高中数学必修二基础知识点

合集下载

数学必修二知识点归纳

数学必修二知识点归纳

数学必修二知识点归纳一、函数的概念与性质1. 函数的定义:函数是从一个集合(称为定义域)到另一个集合(称为值域)的映射,每个定义域中的元素都有一个唯一的值与之对应。

2. 函数的表示方法:常用f(x) = y,其中x是自变量,y是因变量。

3. 函数的性质:包括单调性、奇偶性、周期性和有界性等。

- 单调性:函数在某个区间内单调递增或递减。

- 奇偶性:函数可能是奇函数(f(-x) = -f(x))或偶函数(f(-x) = f(x))。

- 周期性:函数如果存在一个非零常数T,使得对于所有x都有f(x + T) = f(x),则称函数具有周期T。

- 有界性:函数的值在某个范围内,即存在上界和下界。

二、基本初等函数1. 幂函数:形如y = x^n的函数,其中n是实数。

2. 指数函数:形如y = a^x的函数,其中a > 0且a ≠ 1。

3. 对数函数:形如y = log_a(x)的函数,其中a > 0且a ≠ 1。

4. 三角函数:包括正弦函数、余弦函数、正切函数等。

- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)三、函数的图像与变换1. 函数图像的绘制:通过坐标系中的点来表示函数的图像。

2. 函数的平移:包括水平平移(左加右减)和垂直平移(上加下减)。

3. 函数的伸缩:包括水平伸缩(y = af(x))和垂直伸缩(y =f(bx))。

4. 函数的对称性:函数图像关于x轴、y轴或原点的对称性。

四、函数的应用1. 实际问题的建模:将实际问题转化为函数关系式进行求解。

2. 最值问题:求解函数的最大值和最小值。

3. 函数的复合:两个或多个函数的组合,如(f ∘ g)(x) = f(g(x))。

五、极限与连续性1. 极限的概念:描述函数在某一点附近的行为。

2. 极限的性质:包括唯一性、局部有界性、保号性等。

3. 连续函数:在定义域内任意一点都连续的函数。

高中必修二数学知识点

高中必修二数学知识点

高中必修二数学知识点高中必修二数学知识1不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.高中数学必修二知识点总结:不等式高中必修二数学知识2空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交.③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aa‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)3、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.4、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为.②平面的垂线与平面所成的角:规定为.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中必修二数学知识3圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程一定两解(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是判定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中必修二数学知识4直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中必修二数学知识51、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高中必修二数学知识点。

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。

《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。

本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。

一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。

高中数学必修二知识点总结

高中数学必修二知识点总结

高中数学必修二知识点总结高中数学必修二知识点总结(上)1.函数(1)函数的定义、函数的自变量、因变量、函数值、定义域、值域、单调性、奇偶性、周期性、反函数、复合函数等概念。

(2)初等函数,包括幂函数、指数函数、对数函数、三角函数、反三角函数、常数函数和分段函数等。

(3)函数的图像及性质,包括图像的对称性、零点、极值、最值、渐近线等。

(4)函数的运算,包括加减、乘除、复合、反函数等。

(5)利用函数模型解决实际问题,包括利用函数模型进行函数值的估算和函数关系的推断等。

2.三角函数(1)角的概念,弧度制和角度制的互换,同角三角函数的概念。

(2)三角函数的基本性质,包括周期性、奇偶性、单调性、奇偶性、单调性、反函数等。

(3)三角函数图像及变换,包括正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的图像及相关变换,以及一般角三角函数的图像及性质。

(4)三角函数的运用,包括三角函数的简单计算、方程、不等式、解三角形等实际问题的应用。

3.解析几何(1)点、直线、平面的位置关系及其相互关系。

(2)向量及其运算,包括向量的加减、数量积、向量积、混合积及其在几何中的应用。

(3)直线的方程,包括点斜式、两点式、截距式等,平面的方程,包括点法式、三点式等。

(4)直线和平面的性质及其应用,包括直线的倾斜角、垂直、平行、距离、交点坐标、与平面的位置关系等,平面的法向量、法线、方向余弦、距离等。

4.三视图(1)三视图的概念及其制图方法,包括正投影、等角投影、轴侧投影等方法。

(2)实体的三视图制图,包括直线、平面图形的三视图制图等。

(3)复合实体的三视图制图,包括旋转体、平移体、梯形棱锥等复合实体的三视图制图。

5.解方程(1)一次方程、二次方程、高次方程的解法,包括分解、配方法、换元法、公式法及根的性质等。

(2)含有绝对值的方程的解法,包括绝对值的定义、性质及解法等。

(3)分式方程的解法,包括通分、去分母、整式方程化为分式方程等。

人教版高中数学必修二知识点大全[整理版]

人教版高中数学必修二知识点大全[整理版]

人教版高中数学必修二知识点大全[整理版]知识点1: 函数的概念和性质- 函数的定义:函数是一种特殊的关系,每个自变量都对应唯一的一个因变量。

- 函数的符号表示:通常用字母 f、g、h 等表示函数。

- 定义域和值域:函数的定义域是指自变量的取值范围,值域是函数的所有可能的因变量值。

- 奇函数和偶函数:对于任意的 x,若有 f(-x) = -f(x) 成立,则函数 f(x) 是奇函数;若有 f(-x) = f(x) 成立,则函数 f(x) 是偶函数。

知识点2: 一次函数与二次函数- 一次函数:一次函数的一般形式为 y = kx + b,其中 k 是斜率,b 是截距。

一次函数的图像是一条直线。

- 二次函数:二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数且a ≠ 0。

二次函数的图像是一条抛物线。

知识点3: 指数函数和对数函数- 指数函数:指数函数的一般形式为 y = a^x,其中 a 是底数,x 是指数。

指数函数的图像呈现递增或递减的特点。

- 对数函数:对数函数的一般形式为 y = loga(x),其中 a 是底数,x 是函数值。

对数函数是指数函数的反函数,可以互相转化。

知识点4: 三角函数- 正弦函数:正弦函数是一个周期为2π 的周期函数,一般形式为 y = A sin(Bx + C),其中 A 是振幅,B 是周期系数,C 是相位角。

- 余弦函数:余弦函数也是一个周期为2π 的周期函数,一般形式为 y = A cos(Bx + C)。

- 正切函数:正切函数是一个无穷区间上的周期函数,一般形式为 y = A tan(Bx + C),其中 A 是振幅,B 是周期系数,C 是相位角。

以上是人教版高中数学必修二的知识点大全。

希望对你的学习有所帮助!。

高一数学必修二重点知识笔记

高一数学必修二重点知识笔记

高一数学必修二重点知识笔记篇一:高一数学必修二重点知识笔记一、函数与方程1. 函数的概念与性质- 函数的定义:函数是一个将一个集合中的每个元素都对应到另一个集合中的唯一元素的规则。

