初一下数学试题及答案

合集下载

初一数学下册试卷及答案

初一数学下册试卷及答案

⽆忧考为⼤家整理的初⼀数学下册试卷及答案的⽂章,供⼤家学习参考!更多最新信息请点击⼀、相信⾃⼰都能选对(30分)1. 的倒数等于【】 A、-2 B、2 C、 D、2.在|-1|,-|0|,(-2)3,-|-2|,-(-2)这5个数中,负数共有【】A、2个B、3个C、4个D、5个3.下列说法中,正确的是【】 A、正整数和负整数统称整数 B、整数和分数统称有理数 C、零既可以是正整数,也可以是负整数 D、⼀个有理数不是正数就是负数4.对于由四舍五⼊得到的近似数3.20×105,下列说法正确的是【】A、有3个有效数字,精确到百分位B、有3个有效数字,精确到千位C、有2个有效数字,精确到万位D、有6个有效数字,精确到个位5.某市2005年的⽓温为39℃,最低⽓温为零下7℃,则计算2005年温差列式正确的是【】 A、(+39)+(-7) B、(+39)+(+7) C、(+39)-(-7) D、(+39)-(+7)6.下列去括号正确的是【】 A、a-(b-c)= a-b-c B、a+(-b+c)= a-b-c C、a-(-b-c)= a+b-c D、a+(b-c)= a+b-c7.若|a|=5,|b|=3,那么的值的个数有【】 A、4 B、3 C、2 D、1 8.把-1,0,1,2,3这五个数,填⼊下列⽅框中,使⾏、列三个数的和相等,其中错误的是【】9.已知a,b是有理数,|ab|=-ab(ab≠0),|a+b|=|a|-b⽤数轴上的点来表⽰a,b下列正确的是【】10.有2006个数排成⼀⾏,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第⼀个数和第⼆个数都是1,则这2006个数的和等于【】A、2006B、-1C、0D、2 ⼆、认真填写,要细⼼呦!(24分) 11.孔⼦出⽣于公元前551年,如果⽤-551年来表⽰,则李⽩出⽣于公元701年表⽰为_______ 12.2005年10⽉12⽇上午9时,我国⾃主研制成功发射的神州六号载⼈飞船,第⼀次将我国两名航天员送上太空,在太空飞⾏115⼩时32分后安全返回预定着落场——内蒙古四⼦王旗,⾏程3 250 000 000⽶,⽤科学记数法表⽰为_________⽶。

初一数学(下)难题百道及答案

初一数学(下)难题百道及答案

初一数学下册提高训练1、如图1,下列判断: ①∠A 与∠1是同位角;②∠A 与∠B 是同旁内角;③∠4与∠1是内错角; ④∠1与∠3是同位角。

其中正确的个数是( )A 、4个B 、3个C 、2个D 、1个 2、 如图2,若AD ∥BC,则图中相等的内错角是( ) A .∠1与∠5,∠2与∠6; B .∠3与∠7,∠4与∠8; C .∠2与∠6,∠3与∠7; D .∠1与∠5,∠4与∠8 3、一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯时( ) A 、第一次向右拐30°,第二次向右拐30° B 、第一次向右拐30°,第二次向右拐150° C 、第一次向左拐30°,第二次向右拐150° D 、第一次向左拐30°,第二次向右拐30°4、如图,NO 、QO 分别是∠QNM 和∠PQN 的角平分线,且∠QON=90°,那么MN 与PQ ( ) A 、可能平行也可能相交 B 、一定平行 C 、一定相交 D 、以上答案都不对5、如图,如果AB ∥CD ,则α∠、β∠、γ∠之间的关系是( ) A 、0180=∠+∠+∠γβα B 、0180=∠+∠-∠γβαC 、0180=∠-∠+∠γβαD 、0270=∠+∠+∠γβα6、如图,AB ∥CD,且∠BAP=60°—α,∠APC=45°+α,∠PCD=30°-α,则α=( ) A 、10° B 、15° C 、20° D 、30°7、如图,已知AB ∥CD ,则角α、β、γ之间的关系为( )(A)α+β+γ=1800 (B )α—β+γ=1800(C )α+β—γ=1800 (D )α+β+γ=36008、如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′的度数为 。

初一数学下册期末考试试卷及答案

初一数学下册期末考试试卷及答案

初一数学下册期末考试试卷及答案213年级下学期数学期末试卷一、选择题(每题3分,共18分)1.下列运算正确的是()。

A。

a+a=aB。

a×a=a^2C。

a÷a-1=aD。

a^4-a^4=a^22.给出下列图形名称:(1)线段(2)直角(3)等腰三角形(4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有()A。

1个B。

2个C。

3个D。

4个3.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A。

4/112B。

1/4C。

1/35D。

15/354.1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径是()A。

6万纳米B。

6×10^4纳米C。

3×10^6米D。

3×10^-6米5.下列条件中,能判定两个直角三角形全等的是()A。

一锐角对应相等B。

两锐角对应相等C。

一条边对应相等D。

两条直角边对应相等6.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了。

A。

1个B。

2个C。

3个D。

4个二、填空题(每空3分,共27分)7.单项式-xy的次数是3.8.一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为60°,90°,120°的三角形。

9.在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到1.3万亿元,这个数据用科学记数法可表示为1.3×10^13元。

10.如图∠AOB=125°,AO⊥OC,BO⊥OD则∠COD=55°。

11.小明同学平时不用功研究,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是1/4.12.若a+2ka+9是一个完全平方式,则k等于2.13.(2m+3)/2=4m-9.14.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为3/4.15.观察下列运算并填空:1×2×3×4+1=25=5^2;2×3×4×5+1=121=11^2;3×4×5×6+1=361=19^2;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1=。

