随机变量序列的几种收敛性及其关系000
随机变量序列的两种收敛
概率论与数理统计
2)、设 n ,n 是两个随机变量序列, a,b为常数,
若 n P a,n Pb 且在g(x,y)在点(a,b)处连续, 则 g(n ,n ) P g(a,b), (n ). 证明略,方法类似于1) 3)、若 n P ,n P,
则n n P , (n )
nn P , (n )
1)、若 n P ,n P, 则P ( ) 1
证: n n
0
,由
则 n
2
与
n
2
中至
少有一个成立,即
n
2
n
2
于是
P(
) P(n
2
)
P(
n
) 0(n )
2
即 0,有P( ) 1,从而P( ) 1
这表明,若将两个以概率为1相等的随机变量看作 相等时,依概率收敛的极限是唯一的。
概率论与数理统计
定理5.6 随机变量序列 n P c(c为常数)
的充要条件为 Fn (x) W F (x)
这里 F(x)是 c 的分布函数,也就是退化分布
1, x c F(x) 0, x c
即
n P c
Fn (x) W F (x)
在F(x)的连续点.
当n P, (n ) 时,它们的分布函数之间就有
lim
n
Fn
(
x)
F
(
x)
成立.
1.定义
定义5.3
概率论与数理统计
设 Fx, F1(x), F2 (x), 是一列分布函数,如果对
F(x)的每一个连续点x,
都有
lim
n
Fn (x)
F ( x)
成立,
则称分布函数列 Fn (x) 弱收敛于分布函数F(x),
随机变量的几种收敛及其相互关系
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is asequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship. This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows: 1. Convergence of random variables the concept of theory; 2. the convergence of several random variables between; From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: 41 几种收敛性定义 42 依概率收敛与依分布收敛的关系 53 r阶收敛与几乎处处收敛的关系 114 依概率收敛与r阶收敛的关系 135 几乎处处收敛与依概率收敛和依分布收敛的关系 17总结 19四种收敛性 19四种收敛蕴涵关系 19致谢 21参考文献 22引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】
(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b
②
1 / 167
圣才电子书
十万种考研考证电子书、题库视频学习平台
P
X n Yn a b
③
P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果
随机变量序列的收敛特性
概率空间•几乎必然收敛(almost sure convergence)–随机变量序列收敛到,同时}{n X X {li – a.s. 1}{lim ==∞→X X P n n X X =lim XX −→−.s .a 表示为或者n n ∞→n →)}()(lim :{ςςςX X n n =∞→•依概率收敛(convergence in probability)–随机变量序列以及满足对任意}{n X X li ε–p. 0}||{lim=>-∞→εX X P n n X X =lim XX −→−.p 表示为p 或者n n ∞→n →也有可能的数值极大|X X n -|•均方收敛(mean square convergence)–随机变量序列以及满足,同时}{n X X li ∞<}{2nX E –m.s. 0}){(lim2=-∞→X X E n n X X =lim XX −→−m.s.表示为或者n n ∞→n →•均方收敛(mean square convergence)–随机变量序列以及满足,同时}{n X X li ∞<}{2nX E –m.s. 0}){(lim2=-∞→X X E n n X X =lim XX −→−m.s.表示为或者则n n ∞→n →m s •若,则X X n −→−m.s.∞<}{2X E 几乎必然收敛或依概率收敛都不能确保均方收敛•以概率分布收敛(convergence in distribution)–随机变量序列以及满足在任意连续的x}{n X X li )()(limx F x F X X n n =∞→–表示为 d. 或者X X n n =∞→lim XX n −→−d.•依据特征函数判断收敛–XX n −→−d.––)}({)}({X f E X f E n →)t ()t (XX nΦ→Φ.s .a ⇒XX −→−.p(Cauthy criteria)在不知道极限的情况下,判定随机变量序列收敛随机变量序列的收敛特性。
5.2随机变量序列的两种收敛
(n )
i 1
根据定义即证 例1、设 n 是独立同分布的随机变量序列,且 2 lim P ( k a ) 0 2 E a , D n ( n 1 ) 1 1
n n
n 2 P (n ) k a 试证: n k ( n 1 ) k 1 n 2 n 2 n 2 k E a k a kk 证: E k ( n 1 ) n ( n 1 ) ) k1 n k 1 k 1 n(n1
随机变量序列依概率收敛与函数序列收敛也不一样.
P 0 , lim P ( ) 1 n n n n
i列 n 服从大 n n 1 1 数定律就可以表达为 0 , lim P ( E ) 1 i i n n n
0,有 如果
n
lim P ( ) 0 或 lim P ( ) 1 n n
n
P
则称随机变量序列 n 依概率收敛于 ,记作
lim n
n
,或
P , ( n ) n
由定义可知,
P n
0 , ( n )
W
证明 :略。
3.依概率收敛与按分布收敛间的关系
(1)
( n ) n
P
( n ) n
L
(2)
P c n n
L n
c n
分布函数列的弱收敛是一个很有用的概念,但要判 断一个分布函数序列是否弱收敛,有时很麻烦,而判 定相应的特征函数序列的收敛性却往往比较容易。
§4.3随机变量序列的两种收敛性
n
再令x ' x F ( x 0) lim Fn ( x )
n
8
同理可证: 当 x " x时,F ( x ") limFn ( x ),
n
再令x " x, F ( x 0) limFn ( x ) .
n
即有 F ( x 0) lim Fn ( x ) lim Fn ( x ) F ( x 0) . n
0, x c; 有 Fn (c / 2) F (c / 2) 1, F ( x ) 1 , x c . Fn (c ) F (c ) = 0 .
从而 P ( X n c ) (n ) 0
且 Fn ( x ) F ( x ) , 所以当 n 时,
n
若x是F ( x )的连续点,
则 Fn ( x ) F ( x ), 即X n X .
W L
TH2表明:依概率收敛是弱收敛的充分不必要条件,
由弱收敛不能得出依概率收敛。见下面的例子。
9
例2 设X
X P
1 1 2
1 1 2
令 Xn X ,
L
当然有 X n X . 则 X n 与X 同分布,
P P P X n a ,Yn b X n Yn a b; P P X n Yn a b , X n Yn a b(b 0). 证明: ( X n Yn ) (a b ) X n a Yn b ( X n Yn ) (a b ) X n a Yn b 2 2
0 P X Y
《概率论与数理统计课件》随机变量序列的收敛性
P
定理 4.3.3 若 C 为常数,则 X n C 的充
L
要条件是 X n C .
