高分子化学第4章聚合方法
第四章:自由基聚合方法

→ 2SO4·
B. 水溶性氧化 —还原引发剂
例 过硫酸盐 - 亚硫酸盐
_ 2 S2O8
+ SO3
_ 2
→
_ 2 SO4
+
SO4· +
_ ·SO3
过氧化氢 - 亚铁盐 H2O2 +Fe2+ → OH + HO· + Fe3+
_
(3)乳化剂
乳化剂在乳液聚合中的作用:
a. 降低体系的表面张力使单体形成细小液滴; b. 形成胶束,增溶单体
产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维纶的原料
丙烯腈 氧-还体系 醋酸乙烯酯 丙烯酸酯类 丁二烯 AIBN BPO 配位催化剂 BuLi BF3
涂料、粘合剂
顺丁橡胶 低顺式聚丁二烯
异丁烯
异丁烷
阳离子聚合
粘合剂、密封剂
聚醋酸乙烯酯(PVAc)和聚乙烯醇(PVA)
醋酸乙烯酯,甲醇(乙醇)溶液,BPO;65‐70 ℃,溶剂回 流带走聚合热;利用向溶剂的链转移控制分子 量,单体浓度
9
体积收缩:100%聚合时的体积收缩 1 1 ΔVmax w 0 ( ) dm dp
60oC: dm=0.89g/mL; dp=1.18g/ml, ∆Vmax =27mL,V0 =w/dm =112mL
体积收缩百分数= 27/112 =24%
20oC: dm=0.94g/mL; dp=1.208g/mL,∆Vmax =25.7mL 体积收缩百分数=25.7/102=25.2%
不足 反应热难导出、易局部过热、自动加速严重。 措施 降低反应温度,分段聚合,强化传热
8
3、应用实例 有机玻璃:PMMA
高分子聚合的方法

高分子聚合的方法高分子聚合即是指将单体分子通过化学反应的方式,以共价键的形式连接起来形成高分子化合物的过程。
高分子聚合方法有多种,主要包括自由基聚合、阴离子聚合、阳离子聚合、离子聚合和自由基链转移聚合等。
下面将详细介绍每种方法的原理和特点。
1. 自由基聚合:自由基聚合是最常用的高分子聚合方法之一,其原理是通过自由基的引发剂引发单体中的双键发生自由基聚合反应,形成线性或分支结构的高分子化合物。
自由基聚合过程中,单体经历引发、传递和引发剂消耗三个步骤。
具体而言,首先是引发步骤,引发剂通过过氧化物、有机过氧化物或光照等方式释放自由基,引发单体中的双键发生自由基聚合反应。
然后是传递步骤,聚合反应中产生的自由基可以与另一个单体分子发生反应,形成新的自由基,进而继续链式聚合反应。
最后是引发剂消耗步骤,随着聚合反应的进行,引发剂逐渐被消耗殆尽。
自由基聚合的特点是反应速度较快,适用于大部分单体聚合,具有较高的化学反应活性,能够在室温下进行。
2. 阴离子聚合:阴离子聚合是通过引发剂引发单体中的阴离子发生聚合反应,形成线性高分子化合物。
阴离子聚合反应中,引发剂一般是含有负电荷的离子,如邻苯二甲酸酯等。
在反应过程中,引发剂释放出负离子,与单体中活泼的负离子结合,形成自由基,进而引发单体分子的阴离子聚合反应。
阴离子聚合的特点是具有高选择性和温和反应条件,适用于具有活性负离子或能够稳定负离子的单体。
3. 阳离子聚合:阳离子聚合是通过引发剂引发单体中的阳离子发生聚合反应,形成线性高分子化合物。
阳离子聚合反应中,引发剂一般是含有正电荷的离子,如单质铝、硼氢化锂等。
在反应过程中,引发剂释放出正离子,与单体分子中的双键、酸性官能团等发生反应,进而引发单体分子的阳离子聚合反应。
阳离子聚合的特点是具有高温、低活性等反应条件,适用于具有活性阳离子或能够稳定阳离子的单体。
4. 离子聚合:离子聚合是通过引发剂引发单体中的阴离子和阳离子共同发生聚合反应,形成线性或交联的高分子化合物。
《高分子化学》第4章 自由基共聚合作业答案

2.解:(1)k
=k11/r1 = 49/0.64=76.56 L/(mo l·s),
12
k21=k22/r2 =25.1/1.38=18.19L/(mo l·s)
(2)1/ r1为丁二烯单体的相对活性、1/r2为苯乙烯单体的相对活性。
1/
r1=1.56>1/
r2=0.725说明丁二烯单体活性较苯乙烯单体活性大,又因为k12>k22说明
丁二烯自由基活性较苯乙烯自由基活性小。
(3)两种单体共聚属无恒比点的非理想共聚,共聚物组成方程为F1=( r1f12+f1f2)/(r1f12+2f1f2+r2f22),代入r1和r2值,作图如下
(4)欲得组成均匀的共聚物,可按组成要求计算投料比,且在反应过程中不断补加丁二烯单体,以保证原配比基本保持恒定。
2. 假定一:链自由基的活性与链长无关。
假定二:链自由基的活性只取决于末端单体单元的结构,与前末端单元的结构无关。
假定三:聚合反应是不可逆的,无解聚反应;
假定四:共聚物的聚合度很大,单体主要消耗在链增长反应过程中,而消耗在链引发中的单体数可忽略不计,Rp >>Ri。
假定五:聚合过程为稳态反应,即体系中总自由基浓度及两种自由基浓度都保持不变。
3. 均聚和共聚链增长速率常数之比定义为竞聚率。
它表征两种单体的相对活性,
反映了单体自身增长(均聚)和交叉增长(共聚)的快慢。
r1= k11/k12,r2= k22/k21
当r1 r2=1时,可进行理想共聚;
当r1<1且r2<1时,可进行有恒比点的共聚;
当r1<<1,r2<<1,r1→0,r2→0或r1= r2=0时发生交替共聚。
高分子物理化学-自由基聚合的方法