2023年北京东城区初一(下)期末数学试题及答案

2023年北京东城区初一(下)期末数学试题及答案

2023北京东城初一(下)期末数 学一、选择题(本题共30分,每小题3分)1.如图,小手盖住的点的坐标可能为( )A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)2.4的算术平方根是( )A.2B.±2C.16D.±16 3.下列调查方式,最适合全面调查的是( )A.检测某品牌鲜奶是否符合食品卫生标准B.了解某班学生一分钟跳绳成绩C.了解北京市中学生视力情况D.调查某批次汽车的抗撞击能力4.若21xy=⎧⎨=⎩是关于x,y的二元一次方程x+my=5的解,则m的值为( )A.2B.3C.5D.75.实数a,b对应的位置如图所示,下列式子正确的是( )A.a2<b2B.﹣2a<﹣2b C.a+5<0D.a+4<b+46.如图,直线AB,CD相交于点O,OE⊥AB,垂足为点O.若∠COE=40°,则∠BOD的度数为( )A.140°B.60°C.50°D.40°7的点最接近的点是( )A.点P B.点Q C.点M D.点N8.已知二元一次方程组28,2-5,x yx y+=⎧⎨+=⎩则x+y的值为( )A.﹣1B.﹣3C.1D.39.如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为x千克,则x的取值范围是( )A.280<x≤350B.280<x≤400C.330<x≤350D.330<x≤400 10.2023年国家统计局公布了《2022年国民经济和社会发展统计公报》.公报显示了全国2018年至2022年货物进出口额的变化情况,根据国家统计局2022年发布的相关信息,绘制了如下的统计图.根据统计图提供的信息,下列结论正确的是( )①与2018年相比,2019年的进口额的年增长率虽然下降,但进口额仍然上升;②从2018年到2022年,进口额最多的是2022年;③2018﹣2022年进口额年增长率持续下降;④与2021年相比,2022年出口额增加了2.3万亿元.A.①②④B.①②③C.①③④D.①②③④二、填空题(本题共16分,每小题2分11.(2分)“m的2倍与5的和是正数”可以用不等式表示为 .12.(2分)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向过斑马线更为合理,这一想法体现的数学依据是 .13.(2分)北京中轴线南起永定门,北至钟鼓楼,全长7.8千米.如图是利用平面直角坐标系画出的中轴线及其沿线部分地点分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示天安门的点的坐标为(0,﹣1),表示王府井的点的坐标为(1,﹣1),则表示永定门的点的坐标为 .14.(2分)如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O′,点O′所对应的数值是 .15.(2分)如图,将含有60°的直角三角板的两个顶点分别放在直尺的一组对边上,如果∠1=20°,那么∠2= °.16.(2分)如图,一块边长为10米的正方形花园,在上面修了一条道路,路的宽都是1米,其余部分种上各种花草,则种植花草的面积是 平方米.17.(2分)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.书中记载了一个数学问题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”其大意是:“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,绳子比长木短1尺,问长木多少尺?”设绳长x 尺,木长y 尺,可列方程组为 .18.(2分)在平面直角坐标系xOy 中,若一个多边形的顶点都在格点(点的横、纵坐标均为整数)上,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .如图,△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S 为 ;(2)已知格点多边形的面积可以表示为S =aN +bL ﹣1,其中a ,b 为常数.若某格点多边形对应的N =71,L =18,则S = .三、解答题(本题共54分,第19-23题每小题5分,第24题4分,第25题5分,第26题6分,第27-28题每小题5分)解答应写出文字说明、证明过程或演算步骤.19.(51+.20.(5分)解方程组321921x y x y +=⎧⎨-=⎩.21.(5分)解不等式组:513(1)1213x x x x ->+⎧⎪+⎨≥-⎪⎩,并求出它的整数解.22.(5分)请将下面的证明过程补充完整:如图,在四边形ABCD 中,AD ∥BC ,∠BCD =40°,∠BAD =80°,∠BAD 的角平分线交BC 于点E ,求证:AE ∥DC .证明:∵AE 平分∠BAD ,∠BAD =80°(已知),∴1402DAE BAD ∠=∠= (理由: ).∵AD ∥BC (已知),∴ =∠DAE =40°(理由: ).∵∠BCD =40°(已知),∴∠BCD = (等量代换).∴AE ∥DC (理由: ).23.(5分)一个数值转换器如图所示:(1)当输入的x 值为16时,输出的y 值是 ;(2)若输入有效的x 值后,始终输不出y 值,则所有满足要求的x 的值为 ;(3)若输出的yx 的值.24.(4分)如图.三角形ABC 的顶点坐标分别为A (﹣1.4),B (﹣4,﹣1),C (1,1).若将三角形ABC 向右平移4个单位长度,再向下平移3个单位长度得到三角形A 'B 'C ',其中点A ',B ',C '分别是点A .B ,C 的对应点.(1)画出三角形A 'B 'C ';(2)若三角形ABC 内有一点P (a ,b )经过上述平移后的对应点为P ',写出点P '的坐标:( , );(3)若点D 在y 轴上且三角形BOD 的面积为4,直接写出点D的坐标.25.(5分)如图为国家节水标志,节水标志各部分的含义为:灰色的圆形代表分像一只手托起一滴水,手又像一条蜿蜒的河流,象征滴水汇成江河.某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样调查获得了50个家庭去年的月均用水量(单位:吨).以下是整理数据后的不完整统计表、统计图.月均用水量频数分布表分组频数2≤x<343≤x<4124≤x<5a5≤x<696≤x<757≤x<848≤x<92合计50请根据图表中提供的信息解答下列问题:(1)表中a的值为 ,请补全频数分布直方图;(2)扇形统计图中,月均用水量为“E :6≤x <7”的扇形的圆心角是 °;(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭水费支出不受影响,你觉得家庭月均用水量应该定为多少?为什么?26.(6分)已知,直线AB ∥CD ,点E 为直线CD 上一定点,射线EK 交AB 于点F ,FG 平分∠AFK ,∠FED =α.(1)如图1,当α=60°时,∠GFK = °;(2)点P 为线段EF 上一定点,点M 为直线AB 上的一动点,连接PM ,过点P 作PN ⊥PM 交直线CD 于点N .①如图2,当点M 在点F 右侧时,求∠BMP 与∠PNE 的数量关系;②当点M 在直线AB 上运动时,∠MPN 的一边恰好与射线FG 平行,直接写出此时∠PNE 的度数(用含α的式子表示).27.(7分)围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.28.(7分)在平面直角坐标系xOy 中,对于点P (x 1,y 1),点Q (x 2,y 2),定义|x 1﹣x 2|与|y 1﹣y 2|中的值较大的为点P,Q的“绝对距离”,记为d(P,Q).特别地,当|x1﹣x2|=|y1﹣y2|时,规定d(P,Q)=|x1﹣x2|,例如,点P(1,2),点Q(3,5),因为|1﹣3|<|2﹣5|,所以点P,Q 的“绝对距离”为|2﹣5|=3,记为d(P,Q)=3.(1)已知点A(0,1),点B为x轴上的一个动点.①若d(A,B)=3,求点B的坐标;②d(A,B)的最小值为 ;③动点C(x,y)满足d(A,C)=r,所有动点C组成的图形面积为64,请直接写出r的值.(2)对于点D(﹣1,0),点E(2,5),若有动点M(m,n)使得d(D,M)+d(E,M)=5,请直接写出m的取值范围.参考答案一、选择题(本题共30分,每小题3分)1.【分析】根据第四象限点的坐标特征(+,﹣),即可解答.【解答】解:如图,小手盖住的点的坐标可能为(2,﹣3),故选:D.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系中每一象限点的坐标特征是解题的关键.2.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:∵22=4,∴4的算术平方根是2.故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.3.【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【解答】解:A、检测某品牌鲜奶是否符合食品卫生标准,最适合抽样调查,故A不符合题意;B、了解某班学生一分钟跳绳成绩,最适合全面调查,故B符合题意;C、了解北京市中学生视力情况,最适合抽样调查,故C不符合题意;D、调查某批次汽车的抗撞击能力,最适合抽样调查,故D不符合题意;故选:B.【点评】本题考查了全面调查与抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.4.【分析】将21xy=⎧⎨=⎩代入原方程,可得出关于m的一元一次方程,解之即可得出m的值.【解答】解:将21xy=⎧⎨=⎩代入原方程得:2+m=5,解得:m=3,∴m的值为3.故选:B.【点评】本题考查了二元一次方程的解,牢记“把方程的解代入原方程,等式左右两边相等”是解题的关键.5.【分析】根据图示,可得:a<b且﹣5<a<﹣4,3<b<4,据此逐项判断即可.【解答】解:根据图示,可得:a<b且﹣5<a<﹣4,3<b<4,∵﹣5<a<﹣4,3<b<4,∴16<a2<25,9<b2<16,∴a2>b2,∴选项A不符合题意;∵a<b,∴﹣2a>﹣2b,∴选项B不符合题意;∵﹣5<a<﹣4,∴a+5>0,∴选项C不符合题意;∵a<b,∴a+4<b+4,∴选项D符合题意.故选:D.【点评】此题主要考查了实数与数轴上的点的一一对应关系,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.6.【分析】由垂线的定义得出∠AOE=90°,即可求出∠AOC的度数,根据对顶角相等即可得出∠BOD的度数.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠COE=40°,∴∠AOC=∠AOE﹣∠COE=90°﹣40°=50°,∴∠BOD=∠AOC=50°,故选:C.【点评】本题考查了垂线的定义,对顶角的性质,熟知对顶角相等的性质.7.进行估算,再根据数轴表示进行求解.【解答】解:∵1<2,的点最接近的点是点Q,故选:B.【点评】此题考查了无理数的估算能力,关键是能准确理解并运用算术平方根知识进行求解.8.【分析】利用整体的思想,进行计算即可解答.【解答】解:2825x yx y+=⎧⎨+=-⎩①②,①+②得:3x+3y=3,解得:x+y=1,故选:C.【点评】本题考查了解二元一次方程组,熟练掌握整体的思想是解题的关键.9.【分析】根据“小丽进入电梯不超重,小欧进入电梯超重”,可列出关于x的一元一次不等式组,解之即可得出x的取值范围.【解答】解:根据题意得:504005070400 xx+≤⎧⎨++>⎩,解得:280<x≤350.故选:A.【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.10.【分析】根据条形统计图与折线统计图所给的信息进行求解即可.【解答】解:①由条形图与折线图可知,2018的进口额为14.1万亿元,进口额的年增长率为12.8%,2019的进口额为14.3万亿元,进口额的年增长率为1.4%,所以与2018年相比,2019年的进口额的年增长率虽然下降,但进口额仍然上升,故①结论正确,符合题意;②由条形图可知,从2018年到2022年,进口额最多的是2022年,为18.1万亿元,故②结论正确,符合题意;③由折线图可知,2018﹣2022年进口额年增长率先下降再上升再下降,故③结论错误,不符合题意;④由条形图可知,与2021年相比,2022年出口额增加了24.0﹣21.7=2.3万亿元,故④结论正确,符合题意;故选:A.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.二、填空题(本题共16分,每小题2分11.【分析】m的2倍与5的和是正数为5+2m;和是正数,那么前面所得的结果大于0.【解答】解:m的2倍为2m,5与m的2倍的和写为5+2m,和是正数,则5+2m>0,故答案为:5+2m>0.【点评】本题主要考查由实际问题抽象出一元一次不等式的知识点,解决本题的关键是理解正数用数学符号表示是“>0”.12.【分析】根据垂线段最短的性质求解即可.【解答】解:∵垂线段最短,∴行人沿垂直马路的方向过斑马线更为合理.故答案为:垂线段最短.【点评】本题考查垂线的性质,关键是掌握垂线的两条性质,明白垂线段最短.13.【分析】直接利用已知点坐标进而确定原点位置进而得出答案.【解答】解:永定门的点的坐标为(0,﹣7),故答案为:(0,﹣7).【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.14.