- 定义域与值域:函数的定义域为所有输入的可能取值,而值域为所有输出的可能取值。

- 奇偶性:如果对于任意的x,都有f(-x) = f(x),则函数f(x)是偶函数;如果对于任意的x,都有f(-x) = -f(x),则函数f(x)是奇函数。

2. 一次函数与二次函数- 一次函数:一次函数的标准形式为f(x) = ax + b,其中a为斜率,b为截距。

- 二次函数:二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c 为常数,且a ≠ 0。

- 二次函数的顶点:二次函数的顶点坐标为(-b/2a, f(-b/2a))。

3. 指数函数与对数函数- 指数函数:指数函数的定义为f(x) = a^x,其中a为底数,x为指数。

- 对数函数:对数函数的定义为f(x) = loga(x),其中a为底数,x为真数。

二、三角函数与解三角形1. 三角函数的相关概念- 正弦函数:正弦函数的定义为sin(x) = 对边/斜边。

- 余弦函数:余弦函数的定义为cos(x) = 邻边/斜边。

- 正切函数:正切函数的定义为tan(x) = 对边/邻边。

2. 三角函数的性质与变换- 周期:正弦函数、余弦函数、正切函数的周期均为2π。

- 奇偶性:正弦函数是奇函数,余弦函数是偶函数,而正切函数既不是奇函数也不是偶函数。

- 幅值:正弦函数、余弦函数的幅值为1,而正切函数的幅值为无穷大。

3. 三角函数的应用- 解三角形:利用三角函数可以求解三角形的各边长和角度。

- 三角恒等式:三角恒等式是指在一定条件下,三角函数之间的相等关系,如正弦定理、余弦定理、正切定理等。

三、向量与解析几何1. 向量的基本概念- 向量的定义:向量是具有大小和方向的量。

- 向量的表示:向量可以用有向线段来表示,也可以用坐标表示。

高中数学必修2知识点总结

高中数学必修2知识点总结

高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。

求解一元二次方程的方法是配方法、公式法和因式分解法。

2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。

三角函数的定义域和值域以及其性质和图像都是必须掌握的。

3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。

三角恒等式是解决三角函数问题的重要工具。

4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。

二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。

必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。

5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。

向量的运算包括向量的加法、减法、数量积和向量积。

向量的坐标表示是将向量投影在坐标轴上来表示的。

6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。

此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。

7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。

轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。

8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。

9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。

10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。

函数的应用包括函数的极值、最大值和最小值等问题。

以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。

高中数学必修2知识点归纳

高中数学必修2知识点归纳

高中数学必修2知识点归纳高中数学必修2知识点归纳高中数学必修2是数学学科的一门重要课程,主要内容包括函数、二次函数与一元二次方程、直线和三角形的研究等。

下面是对这些知识点的归纳总结。

一、函数1. 函数的概念:函数是具有输入输出关系的一种映射关系。

通常用f(x)表示函数关系,其中x是自变量,f(x)是因变量。

2. 函数的性质:可递性、奇偶性、周期性、单调性等。

3. 特殊函数:常数函数、一次函数、幂函数、指数函数、对数函数、三角函数等。

4. 函数的运算:函数的四则运算、复合函数、反函数等。

5. 函数的图像:函数的图像可以通过函数的定义域和值域来确定,常见的有常数函数图像、线性函数图像、幂函数图像、指数函数图像、对数函数图像、三角函数图像等。

二、二次函数与一元二次方程1. 二次函数的概念:二次函数是一个带有二次项的函数,一般定义为f(x) = ax² + bx + c,其中a、b、c为常数,a ≠ 0。

2. 二次函数的性质:最值、对称轴、开口方向、零点等。

3. 一元二次方程:一元二次方程是一个以变量x为未知数的二次方程,一般表示为ax² + bx + c = 0,其中a、b、c为常数,且a ≠ 0。

4. 一元二次方程的解:一元二次方程有两个解,可以通过求根公式或配方法求得。

5. 一元二次方程与二次函数的关系:一元二次方程的解即为对应二次函数的零点,可以通过一元二次方程的解来求二次函数的零点。

三、直线1. 直线的表示:直线可以通过斜率截距式、一般式、点斜式等表示。

2. 直线的性质:平行直线、垂直直线、两直线交点的坐标、直线的倾斜角等。

3. 直线方程的求解:通过已知条件,可以利用直线的性质来求解直线的方程。

四、三角形1. 三角形的分类:根据边的长、内角的大小,三角形可以分为等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形等。