第四章 聚合方法
例四. 乙烯高压连续气相本体聚合 例四 聚合条件:压力150~200MPa, 温度 温度180~200℃ ,微量氧 聚合条件:压力 ~ ~ ℃ 作引发剂。 (10-6~ 10-4mol/L )作引发剂。 聚合工艺:连续法,管式反应器,长达千米。 聚合工艺:连续法,管式反应器,长达千米。停留时间几 分钟,单程转化率15%~30%。 分钟,单程转化率 ~ 。 易发生分子内转移和分子间转移,前者形成短支链, 易发生分子内转移和分子间转移,前者形成短支链,后者 长支链。平均每个分子含有50个短支链和一个长支链 个短支链和一个长支链。 长支链。平均每个分子含有 个短支链和一个长支链。 由于高压聚乙烯支链较多,结晶度较低, 由于高压聚乙烯支链较多,结晶度较低,仅55%~65%, ~ , Tm为105~110 ℃,密度:0.91~0.93。故称“低密度聚乙烯。” 密度: ~ ~ 。故称“低密度聚乙烯。 熔体流动性好,适于制备薄膜。 熔体流动性好,适于制备薄膜。
6
第四章 聚合方法
例一. 例一 聚甲基丙烯酸甲酯板材的制备 单体, 将MMA单体 引发剂 单体 引发剂BPO或AIBN, 增塑剂和脱模剂置于 或 普通搅拌釜内, 转化率, 普通搅拌釜内 90~95℃下反应至 ℃下反应至10~20%转化率 成为粘稠的 转化率 液体。停止反应。将预聚物灌入无机玻璃平板模具中, 液体。停止反应。将预聚物灌入无机玻璃平板模具中,移入 热空气浴或热水浴中,升温至45~50℃,反应数天,使转化 热空气浴或热水浴中,升温至 ℃ 反应数天, 率达到90%左右。然后在 左右。 率达到 左右 然后在100~120℃高温下处理一至两天, ~ ℃高温下处理一至两天, 使残余单体充分聚合。 使残余单体充分聚合。 PMMA为非晶体聚合物,Tg=105 ℃,机械性能、耐光耐 为非晶体聚合物, 机械性能、 为非晶体聚合物 以上, 候性均十分优异,透光性达90%以上,俗称“有机玻璃”。 候性均十分优异,透光性达 以上 俗称“有机玻璃” 广 泛用作航空玻璃、光导纤维、标牌、指示灯罩、仪表牌、 泛用作航空玻璃、光导纤维、标牌、指示灯罩、仪表牌、牙 托粉等。 托粉等。
高分子化学第四章(离子聚合)

(2)Lewis酸
这类引发剂包括AlCl3、BF3、SnCl4、SnCl5、ZnCl2和TiCl4 等金属卤化物,以及 RAlCl2,R2AlCl 等有机金属化合物,其中 以铝、硼 、钛、锡的卤化物应用最广。
Lewis 酸引发阳离子聚合时,可在高收率下获得较高分子量 的聚合物,因此从工业上看,它们是阳离子聚合的主要引发剂。
(5)聚合方法
自由基聚合可以在水介质中进行,但水对离子聚合的引发剂和 链增长活性中心有失活作用,因此离子聚合一般采用溶液聚合, 偶有本体聚合,而不能进行乳液聚合和悬浮聚合。
4.2 阳 离 子 聚 合
4.2.1 阳离子聚合单体
阳离子聚合单体必须是有利形成阳离子的亲核性烯类单体,包 括以下三大类:
(1)带给电子取代基的烯烃如:
Lewis 酸引发时常需要在质子给体(又称质子源)或正碳离 子给体(又称正碳离子源)的存在下才能有效。
质子给体或正碳离子给体是引发剂,而 Lewis 酸是助引发剂 (或称活化剂),二者一起称为引发体系。
质子给体 一类在 Lewis 酸存在下能析出质子的物质,如水、卤 化氢、醇、有机酸等;以 BF3 和 H2O引发体系为例:
阳离子聚合反应过程中的异构化反应
碳阳离子可进行重排形成更稳定的碳阳离子,在阳离子聚合 中也存在这种重排反应,如 β-蒎烯的阳离子聚合:
4.2.2.3 链转移和链终止 链转移反应 链转移反应是阳离子聚合中常见的副反应,有以下几种形式:
(1)向单体链转移: 增长链碳阳离子以 H+ 形式脱去 β-氢给单体,这是阳离子聚
(Ph)3C+ClO4- + OR
Ph Ph
Ph
CH2 CH ClO4OR
(4)卤素 卤素 I2 也可引发乙烯基醚、苯乙烯等的聚合,其引发反应被认
第四章__自由基悬浮聚合原理及生产工艺

13
2.聚合温度 当聚合配方确定后,聚合温度是反应过程中最主要的参 量。聚合温度不仅是影响聚合速率Rp的主要因素,也是 影响聚合物相对分子质量(或动力学链长Ʋ)的主要因素.
引发剂分解速率
与温度有关
引发剂的引发效率
高聚物合成工艺
14
3.聚合时间 连锁聚合的特点之一是生成一个聚合物大分子的时间 很短,只需要0.01秒~几秒的时间,也就是瞬间完成的。 但是要把所有的单体都转变为大分子则需要几小时,甚 至长达十几小时。这是因为温度、压力、引发剂的用量 和引发剂的性质以及单体的纯度都对聚合时间产生影响, 所以聚合时间不是一个孤立的因素。
高聚物合成工艺
17
(3) 粘釜壁 进行悬浮聚合时,被分散的液滴逐渐变成黏性物质, 搅拌时被浆叶甩到聚合釜壁上而结垢。 结垢后使聚合釜传热效果变差,而且,当树脂中混有 这种粘釜物后加工时不易塑化。 粘釜的原因很多,如搅拌器的型式与转速、釜型与釜 壁材料、釜壁的表面粗糙度、水油比、悬浮剂的种类及 用量、聚合温度及转化率和体系的pH值等。 (4)清釜壁 目前,用高压水冲刷釜壁除去粘釜物。高压水的压力在 15MPa~39MPa,此法不损伤釜壁,劳动强度小,效率 高,减少了单体对空气的污染,维护了工人的健康。另 外,还可以用涂布法减轻粘釜,即在釜壁涂上某些涂层。
高聚物合成工艺
8
采用明胶做悬浮剂的缺点: 用量多容易沉积在聚合物粒子表面,形成一层难于洗去 的保护膜,影响产品的色泽而且使粒子表面坚硬,产品 吸收增塑剂的能力变差,且影响产品的耐热性。另外, 由于明胶是一种天然高聚物,杂质较多,在一定温度下 易受细菌的作用而使聚合物分解变质。 (2)纤维素醚类 作为悬浮剂的纤维素醚类有甲基纤维素(MC)、羟乙基 纤维素(HEC)、羟丙基纤维素(HPC)、乙基羟乙基纤维 素(EHEC)等。 纤维素作悬浮剂的优点:可以使聚合体系稳定,防止 聚合物粒子之间粘结,减轻粘釜程度,提高产品质量, 得到的粒子小而均匀,粒子结构疏松,吸收增塑剂的能 力强。
高分子化学第四章乳液聚合

