【衡水金卷先享题 信息卷】2019高考模拟试题 文科数学(一)(含答案)

合集下载

试题解析系列数学(文)试题金卷10套:河北省衡水中学2019届高三摸底联考(全国卷)文数试题解析(解析版)

试题解析系列数学(文)试题金卷10套:河北省衡水中学2019届高三摸底联考(全国卷)文数试题解析(解析版)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合{}{}2|30,|13A x x x B x x =-≥=<≤,则如图所示阴影部分表示的集合为( )A . [)0,1B . (]0,3C .()1,3D .[]1,3 【答案】C考点:集合的运算.【名师点睛】本题考查集合的运算;容易题;相关集合运算的考题,在高考中多以选择题或填空题形式表现,试题难度不大,多为低档题,对集合运算的考查主要有以下几个命题角度:1.离散型数集间的交、并、补运算;2.连续型数集间的交、并、补运算;3.已知集合的运算结果求集合;4.已知集合的运算结果求参数的值(或求参数的范围). 2. 已知向量()(),2,1,1m a n a ==-,且m n ⊥,则实数a 的值为( ) A .0 B .2 C .2-或1 D .2- 【答案】B 【解析】试题分析:因为m n ⊥,所以2(1)20m n a a a ⋅=+-=-=,即2a =,故选B. 考点:向量的坐标运算.3. 设复数z 满足()3112(i z i i +=-为虚数单位),则复数z 对应的点位于复平面内( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】试题分析:因为()3112i z i +=-,所以12(12)(1)311(1)(1)22i i i z i i i i ++-===+++-,即复数z 对应的点位于复平面内第一象限,故选A. 考点:1.复数相关的概念;2.复数的运算.4. 已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为( ) A . 1 B .116 C . 14 D .12【答案】C 【解析】考点:古典概型.5. 若直线:4l mx ny +=和圆22:4O x y +=没有交点,则过点(),m n 的直线与椭圆22194x y +=的交点个数为( ) A . 0 B . 至多有一个 C .1 D .2 【答案】D 【解析】试题分析:因为直线:4l mx ny +=和圆22:4O x y +=2>,即2<,所以点(,)m n 在圆O 内,即点(,)m n 在椭圆22194x y +=内部,所以过点(,)m n 的直线与椭圆有两个公共点,故选D.考点:1.直线与圆的位置关系;2.点与圆、点与椭圆的位置关系;3.直线与椭圆的位置关系.6. 在四面体S ABC -中,,2,AB BC AB BC SA SC SB ⊥======,则该四面体外接球的表面积是( )A .BC .24πD . 6π 【答案】D 【解析】试题分析:因为,AB BC AB BC ⊥==所以2AC SA SB ===,设AC 的中点为D ,连接AD ,则考点:1.球的切接问题;2.球的表面积与体积.7. 已知{}n a 为等差数列,n S 为其前n 项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B . 110C .10D .20 【答案】B 【解析】试题分析:因为11(1)(1)22n n n na d S n a d n n -+-==+,所以2017171120171171()100010020171722S S a d a d d ---=+-+==,所以110d =,故选B. 考点:等差数列的前n 项和公式与性质.8. 若函数()()()sin 0f x A x A ωϕ=+>的部分图象如图所示,则关于()f x 的描述中准确的是( )A .()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是减函数 B .()f x 在5,36ππ⎛⎫⎪⎝⎭上是减函数 C .()f x 在5,1212ππ⎛⎫- ⎪⎝⎭上是增函数 D .()f x 在5,36ππ⎛⎫⎪⎝⎭上是增减函数 【答案】C 【解析】考点:三角函数的图象与性质.【名师点睛】本题主要考查三角函数的图象与性质,属中档题;三角函数的图象与性质是高考的必考内容,根据函数图象确定解析式首先是由最大值与最小值确定A ,再根据周期确定ω,由最高点的值或最低点的值确定ϕ,求出解析式后再研究函数相关性质.9. 某程序框图如图所示,若该程序运行后输出的值是2312,则( )A .13a =B .12a =C .11a =D .10a = 【答案】C 【解析】试题分析:该程序框图逆反心理表示的算法功能为1111111111111112122334(1)2233411S k k k k k =++++=+-+-+-++-=-⨯⨯⨯⨯+++,由1232112k -=+提,11k =,这时运行程序得11112k =+=,所以11a =符合题意,故选C.考点:程序框图. 10. 函数()321122132f x ax ax ax a =+-++的图象经过四个象限的一个充分必要条件是( )A . 4133a -<<-B .112a -<<- C .20a -<< D .63516a -<<-【答案】D 【解析】考点:1.导数与函数的单调性、极值;2.函数的图象与性质. 11. 已知某几何体的三视图如图所示,则该几何体的体积为( )A .1133 B .35 C .1043 D .1074【答案】C 【解析】A1考点:多面体的表面各与体积.12. 已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭,当12a <<时实根个数为( )A . 5 个B .6个C . 7个D . 8个【答案】B 【解析】试题分析:令12t x x=+-,则12f x a x ⎛⎫+-= ⎪⎝⎭转化为()f t a =,在直角坐标系内作出函数()y f x =与函数y a =的图象,由图象可知,当12a <<时,()f t a =有三个根123,,t t t ,其中123244,12,23t t t -<<-<<<<,由1231112,2,2,x t x t x t x x x+-=+-=+-=得x 共有6个不同的解,故选B.考点:函数与方程.【名师点睛】本题考查函数与方程,属中档题;函数与方程是最近高考的热点内容之一,解决方法通常是用零点存有定理或数形结合方法求解,如本题就是将方程转化为两个函数图象交点,通过观察图象交点的个数研究方程根的个数的.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点()2,1-,则它的离心率为 .【解析】考点:双曲线的几何性质;14. 曲线()232ln f x x x x =-+在1x =处的切线方程为 .【答案】30x y --= 【解析】试题分析:()21132ln12f =-+=-,()223f x x x'=-+,()12321f '=-+=,所以切线方程为21y x +=-即30x y --=. 考点:导数的几何意义.15. 某大型家电商场为了使每月销售A 和B 两种产品获得的总利润达到最大,对某月即将出售的A和B实行了相关调査,得出下表:如果该商场根据调查得来的数据,月总利润的最大值为元.【答案】960【解析】z=⨯+⨯=.604809960考点:线性规划.【名师点睛】本题考查线性规划,属中题;线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合,准确作出图形是解决问题的关键.16.如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,則第20行从左至右的第4个数字应是 .【答案】194 【解析】考点:1.归纳推理;2.等差数列的前n 项和公式.【名师点睛】本题考查的是归纳推理、等差数列的前n 项和公式,属中档题;归纳推理是从特殊事例中归纳出一般性结论的推理,解题关键点在于从有限的特殊事例中寻找其中的规律,要注意从运算的过程中去寻找.注意运算的准确性.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知顶点在单位圆上的ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+.(1)求角A 的大小;(2)若224b c +=,求ABC ∆的面积.【答案】(1)60︒. 【解析】试题分析:(1) 由222b c a bc +=+得222b c a bc +-=代入余弦定理即可求出角A ;(2)由正弦定理先求出边a ,再由余弦定理可求出bc ,代入三角形面积公式即可. 试题解析: (1)由222b c a bc +=+得222b c a bc +-=,故 2221cos 22b c a A bc +-==考点:正弦定理与余弦定理.【名师点睛】本题考查正、余弦定理的应用,容易题;解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18. (本小题满分12分)如图,三棱住111ABC A B C -中,11,,60CA CB AB AA BAA ==∠=. (1)证明:1AB AC ⊥;(2)若12,AB CB AC ===,求三棱住111ABC A B C -的体积.【答案】(1)见解析;(2)3. 【解析】试题分析:(1)欲证1AB AC ⊥,可构造过1AC 的一个平面与AB 垂直即可,取AB 的中点O ,构造平面1OAC ,证明AB ⊥ 平面1OAC 即可;(2) 由题设知ABC ∆与1AA B ∆ 都是边长为2的等边三角形,只要证1OA ⊥ 平面ABC ,即可求三棱柱的体积.试题解析:(Ⅰ)证明:如图,取AB 的中点O ,连结OC ,11,OA A B .因为CA CB = ,所以OC AB ⊥ .因为1AB AA = ,160BAA ∠= ,故1AA B ∆为等边三角形,所以1OA AB ⊥. 因为10OCOA = ,所以AB ⊥ 平面1OAC . 又1AC ⊂平面1OAC ,故1AB AC ⊥.考点:1.线面垂直的判定与性质;2.多面体的表面积与体积.19. (本小题满分12分)某大学生在开学季准备销售一种文具套盒实行试创业,在一个开学季内,每售出1盒该产品获利润50元;未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了 160盒该产品,以x (单位:盒,100200x ≤≤)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量x 的中位数; (2)将y 表示为x 的函数;(3)根据直方图估计利润很多于4800元的概率.A1C【答案】(1)4603;(2)804800,1001608000,160200x x y x -≤≤⎧=⎨<≤⎩;(3)0.9p =.【解析】则中位数34602032140=⨯+=x (2)因为每售出1盒该产品获利润50元,未售出的产品,每盒亏损 30元, 所以当 100160x ≤≤时,()5030160804800y x x x =-⨯-=- , 当160200x <≤ 时, 160508000y =⨯=所以 804800,1001608000,160200x x y x -≤≤⎧=⎨<≤⎩. (3)因为利润很多于4800 元,所以8048004800x -≥ ,解得 120x ≥, 所以由(1)知利润很多于 4800元的概率10.10.9p =-= . 考点:1.频率分布直方图;2.对立事件的概率.20. (本小题满分12分)在平面直角坐标系xOy 中, 过点()2,0C 的直线与抛物线24y x =相交于,A B 两点,()()1122,,,A x y B x y . (1)求证:12y y 为定值;(2)是否存有平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存有,求该直线方程和弦长;如果不存有,说明理由.【答案】(1)见解析;(2) 存有平行于y 轴的定直线1x =被以AC 为直径的圆截得的弦长为定值. 【解析】所以821-=y y (定值) ,当直线 AB 不垂直于x 轴时,设直线AB 的方程为)2(-=x k y由⎩⎨⎧=-=xy x k y 4)2(2得0842=--k y ky 821-=∴y y 所以有821-=y y 为定值(解法2)设直线AB 的方程为2-=x my由⎩⎨⎧=-=xy x my 422得0842=--my y 821-=∴y y 所以有821-=y y 为定值 . (Ⅱ)设存有直线l :a x =满足条件,则AC 的中点)2,22(11y x E +,2121)2(y x AC +-= 所以以AC 为直径的圆的半径421)2(2121212121+=+-==x y x AC r考点:1.抛物线的标准方程与几何性质;2.直线与抛物线的位置关系;3.直线与圆的位置关系.【名师点睛】本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、直线与圆的位置关系,属难题;解决圆锥曲线定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的使用可有效地简化运算. 21. (本小题满分12分)已知函数()()2ln ,f x ax bx x a b R =+-∈.(1)当1,3a b =-=时, 求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)设0a >,且对于任意的()()0,1x f x f >≥,试比较ln a 与2b -的大小. 【答案】(1)()f x 的最大值为2,()f x 的最小值为2ln 2-;(2) ln 2a b <- 【解析】试题分析:(1)当1,3a b =-=时,()23ln f x x x x =-+-,且1,22x ⎡⎤∈⎢⎥⎣⎦,()()()211x x f x x--'=-,讨论函数在区间1,22⎡⎤⎢⎥⎣⎦上的单调性与极值,与两端点值比较即可求其最大值与最小值;(2)因为()()0,1x f x f >≥,所以()f x 的最小值为(1)f ,设()0f x '=的两个根为21,x x ,则02121<-=ax x , 不妨设0,021><x x ,则21x =,所以有即12b a =-,令()24ln g x x x =-+,求导讨论函数()g x 的单调性可得()11ln 404g x g ⎛⎫≤=-< ⎪⎝⎭,即()0g a <,可证结论成立.试题解析: (1)当1,3a b =-=时,()23ln f x x x x =-+-,且1,22x ⎡⎤∈⎢⎥⎣⎦,()()()2211123123x x x x f x x x x x---+'=-+-=-=-. 由()0f x '>,得112x <<;由()0f x '<,得12x <<, 所以函数()f x 在1(,1)2上单调递增;,函数()f x 在(1,2)上单调递减,所以函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦仅有极大值点1x =,故这个极大值点也是最大值点,故函数在1,22⎡⎤⎢⎥⎣⎦上的最大值是()12f =,又()()153322ln 2ln 22ln 2ln 402444f f ⎛⎫⎛⎫-=--+=-=-<⎪ ⎪⎝⎭⎝⎭, 故()122f f ⎛⎫<⎪⎝⎭,故函数在1,22⎡⎤⎢⎥⎣⎦上的最小值为()22ln 2f =-. (Ⅱ)由题意,函数f (x )在x=1处取到最小值,又xbx ax x b ax x f 1212)(2'-+=-+=设0)('=x f 的两个根为21,x x ,则02121<-=ax x 不妨设0,021><x x ,故()0g a < ,即24ln 2ln 0a a b a -+=+< ,即ln 2a b <- .考点:1.导数与函数的单调性、极值、最值;2.函数与不等式.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1:几何证明选讲如图,,,,A B C D 四点在同一个圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (1)若11,32EC ED EB EA ==,求DCAB的值; (2)若2EF FA FB =,证明:EF CD .【答案】见解析. 【解析】又因为,,,A B C D 四点共圆;EDC EBF FEA EDC EF CD ∴∠=∠∴∠=∠∴.考点:1.三角形相似;2.圆的性质与应用.23. (本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:1(12x t y t ⎧=-⎪⎪⎨⎪=⎪⎩为参数), 曲线C 的极坐标方程为:4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)设直线l 与曲线C 相交于,P Q 两点, 求PQ 的值.【答案】(1) 曲线C 的直角坐标方程为()2224x y -+=, l的普通方程为+10x =.【解析】试题分析:(1) 在极坐标方程两边同乘以ρ,利用极坐标与直角坐标的互化公式即可将曲线C的极坐标方设其两根分别为 12,t t,则121215,t t t t PQ t +==∴=-= .考点:1.极坐标与直角坐标的互化;2,参数方程与普通方程的互化;3.直线参数方程参数的几何意义.24. (本小题满分10分)选修4-5:不等式选讲已知函数()()223,12f x x a x g x x =-++=-+. (1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立, 求实数a 的取值范围. 【答案】(1) {}|24x x -<<;(2)(][),51,-∞--+∞.【解析】(][),51,-∞--+∞.考点:1.含绝对值不等式的解法;2.含绝对值函数值域的求法.。