21
证明:
必要性已由定理 4.3.2 给出,下证充分性.
记随机变量 X n 的分布函数为 Fn x .而常数 X C
(退化分布)的分布函数为
F
x
0 1
xC . xC
22
所以对于任意的 0 ,有
Fn x收敛到一个极限分布函数 Fx 是有实际意义的.现在的 问题是,如何定义分布函数序列 Fn x的收敛性?很自然,由 于 Fn x是实变量函数序列,我们的一个猜想是:对所有的 x , 要求 Fn x F x, n .这就是数学分析中的点点收敛.然
下面的定理说明了依概率收敛是一种比按分布收敛更 强的收敛性.
11
P
L
定理 4.3.2 如果 X n X ,则必有 X n X .
12
证明:
设随机变量 X n 的分布函数为 Fn x , n 1, 2, 3, ;
随机变量
X
的分布函数为
F x .为证
Xn
L
X
,只须证明:
对所有的 x ,有
写出随机变量 Yn
n k 1
Xk 2k
的特征函数n t ;⑶
证
明:当 n 时,随机变量序列Yn依分布收敛于随机变量Y .
33Leabharlann 解:⑴ 由于随机变量Y 服从区间 1, 1 上的均匀分布,因
此 Y 的特征函数为
t eit eit cost i sin t cost i sin t sin t .
(因为 x x 0).所以有
再令 x x ,得
高等教育:概率论四种收敛性
第三章3・1四种收敛性车贝晓夫不等式2几乎处处收敛3依概率收敛4依分布收敛5r■阶收敛【引理】(马尔可夫不等式)设随机变量X有I•阶绝对矩,EX 「<00,则对任意£ > 0有P(\X\>s)<^4-【证明】设X的分布函数为F(x),则有:P(\X\>£)= f dF(x) < f x-\rdF(x)1 r00 ir< —-f x dF(x) 』J・8引理的特殊情况: P(|X|> £)<纟甲取一2,并以X ・E(X)代替X 得车贝晓夫不等式 * 【定理】(车贝晓夫不等式)设随机变量X 有2阶中心矩,E[X-E(X)] 则对任意£ > 0有P (|X -E (X )|>^)<^2【证明】设X 的分布函数为尸(兀),则有:DX = f (X -E(X))2JF(X )>f (x-E(X))2dF(x)\x-E(X)\^> J£2dF(x)= e 2P{\X-E(X)\>e}从而尸(|X - E(X)\ >e)< 代耳 <=^> P(\X 一 E(X)\ <^)>1-2^8 82 <00,P(\X-E(X)\<s)>l-^^ 8由车贝晓夫不等式可以看出,若b?越小,贝!I 事件[\X-E(X)\<£]的概率越大,即随机变量X集中在期望附近的可能性越大.特别地,若D(X)=O,则对任意£>0,恒<P{|X-EX|>g}|0- 因此P{X HE¥} = 0,即P{X = EX} = 1,所以方差为0的随机鑼是常数菱P{\X-E(X)\>当方差已知时,车贝晓夫不等式给出了/X与它的期望的偏差不小于8的概率的估计式・如取£ = 3b2P{IX-E(X)I> 3<r} <— ".1119(7 屋可见,对任给的分布,只要期望和方差亍存蠹则r.v X取值偏离超过3a的概率小于0.1117二车贝晓夫不等式的用途:车贝晓夫不等式只利用随机变量的数学期望及方差就可对的概率分布进行估计。
概率论课件 第4章第2讲随机变量序列的两种收敛性
0,当( x a)2 ( y b)2 2时有
| f ( x, y) f (a, b) |
于是 {| f (k ,k ) f (a, b) | } {( a)2 ( b)2 2 }
辛钦k 1n Nhomakorabeak
a | } 1
证明: {n } 同分布, 它们有相同的特征函数, 这个相同的特征函数记为 (t )
1 n 记 n k n k 1
a E ( k )
(0)
i
(t ) (0) (0)t o(t ) 1 iat o(t )
的分布函数Fn ( x) F ( x).
显然有 lim Fn ( x) F ( x)
n
L Xn Y
但对任意的0<ε<2,恒有
P{| n | } P{2 | | } 1
即不可能有{n }依概率收敛于
所以:依分布收敛依概率收敛不真
定理:随机变量序列依概率收敛于常数C 的充要条件是依分布收敛于常数C 证明:必要性已证,下面只证充分性
§4.2 随机变量序列的两种收敛性 上一节我们由大数定理可得,在贝努里试验中, 事件发生的频率稳定于概率,即
lim P{
n
n
n
P } 1
自然想到的是, 随机变量序列是否依 这种方式能稳定于一个随机变量呢 ?
这就是我们要讲的依概率收敛问题.
1
依概率收敛 定义:设{ n }是随机变量序列,若存在随机 变量 (或常数),对于任意ε>0,有
x x
令y x, z x,由x为F ( x)的连续点, 有
随机变量的几种收敛及其相互关系
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is a sequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship.This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows:1. Convergence of random variables the concept of theory;2. the convergence of several random variables between;From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: (4)1 几种收敛性定义 (4)2 依概率收敛与依分布收敛的关系 (5)3 r阶收敛与几乎处处收敛的关系 (11)4 依概率收敛与r阶收敛的关系 (13)5 几乎处处收敛与依概率收敛和依分布收敛的关系 (17)总结 (19)四种收敛性 (19)四种收敛蕴涵关系 (19)致谢 (21)参考文献 (22)引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
概率论中四种收敛性及其间的关系
概率论中四种收敛性及其间的关系
杜保建
【期刊名称】《安阳师范学院学报》
【年(卷),期】2005(000)005
【摘要】给出了概率论中所用到的随机变量列的四种收敛性,证明了它们之间的关系.