形成保护
增溶作用
单体 液滴 10000A
水相
单体
增溶胶束
乳化剂分子
胶束 40-50A
乳化剂
少量在水相中
单体
大部分形成胶束 部分吸附于单体液滴
小部分增溶胶束内 大部分在单体液滴内
引发剂 大部分在水中
1.聚合场所
水相中?
大量引发剂, 有初级自由 基,但单体 极少。
单体液滴?
引发剂是水溶 性,难以进入
水相中产生自由基,自由基由水相扩散进入胶束,在 胶束中引发增长,形成聚合物乳胶粒的过程。
油溶性单体的主要成核方式。
➢均相成核(homogeneous nucleation)
水相中产生的自由基引发溶于水中的单体进行增长,形 成短链自由基后,在水相中沉淀出来,沉淀粒子从水相 和单体液滴上吸附了乳化剂分子而稳定,接着又扩散入 单体,形成乳胶粒子,这一过程叫均相成核。
连续
转化率 %
>95
99 60
~60 60~90 60~90
一. 乳化剂及乳化作用
乳化剂
亲水基团 疏水基团
C17H35COONa
疏水 亲水
乳化剂种类(type of emulsifier) ➢阴离子型(anionic): 脂肪酸钠(K12,十二烷基硫酸钠),
烷基磺酸钠、松香皂等; ➢阳离子型(cationic): 胺盐、季胺盐;
乳液聚合法生产的聚合物主要品种
主要品种 乳化剂种类
丙烯酸酯类
聚醋酸乙烯 聚氯乙烯
丁苯橡胶 丁腈橡胶 氯丁橡胶
阴离子+非离 子型
非离子型 阴离子+非离
子型 阴离子型 阴离子型 阴离子型
温度 ℃
70~90
《高分子化学》第4章 自由基共聚合

6
第四章 自由基共聚合
由一段M1链段与一段M2链段构成的嵌段共聚物, 称为AB型嵌段共聚物。如苯乙烯—丁二烯(SB)嵌 段共聚物。由两段M1链段与一段M2链段构成的嵌段 共聚物,称为ABA型嵌段共聚物。如苯乙烯—丁二 烯—苯乙烯(SBS)嵌段共聚物。由n段M1链段与n 段M2链段交替构成的嵌段共聚物,称为(AB)n型嵌 段共聚物。
1, 2-二苯乙烯也不能均聚,但能与马来酸酐共聚, 产物严格交替。
13
第四章 自由基共聚合
(3)理论研究 共聚合反应可用于研究单体、自由基、阴
离子和阳离子的活性,了解单体活性与聚合 物结构之间的关系。
14
第四章 自由基共聚合
4.2 二元共聚物的组成与序列分布
4.2.1 共聚组成的特点 两种单体进行共聚时,由于化学结构不同,反应
R iM1
k
21[M
. 2
][M
1
]
k12
[M1.
][M
2
]
R
t11
R t12
0
d[M
. 2
]
dt
R iM2
k
12
[M
. 1
][M
2
]
k
21[M
. 2
][M
1
]
R
t22
R t12
0
(4—4) (4—5)
因为自由基总浓度不变,即
R iM1 R t11 R t12 0 R iM2 R t22 R t12 0
W2
W1 r1KW1 W2
dW2
W2
r2 W2
W1
m2 m1
W2 r2W2 KW1
(4—15)
K m2
高分子化学第四章乳液聚合

体液滴体积大 比表面小。
增容胶束?
是油溶性单体和 水溶性引发剂相 遇的场所;
胶束内[M]很 高,比表面大, 提供了自由基易 扩散进入引发聚
合的条件。
增容胶束是进行聚合的主要场所。
2.成核机理
乳胶粒:含有聚合物的胶束。 成核:形成乳胶粒的过程,称为成核。
➢胶束成核(micellar nucleation)
散热易,产物呈 固态时要后处 理,也可直接使 用。
含有少量乳化 剂。
间歇, 连续
生产实例
有机玻璃 聚苯乙烯
聚乙烯
丙烯酸树脂 聚丙烯腈 聚醋酸乙烯酯
聚氯乙烯 聚苯乙烯
丁苯橡胶 丙烯酸酯类乳
液
Thank you
●—单体分子, ○—乳化剂分子, ~~聚合物
第Ⅰ阶段:存在单 体液滴,胶束及乳 胶粒子。
第Ⅱ阶段:胶束消 失,含乳胶粒及单 体液滴;乳胶粒体 积不断增大。
第Ⅲ阶段:单体 液滴消失,乳胶 粒体积不断缩小。
乳液聚合阶段示意图
二. 乳液聚合机理
乳化剂:大部分形成胶束,
(直径4~5nm,
聚
少量溶解于水中。
➢ 反相乳液聚合(inverse emulsion polymerization); 油相为连续相,单体是水溶性,即W/O(油包水)。
➢ 核壳乳液聚合(core-shell emulsion polymerization); 先后加入两种不同单体进行聚合,形成核壳结构的乳胶粒。
➢ 无皂乳液聚合(non-soap emulsion polymerization); 不加乳化剂,乳胶粒径单分散性好。
底料入烧瓶 升温至78℃;取组分2的8%-10%打底,升温至84℃, 并加入初加KPS;待兰光出现,回流不明显时开始同时滴加预乳 液及引发剂,约4h滴完;保温1h;降温为65℃,后消除,并保温 30min;降至40℃,调PH为7-8,过滤出料。
第四章聚合方法

