2011年—2019年 新课标全国卷1文科数学分类汇编—8.立体几何
2011年—2018年新课标全国卷1文科数学分类汇编—8.立体几何
平面 ABB1A1 n ,则 m, n 所成角的正弦值为 3
D. 1 3
【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问 题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为: “在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长
【2013,19】如图,三棱柱 ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.
(1)证明:AB⊥A1C;(2)若 AB=CB=2,A1C= 6 ,求三棱柱 ABC-A1B1C1 的体积.
【2012,19】如图,三棱柱 ABC-A1B1C1 中,侧棱垂直底面,ACB 90 ,AC=BC= 1 AA1,D 是棱 AA1 2
【2015,18】如图四边形 ABCD 为菱形,G 为 AC 与 BD 交点,BE⊥平面 ABCD, (Ⅰ)证明:平面 AEC⊥平面 BED; (Ⅱ)若∠ABC=120°,AE⊥EC, 三棱锥 E- ACD
的体积为 6 ,求该三棱锥的侧面积. 3
【2014,19】如图,三棱柱 ABC A1B1C1中,侧面 BB1C1C 为菱形,B1C 的中点为 O ,且 AO 平 面 BB1C1C . (1)证明: B1C AB; (2)若 AC AB1 , CBB1 60, BC 1, 求三棱柱 ABC A1B1C1的高.
【2013,11】某几何体的三视图如图所示,则该几何体的体积为(
A.16+8π
B.8+8π
C.16+16π
). D.8+16π
【2012,7】如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为
A.6
B.9
C.12
D.15
2011-2017全国1卷分类汇编 立体几何
2011-2017高考全国I 卷分类汇编——立体几何【2011年全国】(19)如图,四棱锥S ABCD -中,AB CD ,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====. (Ⅰ)证明:SD SAB ⊥;(Ⅱ)求AB 与平面SBC 所成角的大小.【2012年全国】(19)(本小题满分12分) 如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥。
(Ⅰ)证明:1DC BC ⊥(Ⅱ)求二面角11A BD C --的大小。
【2013年全国】18、(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (Ⅰ)证明AB ⊥A【2014年全国】19. (本小题满分12分)如图三棱锥111ABC AB C -中,侧面11BB C C 为菱形,A 11AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=Bc ,求二面角111A A B C --的余弦值.【2015年全国】(18)如图,,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC 。
(1)证明:平面AEC ⊥平面AFC(2)求直线AE 与直线CF 所成角的余弦值【2016年全国】(18)(本题满分为12分)如图,在已A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (I )证明;平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【2017年全国】18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.。
2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8
2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8.三角函数、解三角形2011年—2018年新课标全国卷Ⅰ文科数学分类汇编7.三角函数、解三角形一、选择题2018年新课标Ⅰ文8题:已知函数$f(x)=2\cos x-\sin x+2$,则$f(x)$的最小正周期为$\pi$,最大值为3.2018年新课标Ⅰ文11题:已知角$\alpha$的顶点为坐标原点,始边与$x$轴的非负半轴重合,终边上有两点$A(1,0)$,$B(2,b)$,且$\cos2\alpha=\frac{1}{5}$,则$a-b=\frac{1}{5}$。
2018年新课标Ⅱ文7题:在$\triangle ABC$中,$\cos C=\frac{5}{\sqrt{26}}$,$BC=1$,$AC=5$,则$AB=5\sqrt{2}$。
2018年新课标Ⅱ文10题:若$f(x)=\cos x-\sin x$在$[0,a]$是减函数,则$a$的最大值是$\frac{3\pi}{4}$。
2018年新课标Ⅲ文4题:若$\sin \alpha=\frac{1}{\sqrt{8}}$,则$\cos 2\alpha=-\frac{7}{8}$。
2018年新课标Ⅲ文6题:函数$f(x)=\frac{\tan x}{1+\tan^2 x}$的最小正周期为$\pi$。
2018年新课标Ⅲ文11题:triangle ABC$的内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$。
若$\triangle ABC$的面积为$4$,则$\cosC=\frac{3}{4}$。
2017年新课标Ⅰ文11题:triangle ABC$的内角$A$、$B$、$C$的对边分别为$a$、$b$、$c$。
已知$\sin B+\sin A(\sin C-\cos C)=\frac{3}{2}$,$a=2$,$c=2$,则$C=\frac{\pi}{3}$。
新课标高考数学文科2011立体几何高考题
立体几何高考题精选(文科)(11北京)某四棱锥的三视图如图所示,该四棱锥的表面积是A.32B.C.48D.(11福建15)如图,正方体ABCD-A1B1C1D1中,AB=2。
,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于_____________.(11安徽8)一个空间几何体的三视图如图所示,则该几何体的表面积为(A)48 (B)(C)(D)80(11浙江7)几何体的三视图如图所示,则这个几何体的直观图可以是∉,则(11浙江4)若直线l不平行于平面a,且l aA.a内的所有直线与异面B.a内不存在与l平行的直线C.a内存在唯一的直线与l平行D.a内的直线与l都相交(11新课标8)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为(11天津10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为__________3m(11四川6)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A )12l l ⊥,23l l ⊥13//l l ⇒(B )12l l ⊥,23//l l ⇒13l l ⊥(C )233////l l l ⇒1l ,2l ,3l 共面(D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面(11上海7)若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积是 。