【分析】求出OO′的长即可确定O′点对应的数.【解答】解:∵圆的周长为=1×π=π,∴圆从原点沿数轴向右滚动一周经过的路径长OO′=π,∴O′点对应的数是π.故答案为:π.【点评】本题主要考查了实数与数轴之间的对应关系,解题的关键是求出OO′的长.15.【分析】利用两直线平行,内错角相等作答.【解答】解:根据题意可知,两直线平行,内错角相等,∵∠1=20°,∠1+∠3=60°,∴∠3=40°,∵∠2=∠3,∴∠2=40°.故答案为:40.【点评】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.16.【分析】直接利用平移方法,将2条道路平移到图形的一侧,进而求出即可.【解答】解:(10﹣1)×(10﹣1)=9×9=81(平方米).故种植花草的面积是81平方米.故答案为:81.【点评】本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致错误.17.【分析】根据“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,绳子比长木短1尺”,即可列出关于x ,y 的二元一次方程组,此题得解.【解答】解:∵用一根绳子去量一根长木,绳子还剩余4.5尺,∴x ﹣y =4.5;∵将绳子对折再量长木,绳子比长木短1尺,∴y ﹣x =1.∴根据题意可列方程组 4.512x y x y -=⎧⎪⎨-=⎪⎩.故答案为: 4.512x y x y -=⎧⎪⎨-=⎪⎩.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.18.【分析】(1)过G 点作MH ⊥ED 延长线于点H ,过E 作NE ⊥DE ,过F 点作MN ∥x 轴,交MH 于点M ,交NE 于点N ,分别求出△GHD ,△MGF ,△FNE ,矩形MNEH 的面积,即可求出四边形DEFG 的面积.(2)通过已知可知1041361a b a b =⨯+-⎧⎨=+-⎩,即可求出a ,b 的值,从而可求所求S的值.【解答】解:(1)过G 点作MH ⊥ED 延长线于点H ,过E 作NE ⊥DE ,过F 点作MN ∥x 轴,交MH 于点M ,交NE 于点N ,则HD =1,GH =1,GM =1,MF =1,FN =2,NE =2,MH =2,HE =3,∴S 矩形MNEH =MH ×MN =2×3=6,S △GHD =12×GH ×HD =12×1×1=12,S △GMF =12×MG ×MF =12×1×1=12,S △FNE =12×FN ×NE =12×2×2=2,∴S 四边形DEFG =S 矩形MNEH ﹣S △GHD ﹣S △GMF ﹣S △FNE=6﹣12﹣12﹣2=3.故答案为:3.(2)对于四边形DEFG ,S =3,N =1,L =6,由题意知,1041361a b a b =⨯+-⎧⎨=+-⎩,解得,112a b =⎧⎪⎨=⎪⎩,∴S =aN +bL ﹣1=1×71+×18﹣1=79,故答案为:79.【点评】本题主要考查了新定义问题、平面直角坐标系中图形面积的求解、二元一次方程组的求解.求平面直角坐标系中图形面积时,常用的方法是间接法,即在图形外补出一个规则图形或者将所求图形分割成若干规则小图形.三、解答题(本题共54分,第19-23题每小题5分,第24题4分,第25题5分,第26题6分,第27-28题每小题5分)解答应写出文字说明、证明过程或演算步骤.19.【分析】先算算式平方根,立方根以及绝对值,二次根式的化简,再算加减法,即可求解.1+=2(4)31+--+-6-.【点评】本题主要考查了实数的混合运算,掌握算式平方根,立方根,二次根式的化简以及绝对值的概念是解题的关键.20.【分析】方程组利用代入消元法求出解即可.【解答】解:321921x yx y+=⎧⎨-=⎩①②,由②得:y=2x﹣1③,把③代入①得:3x+2(2x﹣1)=19,即x=3,把x=3代入③得:y=5,则方程组的解为35xy=⎧⎨=⎩.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.【分析】先求出两个不等式的解集,再求其公共解,从而得到它的整数解.【解答】解:解不等式①,得x>2,解不等式②,得x≤4,故原不等式组的解集为2<x≤4.故它的整数解为x=3或4.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.【分析】由角平分线求出∠DAE,再由平行的性质求出∠AEB,从而可判断∠AEB和∠BCD的大小关系,从而可证明AE∥DC.【解答】证明:∵AE平分∠BAD,∠BAD=80°(已知),∴1402DAE BAD∠=∠= (理由:角平分线的定义).∵AD∥BC(已知),∴∠AEB=∠DAE=40°(理由:两直线平行,内错角相等).∵∠BCD=40°(已知),∴∠BCD=∠AEB(等量代换).∴AE∥DC(理由:同位角相等,两直线平行).故答案为:角平分线的定义;∠AEB;两直线平行,内错角相等;∠AEB;同位角相等,两直线平行.【点评】本题考查了角平分线的定义、平行线的性质和判定.本题的关键是熟练应用平行的性质和判定.23.【分析】(1)根据算术平方根,即可解答;(2)根据0和1的算术平方根是它们本身,0和1是有理数,所以始终输不出y值;(3)25的算术平方根是5,5,据此解答.【解答】解:(1)∵16的算术平方根是4,4是有理数,4不能输出,∴4的算术平方根是2,2是有理数,2不能输出,∴2,(2)∵0和1的算术平方根是它们本身,0和1是有理数,∴当x=0和1时,始终输不出y的值;故答案为:0和1;(3)25的算术平方根是5,5,∴若输出的y,满足要求的x的值为5和25.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.24.【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A′,B′,C′即可;(2)利用平移变换的性质判断即可;(3)设D(0,m),构建方程求解即可.【解答】解:(1)如图,三角形A'B'C'即为所求;(2)若三角形ABC内有一点P(a,b)经过上述平移后的对应点为P',写出点P'的坐标:(a+4,b﹣3);故答案为:a+4,b﹣3;(3)设点D(0,m).则有12×4×|m|=4,∴m=±2,∴点D的坐标为(0,2)或(0,﹣2).【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.25.【分析】(1)用50乘以C组的百分比即可求出a的值,即可补全频数分布直方图;(2)360°乘以E所占的比例即可求解;(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而7+23=30,故家庭月均用水量应该定为5吨.【解答】解:(1)C的频数为:a=50×28%=14,补全频数分布直方图如下:故答案为:14;(2)扇形统计图中,月均用水量为“E:6≤x<7”的扇形的圆心角是:360°×=36°;故答案为:36;(3)要使60%的家庭水费支出不受影响,家庭月均用水量应该定为5吨,理由如下:因为月平均用水量不超过5吨的百分比为8%+24%+28%=60%.【点评】本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.26.【分析】(1)由AB ∥CD 得∠KFB =∠FED =α,根据平角的定义及角平分线的性质可得出11(180)22GFK AFK α∠=∠=- ,然后将α=60°代入即可;(2)①延长MP 交CD 于点Q ,由AB ∥CD 得∠BMP +∠PQN =180°,由PN ⊥PM 得∠MPN =90°=∠PQN +∠PNE 可得出结论;②由于∠MPN 的一边恰好与射线FG 平行,因此有以下两种情况,(ⅰ)当PN 与射线FG 平行时,设∠PNE =θ,延长NP ∠AB 于点H ,由AB ∥CD 得∠PHF =∠PNE =θ,∠PFH =∠FED =α,再由PN ∥FG 及(1)的结论得1(180)2GFK HPF α∠=∠=- ,然后由三角形的内角和定理得∠PHF +∠PFH +∠HPF =180°,据此可得出答案;(ⅱ)当PM 与射线FG 平行时,由PM ∥FG 得1(180)2MPF GFK α∠=∠=- 由PN ⊥PM 得∠MPN =90°,进而得∠MPF +∠NPE =90°,据此可得12NPE α∠=,最后再由三角形的外角定理可得出答案.【解答】解:(1)∵AB ∥CD ,∴∠KFB =∠FED =α,∵∠AFK +∠KFB =180°,∴∠AFK =180°﹣∠KFB =180°﹣α,∵FG 平分∠AFK ,∴11(180)22GFK AFK α∠=∠=- ∵α=60°,∴11(180)(18060)6022GFK α∠=-=-= .(2)①∠BMP 与∠PNE 的数量关系是:∠BMP ﹣∠PNE =90°.理由如下:延长MP 交CD 于点Q ,∵AB ∥CD ,∴∠BMP +∠PQN =180°,∵PN ⊥PM ,∴∠MPN =90°,∴∠PQN +∠PNE =∠MPN =90°,∴∠PQN =90°﹣∠PNE ,∴∠BMP +90°﹣∠PNE =180°,∴∠BMP ﹣∠PNE =90°.②∠PNE 的度数为:1902α- 或12α.理由如下:∵∠MPN 的一边恰好与射线FG 平行,∴有以下两种情况,(ⅰ)当PN 与射线FG 平行时,设∠PNE =θ,延长NP ∠AB 于点H ,∵AB ∥CD ,∴∠PHF =∠PNE =θ,∠PFH =∠FED =α,∵PN ∥FG ,∴∠HPF =∠GFK ,由(1)可知:1(180)2GFK α∠=- ,∴1(180)2HPF α∠=-,∵∠PHF +∠PFH +∠HPF =180°,∴1(180)1802θαα++-= ,∴1902θα=- ,∴1902PNE θα∠==- ,(ⅱ)当PM 与射线FG 平行时,∵PM ∥FG ,∴1(180)2MPF GFK α∠=∠=- ,∵PN ⊥PM ,∴∠MPN =90°,∴∠MPF +∠NPE =90°,∴119090(180)22NPE MPF αα∠=-∠=--= ,∵∠FED =∠NPE +∠PNE ,∴1122PNE FPD NPE ααα∠=∠-∠=-=.【点评】此题主要考查了平行线的性质,角平分线的定义,垂直的定义,解答此题的关键是准确识图,熟练掌握两直线平行内错角相等,两直线平行同位角相等,难点是分类讨思想在解题中的应用,这也是解答此题的易错点之一.27.【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,利用销售收入=销售单价×销售数量,结合近两个月的销售情况,可列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设采购A 种材质的围棋m 套,则采购B 种材质的围棋(30﹣m )套,利用进货总价=进货单价×进货数量,结合进货总价不多于5400元,可列出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论;(3)在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标,利用总利润=每套的销售利润×销售数量,可得出关于m 的一元一次方程,解之可得出m 的值,再结合(2)中m 的取值范围,即可得出在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标.【解答】解:(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据题意得:3518004103100x y x y +=⎧⎨+=⎩,解得:250210 xy=⎧⎨=⎩.答:A种材质的围棋每套的售价为250元,B种材质的围棋每套的售价为210元;(2)设采购A种材质的围棋m套,则采购B种材质的围棋(30﹣m)套,根据题意得:200m+170(30﹣m)≤5400,解得:m≤10,∴m的最大值为10.答:A种材质的围棋最多能采购10套;采购金额不多余5400元(3)在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标,理由如下:根据题意得:(250﹣200)m+(210﹣170)(30﹣m)=1300,解得:m=10,又∵m≤10,∴m=10符合题意,∴在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)找准等量关系,正确列出一元一次方程.28.【分析】(1)①设B(x,0),由题意可得|x﹣0|=3,从而可求出B点的坐标;②分当x<﹣1或x>1和﹣1≤x≤1两种情况求出d(A,B),即可求出最小值;③由已知可得点C在以A点为对称中心,边长为2r的正方形边上,根据面积即可求出r;(2)结合图象,画出符合题意的M点所在的区域,从而可求出m的取值范围.【解答】解:(1)设B(x,0),①∵|0﹣1|=1≠3,∴|x﹣0|=3,∴x=±3,∴B点的坐标为(﹣3,0)或(3,0).②当x<﹣1或x>1时,|x﹣0|>|0﹣1|,∴d(A,B)=|x|>1;当﹣1≤x≤1时,|x﹣0|≤|0﹣1|=1,∴d(A,B)=1,综上所述,d(A,B)的最小值为1.故答案为:1.③r=4.由题意知,点C在以A点为对称中心,边长为2r的正方形边上,∵正方形面积为64,∴正方形的边长为8,即2r=8,∴r=4.(2)由题意知,当M点在矩形DFEG内(含边)内运动时,d(D,M)+d(E,M)=5.∴﹣2≤m≤3.【点评】本题主要考查了平面直角坐标系中点的特征.本题的最后一问的解题关键是结合图象,先求出动点所在的区域,再求取值范围.。