【总页数】3页(P1-3)
【作者】杜保建
【作者单位】安阳师范学院,数学系,河南,安阳,455000
【正文语种】中文
【中图分类】O211
【相关文献】
1.随机变量序列四种收敛性关系 [J], 王华
2.概率论中几个关系的辨析--概率统计教学经验总结之三 [J], 李海增
3.初等概率论中的收敛性注记 [J], 朱玉明
4.集值测度的收敛性及其与Castaing向量表示中测度的收敛性之间的关系 [J], 张玲;徐明跃;王涛
5.大数定律与中心极限定理的关系:概率论教学中的一点注记 [J], 高亚光
因版权原因,仅展示原文概要,查看原文内容请购买。
第五章随机变量的收敛性
当极限分布为点分布时,记为 X n qm c
对应还有:L1收敛(converge to X in L1 )
lim
n
Xn X 0
if Xn X 0, as , then Xn L1 X
7
其他收敛
依概率收敛
lim
n
Xn X 0
或 lim n
: Xn X 0
随机变量序列 X1, X2..., Xn ,当对任意 0,
CDF
1、如果对每个 0 ,当 n
时,
Xn X
0
则Xn依概率收敛于X ,记为 Xn P X 。 2、如果对所有F的连续点t,有
lim
n
Fn
t
Ft
则Xn依分布收敛于X ,记为 Xn
同教材上
X。
5
两种收敛的定义
当极限分布为点分布时,表示为
依概率收敛:
X c 1, and Xn P X , then Xn Pc
Xn p 1 2, Xn 2 n p 1 p n 1 4n
0.4 Xn 0.6 1
Xn Xn
0.1 0.1
1
4n
1 0.12
1 25 0.7 n
1 25 n 0.7 n 84
17
中心极限定理 (Central Limit Theorem, CLT)
发生的频率 fn A nA n逐渐稳定到概率p 。
那么lim n
fn
A
p?
不对,若
则对于
lim
n
0
fn A p
,总存在 N
0
,当
n
N 时,有
fn
A p 成立
但若取 p , 由于
fn A 0 1 pn 0
§4.1特征函数§4.2大数定律§4.3随机变量序列的两种收敛性
第10页
特征函数的定理
定理4.1.1 一致连续性.
定理4.1.2 非负定性.
定理4.1.3 逆转公式.
定理4.1.4 定理4.1.5
分布函数的唯一性.
连续场合,求p(密x)度函21数. eitx(t)dt
第11页
定理4.1.5 设X为连续型随机变量,密度函数
为p(x),若 | (t) | dt ,则 p(x) 1 eitx(t)dt 2
二、给定 n 和概率,求 y
例4 P237 15 设一家有500间客房的大旅馆的每间 客房装有一台2kw的空调机.若开房率为80%, 问需要多少kw的电力才能有99%的可能性保证 有足够的电力使用空调机?
第53页
三、给定 y 和概率,求 n
例5 用调查对象中的收看比例 作为某电
视节目的收视率 p 的估计 pˆ . 要有 90% 的把握,使调查所得收视率 pˆ与实际收
第44页
练习 P238 6 某汽车销售点每天出售的汽车数服 从参数为λ=2的泊松分布,若一年365天都经 营汽车销售,且每天出售的汽车数相互独立, 求一年中售出700辆以上汽车的概率.
第45页
例2 P238 4 掷一颗骰子100次,记第i次掷出的点
数为Xi , i=1,2,…,100,试求概率
å P{3 # 1
性质4.1.1 |(t)| (0)=1
性质4.1.2 (t) (t)
性质4.1.3 aX b(t) eibtX (at)
第7页
性质4.1.4 若 X 与 Y 独立,则
X Y (t) X (t)Y (t)
性质4.1.5 若 E(X l )存在,则对0≤k≤l有
(k)(0) ik E(X k )
概率论与数理统计4-2 随机变量序列的收敛性
则P(
2 n
)
=P{( n n )(k M)} +P{( n n )(k M)}
P( 2 >M-1)+P( n 1)<2
P( n
(由例4.3给出例证,请大家看书!)
定理4.5 随机变量序列n P P c, (c为常数)
的充分必要条件是
Fn (x) W F (x)
这里的F
(x)是
c的分布函数,即
F(x)=
1,x>c 0,x
c
证明:下证充分性. 0,有
Pn c P(n c ). P(n c )
则对x x x, 有
F( x)
lim
n
Fn
(x)
lnimFn
(x)
F
(
x)
令x x, x x,得
F(
x-0)
lim
n
Fn
(
x)
lnimFn
(
x)
F
(
x+0)
若x是F(x)的连续点,则lim n
Fn
(x)
F
(x)
注:这个定理的逆命题不成立。
1 Fn (c ) Fn (c 0)
11 0 0, n
斯鲁茨定理:设{1n },{ 2n },...{ kn }是k个
随机变量序列,且in P ai , (i 1, 2...)
又R(x ,x 1
2
...xk
)是k元变量的有理函数,
如果F(x)的每一x,有
随机变量序列的几种收敛性
本科毕业论文题目:随机变量序列的几种收敛性及其关系学院:数学与计算机学院班级:数学与应用数学2008级八班姓名:薛永丽指导教师:丁平仁职称:副教授完成日期:2012 年5月10 日随机变量序列的几种收敛性及其关系摘要:本文主要对随机变量序列的四种收敛性:a.e.收敛、依概率收敛、依分布收敛、r—阶收敛的概念、性质进行阐述;并结合具体实例讨论了它们之间的关系,进一步对概率论中依分布收敛的等价条件和一些依概率收敛的弱大数定律进行了具体的研究.关键字:随机变量序列收敛分布函数目录1.引言 .................................................................... 12.a.e.收敛、依概率收敛、依分布收敛、r —阶收敛的概念、性质以及它们之间的关系.2.1 a.e.收敛的概念及性质 ................................................................................................... 1 2.2 依概率收敛的概念及性质 .............................................................................................. 2 2.3依分布收敛的概念及性质 ............................................................................................... 3 2.4 r —阶收敛的概念及性质 .................................................................................................. 5 3.随机变量序列依分布收敛的等价条件. (6)4.随机变量∑=nk k n 11ξ依概率收敛的一些结果 (9)5.小结. .................................................................. 12 6.参考文献 (12)1.引言:在数学分析和实变函数中“收敛性”极为重要,特别在实变函数中对可测函数列收敛性的讨论。
§4.1随机变量序列的两种收敛性§4.2特征函数§4.3大数定律
第8页
方法一:利用大数定律 例1 P215 18. 设随机变量序列{Xn }独立同分布, 2 期望、方差均存在,且 E( X n ) = 0,Var( X n ) = s
1 n P 2 2 X 揪 ? s 求证: å i n i= 1
思考题:P215 19
第9页
方法二:利用切比雪夫不等式 例2 P215 17. 设随机变量序列{Xn }独立同分布, 期望、方差均存在,且 E( X n ) = m.