2. 三角函数:正弦函数、余弦函数、正切函数等。

3. 三角函数关系:倍角公式、半角公式、和差化积公式等。

最全最全最新高中数学必修二基础知识点大全完整版

最全最全最新高中数学必修二基础知识点大全完整版

知识点串讲必修二第一章:空间几何体§1.1.1 棱柱、棱锥、棱台的结构特征1、由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD;相邻两个面的公共边叫多面体的棱,如棱AB;棱与棱的公共点叫多面体的顶点,如顶点A.2、由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫旋转体的轴.3、一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism).棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高)4、有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥…等等,棱锥可以用顶点和底面各顶点的字母表示5、用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点.两底面间的距离叫棱台的高.棱台可以用上、下底面的字母表示,分类类似于棱锥.6、例由棱柱的定义你能得到棱柱下列的几何性质吗?①侧棱都相等,侧面都是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢?7、知识拓展1. 平行六面体:底面是平行四边形的四棱柱;2. 正棱柱:底面是正多边形的直棱柱;3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥;4. 正棱台:由正棱锥截得的棱台叫做正棱台.8、已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则().A.EFDCBA⊆⊆⊆⊆⊆ B.EDFBCA⊆⊆⊆⊆⊆C.EFDBAC⊆⊆⊆⊆⊆ D.它们之间不都存在包含关系§1.1.2 圆柱、圆锥、圆台、球及简单组合体的结构特征1、以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circular cylinder),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .圆柱和棱柱统称为柱体.2、以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.3、直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).棱台与圆台统称为台体.4、以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O.5、由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.6、知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.7、一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为().A.8、圆锥母线长为R,则高等于__________.§1.2.1 中心投影与平行投影 §1.2.2 空间几何体的三视图1、由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中光线叫投影线,留下物体影子的屏幕叫投影面.光由一点向外散射形成的投影叫做中心投影,中心投影的投影线交于一点.在一束平行光照射下形成的投影叫做平行投影,平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时叫正投影,否则叫斜投影.2、结论:中心投影其投影的大小随物体与投影中心间距离的变化而变化;平行投影其投影的大小与这个平面图形的形状和大小是完全相同的.3、为了能较好把握几何体的形状和大小,通常对几何体作三个角度的正投影.一种是光线从几何体的前面向后面正投影得到投影图,这种投影图叫几何体的正视图;一种是光线从几何体的左面向右面正投影得到投影图,这种投影图叫几何体的侧视图;第三种是光线从几何体的上面向下面正投影得到投影图,这种投影图叫几何体的俯视图.几何体的正视图、侧视图和俯视图称为几何体的三视图. 一般地,侧视图在正视图的右边,俯视图在正视图的下边.三视图中,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示. 下图是一个长方体的三视图.4、小结:1.正视图反映物体的长度和高度,俯视图反映的是长度和宽度,侧视图反映的是宽度和高度;2.正视图和俯视图高度相同,俯视图和正视图长度相同,侧视图和俯视图宽度相同;3.三视图的画法规则:①正视图、侧视图齐高,正视图、俯视图长对正,俯视图、侧视图宽相等,即“长对正”、“高平齐”、“宽相等”;②正、侧、俯三个视图之间必须互相对齐,不能错位.5、 下列哪种光源的照射是平行投影( ).A.蜡烛B.正午太阳C.路灯D.电灯泡6、 右边是一个几何体的三视图,则这个几何体是( ).A.四棱锥B.圆锥C.三棱锥D.三棱台7、 如图是个六棱柱,其三视图为( ).A. B. C. D.§1.2.3 空间几何体的直观图1、斜二测画法的规则及步骤如下:(1)在已知水平放置的平面图形中取互相垂直的x 轴和y 轴,建立直角坐标系,两轴相交于O .画直观图时,把它们画成对应的x '轴与y '轴,两轴相交于点O ',且使x O y '''∠=45°(或135°).它们确定的平面表示水平面;(2) 已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x '轴或y '轴的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的一半;(4) 图画好后,要擦去x 轴、y 轴及为画图添加的辅助线(虚线).2、用斜二测画法画空间几何体的直观图时,通常要建立三条轴:x 轴,y 轴,z 轴;它们相交于点O ,且45xOy ∠=°,90xOz ∠=°;空间几何体的底面作图与水平放置的平面图形作法一样,即图形中平行于x 轴的线段保持长度不变,平行于y 轴的线段长度为原来的一半,但空间几何体的“高”,即平行于z 轴的线段,保持长度不变.3、用斜二测画法画底面半径为4cm ,高为3cm 的圆柱.4、一个长方体的长、宽、高分别是4、8、4,则画其直观图时对应为( ).A. 4、8、4B. 4、4、4C. 2、4、4D.2、4、25、 利用斜二测画法得到的①三角形的直观图是三角形②平行四边形的直观图是平行四边形③正方形的直观图是正方形④菱形的直观图是菱形,其中正确的是( ).A.①②B.①C.③④D.①②③④6、一个三角形的直观图是腰长为4的等腰直角三角形,则它的原面积是( ).A. 8B. 16C.7、等腰梯形ABCD 上底边CD=1,腰AD=CB=2, 下底AB=3,按平行于上、下底边取x 轴,则直观图A B C D ''''的面积为________.§1.3.1 柱体、锥体、台体的表面积与体积(1)1、(1)设圆柱的底面半径为r ,母线长为l ,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即2222()S r rl r r l πππ=+=+. (2)设圆锥的底面半径为r ,母线长为l ,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即2()S r rl r r l πππ=+=+. 2、设圆台的上、下底面半径分别为r ',r ,母线长为l ,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即2222()()S r r r l rl r r r l rl ππππ''''=+++=+++.3、正方体的表面积是64,则它对角线的长为( ).A.B.164、一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是( ). A.122ππ+ B.144ππ+ C.12ππ+ D.142ππ+5、一个正四棱台的两底面边长分别为m ,n ()m n >,侧面积等于两个底面积之和,则这个棱台的高为( ). A.mn m n + B.mn m n - C.m n mn + D.m nmn -6、如图,在长方体中,AB b =,BC c =,1CC a =,且a b c >>,求沿着长方体表面A 到1C 的最短路线长.7、柱体体积公式为:V Sh =,(S 为底面积,h 为高)锥体体积公式为:13V Sh =,(S 为底面积,h 为高) 台体体积公式为:1()3V S S h '=(S ',S 分别为上、下底面面积,h 为高)8、补充:柱体的高是指两底面之间的距离;锥体的高是指顶点到底面的距离;台体的高是指上、下底面之间的距离.9、如图(1)所示,三棱锥的顶点为P ,,,PA PB PC 是它的三条侧棱,且,,PA PB PC 分别是面,,PBC PAC PAB 的垂线,又2PA =,3,4PB PC ==,求三棱锥P ABC -的体积V .10、如图(2),在边长为4的立方体中,求三棱锥B A BC '''-的体积.11、在△ABC 中,32,,1202AB BC ABC ==∠=°,若将△ABC 绕直线BC 旋转一周,求所形成的旋转体的体积.§1.3.2 球的体积和表面积1、球的体积公式 343V R π= 球的表面积公式 24S R π=其中,R 为球的半径.显然,球的体积和表面积的大小只与半径R 有关.2、若三个球的表面积之比为1﹕2﹕3,则它们的体积之比为多少?3、如图,圆柱的底面直径与高都等于球的直径(即圆柱内有一内切球),求证(1)球的体积等于圆柱体积的23;(2)球的表面积等于圆柱的侧面积.4、记与正方体各个面相切的球为1O ,与各条棱相切的球为2O ,过正方体各顶点的球为3O 则这3个球的体积之比为( ).232233第二章:点线面的位置关系§2.1.1 平面1、平面(plane)是平的;平面是可以无限延展的;平面没有厚薄之分.2、⑴点A 在平面α内,记作A α∈;点A 在平面α外,记作A α∉.⑵点P 在直线l 上,记作P l ∈,点P 在直线外,记作P l ∉.⑶直线l 上所有点都在平面α内,则直线l 在平面α内(平面α经过直线l ),记作l α⊂;否则直线就在平面外,记作l α⊄.3、公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.用集合符号表示为: ,,A l B l ∈∈且,A B l ααα∈∈⇒⊂公理2 过不在一条直线上的三点,有且只有一个平面.公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.如下图所示:平面α与平面β相交于直线l ,记作l αβ=.公理3用集合符号表示为,P a ∈且P β∈⇒l αβ=,且P l ∈4、知识拓展 平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题.5、下列结论正确的是().①经过一条直线和这条直线外一点可以确定一个平面②经过两条相交直线,可以确定一个平面③经过A.1个B.2个C.3个D.4个6、如图在四面体中,若直线EF和GH相交,则它们的交点一定(A.在直线DB上B.在直线AB上C.在直线CB上D.都不对/4511 1、像直线A B '与CC '这样不同在任何一个平面内的两条直线叫做异面直线(skew lines).2、异面直线的画法有如下几种(,a b 异面):图2-13、公理4 (平行公理)平行于同一条直线的两条直线互相平行.4、定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.5、如图2-2,已知两条异面直线,a b ,经过空间任一点O 作直线 a '∥a ,b '∥b ,把a '与b '所成的锐角(或直角)叫做异面直线,a b 所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作a b ⊥.6、正方体ABCD A B C D ''''-的棱长为a ,求异面直线AC 与A D ''所成的角.7、正方体ABCD A B C D ''''-的十二条棱中,与直线AC '是异面直线关系的有___________条.8、长方体1111ABCD A B C D -中,3AB =,2,BC =1AA =1,异面直线AC 与11A D 所成角的余弦值是______.§2.1.4平面与平面之间的位置关系1、直线与平面位置关系只有三种:⑴直线在平面内——⑵直线与平面相交——⑶直线与平面平行——其中,⑵、⑶两种情况统称为直线在平面外.2、两个平面的位置关系只有两种:⑴两个平面平行——没有公共点⑵两个平面相交——有一条公共直线3、下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A.0B.1C.2D.3⊄,则下列结论成立的是()4、若直线a不平行于平面α,且aαA.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交.5、证明点共线的基本方法有两种⑴找出两个面的交线,证明若干点都是这两个平面的公共点,由公理3可推知这些点都在交线上,即证若干点共线.⑵选择其中两点确定一条直线,证明另外一些点也都在这条直线上.6、如图4-2,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,与相交于点K.求证:EH,BD,FG三条直线相交于同一点.且EH FG12图4-27、如图4-3,如果两条异面直线称作“一对”,那么在正方体的12条棱中,共有异面直线多少对? 图4-313/4514§2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.2、如图5-8,在空间四边形ABCD 中,P 、Q 分别是ABC ∆和BCD ∆的重心.求证:PQ ∥平面ACD .图5-8§2.2. 2 平面与平面平行的判定1、两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 如图6-4所示,α∥β. ※ 典型例题例1 已知正方体1111ABCD A B C D -,如图6-5,求证: 平面11AB D ∥1CB D .图6-52、如图6-7,正方体中,,,,M N E F 分别是棱A B '',A D '',B C '',C D ''的中点,求证:平面AMN ∥ 平面EFDB .