初一数学下册试题及答案

初一数学下册试题及答案

初一数学下册试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是负数?A. 3B. -5C. 0D. 8答案:B2. 绝对值等于5的数是:A. 5B. -5C. 5或-5D. 都不是答案:C3. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A4. 计算下列哪个表达式的结果为正数?A. 2 - 3B. 3 + (-2)C. 4 × (-2)D. 5 ÷ (-1)答案:B5. 下列哪个分数是最简分数?B. 6/8C. 8/12D. 5/10答案:A6. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 都不是答案:C7. 一个数的立方是-8,这个数是:A. 2B. -2D. -8答案:B8. 计算下列哪个表达式的结果为0?A. 7 - 7B. 5 + (-5)C. 3 × 0D. 2 ÷ 2答案:C9. 一个数的倒数是2,这个数是:A. 1/2B. 2C. -1/2D. -2答案:A10. 计算下列哪个表达式的结果为负数?A. 3 + 2B. 4 - 5C. 6 × 1D. 8 ÷ 2答案:B二、填空题(每题4分,共40分)11. 一个数的相反数是-7,这个数是______。

答案:712. 绝对值等于4的数是______。

答案:±413. 一个数的平方是16,这个数是______。

答案:±414. 一个数的立方是27,这个数是______。

答案:315. 一个数的倒数是1/3,这个数是______。

答案:316. 计算表达式 2 × (-3) + 4 的结果是______。

答案:-217. 计算表达式 5 - (-2) 的结果是______。

答案:718. 计算表达式 3 × 3 × 3 的结果是______。

答案:2719. 计算表达式 8 ÷ (-2) 的结果是______。

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( ).A.106元B.105元C.118元D.108元2、某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元.若要求每种广告播放不少于2次,则电视台在播放时收益最大的播放方式是()A. 15秒的广告播放4次,30秒的广告播放2次B. 15秒的广告播放2次,30秒的广告播放4次C. 15秒的广告播放2次,30秒的广告播放3次D.15秒的广告播放3次,30秒的广告播放2次3、张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:欲购买的商品原价(元)优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券请帮张阿姨分析一下,选择一个最省钱的购买方案. 此时,张阿姨购买这三件物品实际所付出的钱的总数为()A. 500元 B. 600元C. 700元 D. 800元4、式子6+与+1的和是31,则的值是( )A.―12 B.12 C.13D.―195、如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A……的方向行走.甲从A 点以65m/min的速度、乙从B点以72m/min的涑度行走.当乙第一次追上甲时。

将在正方形( )A.AB边上 B.DA边上 C.BC边上 D.CD边上6、中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息税).设到期后银行应向储户支付现金元,则所列方程正确的是( )A.B.C.D.7、李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为,那么可得方程( )A. B.C. D.8、下列两个方程的解相同的是()A.方程与方程B.方程与方程C.方程与方程D.方程与9、如果33、27和21分别除以同一个数,余数都是3,那么这个除数最大是()A.4 B.6 C.18 D.3010、今年爸爸比我大30岁,3年前爸爸的年龄是我的4倍,则今年我和爸爸的年龄分别是()A.13,43 B.9,39 C.10,40 D.14,44二、填空题(共10题)1、某商店购进一批商品,每件商品进价为a元,若要获利20%,则每件商品的零售价应定为________元。