(11陕西5)某几何体的三视图如图所示,则它的体积是【】 (A)283π- (B)83π-(C)8-2π (D)23π(11山东11)下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命 题的个数是 A .3 B .2C .1D .0(11全国8) 已知直二面角l αβ--,点A ∈α,AC l ⊥,C 为垂足,点B ∈β,BD l ⊥,D 为垂足.若AB =2,AC =BD =1,则CD =(A ) 2 (B(C(D )1(11全国12) 已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 (A)7π (B)9π (C)11π (D)13π(11全国15)已知正方体ABCD-A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为 .(11辽宁8)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是A .4B .32C .2D .3(11辽宁10)已知球的直径SC=4,A ,B 是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为ABCD(11江西)将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )(11湖南)设图1是某几何体的三视图,则该几何体的体积为A .942π+B.3618π+ C.9122π+ D.9182π+正视图侧视图(11湖北)设球的体积为V ,它的内接正方体的体积为V ,下列说法中最合适的是A. V 比V 大约多一半B. V 比V 大约多两倍半C. V 比V大约多一倍D. V 比V大约多一杯半(11广东)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有 A .20 B .15 C .12 D .10 (11广东9)如图1-3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等腰三角形和菱形,则该几何体体积为A .34B .4C .32D .2(11北京17)如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC,点D,E,F,G 分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE ∥平面BCP ;(Ⅱ)求证:四边形DEFG 为矩形; (Ⅲ)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.(11福建20)(本小题满分12分)如图,四棱锥P-ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB 。
2019年高考文数——立体几何(解答)
2019年高考文数——立体几何1.(19全国一文19.(12分))如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.2.(19全国二文17.(12分))如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C 的体积.3.(19全国三文19.(12分))图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.4.(19北京文(18)(本小题14分))-中,PA⊥平面ABCD,底部ABCD为菱形,E为CD的中点.如图,在四棱锥P ABCD(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.5.(19天津文(17)(本小题满分13分))如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(Ⅰ)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.参考答案:1.解:(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥,因此四边形MNDE 为平行四边形,MN ED ∥.又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故41717CH =. 从而点C 到平面1C DE 的距离为417.2.解:(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==.所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.3.解:(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)取CG 的中点M ,连结EM ,DM.因为AB ∥DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE ⊥CG .由已知,四边形BCGE 是菱形,且∠EBC =60°得EM ⊥CG ,故CG ⊥平面DEM . 因此DM ⊥CG .在Rt △DEM 中,DE =1,EM =3,故DM =2. 所以四边形ACGD 的面积为4.4.解:(Ⅰ)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥.所以BD ⊥平面PAC .(Ⅱ)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE . 因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(Ⅲ)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG .则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点,所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE .所以四边形CEGF 为平行四边形.所以CF ∥EG . 因为CF ⊄平面PAE ,EG ⊂平面PAE ,所以CF ∥平面PAE .5.(Ⅰ)证明:连接BD ,易知AC BD H =I ,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面PAD ,PD ⊂平面PAD ,所以GH ∥平面PAD . (Ⅱ)证明:取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =I ,所以PA ⊥平面PCD .(Ⅲ)解:连接AN ,由(Ⅱ)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角,因为PCD △为等边三角形,CD =2且N 为PC 的中点,所以3DN =又DN AN ⊥,在Rt AND △中,sin DN DAN AD ∠==所以,直线AD 与平面PAC 所成角的正弦值为3.。
新课标全国卷历年高考立体几何真题(含答案)
2.(2012年全国卷)如图,直三棱柱 中, , 是棱 的中点, .
(Ⅰ)证明: ;(Ⅱ)求二面角 的大小.
3.(2013年全国Ⅱ卷)如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB= AB.
新课标全国卷历年高考立体几何真题(含答案)
班别:______________________姓名:___________________
题号
1
2
3
4
5
6
7
8
9
10
11
总分
得分
1.(2011年全国卷)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
由(1)可得 , , , ,
所以 , .故 .
所以直线 与直线 所成角的余弦值为
9.【解析】⑴∵ 为正方形∴ ∵ ∴ ∵ ∴ 面 面 ∴平面 平面 ⑵由⑴知 ∵ 平面 平面 ∴ 平面 平面 ∵面 面 ∴ ,∴ ∴四边形 为等腰梯形以 为原点,如图建立坐标系,设
, , 设面 法向量为 . ,即 ,
设面 法向量为 .即 ,
7.【解析】(1)交线围成的正方形EHGF如图:
(2)作EM⊥AB,垂足为M,则AM=A1E=4,EM=AA1=8.
因为四边形EHGF为正方形,所以EH=EF=BC=10.
于是MH= =6,所以AH=10.以D为坐标原点, 的方向为x轴的正方向,建立如图所示的空间直角坐标系D-xyz,则
A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8), =(10,0,0), =(0,-6,8).
