(人教版初中数学)数据的分析全章教案(原创)
初中数学人教版《数据的表示与分析》教案2023版
![初中数学人教版《数据的表示与分析》教案2023版](https://img.taocdn.com/s3/m/b18848ff4128915f804d2b160b4e767f5acf80a1.png)
初中数学人教版《数据的表示与分析》教案2023版一、教学目标通过本节课的学习,使学生能够:1.了解数据的基本概念和数据的表示方法;2.掌握数据的分类和整理方法;3.学会利用统计图形和统计指标进行数据分析。
二、教学重难点1.教学重点:数据的表示方法、数据分类和整理方法;2.教学难点:统计图形的选用及统计指标的计算。
三、教学准备1.教具准备:教师教案、学生教材、白板、彩色粉笔、计算器等;2.学具准备:学生教材、复印件、笔等。
四、教学过程【Step 1】引入1.利用学生的实际生活经验,提出以下问题:你们在生活中经常遇到数据吗?数据可以用什么方式表示呢?2.学生回答后,教师进一步解释数据的概念,并引导学生思考数据的表示方法。
【Step 2】讲解数据的表示方法1.介绍数据的表示方法,包括文字描述、表格、图片和统计图形等;2.向学生展示不同的数据表示方法,并让学生分析其特点和优缺点。
【Step 3】讲解数据的分类和整理方法1.讲解数据的分类方法,包括定量数据和定性数据的区别;2.讲解数据的整理方法,包括频数表、频率表和统计图形的绘制。
【Step 4】练习数据分类和整理方法1.组织学生进行小组活动,让他们选取一个实际问题,并收集相关数据;2.指导学生根据所收集的数据进行分类和整理,并绘制相应的统计图形。
【Step 5】讲解统计图形和统计指标的应用1.讲解常见的统计图形,如条形图、折线图、饼状图等,并介绍其应用场景;2.讲解常见的统计指标,如平均数、中位数、众数和极差等,并介绍其计算方法和应用。
【Step 6】练习统计图形和统计指标的应用1.出示一组实际数据,让学生根据所学知识,选取合适的统计图形进行展示;2.指导学生计算相应的统计指标,并进行分析和解释。
【Step 7】总结与拓展1.对本节课的主要内容进行总结,回顾学生所学到的知识和技能;2.引导学生思考数据在日常生活中的应用,并提出相关拓展问题。
五、教学反思通过本节课的教学,学生对数据的表示和分析方法有了初步的了解。
初中数学《数据的分析》整章教案共6个
![初中数学《数据的分析》整章教案共6个](https://img.taocdn.com/s3/m/605cf68b6f1aff00bed51e9b.png)
车平均每班的载客量是多少(结果取整数)?巩固练习1.下表是校女子排球队队员的年龄分布.年龄/岁13141516频数14522.为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树的树干的周长情况如图所示,计算这批法国梧桐树干的平均周长(结果取整数).例2:某灯泡厂为了测量一批灯泡的使用寿命,从中随机抽查了50只灯泡,它们的使用寿命如下表所示.这批灯泡的平均使用寿命是多少?归纳:我们可以用样本平均数估计总体平均数.课堂小结今天我们学习了哪些知识?独立完成练习后,与同伴进行交流。
代表展示答案倾听教师的点拨,记录。
学生进行小组,练习交流结果,最后由组代表进行板演展示。
学生发言作业布置课本第122页第7题板书设计加权平均数(2)一、问题引入引例例题习题训练二、探究新知归纳法则三、应用新知四、布置作业教学反思工作单位姓名课题20.1.2中位数和众数(1)课时第42课时教学目标知识与技能:认识中位数和众数,并会求出一组数据中的众数和中位数。
过程与方法:理解中位数和众数的意义和作用。
它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
情感态度与价值观:会利用中位数、众数分析数据信息做出决策。
重点难点重点:求一组数据的众数和中位数.难点:利用中位数、众数分析数据信息,做出决策.教法学法导学法讲授法教学准备多媒体教学步骤教师活动学生活动二次备课导入新课情境:下表是某公司员工月收入的资料.请计算这个公司员工月收入的平均数.追问:这个平均数能反映出公司全体员工的月收入水平吗?学生倾听并作答小组讨论,个别提问新课教学问题1:该公司员工的中等收入水平大概是多少元?你是怎样确定的?问题2:“平均数(6276)”和“中等水平(3400)”谁更合理地反映了该公司绝大部分员工的月工资水平?归纳1:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.指出:若一组数据中有极端数据,中位数比平均数更合理地反映该组数据的整体水平.小组讨论,代表回答,组内补充学生倾听并讨论交流回答归纳总结学生倾听,记录问题3:如果小李是该公司的一名普通员工,那么你认为他的月工资最有可能是多少元?问题4:如果小王想到该公司应聘一名普通员工岗位,他最关注的是什么信息?归纳2:一组数据中出现次数最多的数据称为这组数据的众数.例1:在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136 140 129 180 124 154146 145 158 175 165 148(1)样本数据(12名选手的成绩)的中位数是多少?(2)一名选手的成绩是142 min,他的成绩如何?例2:一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示.你能根据表中的数据为这家鞋店提供进货建议吗?巩固练习:1.一组数据5,4,2,5,6的中位数是() 2.某市五天的空气质量指数分别是28,45,30,45,28,这组数据的众数是()课堂小结今天我们学习了哪些知识?如何确定一组数据的中位数和众数?中位数和众数分别反映出数据什么信息?小组讨论,代表回答学生倾听,作答学生进行小组交流合作,互学,倾听教师的点拨,记录。
初中数学 第20章数据的分析 全章教案
![初中数学 第20章数据的分析 全章教案](https://img.taocdn.com/s3/m/8fe4ed4bf705cc17552709ec.png)
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。
3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。
【课堂练习】1.教材P127练习第1,2题。
2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。
4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
人教版八年级下册第二十章数据的分析(教案)
![人教版八年级下册第二十章数据的分析(教案)](https://img.taocdn.com/s3/m/a29cd318b207e87101f69e3143323968001cf44a.png)
二、核心素养目标
1.培养学生运用数学语言表达现实问题的能力,增强数据意识,提高数据分析素养;
2.培养学生掌握数据处理的基本方法,提高解决问题的能力,增强数学应用意识;
3.培养学生通过合作探究,发展逻辑思维和批判性思维,提高数学推理和论证能力;
4.培养学生运用数学知识和方法解决实际问题,增强数学建模和数据分析能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平均数、中位数、众数的基本概念。平均数是所有数值加总后除以数值的个数,它能够反映数据的集中趋势;中位数是将一组数据从小到大排列后位于中间的数,它对极端值的影响较小;众数是一组数据中出现次数最多的数,它适用于描述分类数据。这些统计量在描述数据时各有优势,是数据分析的重要工具。
-统计图、表的绘制和应用:通过直观的图形和表格展示数据,提高学生的数据分析能力。
举例:在讲解平均数时,强调其受极端值影响较大的特点;在介绍中位数和众数时,通过实例说明它们在描述数据集中趋势时的优势。
2.教学难点
-平均数、中位数、众数在实际问题中的应用:学生需要学会根据数据特点选择合适的描述指标;
-极差、方差的计算及其在数据分析中的应用:理解这些统计量的含义,并能正确应用于实际问题;
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过计算平均数、中位数和众数来分析一组考试成绩,以及这些统计量如何帮助我们更全面地理解数据。
3.重点难点解析:在讲授过程中,我会特别强调平均数受极端值影响较大,而中位数和众数则相对稳健这一特点。对于极差和方差的计算及应用,我会通过具体数据和图表来帮助大家理解它们在描述数据离散程度方面的作用。
人教版八年级下册第二十章数据的分析(教案)
人教版初中八年级下册数学 第二十章 数据的分析 《数据的分析》说课稿
![人教版初中八年级下册数学 第二十章 数据的分析 《数据的分析》说课稿](https://img.taocdn.com/s3/m/ea419820f342336c1eb91a37f111f18583d00cec.png)
《数据的分析》说课稿一、教材分析1.教材的地位和作用:这章内容是八年级数学最后一章,与八年数学下册前几章没什么联系,但与实际生活有着密切的联系,考查数据,分析数据,培养的是学生学习数学的能力,分析问题解决问题的技巧,学生学起来比较轻松。
本节课是在已学的基础上进行本章的知识小结。
本节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。
2.学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解平均数、众数、中位数、极差、方差有关概念,探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题。
能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
3.教学重、难点:重点:平均数、众数、中位数、极差、方差的归纳及其应用。
难点:应用所学的知识解决实际问题。
4.突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。
二、学情分析八年级的学生在小学已经学过平均数的一些初步知识,且在学科实验中经常用到数据分析,对于阳光教学模式已基本掌握,他们能够进行自主探究,合作学习,讲解问题,并能应对随时可能出现的答题质疑。
并且学生多数能积极参与问题的讨论之中,愿意走向讲台占领学习的主阵地。
三、教法分析《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。
为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了阳光教学模式。
人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)
![人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)](https://img.taocdn.com/s3/m/036284e9ba1aa8114531d998.png)
第二十章数据的分析1.进一步理解平均数、中位数和众数等统计量的统计意义.2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势.3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.1.探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,用样本估计总体,并解决生产、生活中的有关问题.2.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.1.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性.2.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.3.通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.本章属于“统计与概率”领域.对于“统计与概率”领域的内容,共有三章.这三章内容采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.统计部分的两章内容按照数据处理的基本过程来安排.我们在7年级下册学习了“第10章数据的收集、整理与描述”,本章“数据的分析”主要学习分析数据的集中趋势和离散程度的常用方法.在前一章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来.为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量.对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势;三是分析数据分布的偏态和峰度,反映数据分布的形状.这三个方面分别反映了数据分布特征的不同侧面.根据《标准》的要求,本章就从前两个方面研究数据的分布特征.【重点】平均数、众数、中位数、方差的定义及其应用.【难点】应用所学的统计知识解决实际问题.1.注意与前两个学段相关内容的衔接.本章在教学时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行整理的基础上学习新的知识.例如,对于平均数、中位数、众数,本章就是在研究数据集中趋势的大背景下,在整理学生已有的关于这三种统计量的认识的基础上,学习加权平均数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.2.准确把握教学要求.本章要求通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数、方差估计总体的平均数、方差等.因此,在本章教学时,要注意把握教学要求.3.合理使用计算器.信息技术的发展给统计学的研究带来很大变化,为统计工作的高效、准确提供了便捷的工具.对于计算器等现代信息技术对统计的作用,本章中,编写了使用计算器求一组数据的平均数和方差的内容作为必学内容,还编写了利用计算机求平均数、中位数、众数和方差等集中统计量的内容作为选学内容等.教学中要注意发挥计算器在处理数据中的作用,也要注意合理地使用计算器.20.1 数据的集中趋势20.1.1平均数(2课时) 20.1.2中位数和众数(2课时)4课时20.2 数据的波动程度1课时20.3 课题学习体质健康测试中的数据分析1课时单元概括整合1课时20.1数据的集中趋势1.进一步掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.理解中位数和众数的定义和意义,会求一组数据的中位数和众数,能结合具体问题解释中位数和众数的实际意义.3.能分清平均数、中位数、众数三者的区别,根据实际问题情境选择适当的统计量表示数据的特征.经历应用加权平均数对数据处理和探索中位数、众数的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数、中位数和众数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情,感受统计在生活中的应用,增强统计意识,培养统计能力.【重点】算术平均数、加权平均数的概念及计算,会求一组数据的中位数和众数,能结合实际情境理解其实际意义.【难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.20.1.1平均数1.进一步掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.经历应用加权平均数对数据处理的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.【重点】1.算术平均数、加权平均数的概念及计算.2.掌握加权平均数的实际应用.【难点】1.体会平均数在不同情境中的应用.2.应用加权平均数对数据做出合理判断.第课时1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.【重点】会求加权平均数.【难点】对“权”的正确理解.【教师准备】教学中出示的课件和例题.【学生准备】预习课本内容.导入一:刘木头开了一家小工厂,生产儿童玩具.工厂的管理人员由刘木头、他的弟弟及其他6个亲戚组成.工作人员由5个领工和10个工人组成.现在需要一个新工人,刘木头正在与一个叫小王的青年人谈招聘问题.刘木头说:“我们这里报酬不错,平均每个人的薪金是每周300元,但在学徒期间每周是75元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每周100元.每人平均工资怎么可能是一周300元呢?”刘木头皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”刘木头拿出一张表,说道:“这是我每周付出的薪金.我得2400元,我弟弟得1000元,我的6个亲戚每人得250元,5个领工每人得200元,10个工人每人得100元.总共是每周6900元,付给23个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每周300元.可你还是骗了我.”小王生气地说.刘木头拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”同学们,你能当个小法官来判一下谁说的对吗?[设计意图]让学生明确数学问题来源于生活实践,同时数学又指导生活实践,从而达到激发学生思考问题、探究新知的强烈欲望及引入新课的目的.导入二:农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到各试验田每公顷的产量(见下表),根据这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?品各试验田每公顷产量种(单位:吨)甲7.657.57.627.597.65 7.647.57.47.417.41乙7.557.567.537.447.49 7.527.587.467.537.49提问:如何考察一种玉米的产量和产量的稳定性?学生随意说出自己的一些想法后,教师说明本章学习的知识内容:(1)平均数、中位数、众数和方差等概念;(2)用样本的平均数和方差估计总体的平均数和方差;(3)课题学习,解决实际问题.[设计意图]问题的提出,学生难以用已学到的平均数的公式解决这个问题,需要研究新的方法,学习新的知识,让学生了解本章研究的基本知识内容,培养学生用样本估计总体的基本思想.[过渡语]前面我们学过算术平均数的计算,我们一起来探究加权平均数.1.加权平均数思路一问题:某市三个郊县的人数及人均耕地面积如下表:郊县人数/万人均耕地面积/公顷A15 0.15 B7 0.21 C10 0.18这个市郊县的人均耕地面积是多少?(精确到0.01公顷)问题1小明求得这个市郊县的人均耕地面积为:= =0.18(公顷).你认为小明的做法有道理吗?为什么?组织学生讨论,教师参与,并适时指导:(1)对“平均数”和“人均耕地面积”的准确理解;(2)三个郊县人数的多少对人均耕地面积有无影响,分析小明同学的计算错误.问题2这个市郊县的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少吗?引导学生列出正确算式,即这个市郊县的人均耕地面积为:≈0.17(公顷).问题3三个郊县的人数(单位:万)15,7,10在计算人均耕地面积时有何作用?教师指出:上面的平均数0.17称为三个数0.15,0.21,0.18的加权平均数.三个郊县的人数(单位:万)15,7,10分别为三个数据的权.追问:你能正确理解数据的权和三个数的加权平均数吗?在活动中教师应重点关注学生对数据的权及加权平均数的理解.问题4若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则这n个数的加权平均数是多少?教师引导学生从三个数据的加权平均数的计算方法中,归纳得出n 个数的加权平均数的计算公式.学生思考、总结归纳:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.[设计意图]通过讨论、分析、思考认识到用已学过的平均数的计算方法来计算这个市郊县的人均耕地面积是根本行不通的,使学生意识到需要学习新知识、新方法,激发学生去探究.通过大胆猜想,培养学生的探究意识,通过教师的有效引导,让学生体会数学的归纳思想方法,理解n个数的加权平均数的计算公式及其结构特征,认识数据的权的作用.思路二问题1一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试听说读写者甲85 83 78 75乙73 80 85 82提问:如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?录用依据是什么?学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.追问:这家公司在招聘英文翻译的过程中,对甲、乙两名应试者进行了哪几个方面的英语水平测试?成绩分别为多少?学生同桌讨论,计算后提出自己的意见.问题2如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?引导学生讨论:招聘口语能力或笔译能力较强的翻译时,听、说、读、写四项成绩的重要程度是否相同,公司侧重哪两个方面的成绩?从给出的比值是否体现这两方面更加“重要”?根据算术平均数的计算公式,让学生依据题目要求,分别计算出甲、乙两名应试者的成绩,教师引导写出解答过程.问题3在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,x n的权分别为w1,w2,…,w n,这n个数据的平均数该如何计算?教师引导学生思考归纳得出n个数的加权平均数的计算公式:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.问题4如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2相比较,你能体会到权的作用吗?学生独立完成计算过程,体会权的改变对加权平均数的影响.追问:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生分析加权平均数公式,发现问题1中各数可看作是权相同的,教师指出两种平均数之间的联系.[设计意图]回顾学过的平均数的意义,为引入加权平均数作铺垫.通过讨论,让学生充分发表自己的见解,同时接纳和吸引别人的正确意见,相互交流、相互探讨,培养学生的合作意识.通过改变同一个问题背景中数据的权,得到不同的结果,从而进一步体会权的意义与作用.[知识拓展](1)当所给的数据在一常数a上下波动时,一般选用='+a.一组数据x1,x2,…,x n的各个数据比较大的时候,我们可以把各个数据同时减去一个适当的常数a,得x'1=x1-a,x'2=x2-a,…,x'n=x n-a.于是x1=x'1+a,x2=x'2+a,…,x n=x'n+a.因此=(x1+x2+…+x n)=(x1'+x2'+…+x n')+·na='+a;(2)平均数的大小与每个数据都有关系,它反映一组数据的集中趋势,是一组数据的“重心”,也是度量一组数据波动大小的基准;(3)加权平均数是算术平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权相等时,就变成了算术平均数.2.例题讲解一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(单位:分)选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请确定两人的名次.教师出示例题并指导学生阅读分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.学生在阅读过程中明确下列问题:(1)演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度用什么数据说明?(2)要想决出两人的名次,必须求两人的总成绩,实质上是求这两名选手三项成绩的加权平均数.学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师进一步引导写出解答过程.解:选手A的最后得分是=90,选手B的最后得分是=91.由上可知选手B获得第一名,选手A获得第二名.[设计意图]让学生掌握自学的方法,提高学生独立分析问题、解决问题的能力.通过问题的解决,让学生进一步体会数据的权的作用,体验参与数学活动的乐趣.(1)加权平均数的意义:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.(2)数据的权的意义:数据的权能够反映数据的相对“重要程度”.(3)加权平均数公式:=.1.晨光中学规定学生的学期体育成绩满分为100分,其中平时体育活动评估成绩占20%,期中成绩占30%,期末成绩占50%.则平时体育活动评估成绩、期中成绩、期末成绩的权分别为、和.解析:根据权的概念解决即可.答案:20%30%50%2.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学成绩是90分,那么他的学期数学总成绩是()A.85分B.87.5分C.88分D.90分解析:根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.故选C.3.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩的20%,面试占30%,实习成绩占50%,各项成绩如下表所示:(单位:分)应聘笔试面试实习者甲85 83 9080 85 92试判断谁会被公司录用,为什么?解:甲的平均成绩为=86.9,乙的平均成绩为=87.5.因此,乙会被公司录用.4.某单位欲招聘一名技术部门负责人,对甲、乙、丙三位候选人进行了三项能力测试,且各项测试成绩满分均为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:(单位:分)测试项目测试成绩甲乙丙沟通能力85 73 73 科研能70 71 65组织能64 72 84力(1)如果根据三项测试的平均成绩,谁将被录用?说明理由.(2)根据实际需要,该单位将沟通能力、科研能力和组织能力三项测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.解:(1)甲的平均成绩为(85+70+64)÷3=73,乙的平均成绩为(73+71+72)÷3=72,丙的平均成绩为(73+65+84)÷3=74,因此,丙的平均成绩最高,丙将被录用.(2)甲的成绩为=76.3,乙的成绩为=72.2,丙的成绩为=72.8.因此,甲的成绩最高,甲将被录用.第1课时1.加权平均数2.例题讲解例题一、教材作业【必做题】教材第113页练习第1,2题;教材第121页习题20.1第1题.【选做题】教材第122页习题20.1第5题.二、课后作业【基础巩固】1.在中国好声音选秀节目中,四位参赛选手的各项得分如下表,如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高的进入下一轮比赛,则进入下一轮比赛的是()(每项按10分制)测试内测试成绩容小赵小王小李小黄专业素6 7 8 8质形象表8 7 6 9现人气指8 10 9 6数A.小赵B.小王C.小李D.小黄2.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:采访写计算机创意设作计小70分60分86分明小90分75分51分亮小60分84分72分丽现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3∶5∶2变成5∶3∶2,成绩变化情况是() A.小明增加最多 B.小亮增加最多C.小丽增加最多D.三人的成绩都增加3.希望中学一个学期的数学总平均分是按下图进行计算的.该校李飞同学这个学期的数学成绩如下:(单位:分)李飞平时作业期中考试期末考试90 8588则李飞这个学期数学总平均分为.4.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为.【能力提升】5.学生的学科期末成绩由期考分数、作业分数、课堂参与分数三部分组成,按各占30%,30%,40%的比例确定.已知晓明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为分.6.小丽家上个月吃饭费用为500元,教育费用为200元,其他费用为500元.本月小丽家这三项费用分别增长了10%,30%和5%.小丽家本月的总费用比上个月增长的百分数是多少?7.小李同学七年级第二学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩88 92 94 90 92 89如果学期的总评成绩是根据如图所示的权重计算,那么小李同学该学期的总评成绩为多少分?(四舍五入精确到1分)8.老师在计算学期总平均分的时候按如下标准:作业占10%,测验占20%,期中考试占35%,期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80 75 71 88 小76 80 68 90分别算出小关和小兵的总平均分.【拓展探究】9.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(单位:分)测试项甲乙丙目笔试75 80 90面试93 7068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?【答案与解析】1.D(解析:将四个人的测试成绩按比例求出最终成绩,找出成绩最高的即可.)2.B(解析:根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比是3∶5∶2各自的成绩,再求出这三项的权重比是5∶3∶2各自的成绩,进行比较.)3.87.5(解析:先从统计图得到相应数据的权重,再利用加权平均数的计算方法求解.)4.11.5元/千克(解析:将三种糖果的总价算出,再除以60即可.)5.85(解析:根据加权平均数的计算公式计算即可.)6.解:500×10%+200×30%+500×5%=135(元),135÷(500+200+500)×100% =11.25%.7.解:平时平均成绩为=91(分),总评成绩为=90.1≈90(分).8.解:小关的学期总平均分为=80×10%+75×20%+71×35%+88×35%=78.65(分),小兵的学期总平均分为'=76×10%+80×20%+68×35%+90×35%=78.9(分).9.解:(1)甲、乙、丙三人的民主评议得分分别为:200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的平均成绩为≈72.67(分),乙的平均成绩为≈76.67(分),丙的平均成绩为=76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分);乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.平均数是统计中的一个重要概念,新教材注重了学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念.基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值,努力做到由传统的数学课堂向实验课堂转变.在教学过程中,高估了学生理解加权平均数的能力,主要困难在于一些学生不能对权的含义理解透彻.适当增加学生熟知的一些实例,通过计算平均数,深刻理解权的含义及对平均数的影响.练习(教材第113页)1.解:(1)甲:=88(分),乙:=87.5(分),故甲将被录取.(2)甲:=87.6(分),乙:=88.4(分),故乙将被录取.2.解:=88.5(分).故小桐这学期的体育成绩是88.5分.学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平。
人教版数学八下《第20章数据的分析》word全章教案
![人教版数学八下《第20章数据的分析》word全章教案](https://img.taocdn.com/s3/m/7d300ba302d276a200292e20.png)
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法: 1、重点:会求加权平均数 2、难点:对“权”的理解 3、难点的突破方法:首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。
复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。
在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。
讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。
在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A 、B 、C 三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么? 通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。
要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。
比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。
能否由26210026199+<+得出第二小组平均成绩这样的结论?为什么?这个例子简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。
在讨论栏目过后,引出加权平均数。
最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。
人教版初中数学八年级下册《数据的分析》教学设计
![人教版初中数学八年级下册《数据的分析》教学设计](https://img.taocdn.com/s3/m/bd21fd3f571252d380eb6294dd88d0d232d43c4c.png)
人教版初中数学八年级下册《数据的分析》教学设计一. 教材分析人教版初中数学八年级下册《数据的分析》是学生在掌握了统计学基础知识后,进一步学习数据分析的章节。
本章主要内容包括数据的收集、整理、描述和分析。
通过对数据的分析,使学生能够了解数据的分布特征,掌握数据的处理方法,提高对数据的敏感度和分析能力。
教材通过实例引入,让学生在实际问题中感受数据分析的重要性,培养学生的实际应用能力。
二. 学情分析学生在八年级上册已经学习了统计学的基础知识,对数据的收集、整理、表示有了初步的了解。
但学生在数据分析方面的能力还有待提高,特别是在实际问题中的应用能力和对数据分析方法的理解。
此外,学生的数学思维能力和逻辑推理能力也需进一步培养。
三. 教学目标1.了解数据的分布特征,掌握数据的处理方法。
2.培养学生的数据分析能力,提高对数据的敏感度和分析能力。
3.培养学生将数学知识应用于实际问题的能力。
4.培养学生的数学思维能力和逻辑推理能力。
四. 教学重难点1.数据的分布特征和处理方法的理解。
2.数据分析方法在实际问题中的应用。
3.数据的收集和整理。
五. 教学方法1.采用问题驱动的教学方法,让学生在解决实际问题中学习数据分析的方法。
2.使用案例教学法,通过具体的实例使学生理解和掌握数据分析的知识。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.使用多媒体教学手段,提高学生的学习兴趣和效果。
六. 教学准备1.准备相关的教学案例和实例。
2.准备教学PPT,进行课件的制作。
3.准备练习题和测试题,用于巩固和检验学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个实际问题引出数据分析的重要性,激发学生的学习兴趣。
例如,以一次考试的成绩数据为例,提出如何分析这次考试的成绩分布,找出优秀的学生和需要改进的学生。
2.呈现(10分钟)讲解数据的分布特征和处理方法,通过PPT展示相关的图表和数据,让学生直观地了解数据的分布情况。
第六章数据的分析(教案)
![第六章数据的分析(教案)](https://img.taocdn.com/s3/m/1a694c6966ec102de2bd960590c69ec3d5bbdbc3.png)
本章节的核心素养目标与新教材要求相符,注重培养学生的学科素养,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
(1)平均数的计算与应用:平均数是描述数据集中趋势的重要指标,教学过程中应重点讲解平均数的计算方法,并通过实例强调其在实际中的应用。
4.教学方法的选择。为了提高教学效果,我尝试采用了多种教学方法,如案例分析、分组讨论、实验操作等。从学生的反馈来看,这些方法在一定程度上提高了他们的学习兴趣。但在实际操作中,我也发现有些环节的时间安排不够合理,导致学生讨论和操作的时间有限。在今后的教学中,我需要更好地把握时间,确保教学活动的顺利进行。
2.学生在数据分析过程中的实际操作能力。实践活动环节,学生分组讨论和实验操作过程中,我发现有些学生在数据处理和分析方面存在一定的困难。针对这个问题,我计划在后续的教学中,增加一些简单的数据分析实例,让学生多加练习,提高他们的实际操作能力。
3.学生对数据分析在实际生活中应用的思考。在小组讨论环节,学生对于数据分析在实际生活中的应用提出了很多有趣的见解。这说明学生在学习过程中能够联系实际,学以致用。在今后的教学中,我将继续鼓励学生发挥想象,将所学知识应用到实际生活中。
举例:通过实例让学生理解极差和方差在描述数据波动程度方面的作用,并学会计算。
(4)数据分析的应用:培养学生将所学知识应用于实际问题,分析数据,提出结论。
举例:分析实际问题,如购物优惠活动的效果,让学生运用所学知识进行数据分析。
本章节的教学难点与重点突出核心知识,明确学生难点,通过具体实例进行讲解,帮助学生理解透彻。在教学过程中,教师需针对这些难点和重点进行有针对性的讲解和强调,确保学生能够掌握数据分析的基本方法和技巧。
人教版八年级数学第20章-数据的分析-教案
![人教版八年级数学第20章-数据的分析-教案](https://img.taocdn.com/s3/m/b7fbb955fe4733687e21aafb.png)
第二十章 数据的分析 20.1数据的集中趋势 20.1.1平均数(2课时)一、问题引入:1、一般地,对于n 个数n x x x x ......,,321,我们把 叫做这n 个数的算术平均数(mean),简称 ,记为 ,读作 .2、在实际问题中,一组数据的各个数据的 未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个 .如例1中4、3、1分别是创新、综合知识、语言三项测试成绩的权(weight),而称134188350472++⨯+⨯+⨯为A 的三项测试成绩的 .二、基础训练:1、数据2、3、4、1、2的平均数是________,这个平均数叫做_________平均数.2、一组数据的平均数是3,将这组数据每个数都扩大2倍,则所得一组新数据的平均数是( ) A. 3 B. 5 C. 6 D. 无法确定3、如果一组数据5, -2, 0, 6, 4, x 的平均数为6,那么x 等于( ) A. 3 B. 4 C. 23 D. 64、某市的7月下旬最高气温统计如下(1)在这十个数据中,34的权是 ,32的权是______.(2)该市7月下旬最高气温的平均数是 ,这个平均数是_________平均数.5、一个班级40人,数学老师第一次统计这个班级的平均成绩为85分,在复查时发现漏记了一个学生的成绩80分,那么这个班级学生的实际平均成绩应为 ( ) A. 83分 B. 85分 C. 87分 D. 84分三、例题展示:例:小明骑自行车的速度是15km/h ,步行的速度是5km/h.(1)如果小明先骑自行车1h ,然后又步行了1h ,那么他的平均速度是 . (2)如果小明先骑自行车2h ,然后又步行了3h ,那么他的平均速度是 .四、课堂检测:1、在一次知识竞赛中,10名学生的得分如下:80,84,78,76,88,97,82,67,75,71,则他们的平均成绩为。
2、一个地区某月前两周从星期一到星期五各天的最低气温依次是(单位:℃):x1, x2, x3, x4, x5和x1+1, x2+2, x3+3, x4+4, x5+5,若第一周这五天的平均最低气温为7℃,则第二周这五天的平均最低气温为。
第二十章数据的分析(教案)-2022-2023学年八年级下册数学(人教版)
![第二十章数据的分析(教案)-2022-2023学年八年级下册数学(人教版)](https://img.taocdn.com/s3/m/60483517e55c3b3567ec102de2bd960590c6d9d4.png)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平均数、中位数、众数、方差和标准差的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对数据分析的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向要了解平均数、中位数、众数等基本概念。平均数是数据总和除以数据个数的结果,它能够描述数据的集中趋势。中位数是将数据从小到大排序后位于中间的数,它对极端值的影响较小。众数是数据中出现次数最多的数,它在某些情况下能更好地反映数据的特征。这些统计量在描述数据分布时非常重要。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数据分析在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“在什么情况下使用平均数最合适?”
1.教学重点
-平均数:强调平均数的计算方法和应用场景,理解平均数在描述数据集中趋势中的作用。
-举例:计算班级学生某次数学测试的平均成绩,解释平均成绩对了解班级整体水平的作用。
-中位数:掌握中位数的定义和计算步骤,理解其在数据排序和描述中心趋势中的应用。
-举例:在一组数据中找到中位数,解释为何中位数在某些情况下更能反映数据的中心位置。
第二十章数据的分析(教案)-2022-2023学年八年级下册数学(人教版)
一、教学内容
第二十章数据的分析-2022-2023学年八年级下册数学(人教版)
新人教版七年级数学上《数据分析》优秀教案
![新人教版七年级数学上《数据分析》优秀教案](https://img.taocdn.com/s3/m/1d025a7ab207e87101f69e3143323968011cf432.png)
新人教版七年级数学上《数据分析》优秀教案一、教案概述本教案适用于新人教版七年级数学上的《数据分析》单元,主要围绕数据的收集、整理、呈现和分析展开。
通过本教案的实施,旨在帮助学生掌握基本的数据分析方法和技巧。
二、教学目标1. 理解数据分析的基本概念和意义;2. 掌握数据的收集和整理方法;3. 学会使用合适的图表形式展示数据;4. 能够运用统计方法对数据进行分析和解读;5. 发展学生的逻辑思维和问题解决能力。
三、教学内容和步骤1. 数据的收集和整理- 介绍数据的概念和来源;- 引导学生学会合理收集数据,并进行数据整理和分类。
2. 数据的呈现- 引导学生研究常见的图表形式,如条形图、折线图等;- 给予学生实际的数据,并要求他们根据需求选择合适的图表形式进行呈现。
3. 数据的分析与解读- 引导学生研究基本的统计方法,如平均数、中位数等;- 给予学生实际的数据,并要求他们使用统计方法进行分析和解读。
四、教学方法1. 前期导入:通过引入一个生活中的实际问题,激发学生对数据分析的兴趣和思考;2. 知识讲解:结合具体例子和图表展示,讲解数据分析的相关知识;3. 练与训练:提供一系列练题,让学生巩固所学知识并理解实际运用;4. 小组合作:组织学生进行小组活动,让他们合作完成一项数据分析任务;5. 总结与评价:通过讨论和回顾,总结本节课的重点内容,并给予学生评价和反馈。
五、教学资源与评价1. 教学资源:教材《新人教版七年级数学上》、实际生活中的数据和图表、练题等;2. 教学评价:通过平时的课堂表现、练题的完成情况以及数据分析任务的展示等多方面进行综合评价。
六、教学反思与改进教学反思与改进是不断提高教学质量的关键。
教师应该及时反思本节课的教学效果,结合学生的反馈和表现,对教学内容和方法进行调整和改进。
初中数学第二十章 数据的分析教案人教版
![初中数学第二十章 数据的分析教案人教版](https://img.taocdn.com/s3/m/9542d8166c85ec3a87c2c58a.png)
以下是小明和小亮的两种解法,谁做得对?说说你的理由.
小明: (9%+30%+6%)=15%;
小亮: =9.3%
1.易错点:
在问题的讨论中,学生从不同的角度理解问题会有不同的观点,只要学生说得有道理,教师就应给予肯定和鼓励,不可强求结论的一致性.
2.方法规律:
要根据不同的实际需要,确定是用平均数、中位数还是众数来反映数据的平均水平.
当堂训练
1.
为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是()
2.过程与方法
通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力.
3.情感、态度与价值观
将知识的学习放在解决问题的情境中,通过数据分析与处理,体会数学与现实生活的联系,培养学生求真的科学态度.
教学重
难点
重点:(1)中位数、众数的概念,求一组数的中位数与众数.(2)平均数、中位数、众数的区别,体会它们在不同情景中的应用.
第二十章 数据的分析
20.1数据的集中趋势
20.1.1平均数
20.1.2中位数和众数
20.2数据的波动程度
20.3课题学习 体质健康测试
第二十章 数据的分析
主题
数据的分析
课型
新授课
上课时间
教学内容
2024年人教版八年数学下册教案(全册)数据的分析
![2024年人教版八年数学下册教案(全册)数据的分析](https://img.taocdn.com/s3/m/4cedc889b04e852458fb770bf78a6529647d35cc.png)
一、单元学习主题本单元是“统计与概率”领域“抽样与数据分析”主题中的“数据的分析”的内容.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段统计与概率主要内容有收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;分析数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率.数据分析观念包括:了解在现实生活中有许多问题应先做调查研究,收集数据,再通过分析作出判断,体会数据中蕴含的信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择适宜的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律.数据分析的教学应当以现实生活中的实例为背景,引导学生理解抽样的必要性,知道要根据研究问题的需要,选择恰当的方法收集数据,会用简单随机抽样的方法;引导学生通过对实际问题中数据的整理与分析,认识数据的数字特征各自的意义与功能,理解平均数、中位数、众数如何刻画数据的集中趋势,理解方差如何刻画数据的离散程度,理解四分位数如何刻画数据的取值特征,会用样本数据的数字特征分析相关问题;引导学生通过对实际问题中数据的分类,了解数据分类的意义和简单的数据分类方法,知道几种统计图各自的功能,会选择恰当的统计图表描述和表达数据,能根据样本数据的变化趋势推断总体的变化趋势.在这样的过程中,让学生感悟数据分析的必要性,形成和发展数据观念和模型观念.《标准2022》在本学段要求“理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述;体会刻画数据离散程度的意义,会计算简单数据的方差”.因此,本学段在第二学段的基础上,需要学习利用加权平均数、中位数和众数刻画数据的集中趋势以及用方差刻画数据的离散程度等.2.本单元教学内容分析人教版教材八年级下册第二十章“数据的分析”,本章包括三个小节:20.1数据的集中趋势;20.2数据的波动程度;20.3课题学习体质健康测试中的数据分析.本章知识结构框图如下:本章知识的展开顺序如下:收集、整理、描述和分析数据是数据处理的一个基本过程,在此基础上学会利用数据的数字特征刻画数据的分布情况.本章可以从两个方面来分析:数据的集中趋势(平均数、中位数、众数);数据的离散程度(方差).本章分为三节:利用加权平均数、中位数和众数刻画数据的集中趋势,所谓集中趋势是指一组数据向某一中心数值靠拢的程度,代表数据的一般水平,其中平均数最重要,应用广泛;第二节利用方差刻画数据的离散程度,它反映的是各个数据远离其中心值的程度,只有当两组数据的平均数相等或者相差不大时,才能用方差来比较两组数据;第三节是对前两节知识的综合应用,课题的选择可操作性强且贴近学生生活.三、单元学情分析本单元内容是人教版数学八年级下册第二十章数据的分析,对于描述数据集中趋势的平均数,学生在4~6年级已经有所接触,已经学会求平均数,能体会平均数的作用,并且能用自己的语言解释其实际意义.本章在编写时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行复习的基础上学习新的知识.例如,对于平均数,本章就是在研究数据集中趋势的大背景下,在复习学生已学的平均数的基础上,学习加权平均数、中位数、众数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.四、单元学习目标1.体会抽样的必要性,通过实例了解简单随机抽样.2.进一步经历收集、整理、描述、分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据.3.会制作扇形统计图,能用统计图直观、有效地描述数据.4.理解平均数、中位数、众数的意义,能计算中位数、众数、加权平均数,知道它们是对数据集中趋势的描述.5.体会刻画数据离散程度的意义,会计算一组简单数据的方差.6.通过实例,了解频数和频数分布的意义,能画频数直方图,能利用频数直方图解释数据中蕴含的信息.7.体会样本与总体的关系,知道可以通过样本平均数、样本方差估计总体平均数、总体方差.8.能解释数据分析的结果,能根据结果作出简单的判断和预测,并能进行交流.9.通过表格、折线图、趋势图等,感受随机现象的变化趋势.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时作业严格按照新课程标准设定针对性的作业,及时反馈学生的学业质量情况.层次性原则:教师注意讲作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所收获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版数学八年级下册第20章数据的分析数学活动教学设计
![人教版数学八年级下册第20章数据的分析数学活动教学设计](https://img.taocdn.com/s3/m/9dada6988ad63186bceb19e8b8f67c1cfad6ee97.png)
(1)小组合作:让学生分组,选择一个实际问题,进行数据收集和整理。
(2)数据处理:引导学生运用统计图表、平均数、中位数、众数等方法对数据进行处理。
(3)数据分析:指导学生从数据中发现规律,解释生活现象,提出合理建议。
4.总结与反思:让学生分享学习心得,总结数据分析的方法和技巧,反思数据分析在生活中的应用。
接着,教师简要回顾之前学过的数据收集、整理、描述、分析的基本概念,为新课的学习做好铺垫。在此基础上,教师引入本节课的教学目标,即掌握数据分析的方法及其在实际问题中的应用。
(二)讲授新知,500字
在讲授新知阶段,教师将结合课本内容,详细讲解以下知识点:
1.数据收集:介绍数据的来源、收集方法等,强调数据的真实性和准确性。
2.培养学生严谨、客观、科学的求知态度,树立正确的价值观,认识到数据分析在决策、预测等方面的重要性。
3.通过对生活实际问题的探讨,培养学生关注社会、关爱他人、服务社会的责任感。
教学设计:
1.导入:以生活中的实例导入,如学校运动会成绩、班级成绩等,让学生认识到数据分析在实际生活中的应用。
2.基本概念:讲解数据的收集、整理、描述、分析等基本概念,引导学生运用所学知识对实际问题进行处理。
(3)激励评价:注重激发学生的学习兴趣,鼓励学生积极参与,培养他们的自信心和成就感。
四、教学内容与过程
(一)导入新课,500字
在导入新课阶段,教师将运用生活实例引发学生对数据分析的兴趣。教师展示一组关于学生身高、体重的数据,并提出问题:“如何描述这组数据的集中趋势和离散程度?”引导学生思考数据背后所反映的信息。通过这个实例,让学生认识到数据分析在生活中的重要性,从而激发学生的学习兴趣。
(2)运用所学方法对数据进行整理、描述和分析,可以使用统计图表、平均数、中位数、众数等。
人教版数学八年级下册第二十章《数据的分析》教学设计
![人教版数学八年级下册第二十章《数据的分析》教学设计](https://img.taocdn.com/s3/m/4456845902d8ce2f0066f5335a8102d277a2616a.png)
针对教学难点,采用小组合作、讨论交流等形式,让学生在合作探究中相互学习、相互启发,共同解决难点问题。教师在此过程中要关注学生的思维过程,适时给予指导和点拨。
4.实践操作,巩固知识
组织学生进行实际操作,如绘制频数分布直方图、进行概率实验等,使学生在实践中巩固所学知识,提高数据分析能力。
4.理解概率的意义,能够运用概率知识对随机事件进行简单的预测。
(二)过程与方法
1.通过小组合作、讨论交流等学习方式,培养学生独立思考、合作解决问题的能力。
2.通过对实际问题的数据收集、整理和分析,提高学生运用数学知识解决实际问题的能力。
3.利用信息技术手段,如电子表格、统计软件等,辅助学生进行数据分析,培养学生的信息素养。
2.思考并举例说明平均数、中位数、众数在实际问题中的应用和意义。
3.利用概率知识,分析一个随机事件,预测该事件发生的可能性,并简要说明预测的依据。
4.针对本节课的学习内容,撰写一篇学习心得体会,谈谈自己对数据分析的认识和感受,以及在以后的学习和生活中如何运用所学知识。
三、教学重难点和教学设想
(一)教学重点
1.数据的收集、整理、描述和分析方法的应用。
2.平均数、中位数、众数等统计量的计算及其在实际问题中的应用。
3.频数分布直方图的绘制及分析。
4.概率知识在随机事件预测中的应用。
(二)教学难点
1.数据分析方法的选择和运用。
2.统计量在实际问题中的灵活运用。
3.频数分布直方图的解读与分析。
二、学情分析
八年级下册的学生已经具备了一定的数学基础和逻辑思维能力,对数据的收集、整理和描述有初步的认识。在此基础上,学生对数据分析的学习有着较高的兴趣,但可能在以下几个方面存在困难:首先,对数据的分析方法和技巧掌握不够熟练,需要教师在教学过程中进行引导和训练;其次,学生在处理实际问题时,可能难以将所学知识灵活运用,需要加强实践操作的环节;最后,学生在团队合作中,沟通与协作能力有待提高,需要教师给予适当的指导和鼓励。因此,在本章节的教学中,教师应关注学生的个体差异,充分调动学生的主观能动性,引导他们通过实践探索,提高数据分析能力,并在合作学习中培养沟通与协作能力。
人教版数学八下第二十章数据的分析全章教案
![人教版数学八下第二十章数据的分析全章教案](https://img.taocdn.com/s3/m/ca8f16cf59eef8c75ebfb3ba.png)
第二十章数据的分析数据的代表平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题数据的代表课时:六课时第一课时平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。
3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。
【课堂练习】1.教材P127练习第1,2题。
2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。
4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
人教版八年级下数学-第二十章----数据的分析全章设计教案
![人教版八年级下数学-第二十章----数据的分析全章设计教案](https://img.taocdn.com/s3/m/b415e8c949649b6648d747ac.png)
第二十章数据的分析§20、1平均数(一)教学目标知识与技能1、掌握算术平均数,加权平均数的概念。
2、会求一组数据的算术平均数和加权平均数过程与方法经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,能运用数据信息的分析解决一些简单的实际问题。
情感态度与价值观1、通过小组合作的活动,培养学生的合作意识和能力。
2、通过解决实际问题,让学生体会数学与生活的密切联系重点算术平均数,加权平均数的概念及计算。
难点加权平均数的概念及计算。
教学过程备注教学过程与师生互动第一步:引入新课:在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)第二步:讲授新课:1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92甲小组:X= =91(分)甲小组做得对吗?有不同求法吗?乙小组:X= ×××××××= 91(分)乙小组的做法可以吗?还有不同求法吗?丙小组:先取一个数90做为基准a,则每个数分别与90的差为:5、9、-3、0、0、-4、……、2、2求出以上新的一组数的平均数X'=1所以原数组的平均数为X=X'+90=91想一想,丙小组的计算对吗?2、议一议:问:求平均数有哪几种方法?①平均数:一般地,如果有n个数x1,x2,……,x n,那么,叫做这n个数的平均数,读作“x拔”。
②加权平均数:如果n个数中,x1出现f1次,x2出现f2次,……,x k出现f k次,(这里f1+f2+……+f k=n),那么,根据平均数的定义,这n个数的平均数可以表示为这样求得的平均数叫做加权平均数,其中f1,f2,……,f k叫做权。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求这15个销售员该月销量的中位数和众数.
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由.
2.(1)1.2匹(2)通过观察可知1.2匹的销售最大,所以要多进1.2匹,由于资金有限就要少进2匹空调.
课后练习
1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是
2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.
3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是()
课后练习:
1、某公司的33名职工的月工资(以元为单位)如下:
职员
董事长
副董事长
董事
总经理
经理
管理员
职员
人数
1
1
2
1
5
3
20
工资
5500
5000
3500
3000
2500
2000
1500
(1)、求该公司职员月工资的平均数、中位数、众数?
(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)
2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:
1匹
1.2匹
1.5匹
2匹
3月
12台
20台
8台
4台
4月
16台
30台
14台
8台
根据表格回答问题:
商店出售的各种规格空调中,众数是多少?
假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?
答案:1.(1)210件、210件(2)不合理.因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定.
温度(℃)
-8
-1
7
15
21
24
30
天数
3
5
5
7
6
2
2
请你根据上述数据回答问题:
(1).该组数据的中位数是什么?
(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?
作业布置
课后反思
第15周周5
课题
20.1.2中位数和众数(第二课时)
教学目标
知识与能力
进一步认识平均数、众数、中位数都是数据的代表.
例习题的分析:
例题6中第一问是在巩固平均数定义、中位数定义和众数的定义.可以引导学生从问题中词语特点分析它们分别指哪个数据代表,教师也可以顺便加一个发散性问题,一般地哪些词语是指平均数、中位数和众数呢?
例题6中的第二问学生一般不易想到,教师要将“较高目标”衡量标准引向三个数据代表身上,这样学生就不难回答了.
难点
对“权”的理解
主要教学过程
学生活动
一引入新课
、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考.
某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:
班级
1班
2班
3班
4班
参考人数
40
42
45
32
平均成绩
80
81
82
79
求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么? = (79+80+81+82)=80.5
二
新课教学
例习题的意图分析:
教材P146例6的意图
(1)、这是在学习过数据的收集、整理、描述与分析之后涉及到这四个环节的一个例题,从分析和解答过程来看它交待了该如何完整的进行这几个过程,为该怎样综合运用已学的统计知识解决实际问题作了一个标准范例.教师在授课过程中也应注意,对已学知识的巩固复习.
(2)、从分析和解答过程来看,此例题的一个主要意图是区分平均数、众数和中位数这三个数据代表的异同.
9
38≤X<40
11
40≤X<42
2
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数.
作业布置
课后反思
第15周周4
课题
20.1.2中位数和众数(第一课时)
教学目标
知识与能力
认识中位数和众数,并会求出一组数据中的众数和中位数
二
新课教学
例习题的分析
教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列.因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数.
教材P145例5,由表中第二行可以查到23.5号鞋的频数最大,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出.
部门
A
B
C
D
E
F
G
人数
1
1
2
4
2
2
5
每人创得利润
20
5
2.5
2
1.5
1.5
1.2
该公司每人所创年利润的平均数是多少万元?
2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?
年龄
频数
28≤X<30
4
30≤X<32
3
32≤X<34
8
34≤X<36
7
36≤X<38
2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)
甲群:13、13、14、15、15、15、16、17、17.
乙群:3、4、4、5、5、6、6、54、57.
(1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是.
(2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁.其中能较好反映乙群游客年龄特征的是.
随堂练习:
1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:
学生
作业
测验
期中考试
期末考试
小关
80
75
71
88
小兵
76
80
68
90
2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)
二
新课教学
例习题分析:
例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权.
A.97、96 B.96、96.4C.96、97 D.98、97
4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()
A.24、25 B.23、24C.25、25 D.23、25
5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系.
二
新课教学
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?
作业布置
课后反思
第15周周6
课题
20.2.1极差
教学目标
知识与能力
理解极差的定义,知道极差是用来反映数据波动范围的一个量
过程与方法
会求一组数据的极差
重点
会求一组数据的极差
难点
本节课内容较容易接受,不存在难点
主要教学过程
学生活动
一引入新课
第三问要抓住一半左右应与哪个数据代表的意义相符这个问题.即要很好的回答第三问,学生头脑必须很清楚平均数、中位数、众数的特点.
随堂练习:
1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分
50
60
70
80
90
100
110
120
人数
2
3
6
14
15
5
4
1
分别求出这些学生成绩的众数、中位数和平均数.
第15周周2
课题
20.1.1平均数(第一课时)
教学目标
知识与能力
使学生理解数据的权和加权平均数的概念
过程与方法
使学生掌握加权平均数的计算方法
情感、态度和价值观
通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数
重点
会求加权平均数
引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了.