2019年衡水金卷先享题押题卷-数学(文) (Ⅰ)(试题)

2019年衡水金卷先享题押题卷-数学(文) (Ⅰ)(试题)
文科数学试题 第 4 页(共 6 页)
………………○………………内………………○………………装………………○………………订………………○………………线………………○………………
学校:______________姓名:_____________班级:_______________考号:______________________
π
A.
3

B.
3

C.
3

D.
3
3 f (x) ,
11.如图,在矩形 ABCD 中, EF∥AD , GH∥BC , BC 2 , AF FG BG 1,现分别沿
EF , GH 将矩形折叠使得 AD 与 BC 重合,则折叠后的几何体的外接球的表面积为
第Ⅱ卷
二、填空题(本题共 4 小题,每小题 5 分,共 20 分)
三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分 12 分)
如图,在△ABC 中,内角 A, B,C 的对边分别为 a,b, c .已知 c 6 , b 3 , sin2C sinB ,且 AD 为
BC 边上的中线, AE 为 BAC 的平分线.
………………○………………内………………○………………装………………○………………订………………○………………线………………○………………
学校:______________姓名:_____________班级:_______________考号:______________________
………………○………………外………………○………………装………………○………………订………………○………………线………………○………………

2019届高三数学模拟密卷文衡水金卷

2019届高三数学模拟密卷文衡水金卷

2019届高三数学模拟密卷文(衡水金卷,含解析)第I卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.,则(1.,已知集合)D.B.C.A.【答案】B【解析】【分析】先化简集合A,B,再求A∩B得解.A=(-1,2),B=(【详解】由题得,.B=所以A∩B故选:【点睛】本题主要考查集合的化简和交集运算,考查一元二次不等式和对数不等式的解法,. 意在考查学生对这些知识的理解掌握水平和分析推理能力2.)已知复数,则(在复平面内的对应点关于虚轴对称,(为虚数单位)D. B. C. A.【答案】B【解析】【分析】,则,再根据复数的除法运算,即可求解.由题意,求得【详解】由题意,复数在复平面内的对应点关于实轴对称,,则,则根据复数的运算,得A.故选.【点睛】本题主要考查了复数的表示,以及复数的除法运算,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.,则的值为(已知)3.C. B.D.A.【答案】A【解析】【分析】先根据已知求出的值,再化简得解.【详解】因,.所以两边平方得.所以A故选:【点睛】本题主要考查二倍角和诱导公式,考查三角求值,意在考查学生对这些知识的理解. 掌握水平和分析推理能力,则该双是双曲线的一条渐近线,若的最大值为4.1已知直线曲线离心率的最大值为()B.C.D.A. 2C 【答案】【解析】【分析】.|k|由题得≤1,化简不等式即得解,即【详解】由题得|k|≤1 ,,即所以.所以所以双曲线的离心率的最大值为.C故选:【点睛】本题主要考查双曲线的简单几何性质和离心率的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.如图是民航部门统计的2018年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是()A. 变化幅度从高到低居于后两位的城市为北京,深圳B. 天津的变化幅度最大,北京的平均价格最高C. 北京的平均价格同去年相比有所上升,深圳的平均价格同去年相比有所下降D. 厦门的平均价格最低,且相比去年同期降解最大【答案】D【解析】【分析】根据数据统计表逐一分析得解.【详解】对于选项A, 变化幅度从高到低居于后两位的城市为北京,深圳,因为它们的涨幅的绝对值最小,所以该选项是正确的;对于选项B, 天津的变化幅度最大,接近10%,北京的平均价格最高,接近3000元,所以该选项是正确的;对于选项C, 因为北京的涨幅大于0,所以北京的平均价格同去年相比有所上升,深圳的涨幅小于0,所以深圳的平均价格同去年相比有所下降,所以该选项是正确的;对于选项D, 西安的平均价格最低,不是厦门,厦门相比去年同期降解最大,所以该选项是错误的.D故选:【点睛】本题主要考查数据统计表,意在考查学生对该知识的理解掌握水平和分析推理能力.的函数的解析式可以是(6. 与同时满足)A.C.D.B.D 【答案】【解析】【分析】. 代入逐一验证即可【详解】,所以,B.所以C.,D.,所以D.选. 【点睛】本题考查函数周期性与对称性判断,考查基本应用求解能力属基本题.的最小值为(),则7.设实数,满足约束条件 D. C. 0 B. A. -1 B 【答案】【解析】【分析】.先作出不等式组的可行域,再利用数形结合分析得解.【详解】不等式组对应的可行域如图所示,由题得,经过点A时,直线的纵截距最小时,z当直线最小.得A(1,-1),联立直线方程.所以的最小值为B故选:【点睛】本题主要考查线性规划求最值,意在考查学生对该知识的理解掌握水平和分析推理. 能力如图是一个几何体的三视图,分别为直角三角形,半圆,等腰三角形,该几何体由一平面8.)将一圆锥截去一部分后所得,且体积为,则该几何体的表面积为(B. A.C. D.C【答案】.【解析】 【分析】由三视图得几何体原图是半个圆锥,圆锥底面半径为3,求出高为4,母线长为5,再计算几何体的表面积得解.【详解】由三视图得几何体原图是半个圆锥,圆锥底面半径为3,则设圆锥的高为h,.所以母线为.所以几何体的表面积为C故选:【点睛】本题主要考查三视图还原几何体,考查几何体的体积和表面积的计算,意在考查学. 生对这些知识的理解掌握水平和分析推理能力重平面,在三棱柱是中,,9.,,则(心,若平面平面 )的直线与直线A. B. 所成的角为D.C. 直线与直线所成的角为C 【答案】【解析】【分析】.再逐一判断每一个选项得解DE,如图,先找到的位置【详解】则AB=BC=1,, 如图所示,设,AB平面平面平面AB||,ABP,平面因为, 所以AB||,所以于E, DE,交DE||交于D,所在直线就是.P过点作所成的角为,所以选项A,B所以直线与直线错误;或其补角,直线与直线所成的角为,由于.所以D错误,所以选项C正确,选项C故选:【点睛】本题主要考查空间直线的位置关系,考查异面直线所成的角,意在考查学生对这些知识的理解掌握水平和分析推理能力.且图象关于直线对已知函数,10.的最小正周期为的一个对称中个单位长度得到函数称,若函数的图象,则函数的图象向右平移心为()C.B.A.D.A【答案】.【解析】【分析】先根据已知求出函数f(x)的解析式,再求出函数g(x)的解析式,再求函数g(x)的图像的对称中心得解.详解】由题得,f(x)的最小正周期为,因为函数【所以因为函数f(x的图象关于直对称,.所以所以,,所以令,.得函数图像的对称中心为k=-1令A 故选:【点睛】本题主要考查三角恒等变换和三角函数的图像和性质,考查三角函数的图像变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.已知一个圆柱内接于球(圆柱的底面圆周在球面上),若球的体积为,圆柱的高为,则圆柱的体积为()C. A.D. B.A 【答案】【解析】【分析】先根据已知求出球的半径和圆柱的底面圆的半径,再求圆柱的体积得解..由题得R,【详解】设球的半径为设圆柱底面圆的半径为r,由题得.所以圆柱的体积为A故选:【点睛】本题主要考查几何体体积的计算,考查球的内接旋转体问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.12已知函在定义域内有零点,则实的取值范围为()C.D.A.B.【答案】B【解析】【分析】令f(x)=0,得,,求出函数g(x)的最大. 值,结合函数的图像得解【详解】令f(x)=0,得,,所以,所以当0<x<e时,,所以函数g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,所以.当x趋近+∞时,g(x)趋近-∞,因为函数在定义域内有零点,所以直线x=a和函数g(x)的图像有交点,所以B故选:【点睛】本题主要考查利用导数研究函数的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.第Ⅱ卷二、填空题:本题共4小题,每小题5分.,则已知向量,__________,.,且13.【答案】【解析】【分析】. 值,即得结果根据向量数量积以及向量的模列条件,解方程组得,因此,,因为,所以,所以【详解】因为.,从而,【点睛】本题考查向量数量积以及向量的模,考查基本应用求解能力.属基本题.在点14.处的切线方程为________.曲线【答案】【解析】【分析】. 先利用导数求出切线的斜率,再求切点的坐标,再写出切线方程得解,【详解】由题意可知,.,又因为所以所以曲线在,点处的切线方程为.即故答案为:【点睛】本题主要考查导数的几何意义,考查利用导数求曲线上一点的切线方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.,则1上恰有15.3若圆个点到直线的距离都等于________.【答案】.【解析】【分析】到直线的距离2.再分析已知得到圆心先求出圆心的坐标为(-2,0),半径为.得解1,解方程为【详解】由题得圆的方程为,2. 半径为所以圆心的坐标为(-2,0),上恰有3因为圆1的距离都等于个点到直线,到直的距离所以圆心1,解即故答案为:【点睛】本题主要考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.平面四边形中,,,,16.,在如图所示若四边形的长为的面积为,则________.的5 【答案】【解析】【分析】,再利用余弦定理求出,求出,求出,再利用面连接. 的值得解积公式求出BC.【详解】如图所示,连接.,由题可知,又因,所以.在中,由余弦定理,得,所以,再由余弦定理,得,,所以,所以,又=5.所以【点睛】本题主要考查余弦定理解三角形,考查三角形面积的计算,考查三角恒等变换求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在递增的正项等比数列中,与的等差中项为,与的等比中项为16.的通项公式;1()求数列的前项和.2()求数列. )1【答案】()2(;【解析】.【分析】的方程组,解方程组即得数列的通项公式;)根据已知得到关于公比(2和首项(1)项和先求出,再利用分组求和、裂项相消求前..)设等比数列(1的公比为【详解】由题得,,,即,,. 因为,所以又,,且,所以则,.所以)由(1(,2)可知,所以 . 【点睛】本题主要考查等比数列通项的求法,考查分组求和与裂项相消,意在考查学生对这些知识的理解掌握水平和分析推理能力.中,延长点,使得,且所得,在菱形是等边三角形.18.如图1将图1的位置,且使平面中折起到图,点平面沿中的为的中点,2.是线段点上的一动点(1)当时,求证:平面平面;的体积的5倍?若存在,求出(2)是否存在点,使四棱锥的体积是三棱锥.的值;若不存在,试说明理由此时.). 1)证明见解析;(2【答案】(【解析】【分析】,平面,连接的中点再证明平面取,平面;(2(1))先证明,的值.,再化简,即得证明交平面作过点于点.菱形,且中,四边形【详解】(1,)在图1是等边三角形,.∴是. 是等边三角形连接,则的中点,∵是,,,又∴. ∴平面,又. 平面∴平面∵. ∴平面平面的体积的5倍的体积是三棱锥(2)存在点,使四棱锥.理由如下:的中点取,连接,,. 则平面,∵平面平面,平面. 平面∴作交,于点过点平面则.∴.,得,令,的体积是三棱锥的体积的时,四棱锥5∴当倍.【点睛】本题主要考查空间几何元素垂直关系的证明,考查空间几何体体积的计算,考查立体几何的探究性问题的处理,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.2019年3月5日至3月15日在北京召开了“两会”,代表们都递交了很多关于国计民生问题的提案,某媒体为了解民众对“两会”关注程度,随机抽取了年龄在18-75岁之间的100岁以上”的人数之比为人进行调查,经统计“45岁(含)以下”与“45,并绘制如下列联表:的把握认为关注“两会”和年龄段1()根据已知条件完成上面的列联表,并判断能否有有关?人对“两会”有关内容问卷调查,现从关注“两会”的民众中采用分层抽样的办法选取6)(2 6再在这人中选45岁以上的人参加面对面提问的概率;3人进行面对面提问,求至少有一个月某日年320193()小张从“两会”中关注到中国的政策红利,看好中国经济的发展,在,涨幅其中,,,万元分别购买了三支股票3万元,3万元,4万元分成10将股市里的.涨幅,涨幅,求小张当天从股市中享受到的红利(元).,其中.附:临界值表:);(32)3300元. 【答案】(1)列联表见解析,没有;(【解析】【分析】列联表,再利用独立性检验判断能否有2×2的把握认为关注“两会”和年(1)先完成龄段有关;(2)利用古典概型的概率公式求至少有一个45岁以上的人参加面对面提问的概率;)直接求的值得解.(3岁以上”的人数之比为岁(含)以下”与“45【详解】(1)因为“45 ,所以“45岁(含)以下”与“45岁以上”的人数分别为60人与40人,则列联表如下:所以6.635,所以没有99%的把握认为关注“两会”和年龄段有关.(2)若从关注“两会”的民众中采用分层抽样的方法选取6人,,,45岁以上有2人,分别记为人,分别记为1,,,2, 4则选出45岁(含)以下有,,3所以从中选取,,人的所有情况为:,,,,,,,,,,,,,,种;20,共,,,,,其中至少有一个45,,岁以上的人的情况为:,共,,,,,,,,16,. 种岁以上的人参加面对面提问为事件45设至少有一个,则.)由题可知,(3(万元),所以小张当天从股市中享受到的红利为3300元.【点睛】本题主要考查独立性检验和古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.过点已知点的左、,右焦点,,分别是椭圆的离心率20.两点,8.的周长为于,直线交椭圆)求椭圆的标准方程;1(,求的最小值,)设上的不同两点,若是直线(2..;(2【答案】(1))【解析】【分析】)由题得(2,(1)由题得关于a,b,c的方程组,解方程组即得椭圆的标准方程;.的最小值即,再利用基本不等式求)由题意得【详解】,,(1,,.所以的标准方程为所以椭圆.的坐标分别为,,)由((21,)知的坐标分别为,上不同两点设直线,,,,则.,得由,故,,不妨设,当且仅当则时等号成立,此时,,即的最小值为所以.【点睛】本题主要考查椭圆的标准方程的求法,考查平面向量的数量积的坐标表示和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.已知函数.)处与轴相切,求函数在点(1的零点个数;)若曲线.)若,(2,求实数的取值范围【答案】(1)零点个数为0;(2)a<0【解析】【分析】1 ((20.)等价于当有解时,.小于零,所以函数的零点个数为的定义域为.)由题知,函数【详解】(1,因为,所以,即,,则又. 所以令,,则当时,;. 时,当.的极大值为故,的最大值小于零,即所以函数的零点个数为0.)因为,2 (,所以有解.即当有解时,.设所以,所以函数h(x)在(1,+∞)上单调递减,所以,0.<所以a【点睛】本题主要考查导数的几何意义和利用导数研究函数的零点问题,考查利用导数研究. 不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力. 、23题中任选一题作答,如果多做,则按所做的第一个题计分22请考生在第选修4-4:坐标系与参数方程取相同的长度单位建立极坐标以平面直角坐标系22.的原点为极点,轴的正半轴为极轴,.,曲线(为参数)系,直线的极坐标方程为的参数方程为(1)求直线的直角坐标方程和曲线的普通方程;)以曲线上的动点2为圆心、为半径的圆恰与直线相切,求的最小值. ((2;),.)【答案】(1 【解析】【分析】的普通)直接利用极直互化的公式求直线的直角坐标方程,利用三角恒等式消参求曲线(1,再利用三角函数的图像和性质求2方程;(的坐标为)设点. 的最小值,)由1(【详解】.得,代入上式,将,. 得直线的直角坐标方程为的参数方程由曲线为参数),(的普通方程为. 得曲线的坐标为2()设点,到直线的距离为则点(其中当时,圆与直线相切,故当时,取最小值,且的最小值为.【点睛】本题主要考查极坐标、参数方程和直角坐标方程的互化,考查曲线的参数方程的应用,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.4-5:不等式选讲23.;)解不等式(1. (2时,不等式的取值范围)当恒成立,求实数.;)(1【答案】(2)【解析】【分析】,即)利用零点分类讨论法解不等式可转化为;1(2)(.,再求两个最值即得解恒成立,即对【详解】(1)由题得,或或等价于则.或解得或..所以原不等式的解集为时,2)当,(可转化为所以,,即对恒成立,也就是即,,,易知,则所以,的取值范围为.所以实数【点睛】本题主要考查绝对值不等式的解法,考查绝对值不等式的恒成立问题的解答,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

