAB′的角平分线.
理由如下:如图②,∵∠EAD=45°,∠B′AC′=30°,
∴∠EAB′=∠EAD-∠B′AC′=15°.
又由(1)知,∠CAE=15°,
∴∠CAE=∠E AB′,即AE是∠CAB′的角平分线
(3)解:AE是∠CAF的角平分线.
理由如下:如图③,∵∠EAD=45°,∠BAD=90°,
∴∠BAE=∠DAE=45°,
又∵∠BAC=∠FAD=α,
∴∠BAE-∠BAC=∠DAE-∠FAD,
∴∠CAE=∠FAE,即AE是∠CAF的角平分线
【解析】【解答】(1)解:∵AB⊥AD,
∴∠BAD=90°,
∴∠CAE=90°-45°-30°=15°,
∵AB⊥AD,AB⊥BC,
∴BC与AD相互平行
【分析】(1)∠CAE=∠BAD-∠BAC-∠EAD=15°,因为AB⊥AD,AB⊥BC,
所以BC与AD相互平行;(2)先计算出∠EAB′=∠EAD-∠B′AC′=15°,由(1)可得∠EAB′=∠CAE,所以AE是∠CAB′的角平分线;(3)分别计算出∠CAE=∠FAE=45°-α,所以AE是∠CAF的角平分线.
9.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC=50°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方。
(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠BON=________度;
(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,若第t秒时,OA,OC,ON三条射线恰好构成相等的角,则t的值为________(直接写出结果)
【答案】(1)25
(2)解:∠AOM与∠NOC之间满足等量关系为:∠AOM-∠NOC=40°,
理由如下:∵∠MON=90°,∠AOC=50°,
∴∠AOM+∠NOA=90°
∠AON+∠NOC=50°
∴∠AOM-∠NOC=40°
(3)13秒,34秒,49秒或64秒。
【解析】【解答】解:(1)∵∠AOC=50°,
∴∠BOC=180°-∠AOC=130°,
∵OM平分∠BOC,
∴∠BOM=∠BOC÷2=130°÷2=65°,
∴∠BON=90°-∠BOM=90°-65°=25°;
故答案为:25.
(3)如图,有四种情况:
1)当∠AON1=∠CON1,
∵∠AOC=50°,
∴∠AON1=∠CON1=(360°-∠AOC)÷2=155°,
∴∠NON1=155°-90°=65°,
∴t=65°÷5=13(秒);
2)当∠AOC=∠CON2,
∴∠NON2=360°-∠AON-2∠AOC=360°-90°-2×50°=170°,
∴t=170°÷5=34(秒);
3)当∠AON3=∠CON3,
∵∠NON3=∠NOB+∠AOB-∠AON3=90°+180°-50°÷2=245°,
∴t=245°÷5=49(秒);
4)当∠COA=∠AON4,
∠NON4=∠NOB+∠AOB+∠AON4=90°+180°+50°=320°,
∴t=320°÷5=64(秒).
故答案为:13秒,34秒,49秒或64秒.
【分析】(1)已知∠AOC的度数,根据补角的性质可求∠BOC的度数,结合OM平分∠BOC,则∠BOM的角度可求,于是根据余角的性质即可确定∠BON的大小;
(2)∠AOM和∠NOA互余,∠AON与∠NOC之和等于50°,两式联立消去∠AON,可得∠AOM和∠NOC的数量关系;
(3)因为OA,OC,ON三条射线恰好构成相等的角,分四种情况讨论,依次为当∠AON1=
∠CON1,当∠AON3=∠CON3,当∠COA=∠AON4,当∠AOC=∠CON2,根据已知角的大小,结合角的关系分别求出∠NON1,∠NON2 ,∠NON3,∠NON4的大小,则t可求.
