材料力学上册第五章梁弯曲时的位移

合集下载

材料力学第五章梁弯曲时的位移

材料力学第五章梁弯曲时的位移

实例3 :均布载荷
分析受均布载荷作用下梁的位移。
材料力学第五章梁弯曲时 的位移
在材料力学的第五章中,我们将学习有关梁在弯曲时的位移。掌握梁的基本 知识、位移方程和位移计算方法,以及梁的挠度与转角关系。
梁的基本知识
1 定义
梁是一种长条形结构,承受着沿其长度方向的外部力。
2 类型
常见的梁包括简支梁、悬臂梁和受力梁。
3 材料
梁可以由不同类型的材料制成,例如钢、木材或混凝土。
梁的位移方程
1 弯曲位移
2 挠度
3 转角
梁在弯曲时,沿梁的长度方 向发生位移。
挠度是梁的中点相对于其自 由状态的偏移量。
转角是指梁在弯曲时端部角 度的变化。
简支梁的位移计算方法
1
载荷和反力
计算简支梁上的载荷和反力分布。
2
弯矩方程
使用弯矩方程推导出简支梁的位移方程。
3
边界条件
应用适当的边界条件来解决位移方程中的未知量。
悬臂梁的位移计算方法
加载和支座反力
确定悬臂梁上的加载和支座反力。
弯曲力矩方程
通过推导弯曲力矩方程来解决悬臂 梁的位移问题。
解决边界条件
应用边界条件来计算悬臂梁的位移。
受力梁的位移计算方法
1
截面转动方程
2
推导出受力梁的截面转动方程。
3
确定力的分布
分析受力梁上的力分布,包括集中力和均布 力。
边界条件和位移方程
应用边界条件,求解受力梁的位移方程。ຫໍສະໝຸດ 梁的挠度与转角关系挠度
挠度是梁在弯曲时沿其长度方向上的位移。
转角
转角是梁在弯曲时端部偏离初始位置的角度。
关系公式
挠度和转角之间存在一定的关系,可以通过公式计算。

材料力学第五章梁弯曲时的位移

材料力学第五章梁弯曲时的位移
第五章 梁弯曲时的位移
工程实例
7-1
工程实例
工程实例
5-1 梁的位移——挠度及转角
建立坐标系,oxy为梁对称面,外力作用在对 称面内。所以,挠曲线为o xy面内的平面曲线。
挠度
y 向下为正。
y
x
y
转角
x
挠曲线
挠曲线方程:
7-2
w= f (x)
挠度
略去剪力的影响,则平面假设成立,发
y
5.2 积分法求梁的挠度和转角
例1 求梁的转角方程和挠度方程,并求最大转角和最大挠度, 梁的EI已知。
解 1)由梁的整体平衡分析可得:
2)写出x截面的弯矩方程
FAx 0, FAy F (), M A Fl (
)
A
x
l
yB
F B
B
x
M ( x ) F (l x ) F ( x l )
A
FAx 0, FAy
Fb Fa , FBy l l
2)弯矩方程
FAy x1
ymax
x2
FBy
AC 段:
M x1 FAy x1 Fb x1 ,0 x1 a l
y
a
b
CB 段:
Fb M x2 FAy x2 F ( x2 a ) x2 F ( x2 a ), l
目录
a x2 l
5.2 积分法求梁的挠度和转角
A d 2 w1 Fb EI M ( x1 ) x1 2 dx1 l FAy x1 dw1 Fb 2 EI EI ( x1 ) x1 C1 x2 dx1 2l Fb 3 a EIw1 x C1 x1 D1 6l a x2 l CB 段: y d 2 w2 Fb EI M ( x2 ) x2 F ( x2 a) 2 dx2 l dw Fb 2 F EI 2 EI ( x2 ) x 2 ( x2 a ) 2 C 2 dx2 2l 2 Fb 3 F EIw2 x 2 ( x2 a)3 C2 x2 D2 6l 6