2011-2019年全国卷立体几何真题汇编
2011-2019年全国卷立体几何真题汇编2011年全国卷6.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为A. B. C. D.2011年全国卷15.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为_______.2012年全国卷7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A.6B.9C.12D.182012年全国卷11.已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为A.26B.36C.23D.222013年全国一卷6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计的厚度,则球的体积为A.35003cm πB.38663cm πC.313723cm πD.320483cm π2013年全国一卷8.某几何体的三视图如图所示,则该几何体的体积为()A.168π+B .88π+C .1616π+D .816π+2013年全国二卷4.已知,m n 为异面直线,m ^平面a ,n ^平面b ,直线l 满足l m ^,l n ^,l Úa ,l Úb ,则A.//a b 且//l aB.a b ^且l b^C.a 与b 相交,且交线垂直于lD.a 与b 相交,且交线平行于l2013年全国二卷7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为2014年全国一卷12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为A.62B.42C.6D.42014年全国二卷6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为A .1727B .59C.1027D.132014年全国二卷11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成的角的余弦值为A.110B .25C.3010D.222015年全国一卷6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
高考数学真题解析分项版08立体几何 文
2011年高考试题解析数学(文科)分项版08 立体几何一、选择题:1.(2011年高考安徽卷文科8)一个空间几何体得三视图如图所示,则该几何体的表面积为(A ) 48 (D) 80 【答案】C【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242⨯+⨯=,四个侧面的面积为(44224++=+,所以几何体的表面积为48+故选C.【解题指导】:三视图还原很关键,每一个数据都要标注准确。
2.(2011年高考广东卷文科9)如图1-3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别为等边三角形、等腰三角形和菱形,则该几何体体积为( )A. B . C . D . 2【答案】C【解析】由题得该几何体是如图所示的四棱锥P-ABCD ,,棱锥的高,3232322131331233231222=⨯⨯⨯⨯⨯=∴=-=-==∴=-=V PO h AO 所以选择C.3.(2011年高考湖南卷文科4)设图1是某几何体的三视图,则该几何体的体积为A .942π+ B.3618π+ C.9122π+ D.9182π+ 答案:D解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。
4.(2011年高考湖北卷文科7)设球的体积为V 1,它的内接正方体的体积为V 2,下列说法中最合适的是A. V 1比V 2大约多一半B. V 1比V 2大约多两倍半C. V 1比V 2大约多一倍D. V 1比V 2大约多一倍半答案:D正视图侧视图俯视图图1解析:设球半径为R ,其内接正方体棱长为a2R =,即,a =由333124,3v R v a π==,比较可得应选D.5.(2011年高考山东卷文科11)下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.6.(2011年高考海南卷文科第8题)在一个几何体的三视图中,正视图和俯视图如右图,则相应的侧视图可以为( )解析:D. 由主视图和府视图可知,原几何体是由后面是半个圆锥,前面是三棱锥的组合体,所以,左视图是D 。
2011年—年新课标全国卷1文科数学分类汇编—8.立体几何
2011年—2018年新课标全国卷Ⅰ文科数学分类汇编8.立体几何一、选择题【2018,9】.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.217 ﻩﻩﻩB .25ﻩC.3ﻩD.2【2018,10】.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A.8ﻩ ﻩB.62C .82ﻩﻩD .83【2018,5】.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.122πﻩB.12πﻩﻩC.82π ﻩﻩﻩD.10π【2017,6】如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ) A.17π B . 18π C . 20π D . 28π 【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A.32 B.22 C.33 D.13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D.66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( )A.1 B.2 C.4 D.8【2015,11】 【2014,8】 【2013,11】 【2012,7】 【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A.16+8π B .8+8π C .16+16π D.8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6 ﻩﻩB .9 ﻩC .12 D.15 【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6π ﻩB .43π ﻩC.46π ﻩﻩD .63π【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB上一点,AH ∶H B=1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .三、解答题【2018,18】.(12分)在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将ACM △折起,使点M 到达点D 的位置,且AB DA ⊥.⑴证明:平面ACD ⊥平面ABC ;⑵Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.ﻬ【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G .(1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形A BCD 为菱形,G 为AC 与BD 交点,BE ⊥平面A BCD ,(Ⅰ)证明:平面AEC ⊥平面BED; (Ⅱ)若∠AB C=120°,AE ⊥EC , 三棱锥E - ACD 6.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱A BC -A 1B 1C1中,CA =CB ,AB =A A1,∠BA A1=60°.(1)证明:AB ⊥A1C ;(2)若A B=CB =2,A1C 6,求三棱柱ABC -A 1B1C 1的体积.【2012,19】如图,三棱柱AB C-A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,A C=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BD C1⊥平面BD C;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【2011,18】如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=,2AB AD =,PD ⊥底面ABCD . (1)证明:PA BD ⊥;(2)若1PD AD ==,求棱锥D PBC -的高.A 1CC 12011年—2017年新课标全国卷Ⅰ文科数学分类汇编8.立体几何(解析版)一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N,Q为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【解法】选A.由B,AB ∥M Q,则直线AB ∥平面MNQ;由C,AB ∥MQ,则直线AB ∥平面MN Q;由D ,AB ∥N Q,则直线AB ∥平面MNQ.故A 不满足,选A .