2019年衡水金高考数学一模试卷(文科)含答案解析

2019年衡水金高考数学一模试卷(文科)含答案解析

2019年全国普通高等学校高考数学一模试卷(文科)(衡水金卷)一.选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项符合题目要求)1.已知集合A={x∈N|x(2﹣x)≥0},B={x|﹣1≤x≤1},则A∩B=()A.{x|0≤x≤2}B.{x|0<x<2}C.{0,1,2}D.{0,1}2.已知复数z=(a∈R,i为虚数单位)是纯虚数,则a的值为()A.1 B.2 C.﹣1 D.03.已知=2,则tanα=()A.B.﹣C.D.﹣54.A,B,C三位抗战老兵应邀参加了在北京举行的“纪念抗战胜利70周年”大阅兵的老兵方队,现安排这三位老兵分别坐在某辆检阅车的前三排(每两人均不坐同一排),则事件“A 或B坐第一排”的概率为()A.B.C.D.5.已知圆O的方程为x2+y2=1,直线l的方程为y=k(x﹣1)+3,则“k=“是”直线l与圆O相切”的.A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.椭圆C: +=1(a>b>0)的两焦点为F1,F2,P为椭圆C上一点,且PF2⊥x轴,若△PF1F2的内切圆半径r=,则椭圆C的离心率为()A.B.C.D.7.已知某几何体的三视图如图所示,则几何体的体积为()A . +B . +C . +D . +8.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( )A .55B .52C .39D .269.将函数f (x )=2sin (2x +)的图象向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g (x )的图象,则下面对函数y=g (x )的叙述正确的是( )A .函数g (x )=2sin (x +) B .函数g (x )的周期为πC .函数g (x )的一个对称中心为点(﹣,0)D .函数g (x )在区间[,]上单调递增10.执行如图所示的程序框图,其中输入的a i (i=1,2,…10)依次是:﹣3,﹣4,5,3,4,﹣5,6,8,0,2,则输出的V 值为( )A .16B .C .D .11.设关于x ,y 的不等式组,表示的平面区域内存在点M (x 0,y 0),满足x 0+2y 0=5,则实数t 的取值范围是( )A.(﹣∞,﹣1]B.[1,+∞)C.(﹣∞,1]D.以上都不正确12.定义在R上的函数f(x)满足:①f(﹣x)=﹣f(x);②f(x+2)=f(x);③x∈[0,1]时,f(x)=log(x2﹣x+1),则函数y=f(x)﹣log3|x|的零点个数为()A.8 B.6 C.4 D.2二.填空题(本大题共4小题,每小题5分,共20分)13.已知正项数列{a n}满足=4,且a3a5=64,则数列{a n}的前6项和S6=______.14.已知向量=(m,n﹣1),=(1,1),且⊥,则mn的最大值为______.15.已知F是抛物线y2=2x的焦点,A,B是抛物线上的两点,|AF|+|BF|=3,若直线AB 的斜率为3,则线段AB的中点P的坐标为______.16.若函数f(x)=(a>0且a≠1)在区间[,+∞)内单调递减,则a的取值范围是______.三.解答题(本大题共5小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=c,sinA﹣sinB=(﹣1)sinC.(1)求B的大小;(2)若△ABC的面积为4,求a,b,c的值.18.到2019年,北京市高考英语总分将由150分降低到100分,语文分值将相应增加.某校高三学生率先尝试100分制英语考试,从中随机抽出50人的英语成绩作为样本并进行统计,将测试结果按如下方式分成五组:第一组[50,60],第二组[60,70],…第五组[90,100],如图是按上述分组方法得到的频率分布直方图.(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这次参加英语考试的高三学生的英语平均成绩;(2)从这五组中抽取14人进行座谈,若抽取的这14人中,恰好有2人成绩为50分,7人成绩为70分,2人成绩为75分,3人成绩为80分,求这14人英语成绩的方差;(3)从50人的样本中,随机抽取测试成绩在[50,60]∪[90,100]内的两名学生,设其测试成绩分别为m,n(i)求事件“|m﹣n|>30”的概率;(ii)求事件“mn≤3600”的概率.19.如图,△ADM是等腰直角三角形,AD⊥DM,四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=2,平面ADM⊥平面ABCM.(1)求证:AD⊥BD;(2)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M﹣ADE的体积为?20.已知圆C的圆心与双曲线M:y2﹣x2=的上焦点重合,直线3x+4y+1=0与圆C相交于A,B两点,且|AB|=4.(1)求圆C的标准方程;(2)O为坐标原点,D(﹣2,0),E(2,0)为x轴上的两点,若圆C内的动点P使得|PD|,|PO|,|PE|成等比数列,求•的取值范围.21.已知函数f(x)=lnx+(a>1).(1)若函数f(x)的图象在x=1处的切线斜率为﹣1,求该切线与两坐标轴围成的三角形的面积;(2)若函数f(x)在区间[1,e]上的最小值是2,求a的值.请考生在22.23.24题三题中任选一题作答,如果多做,则按所做的第一题记分)[选修4-1:几何证明选讲]22.如图,直线PB与⊙O交于A,B两点,OD⊥AB于点D,PC是⊙O的切线,切点为C.(1)求证:PC2+AD2=PD2(2)若BC是⊙O的直径,BC=3BD=3,试求线段BP的长.[选修4-4:坐标系与参数方程]23.设点A是曲线C:,(θ为参数)上的动点,点B是直线l:,(t为参数)上的动点(1)求曲线C与直线l的普通方程;(2)求A,B两点的最小距离.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x﹣4|.(1)求不等式f(x)<0的解集;(2)若函数g(x)=的定义域为R,求实数m的取值范围.2019年全国普通高等学校高考数学一模试卷(文科)(衡水金卷)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项符合题目要求)1.已知集合A={x∈N|x(2﹣x)≥0},B={x|﹣1≤x≤1},则A∩B=()A.{x|0≤x≤2}B.{x|0<x<2}C.{0,1,2}D.{0,1}【考点】交集及其运算.【分析】求出两个集合,然后求解交集即可.【解答】解:集合A={x∈N|x(2﹣x)≥0}═{x∈N|0≤x≤2}={0,1,2},B={x|﹣1≤x≤1},则集合A∩B={0,1}.故选:D.2.已知复数z=(a∈R,i为虚数单位)是纯虚数,则a的值为()A.1 B.2 C.﹣1 D.0【考点】复数代数形式的乘除运算.【分析】由复数的除法运算化复数为a+bi(a,b∈R)的形式,由实部等于0且虚部不等于0列方程求出实数a的值.【解答】解:根据复数z===+i是纯虚数,得,解得a=2;所以使复数是纯虚数的实数a的值为2.故选:B.3.已知=2,则tanα=()A.B.﹣C.D.﹣5【考点】三角函数的化简求值.【分析】利用诱导公式,同角三角函数基本关系式化简已知等式即可得解.【解答】解:∵===2,∴解得:tanα=﹣5.故选:D.4.A,B,C三位抗战老兵应邀参加了在北京举行的“纪念抗战胜利70周年”大阅兵的老兵方队,现安排这三位老兵分别坐在某辆检阅车的前三排(每两人均不坐同一排),则事件“A 或B坐第一排”的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】安排这3位老兵分别坐在某辆检阅车的前3排(每两人均不坐同一排),先求出基本事件总数,再求出A或B坐第一排的种数,根据概率公式计算即可.【解答】解:安排这3位老兵分别坐在某辆检阅车的前3排(每两人均不坐同一排),基本事件总数A33=6,A或B坐第一排有C21A22=4种,故“A或B坐第一排”的概率为=,故选:A.5.已知圆O的方程为x2+y2=1,直线l的方程为y=k(x﹣1)+3,则“k=“是”直线l与圆O相切”的.A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据利用点到直线的距离公式求得圆心到直线的距离,求出k的值,再根据充分必要条件的定义判断即可.【解答】解:O的方程为x2+y2=1,表示以(0,0)为圆心、半径r=1的圆.求出圆心到直线l的方程为y=k(x﹣1)+3的距离为d==1,解得k=,故“k=“是”直线l与圆O相切”充要条件,故选:C.6.椭圆C: +=1(a>b>0)的两焦点为F1,F2,P为椭圆C上一点,且PF2⊥x轴,若△PF1F2的内切圆半径r=,则椭圆C的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】设出椭圆的焦点坐标,令x=c,求得|PF2|=,由椭圆的定义可得,|PF1|=2a﹣,在直角△PF1F2中,运用面积相等,可得内切圆的半径r,由条件化简整理,结合离心率公式,计算即可得到所求值.【解答】解:由椭圆C: +=1(a>b>0)的两焦点为F1(﹣c,0),F2(c,0),P为椭圆C上一点,且PF2⊥x轴,可得|F1F2|=2c,由x=c,可得y=±b=±,即有|PF2|=,由椭圆的定义可得,|PF1|=2a﹣,在直角△PF1F2中, |PF2|•|F1F2|=r(|F1F2|+|PF1|+|PF2|),可得△PF1F2的内切圆半径r==c,即有2b2=2(a2﹣c2)=a(a+c),整理,得a=2c,椭圆C的离心率为e==.故选:B.7.已知某几何体的三视图如图所示,则几何体的体积为()A. + B. +C. +D. +【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个组合体:上面是三棱锥、下面是半球,由三视图求出几何元素的长度,由球体、锥体的体积公式求出该几何体的体积.【解答】解:根据三视图可知几何体是一个组合体:上面是三棱锥、下面是半球,且三棱锥的底面是等腰直角三角形、直角边为1,高为1,由圆的直径所对的圆周角是直角得球的半径是,∴几何体的体积V==,故选D.8.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为()A.55 B.52 C.39 D.26【考点】等差数列的前n项和.【分析】设从第2天开始,每天比前一天多织d尺布,由等差数列前n项和公式求出d=,由此利用等差数列通项公式能求出a14+a15+a16+a17.【解答】解:设从第2天开始,每天比前一天多织d尺布,则=390,解得d=,∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d=4a1+58d=4×5+58×=52.故选:B.9.将函数f(x)=2sin(2x+)的图象向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)的图象,则下面对函数y=g(x)的叙述正确的是()A.函数g(x)=2sin(x+)B.函数g(x)的周期为πC.函数g(x)的一个对称中心为点(﹣,0)D.函数g(x)在区间[,]上单调递增【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的周期性、单调性以及它的图象的对称性,得出结论.【解答】解:将函数f(x)=2sin(2x+)的图象向左平移个单位,可得函数y=2sin[2(x+)+]=2sin(2x+)的图象;再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)=2sin(4x+)的图象,故g(x)的周期为=,排除A、B.令x=﹣,求得f(x)=0,可得g(x)的一个对称中心为点(﹣,0),故C满足条件.在区间[,]上,4x+∈[π,],函数g(x)没有单调性,故排除D,故选:C.10.执行如图所示的程序框图,其中输入的a i(i=1,2,…10)依次是:﹣3,﹣4,5,3,4,﹣5,6,8,0,2,则输出的V值为()A.16 B.C.D.【考点】程序框图.【分析】模拟程序的运行,可得程序框图的功能是计算并输出V=的值,由题意计算S,T的值即可得解.【解答】解:根据题意,本程序框图中循环体为“直到型”循环结构,模拟程序的运行,可得程序框图的功能是计算并输出V=的值.由题意可得:S=3+4+5+6+8+2,T=(﹣3)+(﹣4)+(﹣5)+0,所以:V===.故选:B.11.设关于x,y的不等式组,表示的平面区域内存在点M(x0,y0),满足x0+2y0=5,则实数t的取值范围是()A.(﹣∞,﹣1]B.[1,+∞)C.(﹣∞,1]D.以上都不正确【考点】简单线性规划.【分析】作出可行域,根据可行域满足的条件判断可行域边界x﹣2y=t的位置,列出不等式解出.【解答】解:作出可行域如图:∵平面区域内存在点M(x0,y0),满足x0+2y0=5,∴直线x+2y=5与可行域有交点,解方程组得A(2,).∴点A在直线x﹣2y=t上或在直线x﹣2y=t下方.由x﹣2y=t得y=.∴,解得t≤﹣1.故选:A.12.