注意:i 1 是虚数单位.
第20页
注 意 点(1)
(t ) e (1) 当X为离散随机变量时,
k 1
itxk
pk
itx ( t ) e (2) 当X为连续随机变量时, p( x)dx
这是 p(x) 的傅里叶变 换
第21页
注 意 点(2)
特征函数的计算中用到复变函数,为此注意: (1) 欧拉公式: eitx cos(tx) i sin(tx) (2) 复数的共轭: a bi a bi (3) 复数的模: a bi a2 b2
P
c 其中c为常数,并求c的值.
作业:习题4.1第12、15题
第13页
引例 设随机变量序列{ Xn } 服从以下的退化分布 1 P ( X n = ) = 1, n = 1, 2, L n 求{Xn }的分布函数,并求其极限函数. 它还是一个分布函数吗?
第14页
4.1.2
按分布收敛、弱Leabharlann 敛 lim P X X 若对任意的 >0,有 n n 0
则称随机变量序列{Xn}依概率收敛于X, 记为
Xn
P X
第4页
随机变量序列的两种收敛性
§4.2随机变量序列的两种收敛性在上一节中,我们从频率的稳定性出发,引入了n η=∑=n i i n 11ξ−→−p a (n ∞→) 即随机变量序列{}n η依概率收敛于常数a 这么一个概念。
我们自然可以把所讨论的问题推广到a 不是一个常数,而是一个随机变量这样的情形,于是需要引入下面的定义。
定义4.2 设有一列随机变量1η,2η,3η,…,n η,如果对任意的ε>0,都有 lim ∞→n P ()εηη<-n (4.6)则称随机变量序列{}n η依概率收敛于η,并记作lim ∞→n r η−→−p η 或n η−→−p η (n ∞→) 由此可知,前一节中讨论过的大数定律只是上述依概率收敛的一种特殊情况。
我们已经知道分布函数全面地描述了随机变量的统计规律,如果已知n η−→−p η(n ∞→),那么它们相应的分布函数n F (x )与F (x )之间的关系会有什么样的关系呢?一个猜测是,对所有的x ,都有n F (x )→ F (x )(n ∞→)成立,这个猜测对不对呢?让我们看一个很简单的例子。
例4.2 设η,n η都是服从退化分布的随机变量,且P (η=0)=1,P (n η=-n 1)=1,n=1,2,… 于是对任给的ε>0,当n>ε1时有 P (ηη-n ≥ε)=P (n η≥ε)=0所以n η−→−p η (n ∞→) 成立。
又设η,n η的分布函数分别为F (x ),n F (x ),则F (x )=⎩⎨⎧≤>0,20,1x xF (x )=⎪⎩⎪⎨⎧-≤->n x n x 1,21,1 显然,当x ≠0时,lim ∞→n n F (x )= F (x )成立,当x=0时,lim ∞→n n F (0)=lim ∞→n 1=1≠0= F (0) 这个简单的例子表明,一个随机变量序列依概率收敛于某一个随机变量,相应的分布函数列不一定是在每一点上都收敛于这个随机变量的分布函数的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业论文题目:随机变量序列的几种收敛性及其关系学院:数学与计算机学院班级:数学与应用数学2008级八班姓名:***指导教师:丁平仁职称:副教授完成日期:2012 年5月10 日随机变量序列的几种收敛性及其关系摘要:本文主要对随机变量序列的四种收敛性:a.e.收敛、依概率收敛、依分布收敛、r—阶收敛的概念、性质进行阐述;并结合具体实例讨论了它们之间的关系,进一步对概率论中依分布收敛的等价条件和一些依概率收敛的弱大数定律进行了具体的研究.关键字:随机变量序列收敛分布函数目录1.引言 .................................................................... 1 2.a.e.收敛、依概率收敛、依分布收敛、r —阶收敛的概念、性质以及它们之间的关系. 2.1 a.e.收敛的概念及性质 ................................................................................................... 1 2.2 依概率收敛的概念及性质 .............................................................................................. 2 2.3依分布收敛的概念及性质 ............................................................................................... 3 2.4 r —阶收敛的概念及性质 .................................................................................................. 5 3.随机变量序列依分布收敛的等价条件. (6)4.随机变量∑=nk k n 11ξ依概率收敛的一些结果 (9)5.小结. .................................................................. 12 6.参考文献 (12)1.引言:在数学分析和实变函数中“收敛性”极为重要,特别在实变函数中对可测函数列收敛性的讨论。
