CO2的捕集与封存

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CO2的捕集与封存技术

摘要:温室气体过量排放严重威胁着人类的生存和发展,CO2的减排措施迫在眉睫。近年来兴起的碳捕集与碳封存(CCS)技术被看做是最具发展前景的解决方案之一。本文从燃烧前、富氧燃烧、燃烧后捕集技术和封存技术介绍全球二氧化碳捕集与封存技术发展现状及示范项目实施情况。针对传统二氧化碳捕集与封存技术的不足,介绍了目前最具发展潜能的新兴的二氧化碳捕集与封存技术。

关键词:温室气体;CO2;碳捕集与封存

二氧化碳是温室气体的主要成分,对温室效应的贡献占60%以上,而人类活动中CO2的产生主要来自于工业排放。据调查显示:近几年CO2平均每年放量在300亿吨以上,其中40%来自电厂,23%来自运输行业,22%来自水泥厂[1]。CO2由于其生命期可长达200年,对气候变化影响最大,因此被认为是全球气候变暖的首要肇事者,成为全球减缓温室气体排放的首要目标。近年来兴起的CO2捕集封存技术则日趋得到人们关注,成为各个国家竞相研究的热点以及国际社会应对气候变化的重要策略。碳捕获和存储技术是一种将工业和能源排放源产生的CO2进行收集、运输并安全存储到某处使其长期与大气隔离的过程,从而减少CO2的排放。科学家预测到2050年,CCS 技术可以减少全球20%的碳排放。

1CCS技术的发展现状

CCS技术是指将二氧化碳从相关排放燃烧源捕获并分离出来,输送到油气田、海洋等地点进行长期(几千年)封存,从而阻止或显著减少温室气体排放,以减轻对地球气候的影响。目前,处于研究阶段、工业试验或工业化应用的封存场所主要有深度含盐水层、枯竭或开采到后期的油气田、不可采的贫瘠煤层和海洋[2]。

目前按燃烧工艺划分二氧化碳捕集技术可以有燃烧前、富氧燃烧、燃烧后等三个主要发展方向。二氧化碳封存技术可分为陆上咸水层封存、海底咸水层封存、CO2 驱油、CO2驱煤层气、枯竭气田注入、天然气生产酸气回注等六个方向。现有二氧化碳捕集与封存技术各具特点同时也都有其发展的局限性,每个发展方向都有与之对应的大规模集成示范项目。目前全球很多地方都开展了二氧化碳捕集与封存的大规模集成

示范项目,其中开展较早、较有代表性有3个分别是挪威Sleipner项目、加拿大Weyburn 项目和阿尔及利亚In Salah项目等。这些项目有些将二氧化碳注入海底或地下,有些注入油田,以提高油田的采收率[3]。

2CO2捕集和封存的主要机理

CO2捕集和封存技术主要由3个环节构成:

(1) CO2的捕集,指将CO2从化石燃料燃烧产生的烟气中分离出来,并将其压缩至一定压力,以超临界的状态有效地储存于地质结构层中。

(2)CO2的运输,指将分离并压缩后的CO2通过管道或运输工具运至存储地。

(3)CO2的封存,指将运抵封存地的CO2注入到诸如地下盐水层、废弃油气田、煤矿等地质结构层或者深海海底或海洋水柱或海床以下的地质结构中。封存场址必须有合适的地质环境容量和可注入性、有满意的密封盖岩、有足够稳定的地质环境[4]。2.1 碳捕集技术

碳捕集的主要目标是化石燃料电厂、钢铁厂、水泥厂、炼油厂、合成氨厂等CO2的集中排放源。针对电厂排放的CO2捕集分离系统主要有3类:燃烧前系统、富氧燃烧系统以及燃烧后系统[4]。