材料力学梁弯曲时的位移

材料力学梁弯曲时的位移

w
1 w2
3/ 2
M x
EI
由于梁的挠曲线为一平坦的曲线,上式中的w2与1相比可略
去,于是得挠曲线近似微分方程 w M x
EI
8
材料力学Ⅰ电子教案
第五章 梁弯曲时的位移
Ⅱ. 挠曲线近似微分方程的积分及边界条件
w M x
EI 求等直梁的挠曲线方程时可将上式改写为
EIw M x
后进行积分,再利用边界条件(boundary condition)确定积分 常数。
左段梁 (0 x a)
右段梁 (a x l)
q1
w1
Fb 2lEI
1 3
l2 b2
x
2
q2
w2
Fb 2lEI
l b
x
a
2
x2
1 3
l2
b2
w1
Fbx 6lEI
l2
b2
x2
w2
Fb 6lEI
l b
x
a
3
x3
l2
b2
x
30
材料力学Ⅰ电子教案
第五章 梁弯曲时的位移
于是有
C2 0

EIw|xl
q 2
l4 6
l4 12
C1l
0

C1
ql3 24
,C2
0
从而有
转角方程 q w q l3 6lx2 4x3 24EI
挠曲线方程 w qx l3 2lx2 x3 24EI
22
材料力学Ⅰ电子教案
第五章 梁弯曲时的位移
根据对称性可知,两支座处的转角qA及qB的绝对值相
F lx
x2 2
C1
EIw

材料力学课件5第五章梁弯曲时的位移5-1

材料力学课件5第五章梁弯曲时的位移5-1

F A
x
θmax
l
wmax
y
B o
F A
o
B
l
y
x
请大家将坐标原点取在固定端,练习完 整解题过程。
例题5-2 试求图示等直梁的挠曲线方程和转角方 程,并确定其最大挠度wmax和最大转角max。
解:该梁的弯矩方程为
ql 1 2 q M x x qx lx x 2 2 2 2
Fb x2 =EI w1 +C1 (1) l 2 Fb x3 EI w1 = +C1 x D1 (2) l 6
Fb x2 F(x-a) 2 EI w + +C 2 (3) 2 = l 2 2 Fb x3 F(x-a) 3 EI w 2 = + +C 2 x D2 (4) l 6 6
截面x的位移—挠度、转角 转角 θ C 1 θ w C
1
挠度
A
x y
B
x
挠曲线
梁变形前后横截面形心位置的变化称 为位移,位移包括线位移和角位移。在小 变形和忽略剪力影响(l >> h)的条件下, 略去x 方向的线位移,y 方向的线位移是截 面形心沿垂直于梁轴线方向的位移,称为 挠度,用 w 表示,单位m、mm;角位移 是横截面变形前后的夹角,称为转角,用 θ 表示,单位弧度。而变形后的轴线是一 条光滑连续平坦的曲线称为挠曲线(弹性 曲线) 。
w'(l )=0 代入(1): Fl 2 / 2+C1 = 0 得:C1=- Fl 2 / 2
w(l ) =0 代入(2): Fl 3/ 6+C1l+C2 = 0
C2= -Fl 3/ 6 -C1l = -Fl 3/ 6 + Fl 3 / 2 = Fl 3/ 3

材料力学土木类第五章 梁弯曲时的位移.ppt

材料力学土木类第五章 梁弯曲时的位移.ppt

M x F b x
则:
EIw1

M
x

F
b l
x
l
积分可得:
EIw1

F
b l
x2 2
C1
EIw1

F
b l

x3 6
C1x

D1
DB段: a x l M x F b x Fx a
l
F x
A
D
B
x
a
b
l
y
则:
EIw2

M
x
由此可得:1 6
Fa3

C1a

D1

1 6
Fa3

1 2
Fa3

2 3
Fa3
1 2
Fa2

C1

1 2
Fa2

Fa2
即:
C1 Fa2;
D1

7 6
Fa3
最后可得:
wA

w1
x0

D1

7 Fa 3 6EI
(向下)
A

w1 '
x0

C1


Fa 2 EI
(逆时针)
小结: (1) 两段:四个常数,每增加一段,就增加 两个积分常数;
则: D1 D2
C1 C2
(2)约束条件:a) x 0 时, w1 0 由此可得:D1 0 D2
b) x l 处, w2 0
由此可得:
C2

Fb 6l
l2
b2
C1
则梁的挠曲线和转角方程为:

材料力学第五章梁弯曲时的位移课件

材料力学第五章梁弯曲时的位移课件
qw q0 (l39lx 28x3)
4E 8I
w(0)0 q (0) q0l3
48EI
固定铰支座 活动铰支座
w(l)0 q(l) 0
固定端 活动铰支座
材料力学第五章梁弯曲时的位移
22
M (x)Ew Iq0(3lx 4x2) 抛物线 8
FS(x)ddM xq 80(3l8x)
直线
q(x)dFS dx
材料力学第五章梁弯曲时的位移
12
x
FA
x
FA
Fb l
FB
FB
Fa l
AD段( 0≤ x ≤ a ):
M1(x)
Fbx l
DB段( a ≤ x ≤ l ):
M2(x)F l b xF(xa)
材料力学第五章梁弯曲时的位移
13
x a AD段( 0≤ ≤ ):
M1(x)
Fbx l
EIw1
Fbx l
Ew I1 EqI1F l bx22C1
q0
M(0)0
FS(0)
3 8
q0l
M(l) 81q0l2
FS(l) 85q0l
材料力学第五章梁弯曲时的位移
23
q0
1 8
q0l
材料力学第五章梁弯曲时的位移
7
挠曲线上某些点的已知位移(挠度和 转角)条件 —— 边界条件
wA = 0 wB = 0
wA = 0 qA = 0
边界条件 —— 支座处的约束条件
材料力学第五章梁弯曲时的位移
8
挠曲线的任意点上,有唯一确定的挠 度和转角 —— 连续条件
错!
错!
当弯矩方程需要分段建立时,在相邻梁 段的交接处,应具有相同的挠度和转角。

材料力学 第五章 梁弯曲时的位移 A

材料力学 第五章 梁弯曲时的位移 A

材料力学
第五章梁弯曲时的位移
主讲:韩玉林教授
东南大学工程力学系
§5-1 梁的位移
一.工程实例
在工程实践中,对某些受弯构件,除要求具有足够的强度外,还要求变形不能过大,即要求构件有足够的刚度,以保证结构或机器正常工作,如摇臂钻床。

约束对位移的影响
没有约束无法确定位移
连续光滑曲线;铰支座对位移的限制。

边界条件:
A B w w ==约束对位移的影响
连续光滑曲线;固定端对位移的限制。

边界条件:
0,0
B B w θ==约束对位移的影响
注意:
1.分段连续弯矩方程必须从原点沿x 的正向依次写出;
2.对含(x-a)项可不展开,把它视为新变量积分,更为方便;
试绘制图示梁挠曲轴的大致形状
绘制原则
•挠曲轴是一条连续而光滑的曲线(中间铰链除外
,该处只连续而不光滑),为此必须满足连续光滑
条件。

•挠曲轴必须符合梁的边界条件
•弯矩为正的梁段是一条凹曲线;弯矩为负的梁段是一条凸曲线;弯矩为零的梁段不变形,为一条直线
•弯矩图由正变负或由负变正处,弯矩为零处,
挠曲轴出现拐点
下列图示梁的Q、M图和挠曲轴大致形状先用虚线标出,请读者自行检查是否正确,如有错,请在原图上改正
图示梁有一中间铰链,试勾画出挠曲轴大致形状,并求C处的挠度。

图示梁,左右端各作用一力偶矩m 1和m 2,要使挠曲轴的拐点位于距左端为L/3处,问m 1和m 2应保持何种比例?
作业
•5-8,5-11,5-13,5-17,5-25
谢谢大家!。

材料力学I-第5章%20梁弯曲时的位移[1]

材料力学I-第5章%20梁弯曲时的位移[1]


T$
T%
$
Z'
Z&
'
D
)$ )%
TD[ T[ d [ d D TD [ D T[ 0 [ TD[ D d [ d D , Z c (,Zc 0 [ TD[ T[ d [ d D c (,Z TD[ T[ & (,Z TD[ T[ & [ ' Z c (,Zc 0 [ TD[ TD [ D T[ D d [ d D c (,Z TD[ TD [ D T[ & (,Z TD[ TD [ D T[ & [ ' 0 [


0H
O
0H
G Z )O )[ G[ (, GZ )O[ )[ & G[ (, Z )O[ )[ &[ ' (, T & Z '