图6-7F EMNB 'C 'A 'DCBAD '/4515 3、 如图6-9,A '、B '、C '分别是PBC ∆、PCA ∆、PAB ∆的重心.求证:面A B C '''∥ABC 面.图6-9§2.2.3 直线与平面平行的性质1、直线与平面平行的性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行.2、如图7- 6,在ABC ∆所在平面外有一点P ,D 、E 分别是PB AB 与上的点,过,D E 作平面平行于BC ,试画出这个平面与其它各面的交线,并说明画法的依据.图7-6§2.2.4 平面与平面平行的性质1、两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 2. 设,P Q 是单位正方体1AC 的面11AA D D、面1111A B C D 的中心,如图8-4,证明:⑴PQ ∥平面11AA B B;⑵面1D PQ ∥面1C DB .图8-416§2.3.1 直线与平面垂直的判定1、如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直,记做l α⊥.l 叫做垂线,α叫垂面,它们的交点P 叫垂足.如图10-3所示.图10-32、直线和平面垂直的判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.3、如图10-6,直线PA 和平面α相交但不垂直,PA 叫做平面的斜线,PA 和平面的交点A 叫斜足;PO α⊥,AO 叫做斜线PA 在平面α上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫这条直线和平面所成的角.图10-6直线垂直于平面,则它们所成的角是直角;直线和平面平行或在平面内,则它们所成的角是0°角. A B '和平面A B CD ''所成的角.图10-85、如图10-9,在三棱锥中,,VA VC AB BC ==,求证:VB AC ⊥.O A P αD B 'C 'A ' CBA D '/4517图10-96、,a b 是异面直线,那么经过b 的所有平面( ). A.只有一个平面与α平行 B.有无数个平面与α平行 C.只有一个平面与α垂直 D.有无数个平面与α垂直§2.3.2 平面与平面垂直的判定1、从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.图11-2中的二面角可记作:二面角AB αβ--或l αβ--或P AB Q --.图11-22、如图11-3,在二面角l αβ--的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线,OA OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角.平面角是直角的二面角叫直二面角.图11-33、两个平面所成二面角是直二面角,则这两个平面互相垂直.如图11-4,α垂直β,记作αβ⊥.l18图11-44、两个平面垂直的判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.5、如图11-5,AB 是⊙O 的直径,PA 垂直于⊙O所在的平面,C 是圆周上不同于,A B 的任意一点,求证:平面PAC ⊥平面PBC .图11-56、如图11-6,在正方体中,求面A D CB ''与面ABCD 所成二面角的大小(取锐角).图11-67、如图11-7,在空间四边形SABC 中,ASC ∠ =90°,60ASB BSC ∠==°,SA SB SC ==,⑴求证:平面ASC ⊥平面ABC .⑵求二面角S AB C --的平面角的正弦值. 图11-7B 'C 'A 'DCBA D ' SCBA/4519 1、直线与平面垂直的性质定理 垂直于同一个平面的两条直线平行.2、 判断下列命题是否正确,并说明理由.⑴两条平行线中的一条垂直于某条直线,则另一条也垂直于这条直线; ⑵两条平行线中的一条垂直于某个平面,则另一条也垂直于这个平面; ⑶两个平行平面中的一个垂直于某个平面,则另一个也垂直与这个平面; ⑷垂直于同一条直线的两条直线互相平行; ⑸垂直于同一条直线的两个平面互相平行; ⑹垂直于同一个平面的两个平面互相平行. 3、知识拓展设,a m 和l 是直线,,αβ是平面,则直线与平面垂直还有下列性质: (1)l l a a αα⊥⎫⇒⊥⎬⊂⎭; (2)//l m m l αα⊥⎫⇒⊥⎬⎭(3)//l l ααββ⊥⎫⎬⊥⎭你能把它们用图形表示出来吗?4、如图12-5,在三棱锥中,PA PB =,AB BC ⊥,若M 是PC 的中点,试确定AB 上点N 的位置,使得MN AB ⊥.图12-51、平面与平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.-的底面是个矩形,2、如图13-4,四棱锥P ABCD==PAB是等边三角形,且侧面PAB垂直于底面ABCD.AB BC2,⑴证明:侧面PAB⊥侧面PBC;⑵求侧棱PC与底面ABCD所成的角.图13-420第三章:直线与方程 §3.1直线的倾斜角与斜率1、当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角(angle of inclination ).关键:①直线向上方向;②x 轴的正方向;③小于平角的正角. 注意:当直线与x 轴平行或重合时,我们规定它的倾斜角为0度.. 2、一条直线的倾斜角()2παα≠的正切值叫做这条直线的斜率(slope).记为tan k α=.3、已知直线上两点111222(,),(,)Px y P x y 12()x x ≠的直线的斜率公式:2121y y k x x -=-.5、任何一条直线都有唯一确定的倾斜角,直线斜角的范围是[0,180)︒. 6、已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.§ 3.2两直线平行与垂直的判定1、两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立. 2、两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直. 即12l l ⊥⇔121k k =-⇔121k k =-3、已知三点(,2),(5,1),(4,2)A a B C a -在同一直线上,则a 的值为 .§ 3.2.1直线的点斜式方程1、已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程.2、直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距(intercept ).直线y kx b =+叫做直线的斜截式方程.注意:截距b 就是函数图象与y 轴交点的纵坐标.3、直线l 过点(2,3)P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,求直线l 的方程.§ 3.2.2直线的两点式方程1、已知直线上两点112222(,),(,)Px x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form ).2、已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1=+b y a x 叫做直线的截距式方程.注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.3、a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?4、直线方程的各种形式总结为如下表格:5、过点P(2,1)作直线l 交,x y 正半轴于AB 两点,当||||PA PB ⋅取到最小值时,求直线l 的方程.6、 已知一直线被两直线1:460l x y ++=,2l :3x 560y --=截得的线段的中点恰好是坐标原点,求该直线方程.§ 3.2.3直线的一般式方程1、关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form ).注意:直线一般式能表示平面内的任何一条直线2、光线由点(1,4)A -射出,在直线:2360l x y +-=上进行反射,已知反射光线过点62(3,)13B ,求反射光线所在直线的方程.§ 3.1两条直线的交点坐标1、求直线20x y --=关于直线330x y -+=对称的直线方程.2、直线54210x y m +--=与直线230x y m +-=的交点在第四象限,求m 的取值范围.§ 3.3.2两点间的距离1、已知平面上两点111222(,),(,)P x y P x y ,则12PP =特殊地:(,)P x y 与原点的距离为OP2、 已知点(1,2),A B -,在x 轴上存在一点P ,使PA PB =,则PA =.§ 3.3点到直线的距离及两平行线距离1、已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:d =.注意:⑴点到直线的距离是直线上的点与直线外一点的连线的最短距离; ⑵在运用公式时,直线的方程要先化为一般式.2、已知两条平行线直线1l 10Ax By C ++=,2:l 20Ax By C ++=,则1l 与2l 的距离为d =注意:应用此公式应注意如下两点:(1)把直线方程化为一般式方程;(2)使,x y 的系数相等. 3、 求两平行线1l :2380x y +-=,2l :46x y +10-=的距离.第四章:圆与方程 4.1.1圆的标准方程1、圆的标准方程(x -a)2+(y -b)2=r2中,有三个参数a 、b 、r,只要求出a 、b 、r 且r >0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.2、确定圆的方程主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a,b)和半径r,一般步骤为:1°根据题意,设所求的圆的标准方程(x -a)2+(y -b)2=r2; 2°根据已知条件,建立关于a 、b 、r 的方程组;3°解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程. 3、点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:当点M(x0,y0)在圆(x-a)2+(y-b)2=r2上时,点M 的坐标满足方程(x-a)2+(y-b)2=r2. 当点M(x0,y0)不在圆(x-a)2+(y-b)2=r2上时,点M 的坐标不满足方程(x-a)2+(y-b)2=r2. 用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外⇔(x0-a)2+(y0-b)2>r2,点在圆外; 2°点到圆心的距离等于半径,点在圆上⇔(x0-a)2+(y0-b)2=r2,点在圆上; 3°点到圆心的距离小于半径,点在圆内⇔(x0-a)2+(y0-b)2<r2,点在圆内.4、写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M1(5,-7),M2(-5,-1)是否在这个圆上. 解:圆心为A(2,-3),半径长等于5的圆的标准方程是 (x-2)2+(y+3)2=25,把点M1(5,-7),M2(-5,,-1)分别代入方程(x-2)2+(y+3)2=25,则M1的坐标满足方程,M1在圆上.M2的坐标不满足方程,M2不在圆上.5、 △ABC 的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r2,因为A(5,1),B(7,-3),C(2,-8)都在圆上, 它们的坐标都满足方程(x-a)2+(y-b)2=r2,于是⎪⎩⎪⎨⎧=--+-=--+-=-+-)3(.)8()2()2()3()7()1(,)1()5(222222222r b a r b a r b a解此方程组得⎪⎩⎪⎨⎧=-==.5,3,2r b a 所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB 的中点坐标为(6,-1),斜率为-2,所以线段AB 的垂直平分线的方程为y+1=21(x-6).①同理线段AC 的中点坐标为(3.5,-3.5),斜率为3,所以线段AC 的垂直平分线的方程为y+3.5=3(x-3.5). ②解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r=22)31()25(++-=5,所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC 外接圆的圆心是△ABC 的外心,它是△ABC 三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.6、 求与圆x2+y2-2x=0外切,且与直线x+3y=0相切于点(3,-3)的圆的方程.解:设所求圆的方程为(x-a)2+(y-b)2=r2.圆x2+y2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即22)0()1(-+-b a =r+1, ①由圆与直线x+3y=0相切于点(3,-3),得⎪⎪⎩⎪⎪⎨⎧=++-=-•-+)3(.)3(1|3|)2(,1)31(332r b a a b解得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y2=4或x2+(y+43)2=36.4.1.2 圆的一般方程1、方程x 2+y 2+Dx+Ey+F=0表示的曲线不一定是圆,由此得到圆的方程都能写成x 2+y 2+Dx+Ey+F=0的形式,但方程x 2+y 2+Dx+Ey+F=0表示的曲线不一定是圆,只有当D 2+E 2-4F >0时,它表示的曲线才是圆.因此x 2+y 2+Dx+Ey+F=0表示圆的充要条件是D 2+E 2-4F >0.我们把形如x 2+y 2+Dx+Ey+F=0表示圆的方程称为圆的一般方程. 2、圆的一般方程形式上的特点:x 2和y 2的系数相同,不等于0.没有xy 这样的二次项.3、判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1)4x 2+4y 2-4x+12y+9=0;(2)4x 2+4y 2-4x+12y+11=0.解:(1)由4x 2+4y 2-4x+12y+9=0,得D=-1,E=3,F=49,。