10.我们学过角的平分线的概念类比给出新概念:从一个角的顶点出发把这个角分成1:2的两个角的射线,叫做这个角的三分线显然,一个角的三分线有两条,例如:如图1,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线。
(1)如图1,若∠BOC>∠AOC,若∠A0B=63°,求∠AOC的度数;
(2)如图2若∠AOB=90°,若OC,OD是∠AOB的两条三分线。
①求∠COD的度数
②现以O为中心,将∠COD顺时针旋转n度(n<360得到∠COD,当OA恰好是∠C‘OD‘的三分线时,则求n的值。
(3)如图3,若∠AOB=180°,OC是∠AOB的一条三分线,OM,ON分别是∠AOC与∠BOC的平分线,将∠MON绕点O以每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,若射线ON恰好是∠AOC的三分线,则此时∠MON绕点O旋转的时间是多少秒?(直接写出答案即可,不必说明理由)
【答案】(1)解:∵OC是∠AOB的一条三分线且∠BOC>∠AOC
∴∠AOC= ∠AOB,又∠AOB=63°
∠AOC= ×63°=21°
(2)解:①解:∵∠AOB=90°,0C,OD是∠A0B的两条三分线,
∠COD= ∠AOB= ×90°=30°
②现以O为中心,将∠COD顺时针旋转n度(n<360得到∠C’OD’,当OA恰好是∠C’OD’的三分线时,
分两种情况:
当OA是∠C’OD’的三分线,且∠AOD’>∠AOC’时如图2,
∠AOC’=10°,
∠DOC’=30°-10°=20°
∠DOD’=20°+30°=50°
当OA是∠C’OD’的三分线,且∠AOD’<∠AOC’时地,如图2‘,
∠AOC’=20°,
∴∠DOC′=30°-20°=10°
∴∠DOD′=10°+30°=40°
∴n=40或50
(3)解:如图,
∵OC是∠AOB的一条三分线,∠AOB=180°
OM,ON分别是∠AOC与∠BOC的平分线
可得∠MON=90°
∴∠AOC=60°或120°
当∠AOC=60°时,
∠MON绕点O旋转的260°或280°时,ON是∠AOC的一条三分线,
∴260÷10=26或280÷10=28(秒)
当∠AOC=120°时,
∠MON绕点O旋转的250°或290°时,ON是∠AOC的一条三分线,
∴250÷10=25或290÷10=29(秒)
综上∠MON绕点O旋转的时间是2526,28或29秒.
【解析】【分析】(1)利用已知条件:OC是∠AOB的一条三分线且∠BOC>∠AOC ,可求出∠AOC的度数。
(2)①根据0C,OD是∠A0B的两条三分线,可得到∠COD=∠AOB,代入计算可求解;②分情况讨论:当OA是∠C’OD’的三分线,且∠AOD’>∠AOC’时如图2;当OA是∠C’OD’的三分线,且∠AOD’<∠AOC’时地,如图2‘,分别画出图形,利用角的倍数及和差关系,可求出n的值。
(3)利用旋转的性质,根据题意画出符合题意的图形,OC是∠AOB的一条三分线,∠AOB=180°,及角平分线,可证得∠MON=90°,因此可求出∩AOC=60°或120°,再分别求出当∠AOC=60°时;当∠AOC=120°时,分别求出∠MON绕点O旋转的时间即可。
11.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.
(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .
(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)
(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.
【答案】(1)平分
(2)或49
(3)解:不变,设,
,,
【解析】【解答】(1)直线平分;(2)或
【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.
12.探究与发现:
(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.
(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.
(3)探究三:若将△ADC改为任意四边形ABCD呢?
已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.
(4)探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?
请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:▲ .
【答案】(1)解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,
∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;
(2)探究二:∵DP、CP分别平分∠ADC和∠ACD,
∴∠PDC= ∠ADC,∠PCD= ∠ACD,
∴∠DPC=180°-∠PDC-∠PCD,
=180°- ∠ADC- ∠ACD,
=180°- (∠ADC+∠ACD),
=180°- (180°-∠A),
=90°+ ∠A;
(3)探究三:∵DP、CP分别平分∠ADC和∠BCD,
∴∠PDC= ∠ADC,∠PCD= ∠BCD,
∴∠DPC=180°-∠PDC-∠PCD,
=180°- ∠ADC- ∠BCD,
=180°- (∠ADC+∠BCD),
=180°- (360°-∠A-∠B),
= (∠A+∠B);
(4)探究四:六边形ABCDEF的内角和为:(6-2)•180°=720°,
∵DP、CP分别平分∠EDC和∠BCD,
∴∠PDC= ∠EDC,∠PCD= ∠BCD,
∴∠P=180°-∠PDC-∠PCD=180°- ∠EDC- ∠BCD
=180°- (∠EDC+∠BCD)
=180°- (720°-∠A-∠B-∠E-∠F)
= (∠A+∠B+∠E+∠F)-180°,
即∠P= (∠A+∠B+∠E+∠F)-180°.
【解析】【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;
探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可.
13.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.
(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=________;
(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;
(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD= ∠AOE.求∠BOD的度数.
【答案】(1)30
(2)解:∵OE平分∠AOC,
∴∠COE=∠AOE= ∠COA,
∵∠EOD=90°,
∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,
∴∠COD=∠DOB,
∴OD所在射线是∠BOC的平分线
(3)解:设∠COD=x°,则∠AOE=5x°,
∵∠DOE=90°,∠BOC=60°,
∴6x=30或5x+90﹣x=120,
∴x=5或7.5,
即∠COD=65°或37.5°,
∴∠BOD=65°或52.5°
【解析】【解答】(1)∵∠BOE=∠COE+∠COB=90°,
又∵∠COB=60°,
∴∠COE=∠BOE-∠COB=30°,
故答案为30;
【分析】(1)根据图形得出∠COE=∠BOE-∠COB,代入求出即可;(2)根据角平分线定
义求出∠COE=∠AOE= ∠COA,再根据∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB,从而问题得证;(3)设∠COD=x°,则∠AOE=5x°,根据题意则可得6x=30或5x+90﹣x=120,解方程即可得.