定义在R上的函数f(x)满足:①f(﹣x)=﹣f(x);②f(x+2)=f(x);③x∈[0,1]时,f(x)=log(x2﹣x+1),则函数y=f(x)﹣log3|x|的零点个数为()A.8 B.6 C.4 D.2【考点】函数零点的判定定理.【分析】由已知画出两个函数f(x)=log(x2﹣x+1)与y=log3|x|的简图,数形结合得答案.【解答】解:由①②可知,f(x)是周期为2的奇函数,又x∈[0,1]时,f(x)=log(x2﹣x+1),可得函数f(x)在R上的图象如图,由图可知,函数y=f(x)﹣log3|x|的零点个数为6个,故选:B.二.填空题(本大题共4小题,每小题5分,共20分)13.已知正项数列{a n}满足=4,且a3a5=64,则数列{a n}的前6项和S6=63.【考点】数列的求和.【分析】由正项数列{a n}满足=4,两边开方可得:a n+1=2a n,可得公比q=2.又a3a5=64,利用等比数列的通项公式可得a1.再利用等比数列的求和公式即可得出.【解答】解:∵正项数列{a n}满足=4,∴a n+1=2a n,∴公比q=2.∵a3a5=64,∴=64,解得a1=1.则数列{a n}的前6项和S6==63.故答案为:63.14.已知向量=(m,n﹣1),=(1,1),且⊥,则mn的最大值为.【考点】平面向量数量积的运算.【分析】首先由向量的垂直得到关于m,n的等式,然后利用基本不等式求mn的最值.【解答】解:因为向量=(m,n﹣1),=(1,1),且⊥,所以=m+n﹣1=0,即m+n=1,所以mn,当且仅当m=n时取等号,所以mn的最大值为.故答案为:15.已知F是抛物线y2=2x的焦点,A,B是抛物线上的两点,|AF|+|BF|=3,若直线AB的斜率为3,则线段AB的中点P的坐标为(1,).【考点】抛物线的简单性质.【分析】设A(x1,y1),B(x2,y2),代入抛物线的方程,求得抛物线的焦点和准线方程,运用抛物线的定义,以及中点坐标公式,结合直线的斜率公式,化简整理,即可得到所求中点P的坐标.【解答】解:设A(x1,y1),B(x2,y2),可得y12=2x1,y22=2x2,抛物线y2=2x的焦点为F(,0),准线为x=﹣,由抛物线的定义,可得|AF|=x1+,|BF|=x2+,由AF|+|BF|=3,可得x1+x2+1=3,即x1+x2=2,即=1,AB的中点的横坐标为1,又k AB====3,即为y1+y2=,则=.则AB的中点坐标为(1,).故答案为:(1,).16.若函数f(x)=(a>0且a≠1)在区间[,+∞)内单调递减,则a的取值范围是(0,].【考点】函数单调性的性质.【分析】由题意利用函数的单调性与导数的关系可得,由此求得a的范围.【解答】解:∵函数f(x)=(a>0且a≠1)在区间[,+∞)内单调递减,当≤x≤1时,f′(x)=﹣3x2+a≤0,且﹣1+a+≥2a﹣1,∴,求得0<a≤,故答案为:(0,].三.解答题(本大题共5小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=c,sinA﹣sinB=(﹣1)sinC.(1)求B的大小;(2)若△ABC的面积为4,求a,b,c的值.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理化简已知可得a﹣b=()c,结合b=c,可得a=,由余弦定理可求cosB,结合范围B∈(0,π),即可得解B的值.(2)利用已知及三角形面积公式可求c的值,结合(1)即可求得b,a的值.【解答】解:(1)∵sinA﹣sinB=(﹣1)sinC.∴由正弦定理可得:a﹣b=()c,又∵b=c,可得a=.∴cosB===,又∵B∈(0,π),∴B=(2)∵△ABC的面积为4,∴=4,解得:c=4,∴由(1)可得:b=4,a=418.到2019年,北京市高考英语总分将由150分降低到100分,语文分值将相应增加.某校高三学生率先尝试100分制英语考试,从中随机抽出50人的英语成绩作为样本并进行统计,将测试结果按如下方式分成五组:第一组[50,60],第二组[60,70],…第五组[90,100],如图是按上述分组方法得到的频率分布直方图.(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这次参加英语考试的高三学生的英语平均成绩;(2)从这五组中抽取14人进行座谈,若抽取的这14人中,恰好有2人成绩为50分,7人成绩为70分,2人成绩为75分,3人成绩为80分,求这14人英语成绩的方差;(3)从50人的样本中,随机抽取测试成绩在[50,60]∪[90,100]内的两名学生,设其测试成绩分别为m,n(i)求事件“|m﹣n|>30”的概率;(ii)求事件“mn≤3600”的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图能估计高三学生的英语平均成绩.(2)先求出这14人英语成绩的平均分,由此能求出这14人英语成绩的方差.(3)(i)由直方图知成绩在[50,60]内的人数为2,设其成绩分别为a,b,c,利用列举法能求出事件“|m﹣n|>30”的概率.(ii)由事件mn≤3600的基本事件只有(x,y)这一种,能求出事件“mn≤3600”的概率.【解答】解:(1)估计高三学生的英语平均成绩为:55×0.004×10+65×0.018×10+75×0.040×10+85×0.032×10+95×0.006×10=76.8.(2)这14人英语成绩的平均分为:==70,∴这14人英语成绩的方差:S2= [2(50﹣70)2+7(70﹣70)2+2(75﹣70)2+3(80﹣70)2]=.(3)(i)由直方图知成绩在[50,60]内的人数为:50×10×0.004=2,设其成绩分别为a,b,c,若m,n∈[50,60)时,只有(x,y)一种情况,若m,n∈[90,100]时,有(a,b),(b,c),(a,c)三种情况,∴基本事件总数为10种,事件“|m ﹣n |>30”所包含的基本事件有6种,∴P (|m ﹣n |>30)=.(ii )事件mn ≤3600的基本事件只有(x ,y )这一种,∴P (mn ≤3600)=.19.如图,△ADM 是等腰直角三角形,AD ⊥DM ,四边形ABCM 是直角梯形,AB ⊥BC ,MC ⊥BC ,且AB=2BC=2CM=2,平面ADM ⊥平面ABCM . (1)求证:AD ⊥BD ;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,三棱锥M ﹣ADE 的体积为?【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系. 【分析】(1)根据平面几何知识可证明AM ⊥BM ,故而BM ⊥平面ADM ,于是BM ⊥AD ,结合AD ⊥DM 可得AD ⊥平面BDM ,于是AD ⊥BD ;(2)令,则E 到平面ADM 的距离d=λ•BM=,代入棱锥的体积公式即可得出λ,从而确定E 的位置.【解答】证明:(1)∵四边形ABCM 是直角梯形,AB ⊥BC ,MC ⊥BC ,AB=2BC=2MC=2,∴BM=AM=,∴BM 2+AM 2=AB 2,即AM ⊥BM .∵平面ADM ⊥平面ABCM ,平面ADM ∩平面ABCM=AM ,BM ⊂平面ABCM , ∴BM ⊥平面DAM ,又DA ⊂平面DAM ,∴BM ⊥AD ,又AD ⊥DM ,DM ⊂平面BDM ,BM ⊂平面BDM ,DM ∩BM=M , ∴AD ⊥平面BDM ,∵BD ⊂平面BDM , ∴AD ⊥BD .(2)由(1)可知BM ⊥平面ADM ,BM=,设,则E 到平面ADM 的距离d=.∵△ADM 是等腰直角三角形,AD ⊥DM ,AM=,∴AD=DM=1,∴V M ﹣ADE =V E ﹣ADM ==.即=.∴.∴E 为BD 的中点.20.已知圆C 的圆心与双曲线M :y 2﹣x 2=的上焦点重合,直线3x +4y +1=0与圆C 相交于A ,B 两点,且|AB |=4. (1)求圆C 的标准方程;(2)O 为坐标原点,D (﹣2,0),E (2,0)为x 轴上的两点,若圆C 内的动点P 使得|PD |,|PO |,|PE |成等比数列,求•的取值范围. 【考点】双曲线的简单性质. 【分析】(1)求出双曲线的标准方程求出焦点坐标,利用直线和圆相交的弦长公式进行求解即可.(2)根据|PD |,|PO |,|PE |成等比数列,建立方程关系,结合向量数量积的坐标进行化简求解即可.【解答】解:(1)双曲线的标准方程为=1,则c==1,即双曲线的焦点C (0,1),圆心C 到直线3x +4y +1=0的距离d=,则半径r=.故圆C 的标准方程为x 2+(y ﹣1)2=5.(2)设P (x ,y ),∵|PD |,|PO |,|PE |成等比数列,∴•=x 2+y 2,整理得x 2﹣y 2=2,故•=(﹣2﹣x ,﹣y )•(2﹣x ,﹣y )=x 2﹣4+y 2=2(y 2﹣1),由于P 在圆C 内,则,得y 2﹣y ﹣1<0,得<y <,则0≤y 2<()2=,∴2(y 2﹣1)∈[﹣2,1+),则•的取值范围是[﹣2,1+).21.已知函数f (x )=lnx +(a >1).(1)若函数f (x )的图象在x=1处的切线斜率为﹣1,求该切线与两坐标轴围成的三角形的面积;(2)若函数f (x )在区间[1,e ]上的最小值是2,求a 的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性. 【分析】(1)求出函数的导数,根据f ′(1)=﹣1,求出a 的值,从而求出切线方程即可; (2)求出函数的导数,通过讨论a 的范围,单调函数的单调区间,求出函数的最小值,从而求出a 的值即可.【解答】解:(1)由f(x)=lnx+,得:f′(x)=,则f′(1)=1﹣a,由切线斜率为﹣1,得1﹣a=﹣1,解得:a=2,则f(1)=2,∴函数f(x)在x=1处的切线方程是y﹣2=﹣(x﹣1),即x+y﹣3=0,故与两坐标轴围成的三角形的面积为:×3×3=;(2)由(1)知,f′(x)=,x∈[1,e],①1<a<e时,在区间[1,a]上有f′(x)<0,函数f(x)在区间[1,a]上单调递减,在区间(a,e]上有f′(x)>0,函数f(x)在区间(a,e]上单调递增,∴f(x)的最小值是f(a)=lna+1,由lna+1=2得:a=e与1<a<e矛盾,②a=e时,f′(x)≤0,f(x)在[1,e]上递减,∴f(x)的最小值是f(e)=2,符合题意;③a>e时,显然f(x)在区间[1,e]上递减,最小值是f(e)=1+>2,与最小值是2矛盾;综上,a=e.请考生在22.23.24题三题中任选一题作答,如果多做,则按所做的第一题记分)[选修4-1:几何证明选讲]22.如图,直线PB与⊙O交于A,B两点,OD⊥AB于点D,PC是⊙O的切线,切点为C.(1)求证:PC2+AD2=PD2(2)若BC是⊙O的直径,BC=3BD=3,试求线段BP的长.【考点】与圆有关的比例线段.【分析】(1)由垂径定理和切割线定理得AD=BD,PC2=PA•PB=(PD﹣AD)(PD+AD),由此能证明PC2+AD2=PD2.(2)求出AB=2BD=2,在Rt△BCP中,由射影定理得BC2=BA•BP,即可求出线段BP的长.【解答】证明:(1)∵直线PB与圆O交于A,B两点,OD⊥AB于点D,PC是圆O的切线,切点为C.∴AD=BD,PC2=PA•PB=(PD﹣AD)(PD+AD)=PD2﹣AD2,∴PC2+AD2=PD2.解:(2)∵BC是⊙O的直径,∴AC⊥AB,∵D是AB的中点,∴AB=2BD=2,在Rt△BCP中,由射影定理得BC2=BA•BP,∴BP==.[选修4-4:坐标系与参数方程]23.设点A是曲线C:,(θ为参数)上的动点,点B是直线l:,(t为参数)上的动点(1)求曲线C与直线l的普通方程;(2)求A,B两点的最小距离.【考点】参数方程化成普通方程.【分析】(1)由曲线C:,(θ为参数),利用cos2θ+sin2θ=1可得普通方程.由直线l:,(t为参数),消去参数t化为普通方程.(2)设A(2cosθ,sinθ),点A到直线l的距离d=(其中tanφ=4),利用三角函数的单调性与值域即可得出最值.【解答】解:(1)由曲线C:,(θ为参数),可得普通方程:=1.由直线l:,(t为参数)化为普通方程:2x﹣y﹣5=0.(2)设A(2cosθ,sinθ),点A到直线l的距离d==(其中tanφ=4),当sin(θ﹣φ)=﹣1时,d取得最小值=.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x﹣4|.(1)求不等式f(x)<0的解集;(2)若函数g(x)=的定义域为R,求实数m的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)通过讨论x的范围,求出不等式的解集即可;(2)问题等价于m=f(x)在R 无解,求出f(x)的范围,从而求出m的范围即可.【解答】解:(1)原不等式即为|x﹣2|﹣|x﹣4|<0,若x≤2,则2﹣x+x﹣4<0,符合题意,∴x≤2,若2<x<4,则x﹣2+x﹣4<0,解得:x<3,∴2<x<3,若x≥4,则x﹣2﹣x+4<0,不合题意,综上,原不等式的解集是{x|x<3};(2)若函数g(x)=的定义域为R,则m﹣f(x)=0恒不成立,即m=f(x)在R无解,|f(x)|=||x﹣2|﹣|x﹣4||≤|x﹣2﹣(x﹣4)|=2,当且仅当(x﹣2)(x﹣4)≤0时取“=”,∴﹣2≤f(x)≤2,故m的范围是(﹣∞,﹣2)∪(2,+∞).2019年9月18日第21页(共21页)。