新教材人教版高中数学必修第二册 知识点梳理

新教材人教版高中数学必修第二册 知识点梳理

高中数学 必修2 第六章平面向量设为所在平面上一点,角所对边长分别为,则(1)为的外心. (2)为的重心.(3)为的垂心. (4)为的内心.【6.1】平面向量的概念1、向量的定义及表示(向量无特定的位置,因此向量可以作任意的平移) (1)定义:既有大小又有方向的量叫做向量.(2)表示:①有向线段:带有方向的线段,它包含三个要素:起点、方向、长度; ②向量的表示:2、向量的有关概念:相等向量是平行(共线)向量,但平行(共线)向量不一定是相等向量 向量名称 定义零向量 长度为0的向量,记作0 单位向量 长度等于1个单位长度的向量平行向量 (共线向量) 方向相同或相反的非零向量,向量a ,b 平行,记作a ∥b ,规定:零向量与任一向量平行相等向量长度相等且方向相同的向量;向量a ,b 相等,记作a =b【6.2】平面向量的运算1、向量的加法(1)定义:求两个向量和的运算. (2)运算法则: 向量求和的法则 图示几何意义三角形法则使用三角形法则时要注意“首尾相接”的条件,而向量加法的平行四边法则应用的前提是共起点已知非零向量a ,b ,在平面内任取一点A ,作AB ⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =b ,则向量AC ⃗⃗⃗⃗⃗ 叫做a 与b 的和,记作a +b ,即a +b =AB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ 平行四边形法则以同一点O 为起点的两个已知向量a ,b ,以OA ,OB 为邻边作▱OACB ,则以O 为起点的向量OC ⃗⃗⃗⃗⃗ (OC 是▱OACB 的对角线)就是向量a 与b 的和(3)规定:对于零向量与任意向量a ,规定a +0=0+a =a .(4)位移的合成可以看作向量加法三角形法则的物理模型;力的合成可以看作向量加法平行四边形ABC ∆,,A B C ,,a b c O ABC ∆222OA OB OC ⇔==O ABC ∆0OA OB OC ⇔++=O ABC ∆OA OB OB OC OC OA ⇔⋅=⋅=⋅O ABC ∆0aOA bOB cOC ⇔++=法则的物理模型.(5)一般地我们有|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. (6)向量加法的运算律与实数加法的运算律相同 2、向量的减法(1)相反向量(利用相反向量的定义,-AB ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ 就可以把减法转化为加法) 定义:我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量性质:①对于相反向量有:a +(-a )=0;②若a ,b 互为相反向量,则a =-b ,a +b =0;③零向量的相反向量仍是零向量(2)向量减法运算(向量的减法是向量加法的一种逆运算) 定义:求两个向量差的运算叫做向量的减法.a -b =a +(-b ),减去一个向量就等于加上这个向量的相反向量.几何意义:a -b 表示为从向量b 的终点指向向量a 的终点的向量.3、向量的数乘运算(实数与向量可以进行数乘运算,但不能进行加减运算)(1)定义:规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作:λa ,它的长度和方向规定如下:①|λa |=|λ||a |;②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. ③由①可知,当λ=0时,λa =0;由①②知,(-1)a =-a .(2)运算律:设λ,μ为任意实数,则有:①λ(μa )=(λμ)a ;②(λ+μ)a =λa +μa ;③λ(a +b )=λa +λb ;特别地,有(-λ)a =-(λa )=λ(-a );λ(a -b )=λa -λb .(3)向量的加、减、数乘运算统称为向量的线性运算,向量的线性运算结果仍是向 量.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1 a ±μ2b )=λμ1 a ±λμ2 b .(4)共线向量定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .也就是说,位于同一直线上的向量可以由位于这条直线上的一个非零向量表示. 4、向量的数量积(1)向量的夹角:两向量的夹角与两直线的夹角的范围不同,向量夹角范围是[0,π],而两直线夹角的范围为[0,π2](2)向量的夹角的定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作向量OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,则∠a O b =θ(0≤θ≤π)叫做向量a 与b 的夹角. 当θ=0时,a 与b 同向;当θ=π时,a 与b 反向. 如果a 与b 的夹角是π2,我们说a 与b 垂直,记作a ⊥b .(3)向量的数量积及其几何意义:向量的数量积是一个实数,不是向量,它的值可正可负可为0 (4)向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cosθ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ.规定:零向量与任一向量的数量积为0.(5)投影:如图,设a ,b 是两个非零向量,AB ⃗⃗⃗⃗⃗ =a ,CD ⃗⃗⃗⃗⃗ =b ,我们考虑如下变换:过AB ⃗⃗⃗⃗⃗ 的起点a 和终点b ,分别作CD ⃗⃗⃗⃗⃗ 所在直线的垂线,垂足分别为A 1,B 1得到A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,我们称上述变换为向量a 向向量b 投影,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 叫做向量a 在向量b 上的投影向量.(6)向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则①a ·e =e ·a =|a |cosθ②a ⊥b ⇔a ·b =0③当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |,特别地,a ·a =|a |2或|a |=√a ·a .在求解向量的模时一般转化为模的平方,但不要忘记开方④|a ·b |≤|a |·|b |.(7)运算律:①a ·b =b ·a ;②(a +b )·c =a ·c +b ·c (8)运算性质:类比多项式的乘法公式【6.3】平面向量基本定理及坐标表示1、平面向量基本定理(定理中要特别注意向量e 1与向量e 2是两个不共线的向量) 条件:e 1,e 2是同一平面内的两个不共线向量结论:对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1 e 1+λ2 e 2 基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底 2、平面向量的坐标表示(1)基底:在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.(2)坐标:对于平面内的一个向量a ,由平面向量基本定理可知,有且仅有一对实数x ,y ,使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标. (3)坐标表示:a =(x ,y ).(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0). (5)平面向量的加减法坐标运算(可类比实数的加减运算法则进行记忆) 设向量a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则有下表:设向量a =(x ,y ),则有λa =(λx ,λy ),这就是说实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(7)平面向量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.向量a ,b (b≠0)共线的充要条件是x 1 y 2-x 2 y 1=0.(8)中点坐标公式:若P 1,P 2的坐标分别是(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ),则x =x 1+x 22y =y 1+y 22.此公式为线段P 1 P 2的中点坐标公式.(9)两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 数量积:两个向量的数量积等于它们对应坐标的乘积的和,即:a ·b =x 1 x 2+y 1 y 2 向量垂直:a ⊥b ⇔x 1 x 2+y 1 y 2=0(10)与向量的模、夹角相关的三个重要公式 ①向量的模:设a =(x ,y ),则|a |=√x 2+y 2.②两点间的距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB ⃗⃗⃗⃗⃗ |=√(x 1-x 2)2+(y 1-y 2)2.③向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则θ=a ·b |a||b|=x 1x 2+y 1y 2√x 12+y 12√x 22+y 22【6.4】平面向量的应用1、平面几何中的向量方法用向量方法解决平面几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系. 2、向量在物理中的应用举例(1)向量与力:向量是既有大小,又有方向的量,它们可以有共同的起点,也可以没有共同的起点.而力是既有大小和方向,又有作用点的量.用向量知识解决力的问题时,往往把向量平移到同一作用点上.(2)向量与速度、加速度、位移:速度、加速度、位移的合成与分解,实质上就是向量的加、减运算.用向量解决速度、加速度、位移等问题,用的知识主要是向量的线性运算,有时也借助于坐标来运算.(3)向量与功、动量:力所做的功是力在物体前进方向上的分力与物体位移的乘积,它的实质是力和位移两个向量的数量积,即W =F ·s =|F ||s |cosθ(θ为F 和s 的夹角).动量m ν实际上是数乘向量. 3、余弦定理、正弦定理(1)余弦定理的表示及其推论(SAS 、SSS 、SSA )文字语言:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号语言:;;.在△ABC 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =(2)解三角形:一般地,三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. (3)正弦定理的表示(AAS 、SSA )文字语言:在一个三角形中,各边和它所对角的正弦的比相等,该比值为该三角形外接圆的直径. 符号语言:在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则2sin sin sin a b cR C===A B (R 为△ABC 的外接圆的半径)(4)正弦定理的变形形式变形形式是在三角形中实现边角互化的重要公式 设三角形的三边长分别为a ,b ,c ,外接圆半径为R ,正弦定理有如下变形: ①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2bR B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; (5)三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . (6)相关术语①仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯2222cos a b c bc A =+-2222cos b c a ca B =+-2222cos c a b ab C =+-角,如图所示.②方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图1所示).③方位角的其他表示——方向角正南方向:指从原点O出发的经过目标的射线与正南的方向线重合,即目标在正南的方向线上.依此可类推正北方向、正东方向和正西方向.东南方向:指经过目标的射线是正东和正南的夹角平分线(如图2所示).(7)解三角形应用题解题思路:基本步骤:运用正弦定理、余弦定理解决实际问题的基本步骤如下:①分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);②建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解三角形的数学模型.③求解:利用正弦定理、余弦定理解三角形,求得数学模型的解.④检验:检验所求的解是否符合实际问题,从而得出实际问题的解.第七章复数【7.1】复数的概念1、数系的扩充和复数的概念(1)复数的定义:形如a +bi (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,全体复数所构成的集合C ={a +bi |a ,b ∈R }叫做复数集.(2)复数通常用字母z 表示,代数形式为z =a +bi (a ,b ∈R ),其中a 与b 分别叫做复数z 的实部与虚部.(3)复数相等:在复数集C ={a +bi |a ,b ∈R }中任取两个数a +bi ,c +di (a ,b ,c ,d ∈R ),我们规定:a +bi 与c +di 相等当且仅当a =c 且b =d . (4)复数的分类①对于复数a +bi (a ,b ∈R ),当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +bi (a ,b ∈R )可以分类如下:复数{实数(b =0)虚数(b ≠0)(当a =0时为纯虚数),②集合表示:2、复数的几何意义(1)复平面(复平面中点的横坐标表示复数的实部,点的纵坐标表示复数的虚部)(2)复数的几何意义①复数z =a +bi (a ,b ∈R )一一对应↔ 复平面内的点z (a ,b ). ②复数z =a +bi (a ,b ∈R )一一对应↔ 平面向量OZ⃗⃗⃗⃗⃗ . (3)复平面上的两点间的距离公式:(,).(4)复数的模①定义:向量OZ⃗⃗⃗⃗⃗ 的模叫做复数z =a +bi (a ,b ∈R )的模或绝对值. 12||d z z =-=111z x y i =+222z x y i =+②记法:复数z =a +bi 的模记为|z |或|a +bi |. ③公式:|z |=|a +bi |=√a 2+b 2(a ,b ∈R ).如果b =0,那么z =a +bi 是一个实数,它的模就等于|a |(a 的绝对值).(5)共轭复数:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数.复数z 的共轭复数用z̅表示,即如果z =a +bi ,那么z̅=a -bi .(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