第五章聚合方法第一节本体聚合一、概述1、定义在聚合体系中,不加其他反应介质,只有单体本身在引发剂或热、光、辐射的作用下进行的聚合方法,叫做本体聚合。
2、分类(1)均相聚合例如:S、MMA、V Ac等聚合物溶于各自的单体中,形成均相。
(2)非均相聚合(沉淀聚合)例如:VC、AN等聚合物不溶于单体,聚合过程中会逐渐析出。
3、优缺点(1)优点a、产品纯净,后处理简单,是最经济的聚合方法;b、可以制得透明制品,适于制备板材和型材;c、特别适用于实验室研究。
(2)缺点a、没有其他介质,粘度很大,聚合热不易排放,温度难控制;b、有自动加速现象,放热速率提高,温度更难控制,易局部过热,使分子量分布变宽,影响性能;c、由于工艺控制不当,出现气泡、皱纹、裂纹、爆聚等现象。
4、措施工业上,本体聚合存在2大问题,解决办法如下:(1)温度控制问题第一阶段:保持较低的转化率,如l0~35%不等。
此时体系粘度较低,自动加速现象未出现,散热不存在问题,可在较大的普通的聚合釜中进行聚合;第二阶段:转化率和粘度较高,可以进行薄层聚合、或缓慢的流入聚合釜、或改变聚合条件使聚合速度减慢等措施。
(2)出料问题工业上本体聚合的第二个问题,是聚合物的出料问题。
根据产品特性,可用下列出料方法:浇铸脱模制备板状和型材,熔融体挤塑造粒,粉料等。
二、甲基丙烯酸甲酯的间歇本体聚合本体法分子量为100万,而注射用悬浮法只有5~10万。
MMA在间歇本体聚合制备“有机玻璃板”的过程中,存在散热困难、体积收缩、易产生气泡等问题,可以分成预聚、聚合、高温后处理三个阶段加以控制。
1、预聚阶段MMA、BPO或AIBN,以及增塑剂、脱模剂等加入釜内,在90~95℃下聚合至l0~20%的转化率,成为粘稠的浆液;2、聚合阶段将预聚物灌入无机玻璃平板模,移入空气浴或水浴中,慢慢升温至40~50℃,低温缓慢聚合数天,使其达到90%的转化率;3、高温后处理阶段将上述产物进一步升温至PMMA的玻璃化温度以上(例如100~120℃),进行高温后处理,使残余单体充分聚合。
高分子第4章

习题71.解释下列名词:(1)均聚合与共聚合,均聚物与共聚物(2)均缩聚、混缩聚、共缩聚(3)共聚组成与序列结构2.无规、交替、嵌段、接枝共聚物的结构有何差异?对下列共聚反应的产物进行命名:(1)丁二烯(75%)与苯乙烯(25%)进行无规共聚(2)马来酸酐与乙酸2-氯烯丙基酯进行交替共聚(3)苯乙烯-异戊二烯-苯乙烯依次进行嵌段共聚(4)苯乙烯在聚丁二烯上进行接枝共聚3.试用动力学和统计两种方法来推导二元共聚物组成微分方程(式7-10)。
在推导过程中各做了哪些假定?4.对r1=r2=1;r1=r2=0;r1>0,r2=0;r1r2=1等特殊体系属于哪种共聚反应?此时d[M1]/d[M2]=f([M1]/[M2]),F1=f(f1)的函数关系如何5.示意画出下列各对竞聚率的共聚物组成曲线,并说明其特征。
f1=0.5时,低转化率阶段的F1=6.试作氯乙烯-醋酸乙烯酯(r1=1.68,r2=0.23)、甲基丙烯酸甲酯-苯乙烯(r1=0.46,r2=0.52)两组单体进行自由基共聚的共聚物组成曲线。
若醋酸乙烯酯和苯乙烯在两体系中的浓度均为15%(重量),试求起始时的共聚物组成。
7.两单体的竞聚率r1=2.0,r2=0.5,如f1O=0.5,转化率为50%,试求共聚物的平均组成。
8.单体M1和M2进行共聚,r1=0,r2=0.5,计算并回答:⑴合成组成为M2〈M1的共聚物是否可能?⑵起始单体组成为f1O=0.5共聚物组成F1为多少?⑶如要维持⑵中算得的F1,变化不超过5%,则需控制转化率为多少?9.甲基丙烯酸甲酯(M1)和丁二烯(M2)在60OC进行自由基共聚,r1=0.25,r2=0.91,试问以何种配比投料才能得到组成基本均匀的共聚物?并计算所得共聚物中M1和M2的摩尔比。
若起始配料比是35/65(重量比),问是否可以得到组成基本均匀的共聚物?若不能,试问采用何种措施可以得到共聚组成与配料比基本相当的组成基本均匀的共聚物?10.什么是前末端效应、解聚效应、络合效应?简述它们对共聚组成方程的影响。
高分子化学(第四版)第四章 自由基共聚合

组成可由均聚、 组成可由均聚、 共聚速率常数 [M]、[M•]确定 、
应用稳态假定R 消去[M 应用稳态假定 i=Rt , R12=R21 消去 •]
10
“稳态假定”:R12=R21: 稳态假定”
R11 = k 11 M 1• [M 1 ]
[ ]
R12 = k12 M 1• [M 2 ]
• d[M1 ] k11 M1 [M1 ] + k21 M• [M1 ] 2 = • d[M2 ] k22 M• [M2 ] + k12 M1 [M2 ] 2
假定: 假定:
1、等活性假设:自由基的活性与链长无关。 、等活性假设:自由基的活性与链长无关。 2、无前末端效应:链自由基的活性只取决于末端单体单元的结构, 、无前末端效应:链自由基的活性只取决于末端单体单元的结构, 与前末端单元的结构无关。 与前末端单元的结构无关。 活性一样) ( M 1M 1* 和⋯M2M1* 活性一样) ⋯ 3、聚合度很大:单体主要消耗在链增长反应过程中,而消耗在链引发 、聚合度很大:单体主要消耗在链增长反应过程中, 中的单体数可忽略不计, >>R 中的单体数可忽略不计,Rp >> i 。 4、无解聚反应:聚合反应是不可逆的,无解聚反应 、无解聚反应:聚合反应是不可逆的, 5、稳态假定:体系中自由基浓度不变。 要求 i=Rt ,R12=R21 、稳态假定:体系中自由基浓度不变。 要求R
• 12 ⋯ M 1• + M 2 ⋯ M 1M 2 ⋯ →
• 2
• 2
kt22
• 2 2
kt
• Rt12 = 2kt12 M1• M 2
[ ][ ]
交叉终止
kt11, Rt11,分别表示终止速率常数和终止速率 分别表示终止速率常数和终止速率。
高分子化学第四章 自由基共聚合