2019届河北省衡水中学高三一摸考试数学(文)试卷含解析

2019届河北省衡水中学高三一摸考试数学(文)试卷含解析

2019届河北省衡水中学高三一摸考试数学(文)试卷★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题1.已知集合2,3,,,则A. B. C. D.2.已知复数其中为虚数单位,则的共轭复数的虚部为A.1 B. C. D.3.已知曲线在点处的切线与直线垂直,则实数的值为A.5 B. C. D.4.如图的折线图是某农村小卖部2018年一月至五月份的营业额与支出数据,根据该折线图,下列说法正确的是A.该小卖部2018年前五个月中三月份的利润最高B.该小卖部2018年前五个月的利润一直呈增长趋势C.该小卖部2018年前五个月的利润的中位数为万元D.该小卖部2018年前五个月的总利润为万元5.如图是希腊著名数学家欧几里德在证明勾股定理时所绘制的一个图形,该图形由三个边长分别为的正方形和一个直角三角形围成现已知,,若从该图形中随机取一点,则该点取自其中的直角三角形区域的概率为A. B. C. D.6.已知椭圆的离心率为,且椭圆的长轴长与焦距之和为6,则椭圆的标准方程为A. B. C. D.7.在直三棱柱中,,且,点M是的中点,则异面直线与所成角的余弦值为A. B. C. D.8.设命题将函数的图象向右平移个单位得到函数的图象;命题若,则,则下列命题为真命题的是A. B. C. D.9.设函数,,若直线,分别是曲线与的对称轴,则A.2 B.0 C. D.10.某几何体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积不可能是A. B.2 C.4 D.611.已知双曲线的离心率为2,左,右焦点分别为,,点在双曲线上,若的周长为,则1 / 9A. B. C. D.12.对于函数,若存在,使,则称点是曲线的“优美点”.已知,则曲线的“优美点”个数为A.1 B.2 C.4 D.6二、解答题13.已知数列满足,且.求证:数列为等差数列;求数列的通项公式;记,求数列的前2018项和.14.在如图所示的多面体中,,平面.(Ⅰ)证明:平面;(Ⅱ)若,,求三棱锥的体积.15.如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率最高的甲、乙两家网络外卖企业(以下简称外卖甲,外卖乙)的经营情况进行了调查,调查结果如表:(1)据统计表明,与之间具有线性相关关系.(ⅰ)请用相关系数加以说明:(若,则可认为与有较强的线性相关关系(值精确到0.001))(ⅱ)经计算求得与之间的回归方程为.假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于2500单时,外卖甲所获取的日纯利润的大致范围:(值精确到0.01)(2)试根据表格中这五天的日接单量情况,从平均值和方差角度说明这两家外卖企业的经营状况.相关公式:相关系数,参考数据:.16.已知点是抛物线的焦点,若点在抛物线上,且求抛物线的方程;动直线与抛物线相交于两点,问:在轴上是否存在定点其中,使得向量与向量共线其中为坐标原点?若存在,求出点的坐标;若不存在,请说明理由.17.已知函数,其中为自然对数的底数.讨论函数的极值;若,证明:当,时,.18.在平面直角坐标系中,圆的参数方程为,为参数,以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为求圆的普通方程和圆的直角坐标方程;若圆与圆相交于点,求弦的长.19.已知函数.求不等式的解集;若关于的方程存在实数解,求实数的取值范围.三、填空题20.已知向量,,若,则______.21.已知实数满足不等式组,则的最小值为______.22.在中,角所对的边分别为,且满足,若的面积为,则______.23.已知正方体的棱的中点为与交于点,平面过点,且与直线垂直,若,则平面截该正方体所得截面图形的面积为______.。

河北省衡水中学2019届高三高考押题(一)文数试题.docx

河北省衡水中学2019届高三高考押题(一)文数试题.docx
所以数列
an的通项公式为an
n.
(2)证明:由(1)知bn
2n
1
1

(2n1)(2n 11)
2n1 2n 1
1
所以Tn
11 1 1
1
1
1
1

3 3 7
2n
1 2n 11
2n 1
1
所以Tn
1.
18.(1)证明:(1)如图,延长OG交AC于点M.
因为G为AOC的重心,所以M为AC的中点.
因为O为AB的中点,所以OM / / BC.
题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生中随机抽
取了50名学生的成绩,按照成绩为50,60,60,70,,,90,100分成了5组,制成了如图所示的频
率分布直方图(假定每名学生的成绩均不低于50分).
(1)求频率分布直方图中的x的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据
又kBE
kBD
y1
y2
y1
y1
y2
y1
y2
0

x1
x2
2x1
x1
x2
x1
x2
所以kBE
kBD,
所以B,D,E三点共线.
21.(1)解:f
x
的定义域为
0,

f x
2m1
x
2m
.
x
x
①当m
0时,f
x
0,故f
x
在0,
内单调递减,
f x无极值;
②当m
0时,令
f
x
0
,得0
x 2m;

【水印已去除】2019年河北省衡水中学高考数学一模试卷(文科)

【水印已去除】2019年河北省衡水中学高考数学一模试卷(文科)