14.如图,AD∥BC,∠B=∠D=50°,点E、F在BC上,且满足∠CAD=∠CAE,AF平分∠BAE.
(1)∠CAF=________°;
(2)若平行移动CD,那么∠ACB与∠AEB度数的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;
(3)在平行移动CD的过程中,是否存在某种情况,使∠AFB=∠ACD?若存在,求出∠ACD度数;若不存在,说明理由.
【答案】(1)65
(2)解:若平行移动CD,那么∠ACB与∠AEB度数的比值不发生变化.
∵AD∥BC,
∴∠DAC=∠ACB
∵∠CAD=∠CAE
∴∠ACB=∠CAE
∴∠AEB=∠CAE+∠ACB=2∠ACB
即∠ACB:∠AEB=1:2
所以,∠ACB与∠AEB度数的比值是:1:2
(3)解:存在
∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠B=∠D
∴∠D+∠BAD=180°
∴AB∥CD
∴∠AFB=∠DAF=∠DAC+∠CAF
∠ACD=∠CAB=∠BAF+∠CAF
∵∠AFB=∠ACD
∴∠DAC+∠CAF=∠BAF+∠CAF
∴∠DAC=∠BAF
∴∠DAC=∠BAF=∠CAE=∠EAF= ∠BAD= ×130°=32.5°
∴∠ACD= ∠CAB=∠BAF+∠CAF =3∠DAC=3×32.5°=97.5°
【解析】【解答】解:(1)∵AF平分∠BAE,
∴∠BAF=∠EAF= ∠BAE,
∵∠CAD=∠CAE
∴∠CAD=∠CAE= ∠DAE
∴∠CAF=∠EAF+∠CAE= ∠BAE+ ∠DAE= ∠BAD
∵AD∥BC,∠B=∠D=50°,
∴∠BAD=180-∠B=130°,
∴∠CAF=65°
【分析】(1)根据角平分线的性质可得∠CAF=∠EAF+∠CAE= ∠BAE+ ∠DAE= ∠BAD,再根据平行线的性质得∠BAD =180-∠B,从而得出答案;(2)根据平行线的性质得∠DAC=∠ACB,再由∠CAD=∠CAE,可知∠ACB=∠CAE,从而可得∠AEB =2∠ACB,即可得出答案;(3)根据平行线的性质得∠AFB=∠DAF=∠DAC+∠CAF,∠ACD=∠CAB=∠BAF+∠CAF,再由平行线的性质可得∠BAD=130°,即可求出答案
15.如图1,已知∠MON=60°,A、B两点同时从点O出发,点A以每秒x个单位长度沿射线ON匀速运动,点B以每秒y个单位长度沿射线OM匀速运动.
(1)若运动1s时,点A运动的路程比点B运动路程的2倍还多1个单位长度,运动3s 时,点A、点B的运动路程之和为12个单位长度,则x=________,y=________;
(2)如图2,点C为△ABO三条内角平分线交点,连接BC、AC,在点A、B的运动过程中,∠ACB的度数是否发生变化?若不发生变化,求其值;若发生变化,请说明理由;(3)如图3,在(2)的条件下,连接OC并延长,与∠ABM的角平分线交于点P,与AB 交于点Q.
①试说明∠PBQ=∠ACQ;
②在△BCP中,如果有一个角是另一个角的2倍,请写出∠BAO的度数.
【答案】(1)3;1
(2)解:的度数不发生变化,其值求解如下:
由三角形的内角和定理得
点C为三条内角平分线交点,即AC平分,BC平分
由三角形的内角和定理得
(3)解:①由三角形的外角性质得:
点C为三条内角平分线交点,即AC平分,OC平分
又是的角平分线
;
② 是的角平分线,BC平分
由三角形的外角性质得:
则在中,如果有一个角是另一个角的2倍,那么一定是
.
【解析】【解答】(1)由题意得:
化简得
解得
故答案为:3,1;
【分析】(1)根据“路程速度时间”建立一个关于x、y的二元一次方程组,求解即可得;(2)先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据三角形的内角和定理即可得;(3)①先根据三角形的外角性质可得,再根据角平行线的定义即可得;②先根据角平分线的定义、平角的定义得出,再根据三角形的外角性质得出,从而得出,然后根据直角三角形的性质得出,最后根据角的和差、角平分线的定义即可得.。