(完整版)高中数学人教版必修二知识点总结

(完整版)高中数学人教版必修二知识点总结

(完整版)高中数学人教版必修二知识点总

高中数学人教版必修二知识点总结
本文档总结了高中数学人教版必修二的知识点,帮助学生进行复和总结。

以下是各个章节的重点内容:
第一章函数与导数
- 函数的概念和性质
- 函数的图像与奇偶性
- 导数的定义和性质
- 函数的单调性与极值
第二章三角函数
- 正弦、余弦、正切函数的定义和性质
- 三角函数的基本关系式
- 三角函数的图像和性质
- 三角恒等式的运用
第三章数列与数学归纳法- 数列的定义和性质
- 数列的通项公式和通项求和- 数学归纳法的原理和应用
第四章二次函数与其应用- 二次函数的定义和性质
- 二次函数的图像和性质
- 二次函数的最值问题
- 二次函数在实际问题中的应用
第五章平面向量
- 向量的定义和运算
- 向量共线与共面的判定
- 向量的数量积和性质
- 向量的应用
第六章概率
- 概率的基本概念和性质
- 随机事件与概率
- 条件概率和乘法定理
- 排列与组合的应用和概率计算
第七章统计与回归分析
- 统计的基本概念和性质
- 数据的收集和整理
- 统计图表的制作和分析
- 回归分析的原理和应用
以上是高中数学人教版必修二的主要知识点总结,希望对学生的复有所帮助。

详细内容以教材为准。

数学高中必修二知识点总结

数学高中必修二知识点总结

数学高中必修二知识点总结一、函数、方程与不等式1. 函数的概念与性质函数的定义:函数是一种对应关系,将自变量的值唯一对应到因变量的值上的规则,表示为y=f(x)。