在共聚反应中,主要 研究共聚物的组成问题。
11
12
• 两单体M1与M2共聚,由于其化学结构不 同,聚合活性往往有差异。在共聚物 中,M1与M2的比例常与投料时单体M1、 M2的比例不同。
•聚合反应的结果?
13
一、共聚物组成微分方程
烯类单体自由基共聚合,也 是连锁聚合反应,其基元反应也 包括链引发、链增长、链终止等。
5-0.8;6-0.57
1.0
单体总转化率 r1=0.30 , r2=0.07 类同P118图4—6
0.2 0.4 0.6 0.8
35
3.控制共聚物组成的方法
• (1)在恒比点投料 • (2)控制转化率的一次投料 • (3)不断补加活泼单体法
36
37
• ~M2-M1M1M1M1M1-M2-M1M1M1M1-M2M2-M1~
注意:取代基的共轭效应对自由基活性 的影响要大一些
52
下列反应速率常数的次序为:
Rs• + M < Rs• + Ms< R• + M < R• + Ms
(1)均聚时,无共轭效应的单体进行聚
合比有共轭效应单体聚合更容易
(2)共聚时,均有共轭或均无共轭效应
单体之间易共聚;否则,不易共聚。
53
2.极性效应
1
0 f 1 -(1-C) f1
(4---21)
C
其中
C=1-( 1-f 1
0 1-f 1
)
2.53
(4---23)
34
2.共聚物组成—转化率曲线
含共 量聚 物 中 /% M1 摩 尔
1.0
0.8
5
f01分别为:
0.6
高分子化学课件聚合方法

高分子化学课件聚合方法一、教学内容本节课的内容选自教材《高分子化学》的第四章,主题为聚合方法。
详细内容涵盖了自由基聚合、离子聚合、配位聚合及开环聚合等常见聚合反应的原理、特点和实际应用。
二、教学目标1. 理解并掌握不同聚合反应的原理及其反应过程;2. 学习并区分各类聚合方法的优缺点及其在实际生产中的应用;3. 培养学生的实验操作能力,能运用所学聚合方法进行简单的高分子合成实验。
三、教学难点与重点教学难点:各类聚合方法的反应机理及其应用场景的掌握。
教学重点:自由基聚合、离子聚合、配位聚合及开环聚合的基本原理和实验方法。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:实验手册、高分子化学实验器材及试剂。
五、教学过程1. 实践情景引入(5分钟):通过展示日常生活中常见的高分子材料,如塑料、橡胶等,引出聚合方法在高分子合成中的应用。
2. 例题讲解(15分钟):讲解自由基聚合、离子聚合、配位聚合及开环聚合的原理,结合实际例题进行深入分析。
3. 随堂练习(10分钟):让学生根据所学内容,完成教材中相关的练习题,巩固所学知识。
4. 实验操作演示(10分钟):现场演示自由基聚合实验,让学生观察实验现象,加深对聚合方法的理解。
5. 小组讨论(10分钟):分组讨论各类聚合方法的优缺点及适用场景,培养学生的团队协作能力。
六、板书设计1. 聚合方法2. 内容:自由基聚合离子聚合配位聚合开环聚合七、作业设计1. 作业题目:(1)简述自由基聚合、离子聚合、配位聚合及开环聚合的原理。
(2)比较各类聚合方法的优缺点及其在实际应用中的选择。
2. 答案:(1)自由基聚合:通过自由基引发剂引发,使单体分子断裂,高分子链;离子聚合:通过离子引发剂引发,使单体分子发生离子反应,高分子链;配位聚合:通过过渡金属化合物作为催化剂,使单体分子在催化剂活性中心发生聚合反应;开环聚合:通过开环反应,使环状单体分子转化为高分子链。
chap4聚合方法

T:大于Tg(105 ºC) Rc 100% 冷却脱模
粘稠的 PMMA/MMA 溶液
M: 106
预聚
2005. 3, Zhaoqun WANG 14/75
例:氯乙烯的本体沉淀聚合
聚氯乙烯(PVC)曾经是使用量最大的塑料, 现在某些领域已被PE、PET等所替代,但其使用消 耗量依然很大,仅次于PE和PP。
散热的 解决方法
第一阶段在较大的反应器中进行转 化率较低(如10% ~ 40%)的聚合; 两段法 第二阶段,转化率较高时采用提高 散热面积、减小体系粘度或放慢聚 合速率等手段以及时排热。 在反应器中控制转化率在较低程度 (如15% ~ 20%),即时进行聚合物 循环法 与单体的 分离。分离得到的单体经 分离 精制后返回到反应器中,循环聚合
2005. 3, Zhaoqun WANG
正好和本体聚 合形成对照
18/75
分子量较低 由于易向溶剂发生链转移反应,从而造成聚合物 溶剂 链转移 分子量的降低 成本提高 大量的溶剂使设备生产能力和利用率较低,溶剂 溶剂 分离回收费用高,除尽聚合物中残留的溶剂较困难, 从而耗材、耗能、分离工艺复杂 环境污染 有机溶剂易燃、有毒,造成环境污染 溶剂
12/75
分 类
无色 有色 珠光 荧光
在生产时加入各种染色剂 加入人造珍珠粉(如碱式碳酸铅) 加入荧光剂(如硫化锌)
应用广泛
透明性
纯度
本体聚合
散热、收缩、气泡
在商业、轻工、建筑、航空、化工等多 个领域。如,航空玻璃、光纤、人工角膜、 广告装潢、沙盘模型、标牌,广告牌,灯箱 的面板和中英字母面板
三阶段法
2005. 3, Zhaoqun WANG 15/75
PE
PP
高分子化学 第四章 自由基共聚合(2)-精选文档