【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ). A .17π B . 18π C . 20π D. 28π解析:选A. 由三视图可知,该几何体是一个球截去球的18,设球的半径为R ,则37428ππ833R ⨯=,解得2R =.该几何体的表面积等于球的表面积的78,加上3个截面的面积,每个截面是圆面的14,所以该几何体的表面积为22714π23π284S =⨯⨯+⨯⨯⨯14π3π17π=+=.故选A. 【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )3 2 C 3 D .13解析:选A. 解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面α,即平面AEF ,即研究AE 与AF 所成角的正弦值,易知3EAF π∠=,所以其正弦值为3.故选A . ABCDA 1B 1C 1D 1EF解法二(原理同解法一):过平面外一点A 作平面α,并使α∥平面11CB D ,不妨将点A 变换成B ,作β使之满足同等条件,在这样的情况下容易得到β,即为平面1A BD ,如图所示,即研究1A B 与BD 所成角的正弦值,易知13A BD π∠=,所以其正弦值为32.故选A.D 1C 1B 1A 1DCBA【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) B A.14斛 B .22斛 C.36斛 D.66斛解:设圆锥底面半径为r ,依题11623843r r ⨯⨯=⇒=,所以米堆的体积为211163203()54339⨯⨯⨯⨯=,故堆放的米约为3209÷1.62≈22,故选B .【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A.1 B .2 C.4 D .8解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r,圆柱的高为2r ,其表面积为2πr 2+πr×2r+πr2+2r×2r =5πr 2+4r 2=16+20π,解得r =2,故选B .【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( )BA.三棱锥 B .三棱柱 C.四棱锥 D .四棱柱 解:几何体是一个横放着的三棱柱. 故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A .16+8π B.8+8π C .16+16π D.8+16π 解析:选A.该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱=12π×22×4=8π,V 长方体=4×2×2=16.所以所求体积为16+8π.故选A.【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6 B .9 ﻩC.12 ﻩ D .15 【解析】由三视图可知,该几何体为三棱锥A-BCD , 底面△B CD 为底边为6,高为3的等腰三角形, ﻩ侧面AB D⊥底面BCD ,AO ⊥底面BCD,因此此几何体的体积为11(63)3932V =⨯⨯⨯⨯=,故选择B . 【2012,8】8.平面α截球O的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) A.6π ﻩB .43π ﻩC.46π ﻩﻩD.63π 【解析】如图所示,由已知11O A =,12OO =,在1Rt OO A ∆中,球的半径3R OA ==, 所以此球的体积34433V R ππ==,故选择B . 【点评】本题主要考察球面的性质及球的体积的计算.O B D A【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )【解析】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形. 故选D . 二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______.【解析】取SC 的中点O ,连接,OA OB ,因为,SA AC SB BC ==,所以,OA SC OB SC ⊥⊥, 因为平面SAC ⊥平面SBC,所以OA ⊥平面SBC,设OA r =,3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=,所以31933r r =⇒=,所以球的表面积为2436r ππ=.【2013,15】已知H 是球O的直径AB 上一点,AH ∶HB =1∶2,AB⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.答案:9π2解析:如图,设球O 的半径为R,则AH =23R ,OH =3R .又∵π·EH 2=π,∴E H=1.∵在Rt △OE H中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98. ∴S 球=4πR 2=9π2.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 【解析】设圆锥底面半径为r ,球的半径为R ,则由223π4π16r R =⨯,知2234r R =.根据球的截面的性质可知两圆锥的高必过球心O ,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此PB QB ⊥.设PO x '=,QO y '=,则2x y R +=. ① 又PO B BO Q ''△∽△,知22r O B xy '==.即2234xy r R ==. ② 由①②及x y >可得3,22Rx R y ==.则这两个圆锥中,体积较小者的高与体积较大者的高的比为13. 故答案为13.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【解法】(1)90BAP CDP ∠=∠=︒, ∴,AB AP CD DP ⊥⊥又AB ∥CD∴AB DP ⊥又AP ⊂平面PAD ,DP ⊂平面PAD ,且AP DP P = ∴AB ⊥平面PADAB ⊂平面PAB ,所以 平面PAB ⊥平面PAD (2)由题意:设=PA PD AB DC a === ,因为90APD ∠=︒ ,所以PAD ∆为等腰直角三角形 即=2AD a取AD 中点E ,连接PE ,则2PE =,PE AD ⊥. 又因为平面PAB ⊥平面PAD所以PE ⊥平面ABCD因为AB ⊥平面PAD ,AB ∥CD 所以AB ⊥AD ,CD ⊥AD 又=AB DC a =所以四边形ABCD 为矩形所以311218233233P ABCD V AB AD PE a aa a -====即2a = 11=223+226=6+2322S ⨯⨯⨯⨯⨯侧【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G .(1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE解析 :(1)由题意可得ABC △为正三角形,故6PA PB PC ===. 因为P 在平面ABC 内的正投影为点D ,故PD ⊥平面ABC . 又AB ⊂平面ABC ,所以AB PD ⊥.因为D 在平面PAB 内的正投影为点E ,故DE ⊥平面PAB . 又AB ⊂平面PAB ,所以AB DE ⊥.因为AB PD ⊥,AB DE ⊥,PD DE D =,,PD DE ⊂平面PDG , 所以AB ⊥平面PDG .又PG ⊂平面PDG ,所以AB PG ⊥.因为PA PB =,所以G 是AB 的中点.(2)过E 作EF BP ∥交PA 于F ,则F 即为所要寻找的正投影.E GCD BAP F理由如下,因为PB PA ⊥,PB EF ∥,故EF PA ⊥.同理EF PC ⊥, 又PA PC P =,,PA PC ⊂平面PAC ,所以EF ⊥平面PAC , 故F 即为点E 在平面PAC 内的正投影. 所以13D PEF PEF V S DE -=⋅△16PF EF DE =⋅⋅. 在PDG △中,32PG =6DG =3PD =故由等面积法知2DE =.由勾股定理知22PE =由PEF △为等腰直角三角形知2PFEF ==,故43D PEF V -=.【2015,18】如图四边形A BCD 为菱形,G 为A C与B D交点,BE ⊥平面AB CD ,(Ⅰ)证明:平面AE C⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E- ACD 的体积为63解:(Ⅰ) ∵BE ⊥平面A BCD ,∴BE ⊥AC . ∵ABCD 为菱形,∴ BD ⊥A C,∴AC ⊥平面BED ,又AC ⊂平面AEC ,∴平面AEC ⊥平面BED . …6分 (Ⅱ)设A B=x ,在菱形ABCD 中,由∠A BC =120°可得, A G=GC=32x ,GB=GD=2x. 在RtΔA EC 中,可得EG =32x . ∴在R tΔE BG 为直角三角形,可得BE=22x . …9分 ∴3116632E ACD V AC GD BE x -=⨯⋅⋅==, 解得x =2. 由BA =BD=BC 可得AE= 6∴ΔA EC 的面积为3,ΔE AD 的面积与ΔEC D5所以三棱锥E-ACD 的侧面积为3+25. …12分 18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥. 