0
)O )[
T$ T%
T O

ZPD[
)$
[ TO 0 [ )$ [ T [ [ T O[ [ O [ T O[ O
(,Zcc (,Zc (,Z
& '
O T O O
)$
$ O
%
T O
Z

[
(,Z
&
[ D

&
TD ' T Z

材料力学第五章 梁的变形

材料力学第五章  梁的变形

连续条件
xa
wB1 wB2
例题 画出挠曲线大致形状。图中C为中间铰。
解: 边界条件
A
C
F
B
wA 0 qA 0
wB 0
两根梁由中间铰连接,挠
曲线在中间铰处,挠度连
续,但转角不连续。
wC左 wC右
qC左 qC右
A
挠曲线的凸向由弯矩的正
负号决定,正弯矩向下凸,
负弯矩向上凸。
例 图示等截面梁,弯曲刚度EI。设梁下有一曲面 y Ax3 ,欲
)
6l
bF l
F
b
C
Bx
x l
aF FRB l
AC段 (0 x a)
EIw1
bF l
x
EIw1
bF 2l
x2
C1
EIw1
bF 6l
x3
C1 x
D1
CB段 (a x l)
EIw2
bF l
x
F(x a)
EIw2
bF 2l
x2
F ( x a)2 2
C2
EIw2
bF 6l
x3
F ( x a)3 6
转角方程,挠度方程
EIw M ( x)
q w m 6lx 3x2 2l 2 6EIl A
m
l
C
w mx 3lx x2 2l 2 6EIl
2 m
y FRA l
l
x B
m FRB l
求 wmax w q 0
3 x0 1 3 l 0.423l
wmax
w
x0
F2 60kN
C
A
F1 200kN
F2
D

材料力学弯曲位移

材料力学弯曲位移
3 R B ql 8
3 4
解法二:将支座A对
截面转动的约束看成多
余约束,变形协调条件
为:
qA 0
M Al ql 0 3EI 24 EI
1 2 M A ql 8
3

例:为了提高悬臂梁AB的强度和刚度,
用短梁CD加固。设二梁EI相同,试求 (1) 二梁接触处的压力; (2) 加固前后AB梁最大弯矩的比值; (3) 加固前后B点挠度的比值。
l/2
l/2
B
F
A
qBF
wCq
C
B
wBP
q
A
B
ql 3 q Bq q Cq 48EI l 7ql 4 wBq wCq q Cq 2 384 EI
3.在F和q共同作用下:
wBq
q B q BF q Bq
wB wBF wBq
例;试用叠加法求图(a)所示梁跨中截面(B截面)的挠度。
二、提高梁的刚度措施
ln w EI
1.增大梁的抗弯刚度 EI;主要增大I值,在截面面积不变 的情况下,采用适当形状,尽量使面积分布在距中性轴较远 的地方。例如:工字形、箱形等。 2.调整跨长和改变结构;缩短跨长:如将简支梁改为外伸 q 梁;或增加支座等。
A
B l B l A
q
A
q
B
§6.4 简单超静定梁的解法
q C q C1 q C 2
θB2
P Pa
wC wC1 wC 2 Pa a L 3EI
2
例 如图所示悬臂梁,其抗弯刚度EI为常数,求B点转角 和挠度。
q F
A
C
Fl 2 Fl 3 1.在F作用下: 查表:q BF , wBF 2 EI 3EI

材料力学:梁弯曲时的位移

材料力学:梁弯曲时的位移
Flx 2 Fx3 EIw C1 x C2 2 6
C1=0 C2=0
(3)
(4)
梁的转角方程和挠曲线方程分别为
Flx Fx 2 w' EI 2 EI
Flx 2 Fx3 w 2 EI 6 EI
24
F
A B x
w
max
l
θ max
y
max 及 wmax都发生在自由端截面处
M ( x) EI
12
(1 w' )
2
3
2
M
M
在规定的坐标系中,x 轴水平向右 为正,y 轴竖直向下为正。 曲线向下凸 时 : w’’< 0 , M > 0 曲线向上凸 时 : w’’ > 0 , M < 0
y
M>0
w" 0
o
M
x
M
M<0
因此, M 与 w’’ 的正负号相反 y
w" 0
挠曲线方程为
w w( x)
式中 ,x 为梁变形前轴线上任一点的横坐标 ,w 为该点的挠度。
A
C
B
x
w挠度
挠曲线
y
C'
转角

5
三、挠度与转角的关系:
A
C
B
x
w挠度
挠曲线
y
C'
转角

tg w' w' ( x)
6
四、挠度和转角符号的规定
挠度:向下为正,向上为负。
转角:自 x 转至 切线方向,顺时针转为正,逆时针转为负。
A
C
B
x
w 挠度