1
三元(Tri-Component)共聚:
三种单体参加反应,共聚物由三个单体单元组成。
3种自由基;3个引发反应;9个增长反应;6个终止
反应;6个竞聚率
二元共聚: 2个引发反应;4个增长反应;3个终止反应;2个竞聚率
6个竞聚率:
M1-M2
r12 k 11 k 12
M2-M3
r 23 k 22 k 23
Valvassori-Sartori的稳态假定:
三元共聚物组成比为:
若三种单体的两两竞聚率已知,可估算其三元 共聚物组成。
4.6
一、竞聚率的测定 1、曲线拟合法
将多组组成不同的 单体配料(f1)进行共聚, 控制低转化率,共聚物分 离精制后,测定其组成F1, 作 F1 ~ f1 图,根据其图形 由试差法求得r1、r2。
13
4.7 单体和自由基的活性
回顾:
在均聚反应中,无法比较单体和自由 基的活性, 如
St St PS
k p 145
VAc VAc PVAc
单体活性 St>>VAc ????
k p 2300
原因:
1) 增长反应的kp的大小,不仅取决于M还 取决于M *; 2) 缺少比较的标准,参考体系不一致。
但这并不表示醋酸乙烯酯及其单体的活性 大于苯乙烯,因为均聚过程中,苯乙烯和醋酸 乙烯酯都只与自身的自由基进行共聚,因此相 互之间没有可比性。 事实上,苯乙烯的活性大于醋酸乙烯酯, 而它们的自由基的活性正好相反。 两种单体或两种自由基的活性只有与同种 自由基或单体反应才能比较。竟聚率可以用以 判别单体或自由基的相对活性。
d [ M ] [ M ] r [ M ] [ M ] 1 2 1 1 1 d [ M ] [ M ] r [ M ] [ M ] 2 2 2 2 1
高分子化学 第四章__自由基共聚合

4.1 概 述-2、意义
例如马来酸酐是1,2取代单体,不能均聚。 但与苯乙烯或醋酸乙烯能很好共聚,是优良的 织物处理剂和悬浮聚合分散剂。 /p-21194446.html 1,2-二苯乙烯也不能均聚,但能与马来酸酐共 聚。产物严格交替。 理论研究:通过共聚反应研究可了解不同单体 和链活性种的聚合活性大小、有关单体结构与 聚合活性之间的关系、聚合反应机理多方面的 信息等,完善高分子化学理论体系。
Poly(A-co-B):A-B共聚物 Poly(A-alt-B):A-B交替共聚物
A-b-B copolymer:A-B嵌段共聚物
Poly(A)-g-poly(B):聚A接枝聚B
4.2 二元共聚物的组成
共聚物性能
密切相关
共聚物组成
不相等 但相关
单体组成
共同决定
单体单元含量与 连接方式
单体相对活性
r1表征了单体M1和M2分别与末端为M1*的增长链 反应的相对活性,它是影响共聚物组成与原料单体混 合物组成之间定量关系的重要因素。
4.2 二元共聚物的组成-1、组成方程
r1 = k11/k12, r2 = k22/k21
r1 = 0,表示M1的均聚反应速率常数为0,不能 进行自聚反应,M1*只能与M2反应; r1 > 1,表示M1*优先与M1反应发生链增长; r1 < 1,表示M1*优先与M2反应发生链增长; r1 = 1,表示当两单体浓度相等时,M1*与M1和 M2反应发生链增长的几率相等; r1 = ∞,表明M1*只会与M1发生均聚反应,不会 发生共聚反应。
该类例子很多,如丁二烯—苯乙烯体系( r1=1.35, r2=0.58,50℃);氯乙 烯—醋酸乙烯酯体系( r1=1.68, r2=0.23 );甲基丙烯酸甲酯—丙烯酸甲酯体 系( r1=1.91, r2=0.5 )。 苯乙烯—醋酸乙烯酯体系也属此类( r1 = 55, r2 = 0.01 ),但因r1>> 1, r2 << 1,故实际上聚合前期得到的聚合物中主要是苯乙烯单元,而后期的聚合 物中主要是醋酸乙烯酯单元,产物几乎是两种均聚物的混合物。
高分子化学第四章

: 2. 分散剂 (dispersant )
起分散作用,使液滴稳定的物质。
分散剂类型
水溶性有机高分子
无机粉末
吸附在液滴表面
包围液滴,隔离作用
影响树脂颗粒大小和形态的因素:
机械强度(一般强度愈大,颗粒愈细); 分散剂种类和浓度; 水与单体比例(水油比); 聚合温度;
非 均 相 聚 合 ( 如 聚 合 ) , 得 不 透 明 的 粉 未 。
数,60℃以上,除了温度,还通过链转移剂来 控制分子量; 引发剂的种类和用量用以调节聚合速度。
4.5 乳液聚合(emulsion polymerization)
定义:
乳化剂,搅拌 单体(monomer) 分散介质
稳定的乳状液而进行的聚合
组分:
经典的乳液聚合
)(油溶性oilsoluble) 单体(monomer tor)(水溶性wa ter soluble) 引发剂(initia fier) 乳化剂(emulsi 分散介质(dispe rsant)(水wa ter)
第Ⅰ阶段:单体 液滴,乳胶束及 乳胶粒子;
第Ⅱ阶段:胶束 消失,含乳胶粒 及单体液滴;
乳液聚合阶段示意图
第Ⅲ阶段:单 体液滴消失, 乳胶粒体积不 断增大。
胶束成核(micellar nucleation)
水相中产生自由基,自由基由水相扩散进入胶束,在 胶束中引发增长,形成聚合物乳胶粒的过程。 大多为油溶性单体。
均相成核(homogeneous nucleation)
水相中产生的自由基引发溶于水中的单体进行增长,形 成短链自由基后,在水相中沉淀出来,沉淀粒子从水相 和单体液滴上吸附了乳化剂分子而稳定,接着又扩散入 单体,形成和胶束成核过程同样的乳胶粒子,这一过程 叫均相成核。
《高分子化学》教案第4章自由基聚合实施