又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====, 又120ABC ∠=,所以3AG GC x ==,BG GD x ==. 在AEC △中,90AEC ∠=,所以132EG AC x ==, 所以在Rt EBG △中,222BE EG BG x =-=,所以3116622sin120232E ACD V x x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中, 可得6AE EC ED ===.所以三棱锥的侧面积112256632522S =⨯⨯⨯+⨯⨯=+侧.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高. 证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴B C1⊥B 1C ,…4分 ∴BC 1⊥平面AB C1,∵A B⊂平面ABC 1,故B1C⊥AB . (6)分(Ⅱ)作OD ⊥BC ,垂足为D ,连结A D,∵AO ⊥B C,∴B C⊥平面AO D, 又B C⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD ,作OH ⊥A D,垂足为H,∴OH ⊥平面ABC . …9分∵∠C BB 1=60°,所以ΔC BB 1为等边三角形,又BC =1,可得OD =34,由于AC ⊥A B1,∴11122OA B C ==,∴4AD ==,由 OH·AD =OD·OA ,可得OH=14,又O为B 1C 的中点,所以点B 1到平面ABC 的距离为,所以三棱柱ABC -A 1B 1C 1。
2019数学高考试题分类汇编 立体几何(2021年整理精品文档)
(完整版)2019数学高考试题分类汇编立体几何编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2019数学高考试题分类汇编立体几何)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2019数学高考试题分类汇编立体几何的全部内容。
2019年数学高考试题汇编-立体几何1、全国I理12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.62πD.6π4π C.68πB.62、全国III理8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线3、浙江4.祖暅是我国南北朝时代的伟大科学家。
他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高。
若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162C.182 D.324、浙江8.设三棱锥V—ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点),记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P—AC-B的平面角为γ,则A.β〈γ,α<γB.β<α,β<γ C.β〈α,γ<αD.α〈β,γ<β5、北京理(11)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.6、北京理(12)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 7、江苏9.如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 。
2019高考数学(文)真题分类汇编-立体几何含答案
2019高考数学(文)真题分类汇编-立体几何含答案立体几何专题1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是α内有两条相交直线与β平行。
解析:根据面面平行的判定定理,α内有两条相交直线都与β平行是α∥β的充分条件。
又根据面面平行性质定理,若α∥β,则α内任意一条直线都与β平行。
因此,α内两条相交直线都与β平行是α∥β的必要条件。
所以选B。
名师点睛:本题考查了空间两个平面的判定与性质及充要条件,需要运用面面平行的判定定理与性质定理进行判断。
容易犯的错误是记不住定理,凭主观臆断。
2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则BM≠EN,且直线BM,EN是相交直线。
解析:连接ON,BD,容易得到直线BM,EN是三角形EBD的中线,是相交直线。
过M作MF⊥OD于F,连接BF,平面CDE⊥平面ABCD,EO⊥CD,EO⊥平面CDE,因此EO⊥平面ABCD,MF⊥平面ABCD,所以△MFB与△EON均为直角三角形。
设正方形边长为2,可以计算出EO=3,ON=1,EN=2,MF=35,BF=22,因此BM=7,BM≠EN,故选B。
名师点睛:本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形。
解答本题时,先利用垂直关系,再结合勾股定理进而解决问题。
3.【2019年高考浙江卷】XXX是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高。
若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是162.解析:根据三视图,可以得到底面为直角梯形,上底为10,下底为18,高为9.因此,底面积S=1/2(10+18)×9=108,高h=9,代入公式V柱体=Sh可得V柱体=108×9=972,单位为cm3,故选B。
2011—2017高考全国卷Ⅰ文科数学立体几何汇编
新课标全国卷Ⅰ文科数学汇编立 体 几 何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB . 18πC . 20πD . 28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =, α平面11ABB A n =,则,m n 所成角的正弦值为( )A B .2 C . D .13 【2015,6】《九章算术》是我国古代内容极为丰富的数学名着,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )A .14斛B .22斛C .36斛D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) BA .1B .2C .4D .8【2015,11】 【2014,8】【2013,11】 【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15 【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体积为( )A B . C . D .【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O的表面积为_______.【2013,15】已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为______.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.三、解答题【2017,18】如图,在四棱锥P ABCD-中,AB∥CD,且90BAP CDP∠=∠=︒.(1)证明:平面PAB⊥平面PAD;(2)若P A P D A B D C===,90APD∠=︒,且四棱锥P ABCD-的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC-的侧面是直角三角形,6PA=,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E.连结PE 并延长交AB于点G.(1)求证:G是AB的中点;(2)在题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【2015,18】如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD,(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E- ACD【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C ,求三棱柱ABC -A 1B 1C 1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ; (2)平面BDC 1【2011,18】如图所示,四棱锥P ABCD -中,底面ABCD 60DAB ∠=,2AB AD =, PD ⊥底面ABCD .(1)证明:PA BD ⊥;(2)若1PD AD ==,求棱锥D PBC -的高.A 1解 析一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【解法】选A .由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ .故A 不满足,选A .【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π解析:选A . 