函数的性质:奇函数、偶函数、增函数、减函数、周期函数、奇偶性等。

2. 函数的图像函数的图像:函数的图像是函数y=f(x)的平面图形,用来表示函数的变化规律。

基本函数的图像:一次函数的图像为一条直线,二次函数的图像为抛物线等。

3. 函数的变换函数的平移、伸缩、翻转等变换。

4. 一元一次方程与一元二次方程一元一次方程的解法:直接法、等价变形法、代入法等。

一元二次方程的解法:配方法、直接公式法、因式分解法等。

5. 不等式不等式的图解法:将不等式转化成方程,再通过图形解决不等式的解。

不等式的解法:整式法、加减中项法、配方法等。

二、三角函数1. 角度与弧度角度的概念:一个圆周分成360等份,则每份的度数为1°。

弧度的概念:圆的周长对应于360°的弧度为2π。

2. 常数正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数等。

3. 三角函数的图像与性质三角函数的图像:正弦函数的图像、余弦函数的图像、正切函数的图像等。

三角函数的性质:奇偶性、周期性、单调性等。

4. 三角函数的运算三角函数的加法定理、差化积公式、倍角公式等。

三、数列与数学归纳法1. 等差数列与等比数列等差数列:数列中相邻两项的差值是一个常数的数列。

等比数列:数列中相邻两项的比值是一个常数的数列。

2. 数学归纳法数学归纳法的原理:假设当n=k时结论成立,再证明当n=k+1时结论也成立,则结论对于一切正整数n都成立。

四、概率统计1. 随机事件与概率随机事件:在相同条件下会有多种可能发生,但具体结果无法预测的事件。

概率:事件发生的可能性大小。

2. 事件的概率等可能事件的概率:指随机试验中每个基本事件发生的可能性都相等的事件。

互斥事件的概率:两个事件不能同时发生的事件。

高中数学必修二知识点总结

高中数学必修二知识点总结

高中数学必修二知识点总结高中数学必修二是学生们学习数学的重要阶段,本文将对高中数学必修二的知识点进行总结,帮助学生们更好地掌握数学知识。

一、函数的概念和性质。

函数是数学中的重要概念,它描述了两个集合之间的对应关系。

在高中数学必修二中,我们学习了函数的定义、性质、基本初等函数以及函数的运算等内容。

通过学习函数的知识,我们可以更好地理解数学中的抽象概念,为后续学习打下坚实的基础。

二、导数与微分。

导数与微分是高中数学必修二中的重要内容,它们是微积分的基础。

通过学习导数与微分,我们可以研究函数的变化规律,求解最值问题,理解曲线的凹凸性等。

同时,导数与微分也是许多实际问题的数学模型,如物体的运动规律、函数的增减性分析等。

三、定积分与不定积分。

定积分与不定积分是微积分的重要内容,它们描述了函数与曲线之间的面积、变化率等概念。

通过学习定积分与不定积分,我们可以求解曲线下面积、计算函数的平均值、求解变化率等问题。

同时,定积分与不定积分也是许多实际问题的数学模型,如物体的质量、压力、功率等的计算。

四、向量与空间几何。

向量与空间几何是高中数学必修二中的重要内容,它们描述了空间中的方向、长度、位置等概念。

通过学习向量与空间几何,我们可以研究空间中的直线、平面、曲线等几何图形,求解空间中的距离、角度、投影等问题。

同时,向量与空间几何也是许多实际问题的数学模型,如力的平衡、物体的运动轨迹等。

五、概率与统计。

概率与统计是高中数学必修二中的重要内容,它们描述了随机事件的发生规律、数据的分布特征等概念。

通过学习概率与统计,我们可以研究随机事件的概率、数据的描述性统计、参数估计等问题。

同时,概率与统计也是许多实际问题的数学模型,如随机抽样、数据分析、风险评估等。

总之,高中数学必修二的知识点涵盖了函数、微积分、向量与空间几何、概率与统计等内容,这些知识不仅是数学学科的重要组成部分,也是许多其他学科的重要工具。

希望学生们能够认真学习,掌握这些知识,为将来的学习和发展打下坚实的基础。

高中数学必修二知识点总结

高中数学必修二知识点总结

1. 导数1.1 导数的定义导数是函数在某一点处的切线斜率,记作f’(x)。

对于函数 f(x),其在 x 点的导数可以表示为:f’(x) = _{x 0}1.2 导数的计算法则(1)常数的导数为 0;(2)幂函数的导数:若幂函数为 f(x) = x^n,则其导数为f’(x) = nx^(n-1);(3)乘积函数的导数:若乘积函数为 f(x) = u(x) * v(x),则其导数为f’(x) = u’(x) * v(x) + u(x) * v’(x);(4)商函数的导数:若商函数为 f(x) = u(x) / v(x),则其导数为f’(x) = (u’(x) * v(x) - u(x) * v’(x)) / [v(x)]^2;(5)链式法则:若函数为 f(g(x)),则其导数为f’(g(x)) * g’(x)。

1.3 导数的应用(1)求函数的极值:设函数 f(x) 在某一点 x0 处导数为 0,且在 x0 左侧导数为正,在 x0 右侧导数为负,则 f(x0) 为极大值;反之,则为极小值。

(2)求函数的单调区间:设函数 f(x) 在某一点 x0 处导数为正,则 f(x) 在 x0 附近单调递增;反之,则为单调递减。

(3)求曲线的切线方程:设曲线在某一点 (x0, f(x0)),切线斜率为f’(x0),则切线方程为 y - f(x0) = f’(x0)(x - x0)。

2. 极限2.1 极限的定义极限是指当自变量趋近于某一点时,函数值趋近于某一确定的值。

设函数 f(x) 当 x 趋近于 a 时,其极限为 L,则表示为:_{x a} f(x) = L2.2 极限的计算法则c=c;(1)常数的极限:设常数为 c,则limx→a(2)幂函数的极限:设幂函数为 f(x) = x^n,若 n 为正整数,则limx→ax n=a n;若 n 为负整数,则limx→a x n=1a n;(3)乘积函数的极限:limx→a u(x)∗v(x)=limx→au(x)∗limx→av(x);(4)商函数的极限:limx→a u(x)v(x)=limx→au(x)limx→av(x);(5)极限的运算法则:limx→a (f(x)+g(x))=limx→af(x)+limx→ag(x),limx→a(f(x)−g(x))=limx→a f(x)−limx→ag(x),limx→a(f(x)∗g(x))=limx→af(x)∗limx→ag(x),$_{3. 函数的性质3.1 函数的单调性函数的单调性指函数在定义域内,随着自变量的增加,函数值的变化趋势。

高中必修二数学知识点总结(4篇)

高中必修二数学知识点总结(4篇)

高中必修二数学知识点总结1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图-斜二测画法斜二测画法特点:①原来与____轴平行的线段仍然与____平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高中必修二数学知识点总结(二)圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(____-a)2+(y-b)2=r2,圆上一点为(____0,y0),则过此点的切线方程为(____0-a)(____-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是判定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中必修二数学知识点总结(三)直线与方程(1)直线的倾斜角定义:____轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与____轴平行或重合时,我们规定它的倾斜角为____度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于____1,所以它的方程是____=____1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于____轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中必修二数学知识点总结(四)【一】1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

必修二数学知识点归纳

必修二数学知识点归纳

必修二数学知识点归纳高中数学必修二的内容主要包括立体几何初步、平面解析几何初步。

以下是对这些知识点的详细归纳:一、立体几何初步1、空间几何体多面体:由若干个平面多边形围成的几何体叫做多面体。

旋转体:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面,封闭的旋转面围成的几何体叫作旋转体。

2、棱柱、棱锥、棱台棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

3、圆柱、圆锥、圆台、球圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。

圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

球:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。

4、中心投影与平行投影中心投影:光由一点向外散射形成的投影,叫做中心投影。

平行投影:在一束平行光线照射下形成的投影,叫做平行投影。

5、直观图斜二测画法:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 x 轴和 y 轴,两轴相交于点 O。

画直观图时,把它们画成对应的 x'轴和 y'轴,两轴交于点 O',且使∠x'O'y' = 45°(或 135°),它们确定的平面表示水平平面。

已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x'轴或 y'轴的线段。

已知图形中平行于 x 轴的线段,在直观图中长度不变;平行于 y 轴的线段,长度变为原来的一半。

6、三视图正视图:光线从几何体的前面向后面正投影得到的投影图。

高中数学必修2知识点总结归纳(人教版最全)

高中数学必修2知识点总结归纳(人教版最全)

高中数学必修2知识点总结归纳(人教版最全)高中数学必修二知识点汇总第一章:立体几何初步1、柱、锥、台、球的结构特征1) 棱柱:是由两个平行的多边形底面和若干个侧面组成的几何体。