实变函数主要是在集合论与测度论的基础上建立起了Lebesgue 积分以及它的一些性质,而Lebesgue 积分的讨论中,在测度空间)(P F ,,Ω中关于可测函数列的各种收敛性以及它们之间的关系的讨论在理论和应用上都是十分重要的.同样在现代概率论中,其中的许多概念也是借助于集合论和测度论中的概念来定义和研究的,比如概率论中事件间的关系及运算与集合论中—σ代数间的关系及运算是相类似的,而且在许多情况下,用集合论的表达方式更简练、更容易理解,不妨设Ω为满足某一性质的全体所成的集合,若F 为Ω的一个—σ代数,则称)(F ,Ω为可测空间;若μ为F 上的测度,则称)(μ,,F Ω为测度空间;若μ为F 上的测度,且1=Ω)(μ,则称μ为F 上的概率测度,称)(μ,,F Ω为概率测度空间;由此我们通过测度论知识就得到了概率测度空间,同时引出了概率公理化定义:概率是在—σ代数F 上的一个非负的、规范的、可列可加的集函数,其中Ω为某一试验中可能的结果的全体,称为样本空间;F 为随机事件全体,称为事件域(—σ代数);也就是说概率P 是概率测度空间F 上的一个测度集函数,同实变函数中的可测函数列收敛性一样,在概率论中我们有必要研究随机变量序列的收敛性,这对于概率论的学习是十分重要的.2.a.e.收敛、依概率收敛、依分布收敛、r —阶收敛的概念、性质以及它们之间的关系.在概率论中,概率空间),,(P F Ω上的随机变量就是样本空间Ω上关于F 的可测函数,对于一般的可测函数的序列我们在数学分析和实变函数中已有认识,其中“收敛性”理论是非常重要的,在概率论中也一样重要,随机变量序列有:几乎处处收敛,依概率收敛,依分布收敛,r —阶收敛.下面一一分别介绍:设ξ和)1(≥n n ξ是给定概率空间),,(P F Ω上的随机变量. 2.1 a.e.收敛的概念及性质 定义1 如果有1))()(lim :(==∞→ωξωξωn n P , (1.1)则称随机变量列}{n ξ几乎处处收敛到ξ,记作ξξ−→−..s a n . 注意:(1.1)式中括号里的-ω集是一事件,因而是有意义的,用集合论的语言实际上是F mn k n k m n n ∈<-⋂⋃⋂==∞=∞=∞=∞→)1|)()((|))()(lim (11ωξωξωξωξ. (1.2)定理1 ξξ−→−..s a n 的充要条件是0>∀ε 0))|(|(lim =≥-⋃∞=∞→εξξk nk n P . (1.3)证明:(必要性)如在定点ω上有)()(lim ωξωξ=∞→n n ,则0>∀εεωξωξ≥-|)()(|n 不能对无穷多n 成立.令))|)()((|:(εωξωξω≥-⋃=∞=n nk n A ,则1+⊃n n A A ,故由连续性定理及ξξ−→−..s a n 得 0))|(|())|(|(lim 1=≥-⋃⋂=≥-⋃∞=∞=∞=∞→εξξεξξk nk n k nk n P P .(充分性)由(1.2)式及上式第一等号得 0))1|(|(1=≥-⋃⋂∞=∞=mP k nk n ξξ. 注意:对可列多个概率为0的事件n A 的和n n A A ∞=⋃=1,有0)()(1=≤∑∞=n n A P A P ,即0)(=A P ,故0))1|(|(11=≥-⋃⋂⋃∞=∞=∞=m P k n k n m ξξ.由对偶原则,即得1))1|(|(11=≥-⋂⋃⋂∞=∞=∞=mP k n k n m ξξ.由此及(1.2)即得ξξ−→−..s a n . 2.2 依概率收敛的概念及性质定义2 如果0>∀ε,0)|)()((|lim =≥-∞→εωξωξn n P ,则称随机变量序列)}({ωξn 依概率收敛于随机变量)(ωξ,记作ξξ−→−Pn . 定理2 若ξξ−→−..s a n ,则ξξ−→−Pn . 证明:由于0>∀ε,有)|(|)|(|εξξεξξ≥-⋃⊂≥-∞=k nk k ,又ξξ−→−..s a n 及定理1 得0))|(|(lim =≥-⋃∞=∞→εξξk nk n P ,所以 0)|(|lim =≥-∞→εξξn n P 定理得证.但是定理2的逆命题不真,反例如下:例1 取]1,0(=Ω,F 为[0,1]中全体博雷尔子集所成σ代数,P 为勒贝格测度,令.]1,21(,1]21,0(,0)(;]1,21(,0]21,0(,1)(;1)(222111⎪⎩⎪⎨⎧∈∈=⎪⎩⎪⎨⎧∈∈==ωωωηωωωηωη一般地,将(0,1]分成k 个等长的区间,而令).2,1;,2,1(],,1(,0],,1(,1)( ==⎪⎩⎪⎨⎧-∉-∈=k k i k ik i k i k i ki ωωωη 定义,),()(),()(),()(),()(),()(325314223212111 ωηωξωηωξωηωξωηωξωηωξ===== 则)}({ωξn 是一列随机变量,对任意0>ε,由于,1)|)((|nP ni ≤≥εωη故)(,0)|)((|∞→→≥n P ni εωη,即0−→−P n ξ;然而对任意固定Ω∈ω,任一正整数k,恰有一i ,使1)(=ωηki ,而对其余的j 有0)(=ωηkj ,有此知)}({ωξn 中有无穷多个1及无穷多个0,于是)}({ωξn 对每个Ω∈ω都不收敛. 2.3依分布收敛的概念及性质定义3 设)1)((),(≥n x F x F n 均为实函数.如果有)()(lim x F x F n n =∞→,其中x 为)(x F 的连续点集,则称)}({x F n 弱收敛到)(x F ,记作)()(x F x F Wn −→−. 例2 任意取一常数列}{n c ,使,21 >>c c )(lim -∞>=∞→n c c n n .令)(一切ωωξωξc c n n ==)(,)(.显然,对每一ω有)()(lim ωξωξ=∞→n n .其次,)(ωξn 及)(ωξ的分布函数分别为⎩⎨⎧≥<=⎩⎨⎧≥<=c x c x x F c x c x x F n n n ,1,0)(;,1,0)(,)()(x F x F Wn −→−;但在)(x F 的不连续点c 上,1)(,0)(==c F c F n .故)()(lim c F c F n n ≠∞→.由此例可知定义3中称“弱收敛”是自然的,因为分布函数列的极限函数不一定是分布函数,为了避免这种情况,故引入如下的定义:定义 '3 设随机变量n ξ与ξ分别有分布函数)(x F n 与)(x F ,且)()(x F x F W n −→−,则称随机变量列}{n ξ依分布收敛到ξ,仍记作ξξ−→−Wn . 定理3 设ξξ−→−P n ,则ξξ−→−Wn . 证:对任意11,R x R x ∈∈,有),(),()(y x y x y n n ≤>⋃≤≤=≤ξξξξξ ),()(y x x n n ≤>⋃≤⊂ξξξ),()()(y x P x F y F n n ≤>+≤ξξ,由于ξξ−→−P n ,故对x y <得 )(,0)|(|),(∞→→-≥-≤≤>n y x P y x P n n ξξξξ因此)(lim )(x F y F n n ∞→≤;类似可证:对z x <,有)()(lim z F x F n n ≤∞→,于是对z x y <<,有)()(lim )(lim )(z F x F x F y F n n n n ≤≤≤∞→∞→.