2019年河北省衡水中学高考数学一模试卷(文科)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.(5分)设集合A={﹣2,﹣1,0,1,2,3},B={x|x2<4},则A∩B的元素个数为()A.6B.5C.3D.22.(5分)设i为虚数单位,z=2+,则复数z的模|z|为()A.1B.C.2D.3.(5分)已知双曲线=1(m>0)的渐近线为y=±,则m等于()A.B.C.6D.94.(5分)为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是()A.0.3B.0.4C.0.6D.0.75.(5分)若实数x,y满足不等式组则x2+y2的取值范围是()A.[,2]B.[0,2]C.[,]D.[0,]6.(5分)设函数f(x)=则“m>1”是“f[f(﹣1)]>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不允分又不必要条件7.(5分)阅读如图所示的程序框图,如果输入P=10,则输出的结果为()A.B.C.D.8.(5分)若sin(+2α)=﹣,α∈(,π),则tan(α+)的值为()A.2B.C.﹣2D.﹣9.(5分)已知f(x)为定义在R上的偶函数,且f(x+2)=f(x),当x∈[0,1]时,f(x)=2x+1,记a=f(log0.56),b=f(log27),c=f(8),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<b<a D.c<a<b 10.(5分)已知等差数列{a n}的前n项和为S n(n∈N*),若是一个与n无关的常数,则该常数构成的集合为()A.{2}B.{4}C.{2,4}D.{1,2,4} 11.(5分)对∀x∈(),∈(m,n)(m<n),则n﹣m的最小值为()A.B.C.D.12.(5分)设椭圆+=1(a>b>0)的焦点为F1,F2,P是椭圆上一点,且∠F1PF2=,若△F1PF2的外接圆和内切圆的半径分别为R,r,当R=4r时,椭圆的离心率为()A.B.C.D.二、填空题:(本大题共4小题,每题5分,共20分)13.(5分)已知向量与的夹角为,||=||=1,则|3+|=.14.(5分)设等比数列{a n}的前n项和为S n,若a3a11=2a,且S4+S12=λS8,则λ=.15.(5分)某几何体的三视图如图所示,主视图是直角三角形,侧视图是等腰三角形,俯视图是边长为的等边三角形,若该几何体的外接球的体积为36π,则该几何体的体积为.16.(5分)若函数f(x)=ax2+xlnx有两个极值点,则实数a的取值范围是.三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.已知函数g(x)=4sin(x ﹣)cos x,将函数y=g(x )的图象向左平移个单位得到y=f(x)的图象.(1)求函数g(x)的最小正周期;(2)在△ABC中,内角A,B,C的对边分别为a,b,c,若b=3,且f(B)=﹣3,求△ABC面积的最大值.18.在甲地,随着人们生活水平的不断提高,进入电影院看电影逐渐成为老百姓的一种娱乐方式.我们把习惯进入电影院看电影的人简称为“有习惯”的人,否则称为“无习惯的人”.某电影院在甲地随机调查了100位年龄在15岁到75岁的市民,他们的年龄的频数分布和“有习惯”的人数如表:(1)以年龄45岁为分界点,请根据100个样本数据完成下面2×2列联表,并判断是否有99.9%的把握认为“有习惯”的人与年龄有关;(2)已知甲地从15岁到75岁的市民大约有11万人,以频率估计概率,若每张电影票定价为x元(20≤x≤50),则在“有习惯”的人中约有的人会买票看电影(m为常数).已知票价定为30元的某电影,票房达到了69.3万元.某新影片要上映,电影院若将电影票定价为25元,那么该影片票房估计能达到多少万元?参考公式:K2=,其中n=a+b+c+d.参考临界值19.如图所示,在三棱柱ABC﹣A1B1C1中,底面ABC为等边三角形,AB=2,∠A1AB=∠A1AC=60°,M,N分別为AB,A1C1的中点.(1)证明:MN∥平面BCC1B1;(2)若MN=,求三棱柱ABC﹣A1B1C1的侧面积.20.已知抛物线y2=4x的焦点为F,△ABC的三个顶点都在抛物线上,且+=.(1)证明:B,C两点的纵坐标之积为定值;(2)设λ=,求λ的取值范围.21.设函数f(x)=x﹣,a∈R且a≠0,e为自然对数的底数.(1)求函数y=的单调区间;(2)若a=,当0<x1<x2时,不等式f(x1)﹣f(x2)>恒成立,求实数m的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.已知平面直角坐标系xOy中,过点P(﹣1,﹣2)的直线l的参数方程为(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ•sinθ•tanθ=2a(a>0),直线l与曲线C相交于不同的两点M、N.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若|PM|=|MN|,求实数a的值.[选修4-5:不等式选讲]23.设函数f(x)=||(a∈R且a≠0)(1)证明:f(a2)+f(a+a2)≥1;(2)若关于x的不等式f(x)≤3的解集为A,且A⊆[﹣2,10],求实数a的取值范围.2019年河北省衡水中学高考数学一模试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.【解答】解:由题意可得B={x|﹣2<x<2},则A∩B={﹣1,0,1},即A∩B的元素个数为3.故选:C.2.【解答】解:∵z=2+=,∴|z|=.故选:B.3.【解答】解:根据题意,双曲线的方程为=1(m>0),则其渐近线方程为y=±x,又由双曲线=1(m>0)的渐近线为y=±,则有=,解可得m=9;故选:D.4.【解答】解:设事件A={春节和端午节至少有一个被选中},则={两个节日都没被选中},所以P(A)=1﹣P()=1﹣=0.7.故选:D.5.【解答】解:由实数x,y满足不等式组作出可行域如图,z=x2+y2表示原点(0,0)到阴影区域的距离的平方,∴z min是0,z max是原点(0,0)到点(1,1)的距离的平方,则z max=2,∴z的取值范围是[0,2].故选:B.6.【解答】解:当“m>1”时,f[(﹣1)]=f(2)=22m+1>4但当“f[f(﹣1)]>4”时,f[(﹣1)]=f(2)=22m+1>4=222m+1>2;m>;故“m>1”是“f[(﹣1)]>4,”的充分不必要条件.故选:A.7.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=++…+的值,由于S=++…+=1﹣+…+﹣=1﹣=.故选:C.8.【解答】解:sin(+2α)=cos2α===﹣,∴tanα=±3.又α∈(,π),∴tanα=﹣3,则tan(α+)==﹣,故选:D.9.【解答】解:当x∈[0,1]时,f(x)=2x+1,则f(x)在[0,1]上是增函数,且当x∈[0,1]时,1≤f(x)≤2,∵f(x+2)=f(x),∴f(x)的周期为2.∵a=f(log0.56)=f(﹣log26)=f(2+)=f()=f(﹣)=f (),b=f(log27)=f(),c=f(8)=f(0)=f(log21)∵,∴,∴f(log21),c<a<b故选:D.10.【解答】解:由题意可得数列{a n}是等差数列,则,,∴===,由题是一个与n无关的常数,则a1=或d=0,当a1=时,===4,当d=0时,===2.∴该常数构成的集合为{2,4}.故选:C.11.【解答】解:∀x∈(),∈(m,n)(m<n),设f(x)=x∈()则f′(x)=,x∈()设g(x)=sin x﹣x cos x,g′(x)=cos x﹣(cos x﹣x sin x)=x sin x,则:g′(x)=cos x﹣(cos x﹣x sin x)=x sin x>0,在x∈()上恒成立,函数g(x)=sin x﹣x cos x,在x∈()上单调递增,g(x)>g()=sin﹣cos≈0.05>0所以:f′(x)=>0,x∈()上恒成立,即函数设f(x)=在x∈()上单调递增,所以:f()<f(x)<f();即:<f(x)<;则n﹣m的最小值为,故选:C.12.【解答】解:椭圆的焦点为F1(﹣c,0),F2(c,0),|F1F2|=2c,根据正弦定理可得2R===,∴R=,r=R=.设|PF1|=m,|PF2|=n,则m+n=2a,由余弦定理得,4c2=m2+n2﹣2mn cos=(m+n)2﹣3mn=4a2﹣3mn,∴mn=,∴S=sin=,又S=(m+n+2c)•r=,∴=,即2a2﹣3c2﹣ac=0,故3e2+e﹣2=0,解得:e=或e=﹣1(舍).故选:B.二、填空题:(本大题共4小题,每题5分,共20分)13.【解答】解:因为向量与的夹角为,||=||=1,所以=﹣,所以||==,故答案为:.14.【解答】解:由题意,设等比数列{a n}的首项为a1,公比为q,因为a3a11=2a,所以=2,解得q4=2,因为S4+S12=λS8,所以=,即,解得λ=.故答案为:15.【解答】解:三视图的直观图为:该几何体的外接球的体积为36π,可得:,解得R=3,由题意可得AD==1,所以P A=2=4,几何体的体积可得:=.故答案为:.16.【解答】解:法1:函数f(x)=ax2+xlnx有两个极值点,即导函数f'(x)=2ax+lnx+1在(0,+∞)上有两个变号零点,即方程lnx=﹣2ax﹣1有两个不同正实数根,即函数y=lnx与函数y=﹣2ax﹣1有两个不同的交点,作出图象如右图;设恒过定点的函数y=﹣2ax﹣1与函数y=lnx相切于点(x0,y0),则有,解得x0=1,y0=0,即切点为(1,0),此时直线的斜率为k=1,由图象可知,要使函数y=lnx与函数y=﹣2ax﹣1有两个不同的交点,则0<﹣2a<1,即a∈(﹣,0),法2:转化为导函数f'(x)=2ax+lnx+1在(0,+∞)上有两个变号零点,分离参数得到,方程﹣2a=在(0,+∞)上有两个不同的实根,令g(x)=,定义域为x>0,g′(x)=,则x∈(0,1)时,g'(x)>0,函数g(x)单调递增,x∈(1,+∞)时,g'(x)<0,函数g(x)单调递减,故g(x)max=g(1)=1,</br>作出函数y=g(x)和y=﹣2a的图象于同一个坐标系中,则得到0<﹣2a<1,即a∈(﹣,0),故答案为:(﹣,0).三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.【解答】解:(1)∵g(x)=4sin(x﹣)cos x===.∴g(x)的最小正周期为T=;(2)f(x)=2sin[2(x+)﹣]﹣1=,由f(B)=,得sin(2B+)=﹣1,∵2B+∈(),∴,则B=.由余弦定理得,即a2+c2+ac=9,9=a2+c2+ac≥2ac+ac=3ac,即ac≤3,当且仅当a=c时取等号.∴△ABC的面积,∴△ABC面积的最大值为.18.【解答】解:(1)根据题意填写列联表如下,由表中数据,计算K2=≈19.84>10.828,所以有99.9%的把握认为“有习惯”的人与年龄有关;(2)依题意,有10×××30=69.3,解得m=6,所以11×××25=77(万元),估计新影片上映票房能达到77万元.19.【解答】证明:(1)如图,取BC中点P,连接MP,C1P.∵M为AB的中点,∴MP∥AC,且MP=AC.又AC∥A1C1,AC=A1C1,且NC1=,∴NC1∥MP,且NC1=MP.∴四边形MNC1P为平行四边形,∴NM∥PC1.又PC1⊂平面BCC1B1,MN⊄平面BCC1B1,∴MN∥平面BCC1B1.…………(4分)解:(2)如图,作BH⊥A1A,交AA1于H,连接CH.∵AC=AB,∠A1AB=∠A1AC,AH为公共边,∴△ABH≌△ACH,∴∠CHA=∠BHA.∴BH⊥AA1,⊥AA1.而BH∩CH=H,∴A1A⊥平面BCH,A1A⊥BC.又A1A∥C1C,∴C1C⊥BC.在直角△C1CP中,CP==1,C1P=MN=,∴C1C=.在直角△ABH中,BH=AB sin60°=.∴三棱柱ABC﹣A1B1C1的侧面积S=4×.……(12分)20.【解答】证明:(1)设A(,y0),B(,y1),C(,y2),F(1,0),∴=(﹣1,y0),=(﹣1,y1),=(﹣1,y2),∵+=,∴﹣1+﹣1=﹣1,y1+y2=y0,即y12+y22=y02+4,∴(y1+y2)2=y02,∴y02+4+2y1y2=y02,∴y1y2=﹣2,解:(2)由+=得四边形ABFC为平行四边形,故λ=•=•=(1﹣)(1﹣)+(﹣y1)(﹣y2)=1﹣(+)++y1y2=1﹣+﹣2=﹣y02﹣≤﹣,故λ的取值范围是(﹣∞,﹣].21.【解答】解:(1)函数y==1﹣,∴y′==﹣,不等式﹣>0等价于<0;①当a>0时,由<0,得<0,解得0<x<2;②当a<0时,由<0,得>0,解得x<0或x>2;综上:①当a>0时,函数y=的增区间为(0,2),减区间为(﹣∞,0),(2,+∞);②当a<0时,函数y=的增区间为(﹣∞,0),(2,+∞),减区间为(0,2);……(6分)(2)当0<x1<x2时,f(x1)﹣f(x2)>等价于f(x1)﹣f(x2)>﹣,等价于f(x1)﹣>f(x2)﹣;即函数g(x)=f(x)﹣=x﹣•﹣在(0,+∞)上为减函数,则g′(x)=1﹣+=≤0,∴em≤(x﹣1)e x﹣ex2;令h(x)=(x﹣1)e x﹣ex2,则h′(x)=e x+(x﹣1)e x﹣2ex=xe x﹣2ex=x(e x﹣2e)=0,解得e x=2e,即x=ln2e;当x∈(0,ln2e)时,h′(x)<0,h(x)为减函数;当x∈(ln2e,+∞)时,h′(x)>0,h(x)为增函数;∴h(x)的最小值为h(ln2e)=(ln2e﹣1)•e ln2e﹣eln22e=2eln2﹣e(ln2+1)2=﹣eln22﹣e;∴em≤﹣eln22﹣e,解得m≤﹣1﹣ln22,∴m的取值范围是(﹣∞,﹣1﹣ln22].……(12分)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【解答】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程:x﹣y﹣1=0,∵曲线C的极坐标方程为ρsinθtanθ=2a(a>0),∴ρ2sin2θ=2aρcosθ(a>0),∴曲线C的普通方程:y2=2ax;(2)∵y2=2ax;∴x≥0,设直线l上点M、N对应的参数分别为t1,t2,(t1>0,t2>0),则|PM|=t1,|PN|=t2,∵|PM|=|MN|,∴|PM|=|PN|,∴t2=2t1,将(t为参数),代入y2=2ax得t2﹣2(a+2)t+4(a+2)=0,∴t1+t2=2(a+2),t1t2=4(a+2),∵t2=2t1,∴a=.[选修4-5:不等式选讲]23.【解答】解:(1)f(a2)+f(a+a2)≥|a﹣2|+|a﹣1|≥|(a﹣2)﹣(a﹣1)|=1当且仅当(a﹣2)(a﹣1)≤0,即1≤a≤2时取等号,∴f(a2)+f(a+a2)≥1;(2)∵|x﹣2|≤3∴﹣3≤x﹣2≤3,∴﹣1≤x≤5,∵A⊆[﹣2,10],∴当a>0时,A={x|﹣a≤x≤5a},则∴a≤2.即0<a≤2.当a<0时,A={x|5a≤x≤﹣a},则,∴a≥﹣,即﹣≤a<0.综上可知,实数a的取值范围是.。