第四章自由基链式聚合实施方法本章要点:1.自由基链式聚合的实施:通常有本体聚合、溶液聚合、悬浮聚合和乳液聚合,它们有不同的适用场合,有着各自的优缺点;2.本体聚合:为解决散热问题,采用分段聚合;3.溶液聚合:溶剂的选择性是关键;4.悬浮聚合:聚合机理同常规的本体或溶液聚合,分散剂起到关键作用,产物的粒径达到mm级;5.乳液聚合:具有特殊的聚合机理和聚合规律,通过增加乳化剂用量可同时提高聚合速率和产物的分子量;6.大品种高分子:低密度聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚乙酸乙烯酯和丁苯橡胶等等,宜采取适当方法生产。
本章难点:1.乳液聚合的聚合场所:增溶胶束和乳胶粒为乳液聚合的主要差所;2.乳液聚合的聚合过程:根据聚合速率,乳液聚合分为三个阶段;聚合过程中单体和乳化剂的物料转移由单体液滴、至水相、再至乳胶粒;聚合过程中分散相(胶束、单体液滴和乳胶粒)按一定规律变化;3.乳液聚合动力学:经典的乳液聚合包含许多理想条件。
4.1 聚合方法和聚合体系4.1.1 单体在反应介质中的分散状态本体聚合没有反应介质,溶液聚合中单体以分子状态溶解在反应介质,悬浮聚合中单体以mm级的分散相悬浮于反应介质中,在乳液聚合中单体主要存在于分散相的单体液滴和乳胶粒中。
4.1.2. 按聚合体系的相态单体及其聚合物以分子状态溶解在反应介质中,聚合体系成为一相,此时为均相聚合;反之,单体或/和聚合物不溶于反应介质,聚合体系具有多个相,此时为非均相聚合。
4.1.3. 按单体的物理状态分类分为气相聚合、液相聚合和固相聚合。
4.2 本体聚合4.2.1 本体聚合的组成和特点本体聚合体系由单体、引发剂和少量助剂组成。
除用引发剂进行聚合以外,还可用光和辐照来进行聚合。
本体聚合的聚合速率高,产物纯度大,但是散热和搅拌困难。
4.2.2 本体聚合的适用场合产物纯度高,特别适用于生产板材和型材等透明制品,且所用设备比较简单。
本体聚合反应,也特别适合于实验室研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 影响悬浮聚合物颗粒大小和形态的因素 单体种类等; 搅拌强度(一般强度越大,颗粒越细); 分散剂种类和浓度; 水与单体比例(水油比); 聚合温度; 引发剂种类和数量;
一般粒径在:0.05~2mm
3. 分散剂(dispersant):
起分散作用使液滴稳定的物质。是一种能将油溶性单体 分散在水中形成稳定悬浮液的物质。
Xn
k p M •
N
ρ:自由基生成速率或体系中总的引发速率,个/mol。
Xn N,M
4. 3 乳胶粒数(particle number)N
N
k
u
2
/
5
(as
S)3/5
u:聚合物乳胶粒体积增加速率; k:常数,其值为0.37~0.53;
as S 是乳化剂总的表面积。as 是一个乳化剂分子的表面积,S 是体系中乳化剂的总浓度
关键:溶剂的选择。 溶剂对聚合物活性的影响 溶剂不直接参加反应,但溶剂导致笼蔽效应使引发效率f 降低。 溶剂的加入降低了单体浓度 [ M],使聚合速率Rp降低。 链自由基向溶剂链转移的结果使分子量降低。 溶剂对聚合物的溶解性能及凝胶效应的影响 选用良溶剂时,有可能消除凝胶效应(gel effect),而选用 沉淀剂时, 凝胶效应显著,劣溶剂的影响介于两者之间。
4.1 引言(introduction)
聚合物生产实施的方法,称为聚合方法。
本体聚合 溶液聚合 乳液聚合 悬浮聚合
间歇聚合 连续聚合 半连续聚合
操 作 方 式
反应物的状态 聚合方法
单 体 形 态
气相聚合 固相聚合
溶解性
均相聚合 非均相聚合
沉淀聚合
沉淀聚合
均相聚合
溶解性
非均相聚合
均相聚合(homogeneous polymerization) 聚合物—单体互溶,体系呈均相。 非均相聚合(heterogeneous polymerization) 聚合物—单体互不相溶或部分互溶,体系呈非均相。
散成稳定的乳状液而进行的聚合。
基本组分:
经典乳液聚合
单体(油溶性) 引发剂(水溶性):过硫酸盐,氧化还原体系; 乳化剂 分散介质:水
反向乳液聚合
乳液聚合优缺点:
优点: 同时提高R p、M n ,R p快产物分子量高; 以水为分散介质廉价安全; 聚合体系粘度低,易传热,反应温度易于控制; 尤其适合于直接使用胶乳的场合。
4-5 乳液聚合阶段示意图
●—单体分子,○—乳化剂分子,~~聚合物
4. 聚合动力学 4.1 聚合速率 主要研究恒速率阶段。
Rp k p M M •
[M]:乳胶粒子中单体浓度。mol/dm3。
当第一个自由基进入胶束时,发生引发、增长,形成
乳胶粒。第二个自由基进入后,即发生链终止。一乳
胶粒内的平均自由基数为1/2。
类型
水溶性有机高分子 吸附在液滴表面
无机粉末
水溶性高分子 (如聚乙烯醇、 明胶、羟基纤 维素等)
包围液滴,隔离作用
起分散作用,使液滴稳定的物质。
难溶于水的无机 物(如碳酸钙、 滑石粉、硅藻土
等)
4.5 乳液聚合(emulsion polymerization)
定义: 单体在乳化剂和机械搅拌作用下,在分散介质中分
单体来源:
单体液滴
水相
乳胶粒
第二阶段-恒速期:自胶束消失开始,到单体液滴消失 为止。C=20~50%, 这一阶段体系中,含有乳胶粒和单体 液滴两种粒子。乳胶粒数恒定,单体液滴不断提供单体, 乳胶粒内单体浓度[M]恒定。故聚合速率恒定。
第三阶段-降速期:单体液滴消失后, [M]下降,乳胶粒 内继续进行增长、引发、终止,直到单体完全转化。但聚合 速率随着乳胶粒内单体浓度[M]下降而下降。该阶段体系内只 有乳胶粒一种粒子。