如果x 是)(x F 的连续点,令x z x y →→,,得)(lim )(x F x F n n ∞→=.但定理3逆命题不成立,反例如下:例3 抛掷一枚均匀的硬币,有两个可能结果:1ω={出现正面},2ω={出现反面},于是有21)()(21==ωωP P 令⎩⎨⎧=-==,,1,,1)(21ωωωωωη则)(ωη是一个随机变量,其分布函数为⎪⎩⎪⎨⎧-<<≤-≥=1,011,211,1)(x x x x F ,这时,若)()(ωηωξ-=,则显然)(ωξ与)(ωη有相同的分布函数)(x F .再令n n ηηη,-=的分布函数记作)(x F n ,故)()(x F x F n =,于是对任意的R x ∈,有)()(lim )(lim x F x F x F n n n ==+∞→+∞→,所以)()(x F x F W n −→−成立,而对任意的20<<ε,恒有 1)||2()|(|=>=>-εηεηηP P n 不趋于0,即不可能有ξξ−→−Pn . 在上述例子中,随机变量η与ξ在每次试验中取相反的两个数值,可是它们却有完全相同的分布函数.由此可知,一般说来并不能从分布函数列的弱收敛肯定相应的随机变量序列依概率收敛.但是在特殊情况下,它却是成立的,由下面定理说明.定理4 随机变量序列为常数)c c Pn (≡−→−ξξ的充要条件是)()(x F x F W n −→−. 这里)(x F 是c ≡ξ的分布函数,也就是退化分布:⎩⎨⎧<≥=c x cx x F ,0,1)(.证明:(必要性)已由定理3给出,下证(充分性): 对任意的0>ε,有)()()|(|εξεξεξ-≤++≥=≥-c P c P c P n n n∞→+-→-++-=-≤++>≤n c P c F c P c P n n n ,011)()2(1)()2(εεξξεξ定理得证.注:定理4将随机变量序列依概率收敛于常数的问题转化为讨论分布函数列弱收敛于退化分布的问题.这样两种收敛关系间的联系就清楚了.引理 1 (马尔科夫[Mapkob]不等式)设随机变量ξ有r 阶绝对矩,即)0(,||>∞<r E r ξ, 则对任意0>ε有rrE P εξεξ||)|(|≤≥. (1.4)取2=r ,并以ξξE -代替ξ,得2)|(|εξεξξD E P ≤≥-,称为切比雪夫不等式.2.4 r —阶收敛的概念及性质定义 4 设对随机变量n ξ及ξ有∞<r E ||ξ,其中r>0为常数,如果0||lim =-∞→r n n E ξξ,则称-r n }{ξ阶收敛于ξ,记为ξξ−→−rn . 定理 5 如果ξξ−→−r n ,则ξξ−→−Pn ;反之不真. 证明:由引理1,对0>ε,有rrn E E P εξξεξξ||)|(|-≤≥-,又0||lim =-∞→r n n E ξξ,所以0)|(|lim =≥-∞→εξξn n P ,即得ξξ−→−Pn . 例4 ),,(P F Ω如例1所取,令⎪⎪⎩⎪⎪⎨⎧∉∈=];10,0]10,)(1n n n rn ,(如,(如ωωωξ,0)(=ωξ(一切ω).显然,对一切ω,)(),()(+∞→→n n ωξωξ,故ξξ−→−..s a n ;ξξ−→−Pn . 然而11||=⋅=-nn E r n ξξ不趋于0. 由上面四种收敛性间的关系可得:几乎处处收敛⇒依概率收敛⇒依分布收敛.-r 阶收敛⇒依概率收敛⇒依分布收敛.3.随机变量序列依分布收敛的等价条件.因为随机变量取值的统计规律可由它的分布函数完全确定,所以自然会考虑利用分布函数的收敛性来定义随机变量的收敛性,又分布函数和特征函数一一对应,而判断一个分布函数的序列的收敛是否弱收敛有时是很麻烦的,但判断相应的特征函数序列的收敛性却往往比较容易,下面给出弱收敛的充要条件,首先做一些准备:定理 6 设)1)((),(≥n x F x F n 均为分布函数,则)()(x F x F W n −→−的充要条件是: 对于函数)(x F 的连续点集1R 的某个稠子集D 有 D x x F x F n n ∈∀=∞→),()(lim . (2.1)证明:由1R D ⊂立得必要性.下设(2.1)式成立.对任何1R x ∈,取z x y <<且D z y ∈,则有 )()()(z F x F y F n n n ≤≤.令∞→n ,用(2.1)式得)()(lim )(lim )(lim )(lim )(z F z F x F x F y F y F n n n n n n n n =≤≤≤=∞→∞→∞→∞→.再令x z x y →→及便得证)()(lim x F x F n n =+∞→,即)()(x F x F W n −→−,证毕. 引理 2 (海来Helly 第一定理)任一分布函数列)}({x F n 必定含弱收敛于某函数)(x F 的子列,而且)(x F 单调不减,右连续,1)(0≤≤x F .注:在引理2中不能断定海来第一定理中的)(x F 是分布函数.事实上,取)1(≥=n n n ξ,则对任应的分布函数0)(−→−Wn x F ,极限函数不是分布函数. 引理 3 (海来Helly 第二定理)设分布函数列)}({x F n 弱收敛于分布函数)(x F ,则对任何有界连续函数ϕ有⎰⎰→Rn Rdx x p x dx x p x )()()()(ϕϕ. (其中)(),(x p x p n 分别是)(),(x F x F n 的密度函数).定理 7 (连续性定理)分布函数列)}({x F n 弱收敛到分布函数)(x F 的充要条件是: 相应的特征函数列)}({t f n 逐点收敛到相应的特征函数)(t f . 证明:令)(),(x p x p n 分别是)(),(x F x F n 的密度函数.(必要性):设)()(x F x F Wn −→−,对有界连续函数tx tx cos sin 与分别用引理3便得,当∞→n 时对一切R t ∈有⎰⎰⎰+==RRn n n Ritx n dx x txp i dx x txp dx x p e t f )(sin )(cos )()(⎰⎰⎰⎰=+→+=RRRRn n t f x txdF i x txdF x txdF i x txdF )()(sin )(cos )(sin )(cos .(充分性)据引理2知,分布函数列)}({x F n 必存在子序列)}({x F k n ,使当∞→k n 时F x F Wn k −→−)(.其中极限函数F 是R 上非减右连续函数且有界:1)(,0)(≤+∞≥-∞F F .