2019届河北省衡水金卷高三考前模拟密卷(一)数学(文)试题

2019届河北省衡水金卷高三考前模拟密卷(一)数学(文)试题

2019届河北省衡水金卷高三考前模拟密卷(一)数学(文)试题本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则()A. B.C. D.【答案】B【解析】【分析】由题意,求得集合,集合,根据集合的交集的运算,即可求解,得到答案.【详解】由题意,集合,集合,根据集合的交集的运算,可得,故选B.【点睛】本题主要考查了集合的交集的运算问题,其中解答中首先求解集合,再利用集合的交集的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2.已知,则()A. -1B. 1C. D.【答案】D【解析】【分析】由复数的运算,得,进而求得答案.【详解】由题意,复数,则,所以,故选D.【点睛】本题主要考查了复数的运算,以及共轭复数的应用,其中解答中熟记共轭复数的概念,以及复数的运算是解答的关键,着重考查了推理与计算能力,属于基础题.3.若双曲线的一条渐近线方程为,则该双曲线的离心率是()A. B.C. D.【答案】C【解析】【分析】由题意,根据双曲线的一条渐近线方程为,求得,进而根据,即可求解.【详解】由题意,双曲线的一条渐近线方程为,可得,则该双曲线的离心率,故选C.【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的标准方程的形式,以及简单的几何性质的合理应用是解答的关键,着重考查了推理与计算能力,属于基础题.4.执行如图所示的程序框图,若输入的为30,则输出的为()A. 4B. 5C. 6D. 7【答案】B【解析】【分析】由题意,执行给定的程序框图,逐次循环计算,结合判断条件,即可求解,得到答案.【详解】由题意,执行给定的程序框图,可得:第一次循环,满足判断条件,;第二次循环,满足判断条件,;第三次循环,满足判断条件,;第四次循环,满足判断条件,;第五次循环,不满足判断条件,输出结果,故选B.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;同时注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.5.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】A【解析】【分析】根据给定的三视图可知,该几何体左边表示一个底面为腰长为2的等腰直角三角形,高为3的直三棱柱,右边表示一个底面为半径为1的半圆,母线长为3的半圆柱,根据几何体的体积公式,即可求解.【详解】由题意,根据给定的三视图可知,该几何体左边表示一个底面为腰长为2的等腰直角三角形,高为3的直三棱柱,右边表示一个底面为半径为1的半圆,母线长为3的半圆柱,所以该几何体的体积为,故选A.【点睛】本题考查了几何体的三视图及组合体的表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,同时注意以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.6.某单位安排甲去参加周一至周五的公益活动,需要从周一至周五选择三天参加活动,那么甲连续三天参加活动的概率为()A. B. C. D.【答案】A【解析】【分析】由题意,从周一至周五选择三天参加活动,求得基本事件的总数为种,再用列举法求得甲连续三天参加活动有3种,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,某单位安排甲去参加周一至周五的公益活动,需要从周一至周五选择三天参加活动,共有种不同的安排方式,其中甲连续三天参加活动的有:(周一、二、三),(周二、三、四),(周三、四、五),共有3种不同的方式,所以甲连续三天参加活动的概率为,故选A.【点睛】本题主要考查的是古典概型及其概率计算公式,解题时要准确理解题意,正确找出随机事件A包含的基本事件的个数和试验中基本事件的总数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.若,满足约束条件,则的最大值为()A. 0B. 4C. 6D. 8【答案】C【解析】【分析】由题意,画出约束条件所表示的平面区域,结合图象判定当直线平移到点A时,此时目标函数取得最大值,即可求解.【详解】由题意,画出约束条件所表示的平面区域,如图所示,由目标函数,可得,当直线平移到点A时,此时直线在轴上的截距最大,同时目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出约束条件所表示的可行域,利用“一画、二移、三求”,结合图象确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.8.已知函数,若对任意实数都成立,且的最小正周期大于,则要得到的图象,只需将的图象()A. 向右平移个单位B. 向左平移个单位C. 向右平移个单位D. 向左平移个单位【答案】B【解析】【分析】由题意,根据对任意实数都成立,求得,又由的最小正周期大于,求得,得到,得出函数,在根据三角函数的图象变换,即可求解. 【详解】由题意,函数,满足对任意实数都成立,即当时,函数取得最大值,即,即,解得,解得,又由的最小正周期大于,则,即,所以,所以函数,所以将向左平移,可得,故选B.【点睛】本题主要考查了三角函数的图象与性质,以及三角函数的图象变换,其中解答中熟练应用三角函数的图象与性质,确定函数的解析式,再根据三角函数的图象变换求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.已知函数,则下列说法正确的是()A. 函数是奇函数,且在上是减函数B. 函数是奇函数,且在上是增函数C. 函数是偶函数,且在上是减函数D. 函数是偶函数,且在上是增函数【答案】A【解析】【分析】由题意,根据函数的奇偶性的定义可判定函数是奇函数,再利用导数,即可判定函数在上单调递减,即可得到答案.【详解】由题意,函数,可得其定义域为,又由,即,所以函数是奇函数,当时,,则,则,函数函数在上单调递减,故选A.【点睛】本题主要考查了函数的奇偶性的判定,及利用导数研究函数的单调性问题,其中解答中熟记函数的奇偶性的定义,以及函数的导数与函数的单调性的关系是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.若,则()A. B. C. D.【答案】D【解析】【分析】由题意,根据诱导公式,化简得,再由余弦的倍角公式,得到,代入即可求解.【详解】由题意,根据诱导公式可得,又由余弦的倍角公式,可得,即,故选D.【点睛】本题主要考查了三角函数的化简求值问题,其中解答中合理应用三角函数的诱导公式,熟记余弦的倍角公式,合理准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.11.在三棱锥中,平面平面,是边长为的等边三角形,,则该三棱锥外接球的表面积为()A. B. C. D.【答案】A【解析】【分析】由题意,求得所以外接圆的半径为,且,所以,又由平面平面,得平面,且,进而利用在直角中,由正弦定理求得求得半径,利用球的表面积公式,即可求解.【详解】由题意,如图所示,因为是边长为的等边三角形,所以外接圆的半径为,且,所以,又由平面平面,,在等腰中,可得平面,且,在直角中,,且,在直角中,,在直角中,由正弦定理得,即球的半径为,所以球的表面积为,故选A.【点睛】本题考查了有关球的组合体问题,以及球的表面积的计算问题,解答时要认真审题,正确认识组合体的结构特征,注意组合体的性质的合理运用,合理求解球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.12.已知函数的图象上有两对关于轴对称的点,则实数的取值范围是()A. B. C. D.【答案】D【解析】【分析】由函数的图象上有两对关于轴对称的点,转化为与在上有两个交点,根据导数的几何意义,确定切线的斜率,再结合函数的图象,即可求解.【详解】由题意,当时,,则关于轴的对称的函数解析式为,因为函数的图象上有两对关于轴对称的点,可转化为与在上有两个交点,设与相切于点,且,由,则,所以,即, (1)又由当时, (2)由(1)(2)联立解得,即又由,且,则,结合图象可知,满足,即,故选D.【点睛】本题主要考查了函数的对称性问题的应用,其中解答中把函数的图象上有两对关于轴对称的点,转化为与在上有两个交点,根据导数的几何意义,再结合函数的图象求解是解答的关键,着重考查了转化思想,以及分析问题和解答问题的能力,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量与的夹角为,,,则__________.【答案】【解析】【分析】由题意,求得,再根据向量的数量积的运算和模的公式,即可求解.【详解】由题意,向量与的夹角为,,,则,又由,所以.【点睛】本题主要考查了向量的数量积的运算,以及向量的模的应用,其中解答中熟记向量的模的运算公式,以及向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.14.已知函数,则__________.【答案】3【解析】【分析】由题意,令,再根据对数的运算,即可求解.【详解】由题意,函数,令,则.【点睛】本题主要考查了函数的求值问题,其中解答中根据函数的解析式,合理赋值,根据对数的性质运算是解答的关键,着重考查了推理与运算能力,属于基础题.15.已知圆经过点,,与直线相切,则圆的标准方程为__________.【答案】【解析】【分析】设圆C的方程为,由题意得点是圆与直线的切点,连接圆心C和切点的直线和与切线垂直,得到BC的方程,再由线段AB的垂直平分线的方程为,联立方程组,求得圆心坐标,进而求得圆的方程.【详解】由题意,设圆C的方程为,因为点在直线上,所以点是圆与直线的切点,连接圆心C和切点的直线和与切线垂直,则,则BC的方程为,整理得,由线段AB的垂直平分线的方程为,联立方程组,解得,即圆心坐标为,又由,所以圆的方程为.【点睛】本题主要考查了圆的方程的求解,以及直线与圆的位置关系的应用,其中解答中根据圆的切点的性质和弦的垂直平分线的性质,联立方程组求得圆心的坐标是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.16.已知在中,,,,为内一点,,则的最小值为__________.【答案】【解析】【分析】设,,求得,及,在中,由正弦定理得,在中,由余弦定理可得:,利用三角函数的性质,即可求解最小值,得到答案.【详解】设,,因为,所以,则所以,在直角中,可得,则在中,由正弦定理得,则,在中,由余弦定理可得:,且,所以当时,取得最小值,此时,所以的最小值为.【点睛】本题主要考查了正项定理、余弦定理在解三角形中的应用,以及三角恒等变换的应用,其中解答中根据三角恒等变换的公式,化简求得的值,再在中,利用余弦定理和辅助角公式化简,利用三角函数的性质求解是解答的关键,着重考查了分析问题和解答问题的能力,试题有一定的综合性,属于中档试题.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

2019届河北衡水中学全国卷一高考模拟卷(一)数学含答案

2019届河北衡水中学全国卷一高考模拟卷(一)数学含答案

绝密★启封前2019届河北衡水中学全国卷一高考模拟卷(一)理科数学全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡第I 卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知复数22cos sin33z i ππ=+(i 为虚数单位),则3z 的虚部为A .-1B .0C .iD .l2.已知集合**{|2,},{|2,}nA x x n NB x x n n N ==∈==∈,则下列不正确的是A .AB ⊆B .A B A ⋂=C .()ZB A φ⋂= D .A B B ⋃=3.若实数11ea dx x=⎰.则函数()sin cos f x a x x =+的图像的一条对称轴方程为A .x=0B .34x π=-C .4π-D .54x π=-4.甲乙丙3位同学选修课程,从4门课程中选。

甲选修2门,乙丙各选修3门,则不同的选修方案共有 A .36种 B .48种 C .96种 D .1 92种 5.已知不共线向量,,2,3,.()1,a b a b a b a ==-=则b a -A B .CD6.若*1(),()(),2f n n g n n n n N nϕ===∈,则(),(),()f n g n n ϕ的大小关系 A .()()()f n g n n ϕ<< B .()()()f n n g n ϕ<<C .()()()g n n f n ϕ<<D .()()()g n f n n ϕ<<7.从一个正方体中截去部分几何体,得到的几何体三视图如下,则此几何体的体积是( ) A .64 B .1223 C .1883D .4768.执行如图所示的程序框图,若输出a= 341,判断框内应填写( ) A .k<4? B .k<5? C .k<6? D .k<7?9.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩所示的平面区域,则当a 从-2连续变化到1时,动直线x+y=a 扫过A 中的那部分区域面积为( ) A .2 B .1C .34D .7410.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为2,则m 6+ m 4的值为( ) A .1B . 2C .2D .411.平行四边形ABCD 中,AB ·BD =0,沿BD 折成直二面角A 一B D -C ,且4AB 2 +2BD 2=1,则三棱锥A -BCD 的外接球的表面积为( ) A .2πB .4πC .48πD .22412.已知R 上的函数y=f (x ),其周期为2,且x ∈(-1,1]时f (x )=1+x 2,函数g (x )=1sin (0)11,(0)x x x xπ+>⎧⎪⎨-<⎪⎩,则函数h (x )=f (x )-g (x )在区间[-5,5]上的零点的个数为( ) A .11B .10C .9D .8第Ⅱ卷本卷分为必做题和选做题两部分,13—21题为必做题,22、23、24为选考题。

衡水金卷2019届高三模拟高考密卷文数试题(解析版)

衡水金卷2019届高三模拟高考密卷文数试题(解析版)