(完整版)初一数学下册实数试题(带答案) 解析

(完整版)初一数学下册实数试题(带答案) 解析

一、选择题1.若29x =,|y |=7,且0x y ->,则x +y 的值为( ) A .﹣4或10 B .﹣4或﹣10C .4或10D .4或﹣102.已知T 1=22119311242++==,T 2=2211497123366++==,T 3=22111=34++21313()1212=,⋯,T n=22111(1)n n +++,其中n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022B .202120222022C .120212021D .1202220213.数轴上A ,B ,C ,D 四点中,两点之间的距离最接近于6的是( )A .点C 和点DB .点B 和点C C .点A 和点CD .点A 和点B 4.193的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间5.有下列说法:①在1和22,3②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②6.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40 B .﹣32 C .18 D .107.现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( ) A .120 B .125C .-120D .-1258.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .69.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……② ②-①得10661S S -=-,即10561S =-,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是 A .201811a a --B .201911a a --C .20181a a-D .20191a -10.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上C .在线段OC 上D .在线段OB 上二、填空题11.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____12.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.13.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____. 14.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 15.对于数x ,符号[x]表示不大于x 的最大整数,例如[3.14]=3,[﹣7.59]=﹣8,则关于x 的方程[347x -]=2的整数解为_____. 16.已知220a b a -+-=,则2+a b 的值是__________;17.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.18.1x -(y +1)2=0,则(x +y )3=_____.19.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.20.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.三、解答题21.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ;(2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点AB 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点AB 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.22.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______.23.我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算. 定义:如果b a N =(a >0,a ≠1,N >0),那么b 叫做以a 为底N 的对数,记作log a N b =.例如:因为35125=,所以5log 1253=;因为211121=,所以11log 1212=. 根据“对数”运算的定义,回答下列问题: (1)填空:6log 6= ,3log 81= . (2)如果()2log 23m -=,求m 的值.(3)对于“对数”运算,小明同学认为有“log log log a a a MN M N =⋅(a >0,a ≠1,M >0,N >0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.24.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n个a(a≠0)记作aⓝ,读作“a的圈n次方”.(初步探究)(1)直接写出计算结果:2③=,(﹣12)⑤=;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④=;5⑥=;(﹣12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成乘方的形式等于;26.阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+ (22017)将等式两边同时乘以2得:2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1请你仿照此法计算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n(其中n为正整数);(3)1+2×2+3×22+4×23+…+9×28+10×29.27.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a=___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及3a-.(图中标出必要线段的长)28.阅读材料,回答问题:(1)对于任意实数x,符号[]x表示“不超过x的最大整数”,在数轴上,当x是整数,[]x 就是x,当x不是整数时,[]x是点x左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:里程范围4公里以内(含4公里)4-12公里以内(含12公里)12-24公里以内(含24公里)24公里以上收费标准2元4公里/元6公里/元8公里/元①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?29.对于实数a ,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 30.请观察下列等式,找出规律并回答以下问题. 111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,…… (1)按照这个规律写下去,第5个等式是:______;第n 个等式是:______. (2)①计算:11111223344950⨯⨯⨯⨯++++.②若a 0=,求: ()()()()()()()()111111122339797ab a b a b a b a b +++++++++++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先根据平方根、绝对值运算求出,x y 的值,再代入求值即可得. 【详解】解:由29x =得:3x =±, 由7y =得:7y =±,0x y ->,37x y =-⎧∴⎨=-⎩或37x y =⎧⎨=-⎩, 则3(7)10x y +=-+-=-或3(7)4x y +=+-=-, 故选:B . 【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.2.A解析:A 【分析】根据数字间的规律探索列式计算 【详解】解:由题意可得:T 1312+1=212⨯⨯,T 2723+1=623⨯⨯,T 31334+1=1234⨯⨯∴T ()()1+11n n n n ++ ∴T 2021=20212022+120212022⨯⨯∴S 2021=T 1+T 2+T 3+⋯+T 2021=371320212022+1+++...261220212022⨯+⨯ =11111++1++1++...1+261220212022+⨯=11112021++++ (261220212022)=11112021++++...+12233420212022⨯⨯⨯⨯ =11111112021+1++...+2233420212022⎛⎫-+--- ⎪⎝⎭ =12021+12022⎛⎫- ⎪⎝⎭=202120212022故选:A . 【点睛】本题考查实数数字类的规律探索,探索规律,准确计算是解题关键.3.A【分析】的范围,结合数轴可得答案. 【详解】 解:∵4<6<9, ∴2<3,∴的是点C 和点D .故选:A . 【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.4.C解析:C 【分析】先根据19位于两个相邻平方数16和25 【详解】解:由于16<19<25,所以45<<,因此738<<, 故选:C . 【点睛】本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.5.D解析:D 【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得. 【详解】①在1和2之间的无理数有无限个,此说法错误; ②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②, 故选:D . 【点睛】本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.6.D解析:D直接利用题中的新定义给出的运算公式计算得出答案. 【详解】解:(-5)※4=(﹣5)2﹣42+1=10. 故选:D . 【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.7.D解析:D 【详解】根据题目中的运算方法a *b =ab +a -b ,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故选D .点睛:本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合法则计算正确是解题关键.8.C解析:C 【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8. 【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8. 【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….9.B解析:B 【分析】首先根据题意,设M=1+a+a 2+a 3+a 4+…+a 2014,求出aM 的值是多少,然后求出aM-M 的值,即可求出M 的值,据此求出1+a+a 2+a 3+a 4+…+a 2019的值是多少即可. 【详解】∵M=1+a+a 2+a 3+a 4+…+a 2018①, ∴aM=a+a 2+a 3+a 4+…+a 2014+a 2019②, ②-①,可得aM-M=a 2019-1,即(a-1)M=a 2019-1, ∴M= 201911a a --.故选B. 【点睛】考查了整式的混合运算的应用,主要考查学生的理解能力和计算能力.10.D解析:D 【分析】根据A 、C 、O 、B 四点在数轴上的位置以及绝对值的定义即可得出答案. 【详解】∵|m-5|表示点M 与5表示的点B 之间的距离,|m−c|表示点M 与数c 表示的点C 之间的距离,|m-5|=|m−c|, ∴MB =MC . ∴点M 在线段OB 上. 故选:D . 【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键.二、填空题 11.-9 【分析】直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6=﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】此题考察新定义形式的有理数计算,解析:-9 【分析】直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.12.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011 x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.13.4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.14..【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=. 解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“点睛”本题解析:21nn++.【详解】根据题意按规律求解:b1=2(1-a1)=131221-4211+⎛⎫⨯==⎪+⎝⎭,b2=2(1-a1)(1-a2)=314221-29321+⎛⎫⨯==⎪+⎝⎭,…,所以可得:b n=21nn++.解:根据以上分析b n=2(1-a1)(1-a2)…(1-a n)=21nn++.“点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b值时要先算出a的值,要注意a中n的取值.15.6,7,8【解析】【分析】根据已知可得,解不等式组,并求整数解可得.【详解】因为,,所以,依题意得,所以,,解得,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题解析:6,7,8【解析】【分析】根据已知可得34237x-≤,解不等式组,并求整数解可得.【详解】因为,3427x-⎡⎤=⎢⎥⎣⎦,所以,依题意得34237x-≤,所以,34273437xx-⎧≤⎪⎪⎨-⎪⎪⎩,解得1 683x≤,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题属于特殊定义运算题,解题关键在于正确理解题意,列出不等式组,求出解集,并确定整数解.16.10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】∵,∴,∴,∴.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可. 解析:10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】 ∵20b a -=,∴2020a b a -=⎧⎨-=⎩, ∴24a b =⎧⎨=⎩, ∴22810a b +=+=.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可.17.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,3,.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.18.0【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)解析:0【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)3=0.故答案为:0.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.5【分析】由绝对值和算术平方根的非负性,求出a、b所有的可能值,即可得到答案.【详解】解:∵,且,均为整数,又∵,,∴可分为以下几种情况:①,,解得:,;②,,解得:或,;③,解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.20.①④⑤【分析】根据题意表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①,根据表示大于x 的最小整数,故正确;②,应该等于,故错误;③,当x=0.5时,,故错误;④,根据解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确;②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键.三、解答题21.(1)5;(2)5或1;(3)1+y-2x ;(4)t 1=3;t 2=53【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x 、y 的取值范围进行化简即可;(4)根据A 、B 在数轴上的移动方向和速度可分别用代数式表示出数a 和b ,再根据(2)的解题思路即可得到结果.【详解】解:(1)5(3)5(3)(3)5⊗-=--+-=;(2)依题意得:335-+=x , 化简得:3=2-x ,所以32x -=或32x -=-,解得:x =5或x =1;(3)由数轴可知:0<x <1,y <0,所以1x y x ⊗-⊗ = (1)()-+--+x x y x x=1-++--x x y x x=12+-y x(4)依题意得:数a =−1+t ,b =3−t ;因为2a b ⊗=, 所以(1)(3)32-+--+-=t t t , 化简得:241-=-t t ,解得:t =3或t =53, 所以当2a b ⊗=时,t 的值为3或53.【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键.22.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;右边的两位数是10a+b,三位数是100b+10(a+b)+a;“数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.23.(1)1,4;(2)m=10 ;(3)不正确,改正见解析.【解析】试题分析:(1)根据新定义由61=6、34=81可得log66=1,log381=4;(2)根据定义知m﹣2=23,解之可得;(3)设a x=M,a y=N,则log a M=x、log a N=y,根据a x•a y=a x+y知a x+y=M•N,继而得log a MN=x+y,据此即可得证.试题解析:解:(1)∵61=6,34=81,∴log66=1,log381=4.故答案为:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正确,设a x=M,a y=N,则log a M=x,log a N=y(a>0,a≠1,M、N均为正数).∵a x•a y=x ya+,∴x ya+=M•N,∴log a MN=x+y,即log a MN=log a M+log a N.点睛:本题考查了有理数和整式的混合运算,解题的关键是明确题意,可以利用新定义进行解答问题.24.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论;②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①31000100=,10001951121000000<<,∴10100<<,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<∴56<,可得5060<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.25.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21na-⎛⎫⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11na aa-⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12,111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8; 深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82; (2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.26.(1)210-1;(2)n 1514+-;(3)9×210+1. 【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值;(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n 的值.(3)根据题目中的信息,运用类比的数学思想可以解答本题.【详解】解:(1)设S=1+2+22+23+ (29)将等式两边同时乘以2得:2S=2+22+23+24+…+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案为210-1;(2)设S=1+5+52+53+54+…+5n ,将等式两边同时乘以5得:5S=5+52+53+54+55+…+5n +5n+1,将下式减去上式得5S-S=5n+1-1,即S=n 1514+-, 即1+5+52+53+54+…+5n =n 1514+-;(3)设S=1+2×2+3×22+4×23+…+9×28+10×29,将等式两边同时乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,将上式减去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【点睛】本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律.27.(1)2-,2;(2)①图见解析,5;②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可;(3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N.【详解】(1)由图1知,小正方形的对角线长是2,∴图2中点A表示的数是2-,点B表示的数是2,故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:故答案是:5;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.28.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得; ②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.29.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴56,∴,,故答案为2,5;(2)∵12=1,22=4,且=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,,∴对255只需进行3次操作后变为1,∵,,,,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.30.(1)1115656=-⨯,()11111n n n n =-⨯++;(2)①4950;②1465119800 【分析】(1)根据规律可得第5个算式;根据规律可得第n 个算式;(2)①根据运算规律可得结果.②利用非负数的性质求出a 与b 的值,代入原式后拆项变形,抵消即可得到结果.【详解】(1)根据规律得:第5个等式是1115656=-⨯,第n 个等式是()11111n n n n =-⨯++; (2)①11111223344950⨯⨯⨯⨯++++, 111111111223344950=-+-+-++-, 1150=-,4950=;②a0=,1a,3b=,原式11111 1324354698100=+++++⨯⨯⨯⨯⨯,11111111111111(1)()()+()() 23224235246298100=⨯-+⨯-+⨯-⨯-++⨯-,1111111111(1)2324354698100=⨯-+-+-+-++-,1111(1)2299100=⨯+--,1465119800=.【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.。

