通信原理第二章信道习题及其答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章(信道)习题及其答案

【题2-1】设一恒参信道的幅频特性与相频特性分别为

0()()d H K t ωϕωω⎧=⎨=-⎩

其中,0,d K t 都就是常数。试确定信号()s t 通过该信道后的输出信号的时域表达式,并讨论之。

【答案2-1】

恒参信道的传输函数为:()0()()d j t j H H e K e ωϕωωω-==g ,根据傅立叶变换可得

冲激响应为:0()()d h t K t t σ=-。

根据0()()()i V t V t h t =*可得出输出信号的时域表达式:

000()()()()()()d d s t s t h t s t K t t K s t t δ=*=*-=-

讨论:题中条件满足理想信道(信号通过无畸变)的条件:

()d d H ωωφ

ωωτττ⎧=⎨⎩常数()=-或= 所以信号在传输过程中不会失真。

【题2-2】设某恒参信道的幅频特性为[]0()1cos d j t H T e ωω-=+,其中d t 为常数。

试确定信号()s t 通过该信道后的输出表达式并讨论之。

【答案2-2】 该恒参信道的传输函数为()0()()(1cos )d j t j H H e T e ωϕωωωω-==+g ,根据傅立

叶变换可得冲激响应为:

0011()()()()22d d d h t t t t t T t t T δδδ=-+--+-+

根据0()()()i V t V t h t =⊗可得出输出信号的时域表达式:

0000011()()()()()()()2211 ()()()22d d d d d d s t s t h t s t t t t t T t t T s t t s t t T s t t T δδδ⎡⎤=⊗=⊗-+--+-+⎢⎥⎣⎦

=-+--+-+

讨论:与理想信道的传输特性相比较可知,该恒参信道的幅频特性0()

(1cos )H T ωω=+不为常数,所以输出信号存在幅频畸变。其相频特性()d t ϕωω=-就是频率ω的线性函数,所以输出信号不存在相频畸变。

【题2-3】今有两个恒参信道,其等效模型分别如图P3、3(a)、(b)所示。试求这两个信道的群延迟特性及画出它们的群延迟曲线,并说明信号通过它们时有无群迟延失真?

【答案2-3】

写出图P3、3(a)所示信道的传输函数为: 2112()R H w R R =+

幅频特性:

1()0w ϕ=

根据幅频特性与群延迟的关系式

()

()d w w dw ϕτ=

得出群延迟

1()0w τ=

因为1()w τ就是常数,所以信号经过图(a)所示信道时,不会发生群延迟失真。 写出图3-3(b)所示信道的传输函数为:

21

1()11jwC H w jwRC R jwC ==++

幅频特性:

2()arctan w wRC ϕ=-

根据幅频特性与群延迟的关系式 ()()d w w dw φτ=

得出群延迟

2222()1RC

w w R C τ=-+

因为2()w τ不就是常数,所以信号经过图(b)所示信道时会发生群延迟失真。 1()w τ、2()w τ的群延迟曲线分别如下图所示。

【题2-4】 一信号波形0()cos cos s t A t t ω=Ω,通过衰减为固定常数值、存在相移的网络。试证明:若0ωΩ?且0ω±Ω附近的相频特性曲线可近似为线性,则该网络对()s t 的迟延等于它的包络的迟延(这一原理常用于测量群迟延特性)。

【答案2-4】

因为0ωΩ?,所以()s t 的包络为cos A t Ω。根据题中的0ω±Ω附近的相频特

性,可假设网络的传输函数为0()d j t H K e ωω-=(在0ω±Ω附近,该式成立)

幅频特性:()d t ϕωω=-;

群迟延特性:()()d d t d φωτωω==

则相应的冲激响应为:0()()d h t K t t δ=-

输出信号为:0000()()()()()cos ()cos ()d d d s t s t h t s t K t t AK t t t t δω=*=*-=Ω--

由输出信号的表达式可以瞧出,该网络对()s t 的迟延等于它的包络的迟延。

【题2-5】假设某随参信道的两径时延差τ为1ms,求该信道在那些频率上衰耗最大?选用那些频率传输信号最有利?

【答案2-5】 信道的幅频特性为0()2cos 2H V ωτ

ω=,当cos 1

2ωτ

=时,对传输最有利,此时2n ωτ

π=即

2n f nkHz ωπτ=== 当cos 0

2ωτ

=时,传输衰耗最大,此时122n ωτπ⎛⎫=+ ⎪⎝

⎭即 1

12()22nt

f n kHz ωπτ===+。 所以,当12f n kHz ⎛⎫=+ ⎪⎝⎭,0,1,2,n =L 时,对传输信号衰耗最大;当

f nkHz =,0,1,2,n =L 时,对传输信号最有利。

【题2-6】某随参信道的最大径时延差等于3ms,为了避免发生频率选择性衰落,试估算在该信道上传输的数字信号的码元脉冲宽度。

【答案2-6】

信道的相关带宽:

113m

f KHz τ∆== 根据工程经验,取信号带宽11(~)53B f =∆,即码元脉冲宽度

(3~5)(9~15)m T ms τ==。

【题2-7】若两个电阻的阻值都为1000Ω,它们的噪声温度分别为300K 与400K,试求两个电阻串连后两端的噪声功率谱密度。

相关文档
最新文档