材料力学第五章 梁弯曲时的位移 PPT

材料力学第五章 梁弯曲时的位移 PPT

M(x) E Iz
高等数学:
1
r (x)
=±(1+ww2)3/2
± w w (1+ 2)3/2
=
M(x) E Iz
M < 0,w > 0
M > 0,w < 0
取负号!
- w w (1+ 2)3/2
=
M(x) E Iz
w w (1+ 2)3/2
=-
M(x) E Iz
挠曲线微分方程
小 变 形
w
=-
DB段(a≤x≤l): M2(x)F l b xF(xa) Ew I2 Fl b xF(xa)
q E w 2 IE2I F l b x 2 2 F (x 2 a )2 C 2
E2 I w F l b x 6 3F(x 6 a )3 C 2xD 2
确定积分常数 连续条件
x = a 时:
w1 w2 w1 w2
边界条件
x = 0 时: w1 0 x = l 时: w2 0
D1D20 C1C2F 6lb(l2b2)
AD段( 0≤ x ≤ a ):
w 1 q1F(6 b lE 2b I2)l2F Eb Ix2l
w1F(6 b lE 2b I2l)x6F EbIx3 l
DB段( a ≤ x ≤ l ):
q w 2 2 F ( 6 lE 2 b b 2 I ) l2 F Ex b 2 I l 2 F E (x I a )2
对于受任意荷载的简支梁,若挠曲线上无拐点, 则可用梁中点的挠度代替最大挠度。
例3:悬臂梁如图,已知F、a,M=0.5 Fa,
梁的弯曲刚度 EI 为常数,试画出挠曲线的大致形 状。
FM
A
B
C
D
a
a

材料力学第五章梁弯曲时的位移分析

材料力学第五章梁弯曲时的位移分析

a)2
C2 x2 D2
C2
B B x
FBy
目录
5.2 积分法求梁的挠度和转角
4)由边界条件确定积分常数
位移边界条件
x1 0, w1(0) 0 x2 l, w2 (l) 0
光滑连续条件
x1 x2 a, 1(a) 2 (a)
x1 x2 a, w1(a) y2 (a) 代入求解,得
x1 ,0
x1
a
y
CB 段:
M x2
FAy
x2
F ( x2
a)
Fb l
x2
F ( x2
a),
a x2 l
目录
5.2 积分法求梁的挠度和转角
3)列挠曲线近似微分方程并积分
F
AC 段: 0 x1 a
EI
d 2w1 dx12
M (x1)
Fb l
x1
EI
dw1 dx1
EI (x1)
Fb 2l
x2 1
EI dw EI 1 F (l x)2 C
dx
2
EIw 1 F (l x)3 Cx D 6
代入求解
C 1 Fl2, D 1 Fl3
2
6
5)确定转角方程和挠度方程
EI 1 F (l x)2 1 Fl2
2
2
Ax
y
yB
l
F Bx
B
EIw 1 F (l x)3 1 Fl2x 1 Fl3
目录
5.2 积分法求梁的挠度和转角
例2 求梁的转角方程和挠度方程,并求最大转角和最大挠度,
梁的EI已知,l=a+b,a>b。
F
解 1)由梁整体平衡分析得:

材料力学笔记(第五章)

材料力学笔记(第五章)