根据底面多边形的边数不同,可以分为三棱柱、四棱柱、五棱柱等。

棱柱的侧面和对角面都是平行四边形,侧棱平行且相等,平行于底面的截面是与底面全等的多边形。

2) 棱锥:是由一个多边形底面和若干个三角形侧面组成的几何体。

根据底面多边形的边数不同,可以分为三棱锥、四棱锥、五棱锥等。

棱锥的侧面和对角面都是三角形,平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3) 棱台:是由一个平行于棱锥底面的平面截取棱锥,截面和底面之间的部分组成的几何体。

根据底面多边形的边数不同,可以分为三棱台、四棱台、五棱台等。

棱台的上下底面是相似的平行多边形,侧面是梯形,侧棱交于原棱锥的顶点。

4) 圆柱:是由一个圆形底面和一个平行于底面的圆柱面组成的几何体。

底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。

5) 圆锥:是由一个圆形底面和一个以底面圆心为顶点的锥面组成的几何体。

底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。

6) 圆台:是由一个圆形底面和一个平行于底面的圆台面组成的几何体。

上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个弓形。

7) 球体:是由一个半圆面绕其直径旋转一周所形成的几何体。

球的截面是圆,球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图三视图是指正视图(光线从几何体的前面向后面正投影)、侧视图(从左向右)和俯视图(从上向下)组成的视图。

正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度。

俯视图和侧视图是用来反映物体在不同方向上的位置关系的,前者反映长度和宽度,后者反映高度和宽度。

斜二测画法是一种直观的图示方法,它的特点是原来与x轴平行的线段仍然与x轴平行且长度不变,原来与y轴平行的线段仍然与y轴平行,但长度为原来的一半。

高中数学必修二知识点

高中数学必修二知识点

高中数学必修二知识点
一、函数基本概念
函数是一种中介关系,即一个输入和另一个输出之间的数学关系,是由一个变量与另一个变量之间的对应关系组成,也可用“自变量与因变量之间的函数关系”来表示。

自变量表示“输入”,因变量表示“输出”,函数则表示输入与输出之间的关系
二、函数的基本性质
1、唯一性。

假定函数f(x)是定义在D上的连续函数,若对x∈D有f(x)=f(y)(x≠y),那么令x=y,从而可得矛盾结论,即函数的值有唯一性。

2、有界性。

函数值的范围是定义域D或定义域D的子集,取值有边界,且返回的值不会超出这个范围。

3、连续性。

函数取值连续,不可突变,这是状态变化的基础。

三、函数的表达式
1、定义式。

定义式表示指定某函数时用来决定函数关系的公式。

常用的函数定义式包括一次函数式,二次函数式,指数函数式,对数函数式等。

2、函数图像。

函数图像就是将函数定义式替换成对应的点对连线图形,可以帮助我们更好地理解函数表达式与函数关系。

四、函数的分类
1、多项式函数。

多项式函数是按照指数大小进行组合,其图像是一段一段连续的连线图形。

2、三角函数。

三角函数是通过极坐标和直角坐标间的关系来研究函数关系的函数,其图像是一段一段的波浪曲线。

3、指数函数。

指数函数是按照指数的大小组成的函数,其图像是一条以负斜率上升的连线图形。

4、对数函数。

对数函数就是以底数为参数,参数为10时为常用对数,其图像是一条以正斜率上升的连线图形。

高中数学必修二知识点

高中数学必修二知识点

高中数学必修二知识点一、简述高中数学必修二,是我们在数学学习的旅程中不可或缺的一部分。

这一部分内容,就像打开数学大门的一把钥匙,为我们揭示了数学的魅力和重要性。

那么接下来让我们一起走近它,简要了解一下它的主要知识点。

开篇我们要讲的是立体几何,在现实生活中,我们经常会遇到各种立体图形,如立方体、球体等。

必修二里我们会深入学习这些图形的性质,比如它们的体积、表面积如何计算。

这些知识不仅有趣,而且在实际生活中非常有用。

紧接着是平面解析几何,这里我们会接触到直线的方程、圆的方程等概念。

想象一下通过数学公式,我们可以精确地描述平面上的任何一条直线或一个圆,这简直太神奇了!我们会学习如何利用这些方程解决与图形相关的问题。

还有数列和等差数列这一章节也非常重要,数列在生活中随处可见,像是贷款还款、银行的复利计算等。

等差数列作为一种特殊的数列,有着自己的规律。

掌握了等差数列,我们就能更好地理解和解决与数列相关的问题。

我们会接触到一些基本的统计与概率知识,在这个章节里,我们会学习如何收集数据、整理数据并进行分析。

同时概率论也会教我们预测未来事件的可能性,这些知识在日常生活和未来的工作中都非常有用。

高中数学必修二涵盖了立体几何、平面解析几何、数列和等差数列以及统计与概率等几大块内容。

这些知识点不仅能帮助我们更好地理解数学世界,也能在实际生活中发挥重要作用。

让我们一起期待并探索这一章节的奥秘吧!1. 高中数学必修二的重要性及其在整个数学学习中的地位和作用高中数学必修二,这本书可是数学学科中的重头戏哦!可以说它是数学学习的关键一环,对我们整个数学学习生涯都有着非常重要的地位和作用。

无论你是即将步入高中的学生,还是已经步入高中的学子,必修二都是你数学学习的必经之路。

为什么这样说呢?高中数学必修二不仅涵盖了高中数学的基础知识,更在学习难度和内容深度上进行了提升。

它就像一座桥梁,连接着初中数学和更为深入的数学学科。

通过必修二的学习,你不仅能巩固之前学过的知识,还能为未来的数学学习打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即斜率反映直线与轴的倾斜程度。

当[)οο90,0∈α时,0≥k 。

当()οο180,90∈α时,;当ο90=α时,k 不存在。

②过两点的直线的斜率公式: 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式: (1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式: 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ (λ为参数),其中直线2l 不在直线系中。

(5)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l )(211212x x x x y y k ≠--=注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(6)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交 交点坐标即方程组的一组解。

方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合 (7)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,则||AB公式:一点()00,y x P 到直线0:1=++C By Ax l 的距离 (9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。

二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;(2)一般方程022=++++F Ey Dx y x 当0422>-+F E D 时,方程表示圆,此时圆心为, 半径为 当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。

(3)求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线 0:=++C By Ax l ,圆 圆心()b a C ,到l 的距离为 则有相离与C l r d ⇔> (2)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为∆,则有相离与C l ⇔<∆0;相切与C l ⇔=∆0;相交与C l ⇔>∆0注:如圆心的位置在原点,可使用公式200r yy xx =+去解直线与圆相切的问题,其中表示切点坐标,r 表示半径。

(3)过圆上一点的切线方程:①圆x 2+y 2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为200r yy xx =+ (课本命题).②圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)=r 2 (课本命题的推广).4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

⎩⎨⎧=++=++00222111C y B x A C y B x A 2200B A C By Ax d +++=⎪⎭⎫ ⎝⎛--2,2E D F E D r 42122-+=22B A C Bb Aa d +++=()()222:r b y a x C =-+-相切与C l r d ⇔=相交与C l r d ⇔<()00,y x设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+-两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

当r R d +>时两圆外离,此时有公切线四条;当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当r R d -=时,两圆内切,连心线经过切点,只有一条公切线; 当r R d -<时,两圆内含; 当0=d 时,为同心圆。

三、立体几何初步1、柱、锥、台、球的结构特征(1) 棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高, 为斜高,l 为母线)(3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V = ; S =24R 5、空间点、直线、平面的位置关系(1)平面① 平面的概念: A.描述性说明; B.平面是无限伸展的;球球面'h② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC 。

③ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉点与直线的关系:点A 的直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l ;直线与平面的关系:直线l 在平面α内,记作l α;直线l 不在平面α内,记作l α。

(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

(即直线在平面内,或者平面经过直线)应用:检验桌面是否平; 判断直线是否在平面内 。

用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

相关文档
最新文档