2024北京海淀区初一(下)期末数学试题及答案

2024北京海淀区初一(下)期末数学试题及答案

七年级期末练习数学参考答案一、选择题二、填空题 11. B 12. 128 13. 314. ∠1=∠5(答案不唯一) 15. 93,75x y y x −=⎧⎨−=⎩ 16. 2;52a ≥− 说明:第16题第一空2分,第二空1分.三、解答题17. 解:原式3(2)1)=−−+4=18. 解:2⨯−②①得,510y =−.得,2y =−.入②,得1x =. 以原方程组的为1,2.x y =⎧⎨=−⎩19. 解:解不等式①,得52x <.不等式②去分母,得2(2)3(13)x x −≤+. 去括号得2439x x −≤+.解得1x ≥−. 所以原不等式组的解为512x −≤<.20. 解:(1)画出线段11A B 如图.点1B 的坐标为(1,2)−. (2)点M 的坐标为(0,1)或(0,5).21. 解:(1)补全图形如下图.(2)证明:∵DE ⊥AC ,∴∠DEA =90°.∵∠ACB =90°,∴∠DEA =∠ACB .∴DE ∥BC .∴∠ADE =∠B .∵l ∥AB ,∴∠ADE =∠CFE .∴∠B =∠CFE .22.任务一:解:设精包装销售了x 盒,简包装销售了y 盒.2370025358500x y x y +=⎧⎨+=⎩①② 解这个方程组,得100,200.x y =⎧⎨=⎩答:精包装销售了100盒,简包装销售了200盒.任务二:解:设分装时使用精包装m 个,简包装n 个(m ,n 为正整数).依题意可列出下列方程和不等式:7532=+n m , ①.182<+n m ② 由①得.2375n m −= 将2375n m −=带入 ②,得519.n >因为m ,n 为正整数,所以n =21,m =6或n =23,m =3.分装方案1:精包装6个,简包装21个分装方案2:精包装3个,简包装23个 说明:写出任意一个正确的分装方案,同时有合理的理由即可. 23. 解:(1)①如图② 45.注:答44或45均可(2) ① 多; ② >.24. 解:(1) 8(答案不唯一);(2)∵12x =−,123x x +<−,∴21x −<.∵21122x x x ≥=−,,∴24x ≥−∴241x −≤−<.(3)8.25.解:(1)如图1所示,即为所求.图1150MDO ∠=︒.(2)①12m =.理由如下.如图2,过O 作射线AB 的平行线GH ,满足点G 在O 左侧, 点H 在O 右侧.当12m =时, ∵COD m BAC ∠=∠,()1COF m CAE ∠=−∠, ∴12COD BAC ∠=∠,12COF CAE ∠=∠, ∴DOF COD COF ∠=∠+∠ 11221.2BAC CAE BAE =∠+∠=∠ ∵AE AB ⊥,∴90BAE ∠=︒,∴45DOF ∠=︒,∴180135DOG FOH DOF ∠+∠=︒−∠=︒.∵AB MN ∥,B 图 2∴GH MN ∥,∴ 180MDO DOG ∠=︒−∠, 180NFO FOH ∠=︒−∠, ∴180180MDO NFO DOG FOH ∠+∠=︒−∠+︒−∠()360DOG FOH =︒−∠+∠ 225=︒② m 的值为15或47或57. 26. (1)① 7;② (0,6)或(0,4)−.(2)①依题意,(6,0),(4,0)D E ,线段DE 经过t 秒后得到线段D 1E 1. 可知 11(6,0),(4,0)D t E t −−.设点(,0)P x 为线段D 1E 1上的任意一点,得 46t x t −≤≤−.由 F (2,4),得242x x +−=−. 所以2x −的最大值为点F 与线段D 1E 1的特征值h . 由于08t <≤,所以6422t −≤−−<, 4624t −≤−−<.所以,当t =8时,h 取得最大值6.点(,0)P x 为线段D 1E 1上的任意一点,且D 1E 1的长度为2. 所以,当点D 1和点E 1关于(2, 0)对称时,即D 1(3,0),E 1(1,0). 此时h 取得最小值1. 所以点F 与线段D 1E 1的特征值h 的取值范围为:16h ≤≤.② k 1;t 10t ≤。

初一下册数学练习题及答案

初一下册数学练习题及答案

初一下册数学练习题及答案一、选择题1. 已知a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 不规则三角形答案:B2. 下列哪个数是无理数?A. πB. 0.33333...C. √2D. 1答案:A二、填空题1. 如果一个数的平方根是2,那么这个数是______。

答案:42. 一个数的立方根是3,那么这个数是______。

答案:27三、计算题1. 计算下列各题,并写出计算过程。

(1) (-3)^2答案:(-3)^2 = 9(2) √(16) + √(4)答案:√(16) + √(4) = 4 + 2 = 6四、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求证:长方体的体积是abc。

证明:长方体的体积V=长×宽×高,即V=a×b×c,所以长方体的体积是abc。

2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

解:根据勾股定理,斜边c的长度为c = √(a^2 + b^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。

五、应用题1. 某工厂生产一批零件,每个零件的成本为5元,如果工厂计划生产x个零件,那么总成本是多少元?答案:总成本为5x元。

2. 一个水池的长是15米,宽是10米,求水池的面积。

答案:水池的面积为长×宽=15×10=150平方米。

通过这些练习题,同学们可以巩固初一数学的基本概念和计算方法,提高解题能力。

希望同学们能够认真完成这些练习,并对照答案检查自己的解题过程。

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案姓名:__________ 班级:__________考号:__________一、选择题(共15题)1、已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( ) A.1个 B.2个 C.3个 D.4个2、下列运算正确的是 ( )A.23=6 B.(-y2) 3=y6 C.(m2n) 3=m5n3 D.-2x2+5x2=3x23、萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件元的价格购进了件牛奶;每件元的价格购进了件洗发水,萱萱建议将这两种商品都以元的价格出售,则按萱萱的建议商品卖出后,商店()A.赚钱 B.赔钱C.不嫌不赔 D.无法确定赚与赔4、如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为,,则等于()A.8 B.7 C.6 D.55、已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.36、 x2+ax﹣y﹣(bx2﹣x+9y+3)的值与x的取值无关,则﹣a+b的值为()A.0 B.﹣1 C.﹣2 D.27、方程去分母正确的是().(A)(B)(C)(D)8、方程|x+1|+|x-3|=4的整数解有( )(A)2个(B)3个(C)5个(D)无穷多个9、若关于x的一元一次不等式组的解集是x a,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.610、对,下列说法正确的是()A.不是方程 B.是方程,其解为C.是方程,其解为 D.是方程,其解为、11、若不论k取什么实数,关于x的方程(a、b是常数)的解总是x=1,则a+b的值是( )A.﹣0.5 B.0.5 C.﹣1.5 D.1.512、一个正方体锯掉一个角后,顶点的个数是()A、7个B、8个C、9个D、7个或8个或9个或10个13、如图,已知八边形ABCDEFGH, 对角线AE、BF、CG、DH交于点O, △OAB、△OCD、△OEF 和△OGH是四个全等的等边三角形,用这四个三角形围成一个四棱锥的侧面,用其余的四个三角形拼割出这个四棱锥的底面,则下面图形(实线为拼割后的图形)中恰为此四棱锥底面的是()A B C D14、图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是()图1 图2 A. B . C . D.15、观察图中正方形四个顶点所标的数字规律,推测数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角二、填空题(共10题)1、在右表中,我们把第i行第j 列的数记为(其中i,j都是不大于5的正整数),对于表中的每个数,规定如下:当时,;当时,。

初一数学下册期末考试试题及答案

初一数学下册期末考试试题及答案

-初一数学下册期末考试试题满分:120分 时间:120分钟一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.—的绝对值的倒数是( ).(A ) (B )— (C )—3 (D ) 32.方程5—3x=8的解是( ).(A )x=1 (B)x=—1 (C )x= (D )x=-3.如果收入15元记作+15元,那么支出20元记作( )元。

(A)+5 (B)+20 (C )-5 (D )—204.有理数,,, ,—(-1),中,其中等于1的个数是( )。

(A)3个 (B )4个 (C )5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A ) (B ) (C) (D ) p=q6.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( )。

(A )1。

68×104m (B )16。

8×103 m (C )0。

168×104m (D )1。

68×103m7.下列变形中, 不正确的是( ).(A) a +b -(-c -d )=a +b +c +d (B ) a +(b +c -d )=a +b +c -d(C ) a -b -(c -d )=a -b -c -d (D )a -(b -c +d )=a -b +c -d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a 〉0(B) a -b 〉0(C) ab >0(D ) a +9.按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( )。