材料力学(土)笔记第五章 梁弯曲时的位移1.梁的位移——挠度及转角为研究等直梁在对称弯曲时的位移取梁在变形前的轴线为x 轴,梁横截面的铅垂对称轴为y 轴而xy 平面即为梁上荷载作用的纵向对称平面梁发生对称弯曲变形后,其轴线将变成在xy 平面内的曲线1AC B度量梁变形后横截面位移的两个基本量是挠度:横截面形心(即轴线上的点)在垂直于x 轴方向的线位移ω转角:横截面对其原来位置的角位移θ 梁变形后的轴线是一条光滑的连续曲线,且横截面仍与该曲线保持垂直因此横截面的转角θ也就是曲线在该点处的切线与x 轴之间的夹角度量等直梁弯曲变形程度的是曲线的曲率梁的变形还受到支座约束的影响通常就用这两个位移量来反映梁的变形情况梁轴线弯曲成曲线后,在x 轴方向也将发生线位移 但在小变形情况下,梁的挠度远小于跨长,梁变形后的轴线是一条平坦的曲线横截面形心沿x 轴方向的线位移与挠度相比属于高阶微量,可略去不记因此在选定坐标后,梁变形后的轴线可表达为()f x ω=式中,x 为梁在变形前轴线上任一点的横坐标;ω为该点的挠度梁变形后的轴线称为挠曲线,在线弹性范围内,也称为弹性曲线上述表达式则称为挠曲线(或弹性曲线)方程由于挠曲线为一平坦曲线,故转角θ可表达为''tan ()f x θθω≈== 称为转角方程即挠曲线上任一点处的切线斜率'ω可足够精确地代表该点处横截面的转角θ 由此可见,求得挠曲线方程后,就能确定梁任一横截面挠度的大小,指向及转角的数值 正值的挠度向下,负值的挠度向上正值的转角为逆时针转向,负值的转角为顺时针方向2.梁的挠曲线近似微分方程及其积分为求得梁的挠曲线方程,利用曲率κ与弯矩M 间的物理关系,即 1M EIκρ== 式中曲率κ为度量挠曲线弯曲程度的量,是非负的这是梁在线弹性范围内纯弯曲情况下的曲率表达式在横力弯曲时,梁横截面上除弯矩M 外尚有剪力S F 但工程用梁,其跨长l 一般均大于横截面高度的10倍剪力S F 对于梁位移的影响很小,可略去不计,故该式子依然适用式中的M 和ρ均为x 的函数,即1()()()M x x x EIκρ== 在数学中,平面曲线的曲率与曲线方程导数间的关系有'''23/21()(1)x ωρω=±+ 取x 轴向右为正,y 轴向下为正时曲线凸向上时''ω为正,凸向下时为负而按弯矩的正、负号规定,梁弯曲后凸向下时为正,凸向上为负,符号相反于是得到 '''23/2()(1)M x EIωω=-+ 由于梁的挠曲线为一平坦曲线,因此,'2ω与1相比十分微小可以略去不计故上式可近似的写为 ''()M x EIω=-上式略去了剪力S F 的影响,并略去了'2ω项 故称为梁的挠曲线近似微分方程若为等截面直梁,其弯曲刚度EI 为一常量,上式可改写为''()EI M x ω=-对于等直梁,上式进行积分,并通过由梁的变形相容条件给出的边界条件确定积分常数 即可求得梁的挠曲线方程当全梁各横截面上的弯矩可用单一的弯矩方程表示时,梁的挠曲线近似微分方程仅有一个 将上式的两端各乘以dx ,经积分一次,得'1()EI M x dx C ω=-+⎰再积分一次,即得12[()]EI M x dx dx C x C ω=-++⎰两式子中积分常数1C 、2C 可通过挠曲线的边界条件确定例如在简支梁中,左右铰支座处的挠度均等于零在悬臂梁中,固定端处的挠度和转角均等于零确定积分常数1C 、2C 后,就分别得到梁的转角方程和挠曲线方程从而可以确定任一横截面的转角和挠度1C 和2C 的几何意义 由于以x 为自变量,在坐标原点即0x =处的定积分恒等于零因此,积分常数'100x C EI EI ωθ===,20C EI ω=式中,0θ和0ω分别表示坐标原点处截面的转角和挠度若梁上的荷载不连续即分布荷载在跨度中间的某点处开始或结束,以及集中荷载或集中力偶作用处梁的弯矩需分段写出,各段梁的挠曲线近似微分方程也随之不同在对各段梁的近似微分方程积分时,均将出现两个积分常数为确定这些积分常数,除需利用支座处的约束条件外还需利用相邻两段梁在交界处位移的连续条件例如左、右两段梁在交界处的截面应具有相等的挠度和转角不论是约束条件和连续条件,均发生在各段挠曲线的边界处故均成为边界条件,即弯曲位移中的变形相容条件遵循两个原则①对各段梁,都是从同一坐标原点到截面之间的梁段上的外力列出弯矩方程所以后一段梁的弯矩方程包括前一段的弯矩方程的新增的()x a -项②对()x a -项的积分,以()x a -作为自变量于是由x a =处的连续条件,就能得到两段梁上相应的积分常数分别相等的结果 对于弯矩方程需分为任意几段的情况,只要遵循上述规则同样可以得到各梁段上相应的积分常数分别相等的结果从而简化确定积分常数的运算3.按叠加原理计算梁的挠度和转角梁在微小变形条件下,其弯矩与荷载成线性关系 在线弹性范围内,挠曲线的曲率与弯矩成正比当挠度很小时,曲率与挠度间呈线性关系梁的挠度和转角均与作用在梁上的荷载成线性关系在这种情况下梁在几项荷载(如集中力、集中力偶或分布力)同时作用下某一横截面的挠度或转角 就分别等于每项荷载单独作用下该截面的挠度或转角的叠加,即为叠加原理 已知梁在每项荷载单独作用下的挠度和转角表则按叠加原理来计算梁的最大挠度和最大转角将较为方便4.奇异函数·梁挠曲线的初参数方程5.梁的刚度校核·提高梁的刚度的措施5.1 梁的刚度校核对于梁的挠度,其许可值通常用许可挠度与跨长之比值[]l ω作为标准 梁的刚度条件可表达为 max[]ll ωω≤ max []θθ≤ 一般土建工程中的构件,强度要求是主要的刚度要求一般处于从属地位但当对构件的位移限制很严,或按强度条件所选用的构件截面过于单薄时刚度条件也可能起控制作用5.2 提高梁的刚度的措施由梁的位移表可见梁的位移(挠度和转角)除了与梁的支承和荷载情况有关还与其弯曲刚度EI 成反比,与跨长l 的n 次幂成正比减小梁的位移,可采取下列措施①增大梁的弯曲刚度EI②调整跨长和改变结构5.梁内的弯曲应变能当梁弯曲时,梁内将积蓄应变能梁在线弹性变形过程中弯曲应变能V ε在数值上等于作用在梁上的外力所作的功W梁在纯弯曲时各横截面上的弯矩M 为常数,并等于外力偶矩e M当梁处于线弹性范围内e EI EI θρ=== θ与e M 呈线性关系直线下的三角形面积就代表外力偶所作的功W ,即12e W M θ=从而得纯弯曲时梁的弯曲应变能 12e V M εθ=即得2222e M l M l V EI EIε== 横力弯曲时,梁内应变能包含两个部分:与弯曲变形相应的弯曲应变能和与切应变形相应的剪切应变能对于弯曲应变能,取长为dx 的梁段,其相邻两横截面的弯矩应分别为()M x 和()()M x dM x +在计算微段的应变能时,弯矩的增量为一阶无穷小,可略去不计 计算器弯曲应变能为2()2M x dV dx EIε= 全梁的弯曲应变能则可通过积分求得为2()2l M x V dx EIε=⎰ 式中,()M x 为梁任一横截面上的弯矩表达式 当各段梁的弯矩表达式不同时,积分需分段进行梁的剪切应变能远小于弯曲应变能,可略去不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6EIl
Mechanics of Materials
wmax 在AC段
wmax
=
Fb( l 2 − b2 )3 2 9 3EIl
Mechanics of Materials
例题:已知梁的刚度EI,用奇异函数法求梁的位移
θA、θD、wB、wD。
qa
q
A
B
C Dx
FA a
y
aa
FC
解:建立图示坐标系
1、求约束反力
( ) M(x) = − EI
w′′ 1+ w′2
32
Mechanics of Materials
若挠曲线是较平坦的光滑连续曲线, w′ << 1,
可忽略不计。