由三视图可知,该几何体是一个球截去球的18,设球的半径为R ,则37428ππ833R ⨯=,解得2R =.该几何体的表面积等于球的表面积的78,加上3个截面的面积,每个截面是圆面的14, 所以该几何体的表面积为22714π23π284S =⨯⨯+⨯⨯⨯14π3π17π=+=.故选A .【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A B . C . D .13解析:选A . 解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面α,即平面AEF ,即研究AE 与AF 所成角的正弦值,易知3EAF π∠=.故选A . 解法二(原理同解法一):过平面外一点A 作平面α,并使α∥平面11CB D ,不妨将点A 变换成B ,作β使之满足同等条件,在这样的情况下容易得到β,即为平面1A BD ,如图所示,即研究1A B 与BD 所成角的正弦值,易知13A BD π∠=,所以其正弦值为A . 【2015,6】《九章算术》是我国古代内容极为丰富的数学名着,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) BA .14斛B .22斛C .36斛D .66斛解:设圆锥底面半径为r ,依题11623843r r ⨯⨯=⇒=,所以米堆的体积为211163203()54339⨯⨯⨯⨯=,故堆放的米约为3209÷1.62≈22,故选B . 【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) BA .1B .2C .4D .8解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r,其表面积为2πr2+πr×2r+πr2+2r×2r=5πr2+4r2=16+20π,解得r=2,故选B.【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )BA.三棱锥B.三棱柱C.四棱锥D.四棱柱解:几何体是一个横放着的三棱柱.故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A.16+8π B.8+8π C.16+16π D.8+16π解析:选A.该几何体为一个半圆柱与一个长方体组成的一个组合体.V半圆柱=12π×22×4=8π,V长方体=4×2×2=16.所以所求体积为16+8π.故选A.【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.15三棱锥A-BCD,底面△BCD底边为6,高为3侧面ABD⊥底面BCD,AO⊥底面BCD,因此此几何体的体积为11(63)3932V=⨯⨯⨯⨯=,故选择B.【2012,8】8.平面α截球O的球面所得圆的半径为1,球心O到平面α的,则此球的体积为()AB .C .D .【解析】如图所示,由已知11O A =,1OO =在1Rt OO A ∆中,球的半径R OA ==所以此球的体积343V R π==,故选择B .【点评】本题主要考察球面的性质及球的体积的计算.【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )【解析】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形. 故选D .二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______.【解析】取SC 的中点O ,连接,O A O B ,因为,S A A C SB BC ==,所以,O A S C O B S C ⊥⊥, 因为平面S A C ⊥平面S B C ,所以OA ⊥平面S B C ,设O Ar =,3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=,所以31933r r =⇒=, 所以球的表面积为2436r ππ=.【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______. 答案:9π2解析:如图,设球O 的半径为R ,则AH =23R ,OH =3R.又∵π·EH 2=π,∴EH =1.∵在Rt △OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98. ∴S 球=4πR 2=9π2. 【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 【解析】设圆锥底面半径为r ,球的半径为R ,则由223π4π16r R =⨯,知2234r R =. 根据球的截面的性质可知两圆锥的高必过球心O ,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此PB QB ⊥. 设PO x '=,QO y '=,则2x y R +=. ✍ 又PO B BO Q ''△∽△,知22r O B xy '==. 即2234xy r R ==. ✍ 由✍✍及x y >可得3,22R x R y ==. 则这两个圆锥中,体积较小者的高与体积较大者的高的比为13. 故答案为13. 三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若P A P D A B D C ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积. 【解法】(1)90BAP CDP ∠=∠=︒, ∴,A B A P C DD P⊥⊥ 又AB ∥CD ∴A B D P⊥又AP ⊂平面PAD ,DP ⊂平面PAD ,且A P D P P = ∴AB ⊥平面PADAB ⊂平面PAB ,所以 平面PAB ⊥平面PAD(2)由题意:设=PA PD AB DC a === ,因为90APD ∠=︒ ,所以PAD ∆为等腰直角三角形即AD取AD 中点E ,连接PE ,则2PE a =,PE AD ⊥. 又因为平面PAB ⊥平面PAD 所以PE ⊥平面ABCD因为AB ⊥平面PAD ,AB ∥CD 所以AB ⊥AD ,CD ⊥AD 又=AB DC a =所以四边形ABCD 为矩形所以311218233233P ABCD V AB AD PE a a a a -====即2a =【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G .(1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.解析 :(1)由题意可得ABC △为正三角形,故6PA PB PC ===. 因为P 在平面ABC 内的正投影为点D ,故PD ⊥平面ABC . 又AB ⊂平面ABC ,所以AB PD ⊥.因为D 在平面PAB 内的正投影为点E ,故DE ⊥平面PAB . 又AB ⊂平面PAB ,所以AB DE ⊥.因为AB PD ⊥,AB DE ⊥,PD DE D =,,PD DE ⊂平面PDG , 所以AB ⊥平面PDG .又PG ⊂平面PDG ,所以AB PG ⊥. 因为PA PB =,所以G 是AB 的中点.(2)过E 作EF BP ∥交PA 于F ,则F 即为所要寻找的正投影. 理由如下,因为PB PA ⊥,PB EF ∥,故EF PA ⊥.同理EF PC ⊥, 又PA PC P =,,PA PC ⊂平面PAC ,所以EF ⊥平面PAC , 故F 即为点E 在平面PAC 内的正投影. 所以13D PEF PEF V S DE -=⋅△16PF EF DE =⋅⋅.在PDG △中,PG =DG =PD =2DE =.由勾股定理知PE =,由PEF △为等腰直角三角形知2PF EF ==,故43D PEF V -=. 【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD的体积为3解:(Ⅰ) ∵BE ⊥平面ABCD ,∴BE ⊥AC . ∵ABCD 为菱形,∴ BD ⊥AC ,∴AC ⊥平面BED ,又AC ?平面AEC ,∴平面AEC ⊥平面BED . …6分(Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC =120°可得,x ,GB=GD=2x. 在RtΔAEC 中,可得EG =x .∴在RtΔEBG 为直角三角形,可得x . …9分∴31132E ACD V AC GD BE -=⨯⋅⋅==, 解得x =2.由BA=BD=BC 可得.∴ΔAEC 的面积为3,ΔEAD 的面积与ΔECD所以三棱锥E-ACD 的侧面积为 …12分 18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥. 又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====,又120ABC ∠=,所以AG GC ==,BG GD x ==.在AEC △中,90AEC ∠=,所以12EG AC ==,所以在Rt EBG △中,BE =,所以31122sin12023233E ACD V x x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中,可得AE EC ED ===所以三棱锥的侧面积1122322S =⨯⨯=+侧【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.证明:(Ⅰ)连接 BC1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ?平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD , 又BC ?平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD ,作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD由于AC ⊥AB 1,∴11122OA B C ==,∴4AD ==,由 OH·AD=OD·OA ,可得OH=14,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为7,所以三棱柱ABC-A 1B 1C 1的高高为7。
全国卷历年高考立体几何真题归类分析2019(含答案)
全国卷历年高考立体几何真题归类分析2019.7(含答案)类型一:直建系——条件中已经有线面垂直条件,该直线可以作为z轴或与z轴平行,底面垂直关系直接给出或容易得出(如等腰三角形的三线合一)。
这类题入手比较容易,第(Ⅰ)小问的证明就可以用向量法,第(Ⅱ)小问往往有未知量,如平行坐标轴的某边长未知,线上动点或存在性等问题,以增加难度。
该类问题的突破点是通过条件建立方程求解,对于线上动点问题,主意共线向量基本定理的应用,只设一个未知数,而不是直接设动点坐标。
1.(2014年全国Ⅱ卷)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.2.(2015年全国Ⅰ卷)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值.3.(2015年全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.4.(2016年全国Ⅲ卷)如图,四棱锥P ABC -中,PA ⊥底面面ABCD ,AD ∥BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN P 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.5.(2017全国Ⅱ卷)如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45o ,求二面角M AB D --的余弦值.EM DCBAP6.(2019年全国Ⅱ卷17题)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE=A 1E ,求二面角B –EC –C 1的正弦值.7.(2019年全国Ⅰ卷18题)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ;(2)求二面角A-MA 1-N 的正弦值.类型二:证建系(1)——条件中已经给出线面垂直条件,该直线可以作为z 轴或与z 轴平行,但底面垂直关系需要证明才可以建系(如勾股定理逆定理等证明同一平面内两条直线垂直的定理)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标全国卷Ⅰ文科数学分类汇编8.立体几何(含解析)一、选择题【2018,5】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122πB .12πC .82πD .10π【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217B .25C .3D .2【2018,10】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A .8B .62C .82D .83【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A.32B.22C.33D.13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )A.14斛B.22斛C.36斛D.66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=( ) BA.1 B.2 C.4 D.8【2015,11】【2014,8】【2013,11】【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A.三棱锥B.三棱柱C.四棱锥D.四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A.16+8π B.8+8π C.16+16π D.8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A.6 B.9 C.12 D.15【2012,8】平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63π【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()二、填空题【2019,16】.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为___________.【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .三、解答题【2019,19】.(12分)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.【2018,18】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 6【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C 6,求三棱柱ABC -A 1B 1C 1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【2011,18】如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=,2AB AD =,PD ⊥底面ABCD . (1)证明:PA BD ⊥;(2)若1PD AD ==,求棱锥D PBC -的高.DA 11CC 1新课标全国卷Ⅰ文科数学分类汇编8.立体几何(解析版)一、选择题【2018,5】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122πB .12πC .82πD .10π解:选B 。
依题意可得:设圆柱底面半径为r ,则其母线长为r l 2=,82=∴l ,222==∴r l∴表面积)(2l r r S +=π=)222(22+⨯⨯ππ12=。
【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217B .25C .3D .2解:选B 。
52)416(222=+=MN 。
【2018,10】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A .8B .62C .82D .83解:选C 。
易知:B AC 1∠为1AC 与面C C BB 11所成的角 依题意可得:421==AB AC ,222==AB AC ,221=∴CC2822221111=⨯⨯=∴-D C B A ABCD V【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【解法】选A .由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ .故A 不满足,选A .【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π解析:选A . 由三视图可知,该几何体是一个球截去球的18,设球的半径为R ,则37428ππ833R ⨯=,解得2R =.该几何体的表面积等于球的表面积的78,加上3个截面的面积,每个截面是圆面的14, 所以该几何体的表面积为22714π23π284S =⨯⨯+⨯⨯⨯14π3π17π=+=.故选A . 【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A.2 B.2 C.3 D .13解析:选A . 解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面α,即平面AEF ,即研究AE 与AF 所成角的正弦值,易知3EAF π∠=.故选A .ABCDA 1B 1C 1D 1EFD 1C 1B 1A 1DCBA解法二(原理同解法一):过平面外一点A 作平面α,并使α∥平面11CB D ,不妨将点A 变换成B ,作β使之满足同等条件,在这样的情况下容易得到β,即为平面1A BD ,如图所示,即研究1A B 与BD 所成角的正弦值,易知13A BD π∠=,所以其正弦值为2.故选A .【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) B A .14斛 B .22斛 C .36斛 D .66斛解:设圆锥底面半径为r ,依题11623843r r ⨯⨯=⇒=,所以米堆的体积为211163203()54339⨯⨯⨯⨯=,故堆放的米约为3209÷1.62≈22,故选B .