[M]很高,比表面大,提供了自由基易扩散进入引 发聚合 的条件, 所以胶束是进行聚合的主要场所。
2.2 成核机理(mechanism of nucleation) 乳胶粒:胶束内的单体进行聚合反应后的胶束。 成核:形成乳胶粒的过程,称为成核。
胶束成核(micellar nucleation) 水相中产生自由基,自由基由水相扩散进入胶束, 在
的
状 态
单体 液滴
单体液滴是提供 单体的仓库
引发剂大部分在水相
聚合场所
乳化剂
单体
少量在水相中
大部分形成胶束
部分吸附于单体 液滴
小部 分增 溶胶 束内
大部 分在 单体 液滴
内
引发 剂
大部 分在 水中
单体液滴:引发剂难以进入,比表面小。 水相中:大量引发剂,有初级自由基,但单体极少。 胶束:油溶性单体和水溶性引发剂相遇的场所, 胶束内
第四章 聚合方法( polymerization process)
4.1 引言(introduction) 4.2 本体聚合(bulk polymerization) 4.3 溶液聚合(solution polymerization) 4.4 悬浮聚合(suspension polymerization) 4.5 乳液聚合(emulsion polymerization) 4.6 超临界聚合反应技术 4.7 非水非挥发性介质中的聚合技术
3~6 W/O 乳化剂
8~18 O/W 乳化剂 13~15 洗涤剂
经典乳液聚合是O/W型的。 CMC: 形成胶束的临界浓度
三相平衡点:离子型乳化剂处于分子溶解、胶束、凝胶 三相平衡时的温度。
浊点:非离子型乳化剂开始分相变浊时的温度
1.2 乳化作用 使互不相溶的两物质(水与油)转变成相当稳定而难以 分层的乳液。
胶束中引发增长,形成聚合物乳胶粒的过程。 大多为油 溶性单体。
均相成核(homogeneous nucleation) 水相中产生的自由基引发溶于水中的单体进行增长,
形成短链自由基后,在水相中沉淀出来,沉淀粒子从水 相和单体液滴上吸附了乳化剂分子而稳定,接着又扩散 入单体,形成和胶束成核过程同样的乳胶粒子,这一过 程叫均相成核。
(suspension polymerization)
单体
将不溶于水的单体以小液滴状悬浮于水 中进行的聚合,这是自由基聚合一种特有 的聚合方法。
一个小液滴相当于本体聚 合的一个单元
基本组分
引发剂
分散
水
剂
1. 悬浮聚合的液液分散与成粒过程 关键:分散和搅拌作用。
剪切力作用单体液层分散成液滴
剪切力,界面张力影响成滴作用
聚合场所:
在本 体内 聚合
优点:产物纯净不存在介质分离问题;
尤其适合于制备板材型材及相关透明制品;
聚合设备简单可连续或间歇生产;
缺点:体系黏度大,聚合热不易扩散,温度难控制; 若散热不良轻则造成局部过热,分子量分布宽; 重则温度失调,引起爆聚;
关键问题:聚合和散热。 解决方法:分段聚合。
预聚合
低C%,Rp快
后聚合
低温,Rp慢
第一阶段:预聚,在聚合釜中进行,保持低转化 率10~35%,放出一部分聚合热;
第二阶段:后聚,进行薄层聚合或在特殊设计的反应 器内进行聚合,逐步升温,使聚合完全;
聚合实例:有机玻璃,聚苯乙烯等。
4.3 溶液聚合
将单体和引发剂溶于适当溶剂中进行的反应。 基本组成
单体
引发剂
溶剂
在溶 液内 聚合
烷基磺酸钠、松香皂等。
➢ 阳离子型(cationic):胺盐、季胺盐 ➢ 两性型(amphiprotic):氨基酸盐 ➢ 非离子型(non-ionic):PO、EO均聚物和共聚物
乳化剂性能指标
亲水亲油平衡值(HLB)(Hydrophile Lipophile Balance)
HLB值↑
亲水性↑
HLB: 1~3 消泡剂
❖ 乳液聚合 (suspension polymerization) 单体、水、水溶性引发剂、乳化剂(emulsifier) 配成乳液状态所进行的聚合。
4.2 本体聚合
不加其它介质,只有单体本身,在引发剂、热、光等作用
下进行的聚合反应。
在本
基本组成
体内 聚合
单体
引发剂
助剂
单体:包括气态,液态和固态单体; 引发剂:一般为油溶性; 助剂:一般为色料,增塑剂和润滑剂等;
4.5 乳液聚合的进展(development of emulsion polymerization )
➢ 反相乳液聚合(inverse emulsion polymerization);
➢ 核壳乳液聚合(core-shell emulsion polymerization); ➢ 无皂乳液聚合(non-soap emulsion polymerization); ➢ 乳液定向聚合(stereoregular emulsion polymerization); ➢ 乳液辐射聚合(radiant emulsion polymerization); ➢ 种子聚合(seminal emulsion polymerization)等
优点: 散热控温容易,可避免局部过热; 体系粘度低,较少有凝胶效应,易混合与传热;
缺点: 单体浓度低使聚合速率慢,设备生产能力及利用率
低; 易向溶剂链转移,使分子量偏低; 溶剂分离回收利用费用高,设备利用率低;
工业上,溶液聚合多用于聚合物溶液直接使用 的场合,如涂料,胶粘剂,合成纤维纺丝液等。
4.4 悬浮聚合
当 n =1/2时:
M •
10 3 N n
NA
N:恒速率阶段乳胶粒浓度, 单位:个/cm3; NA:阿佛加德罗常数。
聚合速率方程:
RP
103 N • k p 2NA
M
RP N,M
4. 2 聚合度 对乳胶粒,引发速率ri和增长速率rp分别为: