2汇交力系解析

合集下载

工程力学(二)第2章 平面汇交力系

工程力学(二)第2章 平面汇交力系

例 题 2- 3
重物质量m =10 kg,悬挂在支架铰接点B处,A、C 为固定铰支座,杆件位置如图示,略去支架杆件重 量,求重物处于平衡时,AB、BC杆所受的力。
C 。 B FCB 。 30 。 45 FAB y B x mg
60
45

A
解:取铰B为研究对象,其上作用有 三个力:重力mg;BC杆的约束力FCB(设为拉力) 及AB杆的约束力FAB(设为压力),列出平衡方程 ∑Fx= 0, -FCB cos30o + FABcos45o =0 ∑Fy= 0, -mg+FCB sin30o +FABsin45o =0
FCB 。 30 。 45 FAB y B x mg
例 题 2- 3
联立上述两方程,解得: FAB=88.0 N, FCB=71.8 N。
例题 2- 3
C 。 B FCB 。 30 。 45 FAB
y B x mg
60
45

A
由于求出的FAB和FCB 都是正值,所以原先假设 的方向是正确的,即BC 杆承受拉力,AB 杆承受压 力。若求出的结果为负值,则说明力的实际方向与 原假定的方向相反。
30o
并以铰链A,C与墙连接。如
P
两杆与滑轮的自重不计并忽 略摩擦和滑轮的大小,试求 平衡时杆AB和BC所受的力。
C
例 题 2-4
A
60o
D
B
解:取滑轮B为研究对象,忽 略滑轮的大小,设AB受拉,BC受 压,受力图及坐标如图。 列平衡方程
Fx = 0, − FAB + F1sin 30o − F2sin 60o = 0 ∑ Fy = 0, FBC − F1 cos 30o − F2 cos 60o = 0 ∑

工程力学课后题答案2 廖明成

工程力学课后题答案2 廖明成

第二章 汇交力系习 题2.1 在刚体的A 点作用有四个平面汇交力。

其中F 1=2kN ,F 2=3kN ,F 3=lkN ,F 4=2.5kN ,方向如题2.1图所示。

用解析法求该力系的合成结果。

题2.1图解 00001423cos30cos45cos60cos45 1.29Rx F X F F F F KN ==+--=∑00001423sin30cos45sin60cos45 2.54Ry F Y F F F F KN ==-+-=∑222.85R Rx Ry F F F KN =+=0(,)tan63.07Ry R RxF F X arc F ∠==2.2 题2.2图所示固定环受三条绳的作用,已知F 1=1kN ,F 2=2kN ,F 3=l.5kN 。

求该力系的合成结果。

F 1F 23解:2.2图示可简化为如右图所示023cos60 2.75Rx F X F F KN ==+=∑013sin600.3Ry F Y F F KN ==-=-∑222.77R Rx Ry F F F KN =+=0(,)tan6.2Ry R RxF F X arc F ∠==-2.3 力系如题2.3图所示。

已知:F 1=100N ,F 2=50N ,F 3=50N ,求力系的合力。

32F 1解:2.3图示可简化为如右图所示080arctan5360BAC θ∠=== 32cos 80Rx F X F F KN θ==-=∑12sin 140Ry F Y F F KN θ==+=∑22161.25R Rx Ry F F F KN =+=0(,)tan60.25Ry R RxF F X arc F ∠==2.4 球重为W =100N ,悬挂于绳上,并与光滑墙相接触,如题2.4 图所示。

已知30α=,试求绳所受的拉力及墙所受的压力。

题2.4图WOF 推解:2.4图示可简化为如右图所示sin 0X F F α=-=∑拉推 cos W 0Y Fα=-=∑拉115.47N 57.74N F F ∴==拉推,∴墙所受的压力F=57.74N2.5 均质杆AB 重为W 、长为 l ,两端置于相互垂直的两光滑斜面上,如题2.5图所示。

工程力学第2章(汇交力系)

工程力学第2章(汇交力系)

2.力在平面上的投影
FM F cos
⑴ 力在平面上的投影是矢量。 ⑵ α:力与投影平面的夹角。
3. 力在直角坐标轴上的投影 · 一次投影法 Fx F cos
Fy F cos
Fz F cos
·二次投影法
Fx Fxy cos F cos cos Fy Fxy sin F cos sin
合力FR 的大小
FR ( Fx )2 ( Fy )2 ( Fz )2
合力FR 的方向
R
F cos( F ,i )
x
cos( FR,j )
R
F Fy
F
z
F cos( F ,k ) F
二、汇交力系平衡的解析条件
汇交力系平衡的充分且必要条件是力系的合力等于零。
角为60o ,若接触面光滑,试分别求出圆柱给墙面和夹板的压 力。
解:
FA Gtan30o 500 tan30o 288.7N
G 500 FB 577.4N o o cos 30 cos 30
几何法求解汇交力系简化与平衡问题总结:
⑴ 选择研究对象,分析受力情况,画出全部的 已知力和未知力,利用二力平衡、三力平衡汇交等定 律确定某些力作用方向(必须明确力的方向,否则容 易出错)。
Fx 0 : Fy 0 : F
z
FA FC cos 30o sin 0
FB FC cos 30o cos 0 FC sin30o P 0
0:
由几何关系可得 cos 0.8 sin 0.6 解得: FA 10.39kN
FB 13.85kN FC 20kN
F2 = 4kN,F3 = 5kN,求三个力的合力。 解:

汇交力系

汇交力系
3
汇交力系的合成 几何法(矢量法) 一、几何法(矢量法)
为作用在A点的力系 点的力系, 设 { F1 , F2 , F3 } 为作用在 点的力系,求其合力
F3
A
F2 F1
F F R
F3
F2
R12
F R
F1
F3
F2
多 边
F1
FR 12 = F1 + F2
FR = FR 12 + F3
FR = F1 + F2 + F3
x
FRz = ∑ Fz
y
8
平 面 力 系
FRx = FRy =
∑ ∑
Fx = 0 Fy = 0
X Y轴可以不正交,也不一 轴可以不正交,
定取水平和铅直方向
Y 9N 10N 9N F 10N X X Y轴不正交时分力方向? 轴不正交时分力方向? Y F X
9
如图所示,重物P=20kN,用钢丝绳挂在支架的滑轮 例:如图所示,重物 , 钢丝绳的另一端缠绕在铰车D上 铰接, 上,钢丝绳的另一端缠绕在铰车 上。杆AB与BC铰接,并 与 铰接 以铰链A、 与墙连接 如两杆和滑轮的自重不计, 与墙连接。 以铰链 、C与墙连接。如两杆和滑轮的自重不计,并忽略 摩擦和滑轮的大小,试求平衡时杆AB和 所受的力 所受的力。 摩擦和滑轮的大小,试求平衡时杆 和BC所受的力。
z
z
D
F3
ϕ
C
θ
C
ϕ
θ
F2
y
y B
A
F 1
B P
A 空 间 力 系
x
x
∑F ∑F ∑F
P
y
x
z
= 0 = 0 = 0

2-2平面汇交力系合成的解析法

2-2平面汇交力系合成的解析法
4.2 平面汇交力系合成的解析法
一、力的分解
将一个力分解为两个分力的过程称为力的分解。
力的分解是力的合成的逆运算。 我们常把已知力分解成两个方向互相垂直的分力。
力的分解:
y
Fy
F
F x F co sθ

O
F y F sin
Fx
x
二、力在坐标轴上的投影
y
B

Fy

F
Fx

F
F F
2 x
2 y
Fy tan Fx
Байду номын сангаас
式中, 为力F与 x轴的夹角。
例2-1 如下图所示,已知F1=10KN, F2=20KN,F3=30KN,F4=40KN,求图示中 各力的投影。
y
F1 F2 O F3 F4 x
三、平面汇交力系合成的解析法
各力在x 轴上投影:
F1x ab F2 x bc F3 x dc
Fy
F F sin 30 F sin 60 F sin 45 F sin 45 112.3N iy 1 2 3 4
F Fx2 Fy2 171.3N
Fy tan 0.869 Fx
Fy arctan arctan 0.869 41 Fx
Fix Fiy
故合力的大小和方向为:
FR Fx Fy
2 2
Fy tan Fx
F F Fy F
2 ix iy
2
x
式中, 为力F与x轴的夹角。
求:此力系的合力. 例2-2 已知:图示平面共点力系;
解:用解析法
Fx

第二章 汇交力系

第二章 汇交力系

同理: FRy F1y F2 y F3y Fy
§1 汇交力系的合成
5、汇交力系合成的解析法
应用合力投影定理求出力系合力的投影后,可用下式 求出合力的大小和方向: 合力的大小:
FR FR2x FR2y FR2z ( Fx )2 ( Fy )2 ( Fz )2
合力FR 的方向余弦:
汇交力系的合成 几何法(矢量法) 解析法(投影法)
汇交力系的平衡条件 几何法(矢量法) 解析法(投影法)
§1 汇交力系的合成
一、力的可传性
F
公理三:加减平衡力系原理 在刚体上增加或减去
一组平衡力系,不会改变 原力系对刚体的作用效应
F’ F”
F A
B
F
A
B
若{P1, P2 ,L , Pm} {0} 则 {F1, F2, , Fn}
例2-3:圆柱重G=500N,搁在光滑墙面与夹板间, 板与墙面夹角为60°,用解析法求:圆柱给墙面和 夹板的压力。
解:1.以圆柱为研究对象,画受力图;
FA
O
G
FB
O
AG
60° B
例2-3:圆柱重G=500N,搁在光滑墙面与夹板间,
板与墙面夹角为60°,用解析法求:圆柱给墙面和
夹板的压力。
解:1.以圆柱为研究对象,画受力图:
Fx + Fy = F
| F | = (Fx)2 + (Fy)2 x
= (Fx)2 + (Fy)2
α = atan (Fy /Fx)
§1 汇交力系的合成
三、汇交力系合成的解析法(投影法)
可见: 力F在垂直坐标轴上的投影分量与沿轴分解的分 力大小相等;力F在相互不垂直的轴上的投影分 量与沿轴分解的分力大小是不相等的。 力在任一轴上的投影大小都不大于力的大小;而 分力的大小却不一定都小于合力大小。 力在任一轴上的投影可求,力沿一轴的分量不可 定。

2016工程力学(高教版)教案:2.2平面汇交力系合成与平衡的解析法

2016工程力学(高教版)教案:2.2平面汇交力系合成与平衡的解析法

第二节 平面汇交力系合成与平衡的解析法求解平面汇交力系问题的几何法,具有直观简捷的优点,但是作图时的误差难以避免。

因此,工程中多用解析法来求解力系的合成和平衡问题。

解析法是以力在坐标轴上的投影为基础的。

一、在坐标轴上的投影如图2-5所示,设力F 作用于刚体上的A 点,在力作用的平面内建立坐标系oxy ,由力F 的起点和终点分别向x 轴作垂线,得垂足a 1和b 1,则线段a 1b 1冠以相应的正负号称为力F 在x 轴上的投影,用X 表示。

即X=±a 1b 1;同理,力F 在y 轴上的投影用Y 表示,即Y=±a 2b 2。

力在坐标轴上的投影是代数量,正负号规定:力的投影由始到末端与坐标轴正向一致其投影取正号,反之取负号。

投影与力的大小及方向有关,即⎭⎬⎫=±==±=βαcos cos F ab Y F ab X (2-3) 式中α、β分别为F 与X 、Y 轴正向所夹的锐角。

图2-5反之,若已知力F 在坐标轴上的投影X 、Y ,则该力的大小及方向余弦为⎪⎭⎪⎬⎫=+=F X Y X F αcos 22 (2-4) 应当注意,力的投影和力的分量是两个不同的概念。

投影是代数量,而分力是矢量;投影无所谓作用点,而分力作用点必须作用在原力的作用点上。

另外仅在直角坐标系中在坐标上的投影的绝对值和力沿该轴的分量的大小相等。

二、合力投影定理设一平面汇交力系由F 1、F 2、F 3和F 4作用于刚体上,其力的多边形abcde 如图2-6所示,封闭边ae 表示该力系的合力矢F R ,在力的多边形所在平面内取一坐标系oxy ,将所有的力矢都投影到x 轴和y 轴上。

得X=a 1e 1, X 1=a 1b 1, X 2=b 1c 1,X 3=c 1d 1 ,X 4=d 1e 1由图2-6可知a 1e 1=a 1b 1+b 1c 1+c 1d 1 +d 1e 1即 X=X 1+X 2+X 3+X 4同理 Y=Y 1+Y 2+Y 3+Y 4将上述关系式推广到任意平面汇交力系的情形,得⎭⎬⎫∑=+++=∑=+++=Y Yn Y Y Y X Xn X X X 2121 (2-5)图2-6即合力在任一轴上的投影,等于各分力在同一轴上投影的代数和,这就是合力投影定理。

汇交力系

汇交力系
=20kN,不计刚架自重。用几何法求支座A、D处的约束反力。
解 (1) 选平面刚架为研究对象,按比例画出其分离体图。
(2) 对刚架进行受力分析,并画出其受力图,如图 b) 所示。
刚架上作用有水平力F,辊轴支座D的反力FD。根据三力平衡汇交 定理,力F和FD交于C点,所以固定铰支座处的反力FA,必沿A、
200 0.5 300 0.866 100 0.707 250 0.707 112 . 3 N
合力:
夹角:
FR
2 2 FRx FRy 171.3N
FRx FR , i arccos arccos( 0.7548 ) 40.99 o FR
力。梁的自重不计。
F
A C 60º B 30º 60º 60º
a
a
30º
30º
解:(1) 取梁AB 作为研究对象。 (2) 画出受力图。 (3) 应用平衡条件画出F、FA 和FB 的闭合力三角形。 (4) 解出:FA = Fcos30 = 17.3 kN,FB = Psin30 = 10 kN
[例] 平面刚架ABCD在B点作用一水平力F,如图所示。已知F
例题 已知 P = 20 kN,求平衡时杆AB 和 BC所受的力 解: 取节点 B 为研究对象,AB 、BC 都是二力杆
A D
60 0
画受力图 建立坐标系如图 B 由平衡方程:
F
x
0
30
0
FBA F1 cos 600 F2 cos300 0
C
F
P
y
30 0
y
0
FBC F1 cos300 F2 cos 600 0
§2-1 汇交力系合成与平衡的几何法

理论力学第二章(汇交力系)

理论力学第二章(汇交力系)
力多边形 各分力矢与合力矢构成的多边形。
2) 合力
力矢量合成的力多边形法则: 1) 各分力首尾相接,次序可变;
R 为封闭边。
z F3 FR F2 F1 x
5
2、空间汇交力系合成的几何法
r r r r r r FR = F1 + F2 + F3 + F4 = Σ Fi ,
合成为一个合力,合力的大小与方向等于 各分力的矢量和,合力的作用线过汇交点.
FR = F1 + F2 + L + Fn = ∑ Fi
向两个坐标轴投影,
FR = FRx + FRy = (∑ Fix ) + (∑ Fiy )
2 2 2
2
FR
合力方向 FRx ∑ Fix FRy cos θ = = , sin θ = = FR FR FR 合力投影定理:
∑F
FR
iy
10 合力在任一轴上的投影等于各分力在同一轴上投影的代数和。
FDA
P
FDB=FDC=289N。
18
例 :起重机起吊重量P = 1 kN, ABC 在 yz 平面内,求:立柱 x’ AB、绳BC,BD,BE 的拉力。 解:B点有四个未知力汇 交,故先从C点求解,
[C] 平面汇交力系 z 750
B 450 E FBE FBD 450 450 D x A y 450 F BA 450 FCB FBC 300 FCA
汇交力系的平衡条件为:力系中各力在x、y、z三个坐标 轴的每一轴上投影之代数和均为零。 14 汇交力系平衡的几何条件为:力多边形自行封闭。
汇交力系平衡条件的应用
例:园柱物置于光滑的燕尾槽内,已知:P 为 500 N,求: 接触处A、B的约束力。

02.第二篇汇交力系

02.第二篇汇交力系
第二章 汇 交 力 系
汇交力系和力偶系是基本力系,任何复杂的力系都可以 等效简化为一个汇交力系和一个力偶系,所以汇交力系 和力偶系的合成是任何复杂力系简化的基础。
本章研究汇交力系的合成和平衡。
§2-1 汇交力系的合成
§2-2 汇交力系的平衡条件
§2.1 汇交力系的合成
§2-1 汇交力系的合成
一、力的可传性 二、汇交力系合成的几何法 三、汇交力系合成的解析法
Fz FR
若汇交力系是平面汇交力系,在与平面垂直Z轴方向的 合力∑Fz≡0,只有
FR Fx 2 Fy 2
tan FRy Fy
FRx
Fx
FRy FR
FRx
§2-2 汇交力系的平衡条件
§2-2 汇交力系的平衡条件
在汇交力系合成(几何法和解析法)后,得到合力 FR,汇交力系何时是平衡的?平衡的概念!二力平衡 公理。
三、 汇交力系平衡的的解析条件
平面汇交力系解析合成结果:
FR Fx 2 Fy 2
tan FRy Fy
FRx
Fx
平面汇交力系平衡的 平衡方程:
Fy F
Fx
FR
Fx 2
Fy 2 0
Fx 0 Fy 0
例2-2 如图所示, 重物G=20kN, 用钢丝绳挂在支架的滑轮B上, 钢
F4 F3
FR
F3
F4
F2
F2
F1
F1
F1
用力多边形求合力的方法叫力多边形法 ,几何法。几何法多用于 平面汇交力系的合成。
§2.1 汇交力系的合成
汇交力系可简化为一个合力, 其合力的大小与方向等 于各分力的矢量和(几何和), 合力作用线通过汇交 点。合力与几何合成力的顺序无关。

2汇交力系、力偶系平衡

2汇交力系、力偶系平衡
摇杆 FA
A

例2-6
30 ;

解:取轮,由力偶只能由力偶平衡的性质,画受力图。
M1
O
M1
FO

销子
M 0
解得
M1 FA r sin 0 M1 2 FO FA 8 kN 0 r sin 0.5 sin 30
例2-6
解得 FO FA 8kN
FA
A
力的投影
y
F
投影
x
投影
Fy Fy Fx Fx
y F
分力
F1
Fy Fx
y
F
分力
Fy
x
Fx
x
2)合矢量投影定理
合矢量在轴上的投影等于
y F1
各分矢量在同一轴上投影的代数和。
y
F2 j O
Fn i F3 x Fy j O
b
FR

Fx Fxi
x
i
Fy Fyi
Fx
合力大小 FR Fx 2 Fy 2 ( Fxi )2 ( Fyi )2 Fx Fy 合力方向 cos FR , i) ( cos FR , j) ( FR FR
F'= F''=F
B F''
d
F A B
d
B
d
F
A
F B A
M
F'
M
A
附加力偶矩:M=MB(F)=±Fd
2. 平面任意力系向作用面内一点简化 主矢和主矩 各力向矩心平移
矩心 Fn
F1 O
平面汇交力系 平面力偶系
Fn F1 Fi
Fi

理论力学2—平面汇交力系与平面力偶系

理论力学2—平面汇交力系与平面力偶系
解: ①选碾子为研究对象 ②取分离体画受力图
∵当碾子刚离地面时NA=0,拉力F最大, 这时拉力F和自重及支反力NB构成一平衡力系。 由平衡的几何条件,力多边形封闭,故
F Ptg
NB
P
cos
又由几何关系: tg
r2 (rh)2 rh 0.577
所以
F=11.5kN , NB=23.1kN
由作用力和反作用力的关系,碾子对障碍物的压力等于23.1kN。 此题也可用力多边形方法用比例尺去量。
力对点之矩是一个代数量,它的绝对值等于力的大小与力 臂的乘积,它的正负可按下法确定:力使物体绕矩心逆时针转 动时为正,反之为负。
MO (F) Fh 2AOAB
力矩的单位常用N·m或kN·m。
(1)2.合3力.2矩合定力理 矩定理与力矩的解析表达式
平面汇交力系的合力对于平面内任一点之矩等于 所有各分力对于该点之矩的代数和。
Fi 0
在平衡的情形下,力多边形中最后一力的 终点与第一力的起点重合,此时的力多边形称 为封闭的力多边形。于是,平面汇交力系平衡 的必要与充分条件是:该力系的力多边形自行 封闭,这是平衡的几何条件。
[例1] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
转动状态。力偶对物体的转动效应用力偶矩来度量。平面力偶 对物体的作用效应由以下两个因素决定:
(1) 力偶矩的大小; (2) 力偶在作用面内的转向。
平面力偶可视为代数量,以M 或M(F, F')表示,
M Fd 2 AABC
A
F Dd
B
C
F'
平面力偶矩是一个代数量,其绝对值等于力的大小与力偶 臂的乘积,正负号表示力偶的转向:一般以逆时针转向为正, 反之则为负。力偶的单位与力矩相同。

理论力学第2章-汇交力系

理论力学第2章-汇交力系

Fz F k
(2-5)
力在某一轴上的投影,等于该力与沿该轴方向的单 位矢量之标积。
这结论也适用于在任何一轴上的投影。
例如,设有一轴,沿该轴正向的单位矢量为n, 则力F在 轴上的投影为
F F n
设n在坐标系Oxy 中的方向余弦为l1 、l2 、l3 ,则
F Fxl1 Fyl2 Fzl3
F Fxi Fy j Fzk
(2-3)
i、j、k是沿坐标轴正向的单位
矢量,
Fx、Fy、Fz分别是力F在x、y、
z轴上的投影。
2.3.1.1 直接投影法
已知F与坐标轴正向的夹角分别为、、 , cos
Fz F cos
(2-4)
Fx Fy
F F
i j
cos FR ,
k
FR z FR
F
z
FR
(2-12)
例2-2 如图所示平面汇交力系,已知: F1 20kN F2 30kN
F3 10kN F4 25kN 试求汇交力系的合力矢。
解 (1)求合力矢FR在坐标轴上的投影:
FRx F1 cos 30 F2 cos 60 F3 cos 45 F4 cos 45 10 3 15 5 2 12.5 2 12.93 kN
平面汇交力系:各力作用线在同一平面内且 汇交于同一点的力系。
空间汇交力系:各力作用线不在同一平面内 且汇交于同一点的力系。
2.1 汇交力系合成的几何法
2.1.1 合成的几何法
F1
A
F2 FR F3
F4
b F3
c
F2 a FR1
FR2 F4
F1 o FR
d
FR = F1 + F2 + F3 + F4

工程力学2汇交力系

工程力学2汇交力系

Rx
Rx
X
作用点:为该力系的汇交点
工程力学
例2-2 已知图示平面共点力系,求此 力系的合力。
解:用解析法
FRx
F ix
F1
cos 30o
F2
cos 60o
F3
cos
45o
F4
cos
45o
129.3N
FRy
F iy
F1 sin
30o
F2
sin
60o
F3
sin
45o
F4
sin
45o
112.3N
工程力学
3.增加平衡力系原理 在刚体上增加或减去一组平衡力系,不会改变原 力系对刚体的作用效应。 作用在刚体上的力是滑移矢量,力的三要素是大 小、方向、作用线。
工程力学
二、汇交力系合成的几何法(矢量法) 1.二力的合成 力三角形法则
c FR
F2 a F1 b
工程力学
2.汇交力系合成的几何法
设汇交于A点的力系由n个力Fi(i = 1、2、…、n)组成。
几何法解题不足: ①精度不够,误差大 ②作图要求精度高; ③不能表达各个量之间的函数关系。
工程力学
三、汇交力系合成的解析法(投影法)
பைடு நூலகம்
1.力在轴上的投影
Fx ab F cos
B A
B F
A
a
bx
b
ax
力在轴上投影是代数量
工程力学
2.力在平面上的投影
FM F cos
B F A
a FM b
M
工程力学
第二章 汇交力系
问题: 1、怎样对刚体上的汇交力系进行简化? 2、汇交力系的平衡条件是什么?

课题2 平面汇交力系

课题2 平面汇交力系
2 R x 2 R y 2 2
【例2-2】用解析法求图(a)所示 用解析法求图(a 平面汇交力系的合力的大小和方向。 已知F1 =100 N, N, F2 = 100N, 100N, F3 = 150 N, N, F4 = 200 N
• 【分析】由式(2—6)计算合 分析】 力FR在x、y轴上的投影 F =∑ =F +F +F +F F
R x ix 1x 2x 3x 4x
=F +F cos50o −F cos60o −F cos20o 1 2 3 4 =100N+64.28N−75N−187.94N=−98.62N
F y =∑F = Fy +F y +Fy +F y R iy 1 2 3 4 =0+F sin50 +F sin60 −F sin20 2 3 4
F x = ± F cos α F y = ± F sin α
2.2.2平面汇交力系合成的解析法 2.2.2平面汇交力系合成的解析法
2.2.2.1合力投影定理 .2.2.1合力投影定理
F = F + F +⋅⋅⋅ + F = F R 1 2 n i
FRx = F x + F2x +L+ Fnx = ∑Fix 1 FRy = F y + F2 y +L+ Fny = ∑Fiy 1
• 总之,平面汇交力系可简化为一合力,其 总之,平面汇交力系可简化为一合力, 合力的大小与方向等于各分力的矢量和, 合力的大小与方向等于各分力的矢量和, 合力的作用线通过汇交点。 合力的作用线通过汇交点。设平面汇交力 个力, 表示它们的合力矢, 系包含n个力,以FR表示它们的合力矢,则 有:

工程力学 第二章 平面汇交力系

工程力学 第二章 平面汇交力系

再研究球,受力如图: 作力三角形 解力三角形:
Q P = N ′ ⋅ sin α
又 Q sin α = R − h N ′= N R F ⋅R ∴P = N ⋅sin α = ⋅ R −h
h ⋅(2R − h) R
NB=0时为球 离开地面
F (R −h) ∴P = h(2 R − h )
P h (2 R − h ) ∴F = R−h
力的多边形法则: 力的多边形法则:实质是连续多次应用 平行四边形法则(三角形法则) 平行四边形法则(三角形法则)
FR
F4 FR2 F3
FR1 F2 F1
力的多边形法则:把各分力矢量首尾相连, 力的多边形法则:把各分力矢量首尾相连,得到的 起点到终点的连线矢量即是合力。 起点到终点的连线矢量即是合力。
P h 2 −h (R ) ∴ F≥ 当 时 方 离 地 球 能 开 面 R−h
小结
• • 平面汇交力系合成:力的多边形、 平面汇交力系合成:力的多边形、解析法 平面汇交力系平衡:力多边形封闭、 平面汇交力系平衡:力多边形封闭、解析法
F =11.4kN A
F sinθ = F B F + F cosθ = P A B
F =10kN B
2.碾子拉过障碍物, 应有 F = 0 A 用几何法解得
F = P⋅tanθ =11.55kN
0 N 3. 解得 F in = P⋅sin θ =1 k m
例2 已知:AC=CB,F=10kN,各杆自重不计; 求:CD 杆及铰链A的受力.
例1
已知: P=20kN,R=0.6m, h=0.08m 求: :
1.水平拉力F=5kN时,碾子对地面及障碍物的压力? 2.欲将碾子拉过障碍物,水平拉力F至少多大? 2. 3.力F沿什么方向拉动碾子最省力,及此时力F多大??
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 汇交力系平衡的几何法
设刚体上作用n个作用线汇交与同一点的汇交力系 F1、F2、…、Fn,则该刚体平衡的必要与充分条件为 合力矢等于零矢量。
FR F1 Fn F 0
(2-2)
汇交力系平衡的必要与充分的几何条件: 力多边形自行封闭。
求解平面汇交力系平衡问题的方法: 解析法(下一节详述)
设刚体上作用有汇交力系F1、F2、…、Fn 。在刚体
上n个力的汇交点处建立标准正交坐标系{ 0;i、j、k }。
则力矢F1、F2、…、Fn可表示为
F1 F1 xi F1 y j F1 zk
Fn Fn xi Fn y j Fn zk
由式(2-1)可得汇交力系的合力矢为
FR (F1 x Fn x ) i (F1 y Fn y ) j (F1 z
FRx F1 cos 30 F2 cos 60 F3 cos 45 F4 cos 45 10 3 15 5 2 12.5 2 12.93 kN
FRx F1 cos 60 F2 cos 30 F3 cos 45 F4 cos 45
10 15 3 5 2 12.5 2 11.23kN
= ( Fx ) i + ( Fy ) j ( Fz )k
FR xi FR y j FRzk
Fn z )k
(2-10)
由式(2-10),得合力矢的大小及方向余弦为
2
2
2
FR FR FR FR x FR y FR z
Fx 2 Fy 2 Fz 2
(2-11 )
30
o
F
F C
a
FB
c
30
o
F
FC
b
解:
(1) 取整个托架作为研究对象。 (2) 画出受力图。
(3) 应用平衡条件画出闭合力三角形。
(4) 解出:FC 2F 20 kN, FB 3F 17.3kN。
2.3 汇交力系合成与平衡的解析法
2.3.1 力在坐标轴上的投影
按照矢量的运算规则,可将一个力矢分解成两个或 两个以上的分力。最常用的是将一个力分解成为沿直角 坐标轴x、y、z的三个分力。
作封闭力多边形时,力的平移(其方向不变),但作 图顺序由已知力到未知力进行,但最终结果与顺序无关, 根据失序规则,可以确定未知力的方向。
例2-1 如图所示托架。A为铰链,B、C为固定铰支
座,在托架的C处作用有力F,F = 10 kN,不计各杆重。
试求AB、AC杆所受的力。
B
A
B
A
30 o
FB
C FC
2.1.2 力的多边形规则
把各力矢首尾相接,形成一条有向折线段(称 为力链)。加上一封闭边,就得到一个多边形,称 为力多边形(Force polygon) 。
F2 a b F3
c F4
F1 o FR
d
FR
F
F
4
3
F1
F2
对空间汇交力系,仍可接上述确定力的多边形, 且主矢仍由式(2-1)确定。但空间汇交力系的力多 边形是空间折线多边形。给实际作图带来困难。
F Fxi Fy j Fzk
(2-3)
i、j、k是沿坐标轴正向的单位
矢量,
Fx、Fy、Fz分别是力F在x、y、
z轴上的投影。
2.3.1.1 直接投影法
已知F与坐标轴正向的夹角分别为、、 ,

Fx Fy
Fco s F cos
Fz F cos
(2-4)
Fx Fy
F F
i j
(2)求合力矢FR的大小及方向余弦
FR 12.932 11.232 17.13 kN
cos FR ,
i 12.93
17.13
0.75
y
F2 FR F1
60
30º
O
45
x
45
F4 F3
cos FR ,
j 11.23 0.66
17.13
合力矢FR的方向角为
FR , i 40.99 FR , j 49.01
cos FR ,
i
FR x FR
F x
FR
cosF
y
FR
cos FR ,
k
FR z FR
F
z
FR
(2-12)
例2-2 如图所示平面汇交力系,已知: F1 20kN F2 30kN
F3 10kN F4 25kN 试求汇交力系的合力矢。
解 (1)求合力矢FR在坐标轴上的投影:
Oxy,则 Fz 0
有意义的平衡方程只有两个,即
Fx Fy
0 0
cosq sin q
(2-7)
j
Fz F cosj
若已知力F 在x、y、z 轴上的投影 F x 、F y 、F z ,
则可求得力F 的大小及方向余弦为
F Fx2 Fy2 Fz2
cos Fx , cos Fy , cos Fz
F
F
F
(2-8) (2-9)
2.3.2 汇交力系合成的解析法
Fz F k
(2-5)
力在某一轴上的投影,等于该力与沿该轴方向的单 位矢量之标积。
2.3.1.2 二次投影法
若已知的是力F与坐标轴z的夹角为j ,以及力F 在平行于xy平面上的投影F′与x轴正向的夹角q 。
则力F在坐标轴上的投影为
Fx Fy
Fcosq Fsinq
F F
sin j sin j
2.3.3 汇交力系平衡的解析法
设在刚体上作用汇交力系F1,F2,…,Fn,则由式 (2-2)汇交力系平衡的必要与充分条件
及式(2-11)得
FR 0
Fx Fy
0
0
Fz 0
(2-13)
汇交力系平衡的必要与充分的解析条件是:力系 中各力在直角坐标轴上的投影的代数和均为零。
对于平面汇交力系,可取力系作用面为坐标平面
几何法 直接图解法 按比例换算得之 定量 间接图解法 利用三角形公式计算得之 定性
几何法解题的主要步骤如下:
1、根据题意合理选取研究对象,并画出其简图。
2、画受力图。
3、作力多边形或力三角形。
4、求出未知量。
(1)直接图解法:按比例作封闭力多边形,直接量 出所求的未知量(大小和方向)。
(2)间接图解法:定性作封闭的力多边形,由图形 几何关系利用三角形求出未知量。
2 汇交力系
2.1 汇交力系合成的几何法
2.1.1 合成的几何法
F1
A
F2 FR F3
F4
b F3
c
F2 a FR1
FR2 F4
F1 o FR
d
FR = F1 + F2 + F3 + F4
n
FR F1 Fn Fi F i 1
(2-1)
汇交力系一般可合成为一合力,合力的作用线通 过力系的汇交点,合力矢FR等于力系各力的矢量和。
相关文档
最新文档