下证此二式均取等号,即F 为分布函数.如若不然,有1)()(<-∞-+∞=F F a . (2.2) 那么,一方面由1)0(=f 及)(t f 连续知,对满足a -<<10ε的任意ε,存在充分小的正数τ,使221|)(|21εετττ+>->⎰-a dt t f . 另一方面,既然F x F Wn k −→−)(,由(2.1)式知可选取ετ4>b ,使b -与b 皆为F 的连续点,且存在自然数K ,使当K k ≥时有4)()(ε+<--=a b F b F a k k n n k . (2.3)再由τττ2||≤⎰-dt e itx 及b x >||时有btx x dt e itx 2|sin 2|||≤=⎰-ττ,便可得到,24441|)(][|21|)(][|21|)(][|21|)(|21)|(|),(εεεεττττττττττττ+=++<+≤+≤+≤=⎰⎰⎰⎰⎰⎰⎰≥---+∞∞---a a a b a x dF dt e x dF e x dF dt e dt t f k k k b x n itx n b b itx n itxn k k k k 这与(2.3)式矛盾.至此得证)}({x F n 的子列)}({x F k n 弱收敛到分布函数F .对此运用已证的必要性,知F 所对应的特征函数为f .再由极限函数的唯一性定理可推出F F =.最后证明分布函数列)}({x F n 也弱收敛到)(x F .仍然用反证法.如若不然,必存在)(x F 的连续点0x ,使)0(x F n 不趋于)(0x F .于是有界数列)(0x F n 必含收敛子列)}({0x F k m .其极限值)()()(00*0x F x F x F k m ≠→.对分布函数序列)}({x F k m 运用引理2,又存在子列)}({1x F k m 使*)(1F x F W m k −→−.*F 与前述F 至少在0x 上不同.但是重复上述论证可知*F 也应当是与f 对应的分布函数,由唯一性定理知F F =*,这导出矛盾.定理证完.例5 若λξ是服从参数为λ的泊松分布的随机变量,证明:dt ex P xt ⎰∞--+∞→=≤-2221)(lim πλλξλλ. (2.4)证明:已知λξ的特征函数为)1()(-=iyee t λλϕ故λλξηλλ-=的特征函数为 ti etitie e t t g λλλλλλλϕ---==)1()()(对任意的t ,有+∞←+-+=λλλλλ),1(!212o t iteti于是+∞→-→⋅+-=--λλλλλλ,2)1(2)1(22t o t t i eti从而对任意的点列+∞→n λ,有22)(lim t et g n n -+∞→=λλ.但是22t e-是N (0,1)分布的特征函数,由定理7即知有dtex P xt ⎰∞--+∞→=≤-2221)(lim πλλξλλ成立,因为λξ是可以任意选取的,这就意味着(2.4)式成立(“泊松分布(当参数+∞→λ时)收敛于正态分布”).下面给出弱收敛的各种等价条件:如果存在一个函数)(t f ,使对每一R t ∈,有)()(lim t f t f n n =∞→,则称特征函数列)}({t f n 为广义均匀收敛到)(t f ,而且这收敛对每一有限区间],[d c 中的t 是均匀的(即对任意0<ε,任意有限区间],[d c ,存在正整数),,(d c N N ε=,使对一切],[d c t ∈,当N n ≥时 ,有ε<-|)()(|x f x f n ),这时也说)}({t f n 广义均匀(一致)收敛)(t f .注:由于)(t f n 连续,如)}({t f n 广义均匀收敛到)(t f ,则)(t f 必定是连续函数. 系1 设分布函数列)}({x F n 对应的特征函数列为)}({t f n ,则下列四条件等价:(1))}({x F n 弱收敛于某分布函数)(x F ,(2))}({t f n 收敛到某函数)(t f ,)(t f 在点0连续,(3))}({t f n 收敛到某连续函数)(t f , (4))}({t f n 广义均匀收敛到某函数)(t f . 当任一条件满足时,)(t f 是)(x F 的特征函数.下面说明系1中等价条件(2)中“)(t f 在0=t 的连续性”是不可缺少的条件.例6 设 ),2,1(,sin )( ==n ntntt f n .)}({t f n 是一列特征函数)1)0((=n f .实际上, ⎰⎰+∞∞--==dx x e dx e nnt nt n itxn n itx )(21sin ϕ, 其中⎪⎩⎪⎨⎧-∉-∈=],,[,0],,[,21)(n n x n n x n x n ϕ 是分布函数⎪⎩⎪⎨⎧≥<<-+-≤=n x n x n n n x n x x F n ,1,,2,,0)((2.5) 的密度函数.显然,对任意t ,)()(lim t f t f n n =∞→,这里⎩⎨⎧≠==.0,0,0,1)(t t t f ,)(t f 在0点不连续,也不是特征函数.另外对于(2.5)中)(x F n ,极限函数)(21)(lim )(1R x x F x F n n ∈==∞→一切不是一分布函数.至此我们可将随机变量序列的四种收敛性间的蕴含关系总结如下:几乎处处收敛⇒依概率收敛⇒分布函数的弱收敛⇑r 阶收敛 特征函数逐点收敛4.随机变量∑=nk k n 11ξ依概率收敛的一些结果在概率论,我们用“频率的稳定性”引出概率这个基本的概念.许多试验结果表明,虽然一次随机试验中某确定事件发生与否不能预言,但是如果在相同条件下大量重复这个试验,则此事件发生的频率会稳定在某个值的附近.这说明,在一定条件下各事件出现的可能性的大小是客观存在的,可以用上述频率的稳定值来度量,这就是事件的概率.频率的稳定性呈现在大量重复试验中,历史上把这个试验次数很大时出现的规律称作大数定律.后来我们引入了伯努利概型来刻画独立重复试验.将一成功(即A 发生)概率为p 的试验独立重复n 次,其中成功n μ次,则n μ是二项分布随机变量..)(,)(npq D np E n n ==μμ因此成功的频率n n μ也是随机变量.其期望为p 与n 无关,且方差npq 当∞→n 时趋于0.熟知,方差为0的随机变量恒等于它的期望,所以当∞→n 时频率n n μ应以概率p 为极限.另一方面,可以写∑==nk k n 1ξμ,其中n ξξξ,,,21 相互独立,具有相同的伯努利分布,至此,问题转化为研究∞→n 时ξ的平均值序列∑=nk k n 11ξ的极限行为.鉴于已在上面讨论过随机变量列的各种收敛性,因此我们可以给出大数定律的严格定义. 定义5 设}{n ξ为随机变量序列,它们都有有限的数学期望)(n E ξ.如果0)]([11−→−-∑=Pn k k k E n ξξ, (3.1) 则称}{n ξ满足大数定律. 定理8 (马尔科夫大数定律)设}{n ξ是方差有限的随机变量序列,如果有0)(112→∑-nk k D n ξ. (3.2)则}{n ξ满足大数定律.证明:由切比雪夫不等式及(3.2)式立得,对任意的0>ε有0)(1)|))((1(|1221→≤≥-∑∑==nk k n k k k D n E n P ξεεξξ, 即得证(3.1)式成立,定理得证.注:将0)(112→∑-nk k D n ξ称为马尔科夫条件,由定理8知它是大数定律成立的一个充分条件.定理9(切比雪夫大数定律)若序列}{n ξ两两不相关且方差有界:)1()(≥≤n C D n ξ,则}{n ξ满足大数定律.证明:在所给条件下,(3.2)式的左方0)(1)(11212→≤=∑∑==nCD n D n nk k nk k ξξ.即马儿科夫条件满足,从而大数定律成立. 定理 10 (伯努利大数定律)设n μ为n 重伯努利试验中事件A 出现的次数,又A 在每次试验中出现的概率为)10(<<p p ,则对任意的0<ε,有1)|(|lim =<-∞→εμp nP nn .证明:令⎩⎨⎧≤≤=)1,0,1n i A A i (不出现在第一次试验中出现在第一次试验中ξ则n ξξξ,,,21 是n 个相互独立的随机变量,且),,1(,1)1(,n i pq p p D p E i i =<=-==ξξ.满足切比雪夫大数定律条件,从而大数定律成立.注:此定理就是“频率以概率为其稳定值”的严格刻画.马尔科夫大数定律的重要性在于对}{n ξ已经没有任何同分布、独立性、不相关的假定.切比雪夫大数定律可以看成是马尔科夫大数定律的特例,伯努利大数定律是切比雪夫大数定律的特例,下面介绍一个随机变量序列独立同分布时的大数定律:定理 11(辛钦大数定律)设 ,,21ξξ是一列独立同分布的随机变量,且数学期望存在:,2,1,==i a E i ξ则对任意的0>ε,有1)|1(|lim 1=<-∑=+∞→εξni i n a n P 成立.证明:因为 ,,21ξξ有相同分布,所以也有相同的特征函数,记这个特征函数为)(t ϕ,又因为i E ξ存在,从而特征函数)(t ϕ有展开式:)(t ϕ=)(1)()0()0(/t o iat t o t ++=++ϕϕ再由独立性知∑=ni i n 11ξ的特征函数为n n nt o iat n t )](1[)]([++=ϕ 对任意取定的t,有iat n n n n e nto n t ia n t =++=+∞→+∞→)](1[lim )]([lim ϕ 而iat e 是退化分布的特征函数,相应的分布函数为⎩⎨⎧<≥=a x ax x F ,0,1)(由定理7连续性定理知∑=ni i n 11ξ的分布函数弱收敛于)(x F ,再由定理4即知有a n Pn i i −→−∑=11ξ,故辛钦大数定律成立.5.小结.本文主要对随机变量的四种收敛性的定义,性质进行了阐述,并结合具体的实例对四种收敛性间的关系进行了讨论给出了相应的定理,对于概率论中十分重要的依分布收敛给出了一些等价条件,和应用依概率收敛给出了随机变量∑=nk k n 11ξ的一些弱大数定理理论,揭示了“频率的稳定性”,这样使对极限理论后续内容的理解更加容易,学习更加简单.6.参考文献[1] 魏宗舒.概率论与数理统计教程[M].北京:高等教育出版社,1983:56-61. [2] 王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,1996:91-102. [3] 杨振明.概率论[M].北京:科学出版社,1999.69-74.[4] 钟镇权. 证明随机变量序列各种收敛性的关系[J].玉林师范学院学报,1999,3:17-23. [5] 邹辉文,丁跃武,朱忠华.依概率收敛与依分布收敛的关系[J].工科数学,2001,5:49-52. [6] 孟艳姣. 随机变量组(序)列的收敛性和精确渐近性[D].浙江:浙江大学,2010. [7] 钱能生,古伟清. 关于随机集序列的各种收敛性[J].工业工程,1995,8:12-29. [8] 李上桐.随机变量的四种收敛性[J].湖北民族学院学报(自然科学版),1987,0:13-15. [9] 周晓钟,尹秀实.由依概率收敛推出r 阶收敛的条件[J].高师理科学刊,1997,2:5-9. [10] E.Lukacs .Characteristic Function[M],1960.[11] Lin Zhengyan ,Su zhonggen. Probability Theory[M].zhejiang. Zhejiang University Press ,2005.[12] 峁诗松,程依明,濮晓龙. 概率论与数理统计教程[M]. 北京:高等教育出版社,2004:199-223.Some Convergences of Random SequencesAnd Their RelationshipAbstract:This paper focuses on the four convergences of random variable sequences. We mainly talk about the concepts and properties of almost sure convergence, convergence in probability, convergence in distribution, r-order convergence and discuss the relationship between them. Further, we do more specific research about convergence in distribution and convergence in probability.Key words:random variable sequences ; convergence; CDF.。