【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为2πr 2+πr×2r+πr 2+2r×2r =5πr 2+4r 2=16+20π, 解得r=2,故选B .【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )BA .三棱锥B .三棱柱C .四棱锥D .四棱柱 解:几何体是一个横放着的三棱柱. 故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 解析:选A .该几何体为一个半圆柱与一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π,V 长方体=4×2×2=16.所以所求体积为16+8π.故选A .【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15 【解析】由三视图可知,该几何体为三棱锥A-BCD , 底面△BCD 为底边为6,高为3的等腰三角形, 侧面ABD ⊥底面BCD ,AO ⊥底面BCD ,因此此几何体的体积为11(63)3932V =⨯⨯⨯⨯=,故选择B .【2012,8】8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )O D AA .6πB .43πC .46πD .63π【解析】如图所示,由已知11O A =,12OO =,在1Rt OO A ∆中,球的半径3R OA ==, 所以此球的体积34433V R ππ==,故选择B . 【点评】本题主要考察球面的性质及球的体积的计算.【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )【解析】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形. 故选D . 二、填空题【2019,16】.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为___________. 答案:2【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______.【解析】取SC 的中点O ,连接,OA OB ,因为,SA AC SB BC ==,所以,OA SC OB SC ⊥⊥,因为平面SAC ⊥平面SBC ,所以OA ⊥平面SBC ,设OA r =,3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=,所以31933r r =⇒=,所以球的表面积为2436r ππ=.【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.答案:9π2解析:如图,设球O 的半径为R ,则AH =23R ,OH =3R.又∵π·EH 2=π,∴EH =1.∵在Rt △OEH 中,R 2=22+13R ⎛⎫⎪⎝⎭,∴R 2=98. ∴S 球=4πR 2=9π2.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 【解析】设圆锥底面半径为r ,球的半径为R ,则由223π4π16r R =⨯,知2234r R =. 根据球的截面的性质可知两圆锥的高必过球心O ,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此PB QB ⊥.设PO x '=,QO y '=,则2x y R +=. ① 又PO B BO Q ''△∽△,知22r O B xy '==.即2234xy r R ==. ② 由①②及x y >可得3,22Rx R y ==.则这两个圆锥中,体积较小者的高与体积较大者的高的比为13. 故答案为13.三、解答题【2019,19】.(12分)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.19.解:(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥,因此四边形MNDE 为平行四边形,MN ED ∥.又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故41717CH =. 从而点C 到平面1C DE 的距离为41717.【2018,18】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32 又23BP DQ DA ==,所以22BP = 作QE ⊥AC ,垂足为E ,则QE=13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【解法】(1)90BAP CDP ∠=∠=︒, ∴,AB AP CD DP ⊥⊥又AB ∥CD ∴AB DP ⊥又AP ⊂平面PAD ,DP ⊂平面PAD ,且AP DP P = ∴AB ⊥平面PADAB ⊂平面PAB ,所以 平面PAB ⊥平面PAD(2)由题意:设=PA PD AB DC a === ,因为90APD ∠=︒ ,所以PAD ∆为等腰直角三角形 即=2AD a取AD 中点E ,连接PE ,则22PE a =,PE AD ⊥. 又因为平面PAB ⊥平面PAD 所以PE ⊥平面ABCD因为AB ⊥平面PAD ,AB ∥CD 所以AB ⊥AD ,CD ⊥AD 又=AB DC a = 所以四边形ABCD 为矩形所以311218233233P ABCD V AB AD PE a aa a -====即2a = 11=223+226=6+2322S ⨯⨯⨯⨯侧【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G .(1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGEE GCD BAPF解析 :(1)由题意可得ABC △为正三角形,故6PA PB PC ===. 因为P 在平面ABC 内的正投影为点D ,故PD ⊥平面ABC . 又AB ⊂平面ABC ,所以AB PD ⊥.因为D 在平面PAB 内的正投影为点E ,故DE ⊥平面PAB . 又AB ⊂平面PAB ,所以AB DE ⊥.因为AB PD ⊥,AB DE ⊥,PD DE D =,,PD DE ⊂平面PDG , 所以AB ⊥平面PDG .又PG ⊂平面PDG ,所以AB PG ⊥. 因为PA PB =,所以G 是AB 的中点.(2)过E 作EF BP ∥交PA 于F ,则F 即为所要寻找的正投影.理由如下,因为PB PA ⊥,PB EF ∥,故EF PA ⊥.同理EF PC ⊥, 又PA PC P =,,PA PC ⊂平面PAC ,所以EF ⊥平面PAC , 故F 即为点E 在平面PAC 内的正投影. 所以13D PEF PEF V S DE -=⋅△16PF EF DE =⋅⋅. 在PDG △中,32PG =6DG =3PD =2DE =.由勾股定理知22PE =PEF △为等腰直角三角形知2PF EF ==,故43D PEF V -=. 【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 6解:(Ⅰ) ∵BE ⊥平面ABCD ,∴BE ⊥AC . ∵ABCD 为菱形,∴ BD ⊥AC ,∴AC ⊥平面BED ,又AC ⊂平面AEC ,∴平面AEC ⊥平面BED . …6分 (Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC =120°可得, 3x ,GB=GD=2x. 在RtΔAEC 中,可得EG 3x . ∴在RtΔEBG 为直角三角形,可得2x . …9分∴3116632243E ACD V AC GD BE x -=⨯⋅⋅==, 解得x =2. 由BA=BD=BC 可得AE= ED=EC=6.∴ΔAEC 的面积为3,ΔEAD 的面积与ΔECD 的面积均为5.所以三棱锥E-ACD 的侧面积为3+25. …12分 18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥.又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====, 又120ABC ∠=,所以3AG GC x ==,BG GD x ==.在AEC △中,90AEC ∠=,所以132EG AC x ==, 所以在Rt EBG △中,222BE EG BG x =-=,所以3116622sin12023233E ACD V x x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中, 可得6AE EC ED ===.所以三棱锥的侧面积112256632522S =⨯⨯⨯+⨯⨯=+侧. 【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.证明:(Ⅰ)连接 BC 1,则O为B 1C与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD , 又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD由于AC ⊥AB 1,∴11122OA B C ==,∴AD ==由 OH·AD=OD·OA ,可得OH=14,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为7,所以三棱柱ABC-A 1B 1C 1的高高为7。