高三年级模拟高考密卷文数试卷第I卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】B【解析】【分析】先化简集合A,B,再求A∩B得解.【详解】由题得A=(-1,2),B=(,所以A∩B=.故选:B【点睛】本题主要考查集合的化简和交集运算,考查一元二次不等式和对数不等式的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.已知复数在复平面内的对应点关于虚轴对称,(为虚数单位),则()A. B. C. D.【答案】B【解析】【分析】由题意,求得,则,再根据复数的除法运算,即可求解.【详解】由题意,复数在复平面内的对应点关于实轴对称,,则,则根据复数的运算,得.故选A.【点睛】本题主要考查了复数的表示,以及复数的除法运算,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.3.已知,则的值为()A. B. C. D.【答案】A【解析】【分析】先根据已知求出的值,再化简得解.【详解】因为,所以两边平方得.所以.故选:A【点睛】本题主要考查二倍角和诱导公式,考查三角求值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 4.已知直线是双曲线的一条渐近线,若的最大值为1,则该双曲线离心率的最大值为()A. 2B.C.D.【答案】C【解析】【分析】由题得|k|≤1,即,化简不等式即得解.【详解】由题得|k|≤1,即,所以所以.所以双曲线的离心率的最大值为.故选:C【点睛】本题主要考查双曲线的简单几何性质和离心率的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.如图是民航部门统计的2018年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是()A. 变化幅度从高到低居于后两位的城市为北京,深圳B. 天津的变化幅度最大,北京的平均价格最高C. 北京的平均价格同去年相比有所上升,深圳的平均价格同去年相比有所下降D. 厦门的平均价格最低,且相比去年同期降解最大【答案】D【解析】【分析】根据数据统计表逐一分析得解.【详解】对于选项A,变化幅度从高到低居于后两位的城市为北京,深圳,因为它们的涨幅的绝对值最小,所以该选项是正确的;对于选项B, 天津的变化幅度最大,接近10%,北京的平均价格最高,接近3000元,所以该选项是正确的;对于选项C, 因为北京的涨幅大于0,所以北京的平均价格同去年相比有所上升,深圳的涨幅小于0,所以深圳的平均价格同去年相比有所下降,所以该选项是正确的;对于选项D, 西安的平均价格最低,不是厦门,厦门相比去年同期降解最大,所以该选项是错误的.故选:D【点睛】本题主要考查数据统计表,意在考查学生对该知识的理解掌握水平和分析推理能力.6.同时满足与的函数的解析式可以是()A. B. C. D.【答案】D【解析】【分析】代入逐一验证即可.【详解】,所以B.,所以C.,D.,所以选D.【点睛】本题考查函数周期性与对称性判断,考查基本应用求解能力.属基本题. 7.设实数,满足约束条件,则的最小值为()A. -1B.C. 0D. 【答案】B【解析】【分析】先作出不等式组的可行域,再利用数形结合分析得解.【详解】不等式组对应的可行域如图所示,由题得,当直线经过点A时,直线的纵截距最小时,z最小.联立直线方程得A(1,-1),所以的最小值为.故选:B【点睛】本题主要考查线性规划求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.8.如图是一个几何体的三视图,分别为直角三角形,半圆,等腰三角形,该几何体由一平面将一圆锥截去一部分后所得,且体积为,则该几何体的表面积为()A. B.C. D.【答案】C【解析】【分析】由三视图得几何体原图是半个圆锥,圆锥底面半径为3,求出高为4,母线长为5,再计算几何体的表面积得解.【详解】由三视图得几何体原图是半个圆锥,圆锥底面半径为3,设圆锥的高为h,则所以母线为.所以几何体的表面积为.故选:C【点睛】本题主要考查三视图还原几何体,考查几何体的体积和表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.在三棱柱中,平面,,,是的重心,若平面平面,则( )A. 直线与直线所成的角为B. C. 直线与直线所成的角为D.【答案】C 【解析】 【分析】如图,先找到的位置DE,再逐一判断每一个选项得解.【详解】如图所示,设AB=BC=1,则, 因为AB||平面,平面平面,AB平面ABP,所以AB||,所以,过点P 作DE||,交于D,交于E, DE 所在直线就是.所以直线与直线所成的角为,所以选项A ,B 错误;直线与直线所成的角为或其补角,由于,所以,所以选项C 正确,选项D 错误.故选:C【点睛】本题主要考查空间直线的位置关系,考查异面直线所成的角,意在考查学生对这些知识的理解掌握水平和分10.已知函数的最小正周期为,且图象关于直线对称,若函数的图象向右平移个单位长度得到函数的图象,则函数的一个对称中心为()A.B.C.D.【答案】A【解析】【分析】先根据已知求出函数f(x)的解析式,再求出函数g(x)的解析式,再求函数g(x)的图像的对称中心得解.【详解】由题得,因为函数f(x)的最小正周期为,所以因为函数f(x)的图象关于直线对称,所以.所以,所以,令,令k=-1得函数图像的对称中心为.故选:A【点睛】本题主要考查三角恒等变换和三角函数的图像和性质,考查三角函数的图像变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.已知一个圆柱内接于球(圆柱的底面圆周在球面上),若球的体积为,圆柱的高为,则圆柱的体积为()A.B.C.D.【答案】A 【解析】先根据已知求出球的半径和圆柱的底面圆的半径,再求圆柱的体积得解.【详解】设球的半径为R,由题得.设圆柱底面圆的半径为r,由题得所以圆柱的体积为.故选:A【点睛】本题主要考查几何体体积的计算,考查球的内接旋转体问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.已知函数在定义域内有零点,则实数的取值范围为()A. B. C. D.【答案】B【解析】【分析】令f(x)=0,得,,求出函数g(x)的最大值,结合函数的图像得解. 【详解】令f(x)=0,得,,所以,所以当0<x<e时,,所以函数g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,所以.当x趋近+∞时,g(x)趋近-∞,因为函数在定义域内有零点,所以直线x=a和函数g(x)的图像有交点,所以【点睛】本题主要考查利用导数研究函数的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知向量,,,且,则__________.【答案】【解析】【分析】根据向量数量积以及向量的模列条件,解方程组得值,即得结果.【详解】因为,,所以,因为,所以,因此,,从而.【点睛】本题考查向量数量积以及向量的模,考查基本应用求解能力.属基本题.14.曲线在点处的切线方程为________.【答案】【解析】【分析】先利用导数求出切线的斜率,再求切点的坐标,再写出切线方程得解.【详解】由题意可知,,所以.又因为,所以曲线在点处的切线方程为,即.故答案为:【点睛】本题主要考查导数的几何意义,考查利用导数求曲线上一点的切线方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.若圆上恰有3个点到直线的距离都等于1,则________.【答案】【解析】【分析】先求出圆心的坐标为(-2,0),半径为2.再分析已知得到圆心到直线的距离为1,解方程得解.【详解】由题得圆的方程为,所以圆心的坐标为(-2,0),半径为2. 因为圆上恰有3个点到直线的距离都等于1,所以圆心到直线的距离为1,即,解得.故答案为:【点睛】本题主要考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.在如图所示的平面四边形中,,,,,若四边形的面积为,则的长为________.【答案】5 【解析】 【分析】 连接,求出,再利用余弦定理求出,求出,再利用面积公式求出BC 的值得解.【详解】如图所示,连接.由题可知,,又因为,所以.在中,由余弦定理,得,所以,再由余弦定理,得,所以,所以,又,所以=5.【点睛】本题主要考查余弦定理解三角形,考查三角形面积的计算,考查三角恒等变换求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在递增的正项等比数列中,与的等差中项为,与的等比中项为16.(1)求数列的通项公式;(2)求数列的前项和.【答案】(1);(2).【解析】【分析】(1)根据已知得到关于公比和首项的方程组,解方程组即得数列的通项公式;(2)先求出,再利用分组求和、裂项相消求前项和.【详解】(1)设等比数列的公比为.由题得,,即,则,即,因为,所以.又,且,则,所以,所以.(2)由(1)可知,,所以.【点睛】本题主要考查等比数列通项的求法,考查分组求和与裂项相消,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.如图1,在菱形中,延长点,使得,且所得是等边三角形.将图1中的沿折起到图2中的位置,且使平面平面,点为的中点,点是线段上的一动点.(1)当时,求证:平面平面;(2)是否存在点,使四棱锥的体积是三棱锥的体积的5倍?若存在,求出此时的值;若不存在,试说明理由.【答案】(1)证明见解析;(2).【解析】【分析】(1)先证明平面,再证明平面平面;(2)取的中点,连接,,证明平面.过点作交于点,再化简,即得的值.【详解】(1)在图1中,四边形菱形,且,是等边三角形,∴.连接,则是等边三角形.∵是的中点,∴,又,,∴平面.又,∴平面.∵平面∴平面平面.(2)存在点,使四棱锥的体积是三棱锥的体积的5倍.理由如下:取的中点,连接,,则.∵平面平面,平面平面,∴平面.过点作交于点,则平面.∴.令,得,∴,∴当时,四棱锥的体积是三棱锥的体积的5倍.【点睛】本题主要考查空间几何元素垂直关系的证明,考查空间几何体体积的计算,考查立体几何的探究性问题的处理,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.2019年3月5日至3月15日在北京召开了“两会”,代表们都递交了很多关于国计民生问题的提案,某媒体为了解民众对“两会”关注程度,随机抽取了年龄在18-75岁之间的100人进行调查,经统计“45岁(含)以下”与“45岁以上”的人数之比为,并绘制如下列联表:(1)根据已知条件完成上面的列联表,并判断能否有的把握认为关注“两会”和年龄段有关?(2)现从关注“两会”的民众中采用分层抽样的办法选取6人对“两会”有关内容问卷调查,再在这6人中选3人进行面对面提问,求至少有一个45岁以上的人参加面对面提问的概率;(3)小张从“两会”中关注到中国的政策红利,看好中国经济的发展,在2019年3月某日将股市里的10万元分成4万元,3万元,3万元分别购买了三支股票,,,其中涨幅,涨幅,涨幅,求小张当天从股市中享受到的红利(元).附:,其中.临界值表:【答案】(1)列联表见解析,没有;(2);(3)3300元.【解析】【分析】(1)先完成2×2列联表,再利用独立性检验判断能否有的把握认为关注“两会”和年龄段有关;(2)利用古典概型的概率公式求至少有一个45岁以上的人参加面对面提问的概率;(3)直接求的值得解. 【详解】(1)因为“45岁(含)以下”与“45岁以上”的人数之比为,所以“45岁(含)以下”与“45岁以上”的人数分别为60人与40人,则列联表如下:所以 6.635,所以没有99%的把握认为关注“两会”和年龄段有关.(2)若从关注“两会”的民众中采用分层抽样的方法选取6人,则选出45岁(含)以下有4人,分别记为,,,,45岁以上有2人,分别记为1,2,所以从中选取3人的所有情况为:,,,,,,,,,,,,,,,,,,,,共20种;其中至少有一个45岁以上的人的情况为:,,,,,,,,,,,,,,,,共16种.设至少有一个45岁以上的人参加面对面提问为事件,则.(3)由题可知,(万元),所以小张当天从股市中享受到的红利为3300元.【点睛】本题主要考查独立性检验和古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知点,分别是椭圆的左、右焦点,离心率,过点的直线交椭圆于,两点,的周长为8.(1)求椭圆的标准方程;(2)设,是直线上的不同两点,若,求的最小值.【答案】(1);(2).【解析】【分析】(1)由题得关于a,b,c的方程组,解方程组即得椭圆的标准方程;(2)由题得,即,再利用基本不等式求的最小值.【详解】(1)由题意得,,所以,,.所以椭圆的标准方程为.(2)由(1)知,的坐标分别为,,设直线上不同两点,的坐标分别为,,则,,由,得,故,不妨设,则,当且仅当,即时等号成立,此时,所以的最小值为.【点睛】本题主要考查椭圆的标准方程的求法,考查平面向量的数量积的坐标表示和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.已知函数.(1)若曲线在点)处与轴相切,求函数的零点个数;(2)若,,求实数的取值范围.【答案】(1)零点个数为0;(2)a<0【解析】【分析】(1)先求出,,再求出函数的单调性,得到的最大值小于零,所以函数的零点个数为0.(2)等价于当时,有解.【详解】(1)由题知,函数的定义域为.因为,所以,即,又,则,所以.令,则,当时,;当时,.故的极大值为,即的最大值小于零,所以函数的零点个数为0.(2)因为,,所以有解.即当时,有解.设所以,所以函数h(x)在(1,+∞)上单调递减,所以,所以a<0.【点睛】本题主要考查导数的几何意义和利用导数研究函数的零点问题,考查利用导数研究不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一个题计分.选修4-4:坐标系与参数方程22.以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为,曲线的参数方程为(为参数).(1)求直线的直角坐标方程和曲线的普通方程;(2)以曲线上的动点为圆心、为半径的圆恰与直线相切,求的最小值.【答案】(1),;(2).【解析】【分析】(1)直接利用极直互化的公式求直线的直角坐标方程,利用三角恒等式消参求曲线的普通方程;(2)设点的坐标为,再利用三角函数的图像和性质求的最小值.【详解】(1)由,得,将,代入上式,得直线的直角坐标方程为.由曲线的参数方程(为参数),得曲线的普通方程为.(2)设点的坐标为,则点到直线的距离为(其中当时,圆与直线相切,故当时,取最小值,且的最小值为.【点睛】本题主要考查极坐标、参数方程和直角坐标方程的互化,考查曲线的参数方程的应用,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.4-5:不等式选讲23.已知函数.(1)解不等式;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)利用零点分类讨论法解不等式;(2)可转化为,即对恒成立,即,再求两个最值即得解.【详解】(1)由题得,则等价于或或解得或或.所以原不等式的解集为.(2)当时,,所以可转化为,即,也就是对恒成立,即,易知,,所以,则,所以实数的取值范围为.【点睛】本题主要考查绝对值不等式的解法,考查绝对值不等式的恒成立问题的解答,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

2019年衡水金卷先享题押题卷-数学(文) (Ⅰ)(试题)

2019年衡水金卷先享题押题卷-数学(文) (Ⅰ)(试题)

3.已知{an}是公差为 1 的等差数列, Sn 为{an}的前 n 项和,若 S8 4S4 ,则 a4
5
A.
2
B.3
7
C.
D.4
2

4.△ABC 是边长为 1 的正三角形, O 是△ABC 的中心,则 (OA OB) (OA OC)
A. 1 6
24

文科数学试题 第 1 页(共 6 页)
文科数学试题 第 2 页(共 6 页)
………………○………………外………………○………………装………………○………………订………………○………………线………………○………………





………………○………………内………………○………………装………………○………………订………………○………………线………………○………………
D.
25
6.已知双曲线
x2 a2

y2 b2
1(a

0, b

0) 的一条渐近线与直线 x﹣y+2=0 垂直,则它的离心率为
1
A.
2
3
B.
2
7.函数
y

sinx

ex ex
1 1
的部分图象大致为
C. 2
D.1
A.
B.
C.
D.
25
8.执行如图所示的程序框图,若输出的 S= ,则判断框内填入的条件不可以是
A. (16, 10) C. ( 16, 39 ]
4
B. ( 10, 39 ] 4
D. ( , 39 ] 4
文科数学试题 第 3 页(共 6 页)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档