M (x) = −w′′
EI

EIw′′ = − M (x)
——挠曲线近似微分方程
适用条件: 线弹性小变形; 对称弯曲的细长梁。
2、积分法确定梁的位移
一、挠曲线近似微分方程
材力 数学
1 = M(x)
ρ EI
( ) 1 = w′′
ρ 1 + w′2 3 2
x y M > 0 w′′ < 0
( ) M(x) = ± EI
w′′ 1+ w′2
32
x
( ) M(x) = − EI
w′′ 1+ w′2
32
y M < 0 w′′ > 0
☻挠曲线微分方程的正负号与选取的坐标系有关
2
Mechanics of Materials
弯矩的通用方程
∑ ∑ ∑ ∑ ( ) M x =
i
Mi < x −ai >0 +
j
Fj < x − bj > +
k
qk 2
<
x − ck
>2

k
qk 2
< x − dk
>2
说明:
☻Mi以顺时针为正,Fj、qk以向上为正。
☻Mi、Fj包括外载荷和约束反力。 ☻ai、bj分别是集中力偶和集中力作用点的坐标,
b2
x
EIw2=

Fb 6l
x3
+
F(x −
6
a)3
+
Fb
l2 − 6l
b2
x
4、最大转角和最大挠度
a Fb
( ) θA
=
Fb l 2 − b2 6EIl
= Fab(l + b)
6EIl
A FA y
lC
Bx FB
( ) θB
=

Fbl 2 2EIl
+
Fb2 2EI
+
Fb l 2 − b2 6EIl
= − Fab(l + a)
6EIl
若a>b,
θmax
=
Fab(l + a)
6EIl
Mechanics of Materials
( ) EIw1′
=

Fb 2l
x2
+
Fb
l2 − 6l
b2
( ) EIw′2
=

Fb 2l
x2
+
F(x −
2
a)2
+
Fb
l2 − 6l
b2
( ) ( ) EIw1
=

Fb 6l
x3
+
Fb
l2 − 6l
4
4
2
3、转角方程和挠度方程
EIθ = − qa x2 + qa < x − a >2 − 7qa < x − 2a >2+ q < x − 2a >3 +C
8
2
8
6
EIw = − qa x3 + qa < x − a >3 − 7qa < x − 2a >3
24 6
24
+ q < x − 2a >4 +Cx + D 24
M(x)= M < x − a >0
2、仅有F作用的情况
M(x) = F < x − b >1
3、仅有q作用的情况
M
x
x
a
y
F
bx
y
x
q
M(x)= q < x − c >2
c
x
2
x
y
4、M、F、q共同作用的情况
M(x) = M < x − a >0+ F < x − b >1 + q < x − c >2
挠度w——向下为正,向上为负。
转角θ——顺时针为正,逆时针为负。
挠度w 转角θ
x
转角θ 挠曲线
y
线弹性小变形状态,挠曲线为光滑平坦的曲 线,故挠度和转角是位置坐标的函数。

w = w( x ) θ = θ( x )θ很Leabharlann 时,θ≈tan
θ
=
dw dx
Mechanics of Materials
§2 挠曲线近似微分方程及其积分
θ max
=
θA
=
Fl 2 16EI
wmax
=
wl
2
=
Fl 3 48EI
Mechanics of Materials
§3 奇异函数法求梁的挠度和转角
一、奇异函数
对n≥0(n为正整数)的情况,函数
f
(x)
=<
x

a
>n
=

⎩⎨(x
0
− a)n
(x < a) (x ≥ a)
——称为奇异函数
奇异函数的微分 奇异函数的积分
2
2
转角方程 EIw′ = 1 ql 2 x − 1 qlx 2 + 1 qx3 + C
2
2
6
挠度方程 EIw = 1 ql 2 x2− 1 qlx 3+ 1 qx4 + Cx + D
4
6
24
Mechanics of Materials q
l
wmaxx
y
θmax
EIw′ = 1 ql 2 x − 1 qlx2 + 1 qx3 + C
x2
+
F(x −
2
a)2
+
C2
挠度 方程
EIw1
=

Fb 6l
x3
+
C1
x
+
D1
EIw2
=

Fb 6l
x3
+
F(x −
6
a)3
+
C2 x
+
D2
EIw1′
=

Fb 2l
x2
+
C1
EIw1
=

Fb 6l
x3
+
C1
x
+
D1
Mechanics of Materials
EIw′2
=

Fb 2l
x2
+
F(x −
2
a)2
+
C2
EIw2=

Fb 6l
x3
+
F(x −
6
a)3
+
C2 x
+
D2
3、利用边界条件和光滑 A 连续条件确定积分常数
a Fb
lC
Bx
FA y
FB
x=0 x=a x=a
w1 = 0 θ1 = θ2 w1 = w2
D1 = 0 C1 = C2 D1 = D2
( ) C2
=
Fb
l2 − 6l
b2
x = l w2 = 0
− Fb l 2 + F(l − a)3
6
6
+ C2l = 0
Mechanics of Materials
( ) EIw1′
=

Fb 2l
x2
+
Fb
l2 − 6l
b2
( ) EIw′2
=

Fb 2l
x2
+
F(x −
2
a)2
+
Fb
l2 − 6l
b2
( ) ( ) EIw1
=

Fb 6l
x3
+
Fb
l2 − 6l
M (x) = Fb x − F (x − a)
l
(a ≤ x ≤ l )
A FA y
Mechanics of Materials
a Fb
lC
Bx
FB
AC段
CB段
弯矩 方程
M1
(x)
=
Fb l
x
M2(x)
=
Fb l
x

F(x

a)
转角 方程
EIw1′
=

Fb 2l
x2
+
C1
EIw′2
=

Fb 2l
2
F lC
l2 − b2 3
b
Bx
FB
5、讨论
①当 b → 0,
相关文档
最新文档