燃烧前捕集技术以煤气化联合循环(IGCC)技术为基础,先将煤炭气化成清洁气体能源,从而把二氧化碳在燃烧前就分离出来,不进入燃烧过程。而且二氧化碳的浓度和压力会因此提高,分离起来较为方便,是目前运行成本最低廉的捕集技术,其前景为学术界所看好。问题在于,传统电厂无法应用这项技术,而是需要重新建造专门的IGCC 电站,其建造成本是现有传统发电厂的2倍以上。目前IGCC项目发展较为迅速,在中国就有5个示范项目在运作过程中[5]。包括有华能天津200MW IGCC电站示范工程、中科院连云港IGCC示范工程、华电杭州200MWIGCC(水煤浆四喷嘴气化)电站示范项目、广东东莞天明电厂120MW IGCC改造项目和太阳洲4×200MW IGCC新建项目,其中天津项目已经通过初步调试。目前国外已建成投运IGCC电站约50余座,总装机约2000万kW。这些电站主要分布在美国、欧洲、日本等发达国家,像澳大利亚、韩国、印度也在积极推动IGCC 的发展。

富氧燃烧捕集技术(又被称为O2/CO2燃烧技术或空气分离/烟气再循环技术) 是针对燃煤电厂特点所发展的CO2减排技术。该技术利用空气分离获得的高纯氧和部分再

循环烟气混合物代替空气与燃料组织燃烧,从而提高了排烟中的CO2浓度。通过循环烟气来调节燃烧温度,同时循环烟气又替代空气中的N2来携带热量以保证锅炉的传热和锅炉热效率。富氧燃烧技术是一种既能直接获得高浓度CO2,又能综合控制燃煤污染物排放的新一代煤粉燃烧技术。目前世界上建成的采用富氧燃烧技术的中试规模以上的电站已经超过10个[6],日本石川岛播磨,法国阿尔斯通和英国巴布库克都已经建成了煤粉炉O2/ CO2燃烧的示范电站。但是富氧燃烧技术的发展主要受空气分离氧气能耗大、燃烧后尾气污染物的产生和控制等一些技术问题的制约。

燃烧后捕集技术是针对燃料燃烧后烟气中CO2的分离路线,该技术适用性强,发展相对成熟。但是燃烧后二氧化碳捕集技术由于处理气体量大,烟气CO2浓度低等造成运行成本高、工艺流程复杂、项目投资大等方面的根本性问题尚未解决。燃烧后二氧化碳捕集技术主要包括化学吸收法、吸附分离法、膜分离法等。燃烧后二氧化碳捕集技术是针对燃料燃烧后烟气中CO2 的分离路线,该技术适用性强,发展相对成熟。但是燃烧后二氧化碳捕集技术由于处理气体量大,烟气CO2 浓度低等造成运行成本高、工艺流程复杂、项目投资大等方面的根本性问题尚未解决。燃烧后二氧化碳捕集技术主要包括化学吸收法、吸附分离法、膜分离法等。

2.2 碳运输

二氧化碳的运输主要有管道运输和罐装运输两种方式,技术上问题不大。管道运输是一种成熟的技术,也是运输二氧化碳最常用的方法,一次性投资较大,适宜运输距离较远、运输量较大的情况。罐装运输主要通过铁路或公路进行运输,仅适合短途、小量的运输,大规模使用不具有经济性。输送大量CO2最经济的方法是通过管道运输。管道运输的成本主要有3部分组成:基建费用、运行维护成本以及其它的如设计、保险等费用。特殊的地理条件,如人口稠密区等对成本很有影响,陆上管道要比同样规模的海上管道成本高出40%~70%,当运输距离较长时,船运将具有竞争力,船运的成本与运距的关系极大。

2.3 碳封存技术

碳封存技术相对于碳捕集技术也更加成熟,主要有3种:含盐咸水层封存、油气层封存和煤气层封存[7]。

咸水层封存是指将二氧化碳封存于距地表800m 以下的咸水层当中。通常咸水层

相关文档
最新文档