(A )1022。

01(精确到0.01) (B)1.0×103(保留2个有效数字)(C)1020(精确到十位) (D)1022。

010(精确到千分位)10.“一个数比它的相反数大—14",若设这数是x ,则可列出关于x 的方程为( )。

初一下册数学题及答案

初一下册数学题及答案

初一下册数学题及答案一、填空:(1)若x<5,则|x-5|=______,若|x+2|=1,则x=______(2)如果|a+2|+(b+1)2=0,那么(1/a)+b=_______(3)保留三个有效数字的近似值数是_______(4)在代数式a2、a2+1、(a+1)2、a2+|a|中,一定则表示正数的就是______(5)(-32)的底数是____,幂是____,结果是____(6)一个三位数,十位数字就是a,个位数字比十位数字的2倍大3,百位数字就是十位数字的一半,用代数则表示这个三位数就是_____二、选择题:三、表达式:(1)若代数式2y2+3y+7的值为8,求代数式4y2+6y+9的值(2)先行证明当x=-2时,代数式x3+1 的值与代数式(x+1)(x2-x+1) 的值成正比四、(2)当x=-2时ax3+bx-7的值就是5,求当x =2 时,ax3+bx-17的值五、选作题:用方便快捷方法表示以下各数的末位数字就是几:答案:一、(1)5-x,-1或-3(2)4.08×(3)a2+1(4)3 , 32, -9(5)五四 1/3(6)3 , 5(7)17五、初一数学第五章单元测试a一、填空题(每行2分后)班级______姓名______学号____1、已知直线a与b相交,且∠1=70°,则∠2=__°,∠3=__°,∠4=___°.2、∠a=50°,∠b=20°,∠c=30°,则∠1=____°.3、已知,一个三角形的一个外角为70°,此三角形为___三角形.4、如果三角形中存有两个角成正比,其中一个角的外角为°,则这个三角形各内角为____________. (第2题)5、直角三角形两锐角平分线相交所成的钝角为_____.6、未知三角形的二边为2cm,5cm,周长为偶数,则第三边为____cm.7、δabc中,ae为cb边上的高,af为δabc (第7题)的角平分线,∠b=80°,∠c=30°,则∠eaf=____°.8、δabc中,∠acb=rtδ,cd⊥ab于d,则∠1=___,∠2=____,互余的角有___对.若ac=2cm,cb=3cm,则δabc的面积=_____cm2. (第8题)9、ab//cd,则∠1+∠2+∠3=____.10、长、宽、高分别是4,5,6的长方体内一点p,到各个面的距离和是___.二、选择题(每题3分后) (第9题)1、下列长度的三条线段能组成三角形的是―――――――――――――()a.3cm,7cm,10cm b.5cm,4cm,8cmc.5cm,9cm,3cm d.3cm,6cm,10cm2、δabc中,若与∠c相连的一个外角为°,∠a=40°,则∠b为―――――()a.30° b.50° c.60° d.70°3、锐角三角形为,最小角的值域范围就是―――――――――――――()a.0°<α<90° b.60°<α<°c.60°<α<90° d.60°≤α<90°4、若三角形的三边a、b、c、均为正整数,且a≥b≥c,a=2,则符合这些条件的三角形有()a.1个 b.2个 c.3个 d.4个5、已知,∠2=62°,∠3=°,则∠1与∠4的大小关系是――――――――――――()a.∠1>∠4 b.∠1=∠4 c.∠1<∠4 d.无法确认6、在长方体中,既与一个面平行,又与另一个面垂直的棱条数是()a.1 b.4 c.8 d12.7、下列说法正确的是――――――――――()a.邻补角的平分线互相横向b.垂直于同一直线的两条直线互相平行c.从直线外一点至这条直线的垂线段叫做的边直线的距离d.三角形的角平分线是一条射线.三、答疑题1、ab//cd,∠a=°,∠c=75°,∠1∶∠2=5∶7,求∠b的度数。

2024北京昌平区初一(下)期末数学试题及答案

2024北京昌平区初一(下)期末数学试题及答案

2024北京昌平初一(下)期末数 学2024.06本试卷共9页,共100分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后将答题卡交回.一、选择题(本题共8道小题,每小题2分,共16分)1. 2024北京月季文化节正式开启,11个展区共展示超3000个品种的月季.传统月季花粉为单粒花粉,呈长球形或超长球形,大小为~~⨯m μm 17.0225.33μ37.5951.95.其中=m 0.003759cm μ37.59,把0.003759用科学记数法表示为( )A. ⨯−0.3759102B. ⨯0.3759102C. ⨯−3.759103D. ⨯3.759103 2. 不等式x 3x 21的解集在数轴上可以表示为( ) A. B. C. D. 3. 在今年的“五一”假期中,昌平消费市场“花样翻新”,多景区客流“爆棚”,客流量与文旅消费均呈现上升趋势.为了解中学生的假期出游情况,从全校2000名学生记录的假期出游时间(单位:小时)中随机抽取了200名学生的假期出游时间(单位:小时)进行统计,以下说法正确的是( )A. 2000名学生是总体B. 样本容量是2000C. 200名学生的假期出游时间是样本D. 此调查为全面调查 4. 下列计算正确的是( )A. ⋅=a a a 236B. −=a a ()326C. +=a a a 224D. ÷=a a a 824 5. 如果>a b ,那么下列不等关系一定成立的是( )A. a b +<+11B. −>−a b 22C. >ac bcD. >a b 556. 如图,一条街道有两个拐角∠ABC 和∠BCD ,已知∥AB CD ,若∠=︒ABC 150,则∠BCD 的度数是( )A. ︒30B. ︒120C. ︒130D. ︒1507. 若⎩=⎨⎧=y x 12是关于x ,y 的二元一次方程−=ax y 3的一个解,则a 的值为( ) A. −1 B. 1 C. −2 D. 28. 已知a ,b 为有理数,则下列说法正确的是( )①+≥a b ()02;②+≥a b ab 222;③+=−+a b a b ab ()()222A. ①B. ①②C. ①③D. ①②③二、填空题(本题共8道小题,每小题2分,共16分)9. 因式分解:−+=x x 3632______.10. 如果一个角等于︒70,那么这个角的补角是_________°.11. 计算:(6x 2+4x )÷2x =_____.12. 已知命题“同位角相等”,这个命题是_________命题.(填“真”或“假”)13. 计算:(2x +1)(x ﹣2)=_____.14. 若=x 24,=y 216,则+=x y ___________.15. 4月23日为世界读书日,小萱从图书馆借来一本共266页的书,计划在10天内读完(包括第10天).如果前4天每天只读15页,若从第5天起平均每天读x 页才能按计划完成,则根据题意可列不等式为____.16. 如图1的长为a ,宽为b >a b )(的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足的数量关系为_________.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 计算:−−+−−−π32(5)31201. 18. 解不等式:+<−x x 2113.19. 解方程组:⎩−=⎨⎧+=x y x y 34127 20. 解不等式组:⎩≤+⎨⎧+≤x x x 25623并把它的解集在数轴上表示出来.21. 已知−=x x 12,求代数式−+−+x x x (1)(3)(3)2的值.22. 补全解答过程:如图,∠1+∠2=180°,∠3=∠A .求证:∠B =∠C .证明:∵∠1+∠2=180°,∴(同旁内角互补,两直线平行).∴∠3=∠D().又∵∠3=∠A,∴.∴AB∥CD().∴∠B=∠C().23. 某校开展数学节活动,活动成果是学生形成对于数学探索的海报,活动以“集市”形式展览个人的作品,并面向同学和老师讲解自己的作品,“小创客”创意市集作品的评价涉及四个维度:创意的真实性、创意的新颖性、创意的科学性和表达的严谨性,并以四个维度总分记为最后得分,满分100分,小明经过抽样调查部分得分数据,具体得分分布在以下四组内:A B C D7580808585909095,并把得分情况绘制成如下统计图:C组得分:87,,,,86,88,86,86,89“小创客”创意市集作品得分条形统计图“小创客”创意市集作品得分扇形统计图(1)本次调查了______名学生,B组扇形统计图的圆心角度数为_______°(2)C组得分的平均数是_______,众数是_________,中位数是__________.(3)若某校有500人参加此次“小创客”创意市集作品展示,请你估计得分超过86分的有多少人?24. 端午节前夕,小明和小华相约一起去超市购买粽子.小明购买A品牌和B品牌的粽子各1袋,共花费55元;小华购买A品牌粽子3袋和B品牌粽子2袋,共花费135元.(1)求A、B两种品牌粽子每袋各是多少元;(2)端午假期,小明一家回老家探亲,小明妈妈想要再买一些粽子送给亲戚,于是拿出500元交给小明,让他去超市购买A、B两种品牌粽子共18袋,且想要尽量多购入B品牌粽子,请问小明最多购买B品牌粽子多少袋?25. 观察个位上的数字是5的两位数的平方(任意一个个位数字为5的两位数n 5可用代数式+n 105来表示,其中≤≤n 19,n 为正整数),会发现一些有趣的规律.请你仔细观察,探索其规律.第1个等式:=⨯⨯+1512100252)(; 第2个等式:=⨯⨯+2523100252)(; 第3个等式:=⨯⨯+3534100252)(; …(1)写出第4个等式:_______;(2)用含n 的等式表示你的猜想并证明;(3)计算:−⨯⨯+11589100252)( =_______. 26. 小明为了方便探究关于x ,y 的二元一次方程+=ax by 9(≠≠a b 0,0)解的规律,把x 和y 的部分值分别填入如下表,(x 的值从左到右依次增大).(1)p 的值为__________(填正确的序号).①17;②3;③−1(2)下列方程中,与+=ax by 9组成方程组,在−<<x 78范围内有解的是__________(填正确的序号).①+=−x y 25;②+=−x y 24;③−=x y 31,(3)已知关于x ,y 的二元一次方程+=cx dy 1(≠≠c d 0,0)的部分解如下表所示:则方程组⎩+=⎨⎧cx dy 1的解为__________(填正确的序号) ①⎩=⎨⎧=−y x 69;②⎩=⎨⎧=−y x 118;③⎩=⎨⎧=−y x 41;④⎩=−⎨⎧=y x 47 27. 已知∠=︒<<︒ααAOB 090)(,点C 是射线OB 上一点,过点C 作OA 的垂线交射线OA 于点P ,过点P 作∥MN OB ,点D 是射线OA 上一点,过点D 作CD 的垂线分别交直线MN ,OB 于点E ,F .(1)如图1,CD 平分∠OCP 时,①根据题意补全图形;②求∠ODF 的度数(用含α式子表示);(2)如图2,当CD 平分∠PCB 时,直接写出∠ODF 的度数(用含α式子表示).28. 已知,x x 12是不等式组解集中的解,若存在一个a ,使+=x x a 212,我们把这样的,x x 12称为该不等式组的“关联解”,a 叫做“关联系数”.(1)当=a 0时,下列不等式组存在“关联解”的是_________.A .⎩>+⎨⎧+>x x x 2412B .⎩⎪>−⎨⎪⎧−+<x x x 21112 C .⎩<−⎨⎧<+x x x x 22321 (2)不等式组⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231的解集上存在“关联解”,若=−x 21,“关联系数a ”的取值范围为_________.(3)不等式组⎩≤+⎨⎧≥−−x x a x a 3221的解集存在关联解,x a 81,若++=a b c 12,且++a b c 1621010是整数,直接写出“关联系数a ”的值_________.参考答案一、选择题(本题共8道小题,每小题2分,共16分)1. 【答案】C【分析】本题考查科学记数法,绝对值小于1的负数也可以利用科学记数法表示,一般形式为⨯−a n 10,其中≤<a 110,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,根据科学记数法的方法进行计算即可.【详解】解:=⨯−0.003759 3.759103,故选:C .2. 【答案】D【分析】本题考查了解一元一次不等式及不等式解集的表示,解题的关键是掌握解一元一次不等式的方法及不等式解集的表示方法.依次移项、合并同类项可得不等式的解集,从而得出答案.【详解】解:移项,得:−<−x x 321,合并同类项,得:<−x 1,把不等式的解集表示在数轴上:故选:D .3. 【答案】C【分析】本题考查了全面调查与抽样调查,总体、个体、样本、样本容量,熟练掌握这些数学概念是解题的关键.根据全面调查与抽样调查,总体、个体、样本、样本容量的意义,逐一判断即可解答.【详解】解:A .2000名学生的假期出游时间是总体,故选项A 不符合题意;B .样本容量是200,故选项B 不符合题意;C .200名学生的假期出游时间是样本,故选项C 符合题意;D .此调查为抽样调查,故选项D 不符合题意;故选:C .4. 【答案】B【分析】本题主要考查了合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,根据合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,逐项判断即可求解.【详解】解:A :⋅=a a a 235,故选项A 错误;B :−=a a ()326,故选项B 正确;C :+=a a a 2222,故选项C 错误;D :÷=a a a 826,故选项D 错误;故选:B .5. 【答案】D【分析】本题考查不等式的基本性质,解答关键是熟知不等式的基本性质①不等式基本性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式基本性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变; ③不等式基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.利用不等式的基本性质逐项判断即可解答.【详解】解:∵>a b ,∴+>+a b 11,故选项A 不符合题意;∵>a b ,∴−<−a b 22,故选项B 不符合题意;∵>a b ,当>c 0,>ac bc ,当<c 0,<ac bc ,故选项C 不符合题意;∵>a b , ∴>a b 55, 故选项D 符合题意;故选:D .6. 【答案】D 【分析】本题考查了平行线的性质:两直线平行,内错角相等,由AB CD ,根据两直线平行,内错角相等,可得∠BCD 的度数,解题的关键是将实际问题转化为数学问题求解. 【详解】∵,∠=︒AB CD ABC 150∴∠=∠=︒BCD ABC 150(两直线平行,内错角相等).故选:D .7. 【答案】D【分析】将这组值代入二元一次方程即可得出答案.【详解】解:将⎩=⎨⎧=y x 12代入−=ax y 3得:a −=213, 解得:=a 2,故D 正确.故选:D .【点睛】本题考查二元一次方程的解,正确理解方程的解是解题的关键.8. 【答案】B【分析】本题考查整式的乘法-公式法,关键是熟练掌握完全平方公式,根据完全平分公式逐一进行检验即可.【详解】解:∵+≥a b ()02,故①正确;∵−=−+≥a b a ab b 20222)(,∴+≥a b ab 222,故②正确;∵+=++=−++=−+a b a ab b a ab b ab a b ab ()2244222222)(,故③不正确;故选:B 二、填空题(本题共8道小题,每小题2分,共16分)9. 【答案】−x 312)(##−x 312)(【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 原式提取公因式3,再利用完全平方公式分解即可.【详解】解:−+=x x 3632−+=−x x x 3213122)()(, 故答案为:−x 312)(.10. 【答案】110【分析】本题主要考查了补角,解题的关键在于熟知如果两个角的度数之和为︒180,那么这两个角互补,根据补角的定义求解即可.【详解】解:∵一个角等于︒70,∴这个角的补角是︒−︒=︒18070110,故答案为:110.11.【答案】3x +2【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式=6x 2÷2x +4x ÷2x=3x +2.故答案为:3x +2.【点睛】本题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.12. 【答案】假【分析】本题主要考查了平行线的性质及真假命题的判断.正确的命题叫真命题,错误的命题叫假命题.要说明一个命题是真命题,必须一步一步有根有据的证明;要说明一个命题是假命题,只需要举一个反例即可.掌握判断真假命题的方法是解题的关键,根据平行线的性质判断即可.【详解】解:两直线平行时,同位角相等;两直线不平行时,同位角不相等.因此命题“同位角相等”不一定成立,是假命题.故答案为:假.13. 【答案】2x 2﹣3x ﹣2.【分析】根据多项式乘多项式的运算法则进行解答即可得出答案.【详解】(2x +1)(x ﹣2)=2x 2﹣4x +x ﹣2=2x 2﹣3x ﹣2;故答案为:2x 2﹣3x ﹣2.【点睛】此题主要考查多项式乘多项式运算,熟练掌握,即可解题.14. 【答案】6【分析】本题主要考查了有理数的乘方运算,将原式变形求出x 和y 的值即可得到答案.【详解】解:∵=x 24,∴=x 222,∴=x 2,∵=y 224,∴=y 4,∴+=x y 6,故答案为:615. 【答案】+≥x 606266【分析】本题考查列不等式,先计算出前4天读的页数,再列出后6天读的页数的表达式,根据读的页数的总和必须大于或等于书的总页数建立不等式即可.【详解】解:根据题意得,前4天读的页数为⨯=41560页,后6天读的页数为:x 6,根据题意得读的页数的总和需要大于或等于266页,故+≥x 606266,故答案为:+≥x 606266.16. 【答案】=a b 3【分析】本题主要考查了整式的混合运算的应用,表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式,弄清题意是解本题的关键.【详解】如图,左上角阴影部分的长为AE ,宽为=AF b 3,右下角阴影部分的长为PC ,宽为a ,∵=AD BC ,即+=+AE ED AE a ,=+=+BC BP PC b PC 3,∴+=+AE a b PC 3,即−=−AE PC b a 3,∴阴影部分面积之差=⋅−⋅S AE AF PC PH=−b AE a PC ·3?=+−−b PC b a a PC 33?)(=−+−b a PC b ab 3932)(,∵S 始终保持不变,∴−=b a 30,即=a b 3,故答案为=a b 3.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 【答案】3【分析】此题主要考查实数的混合运算,根据零次幂、负整数指数幂定义及实数的性质进行化简,即可求解. 【详解】解:−−+−−−π32(5)31201 =−+−334111 =3.18. 【答案】<x 4【分析】本题主要考查了解一元一次不等式,按照移项,合并同类项,系数化为1的步骤解不等式即可.【详解】解:+<−x x 2113移项得:+<−x x 2131,合并同类项得:<x 312,系数化为1得:<x 4.19. 【答案】⎩=⎨⎧=y x 23 【分析】本题考查了解二元一次方程组,利用加减消元法进行计算即可.【详解】解:②①⎩−=⎨⎧+=x y x y 34127 解:将②①⨯+2得=x 515,解得=x 3,将=x 3代入①得+=y 327,解得=y 2,∴方程组的解为:⎩=⎨⎧=y x 23. 20. 【答案】−≤≤x 21,见解析【分析】本题主要考查了解一元一次不等式组,在数轴上表示不等式组的解集,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而在数轴上表示出不等式组的解集即可.【详解】解:②①⎩≤+⎨⎧+≤x x x 25623 解不等式①得:≤x 1,解不等式②得:≥−x 2,∴不等式组的解集为−≤≤x 21,数轴表示如下:21. 【答案】−6【分析】本题考查了整式的混合运算-化简求值,首先通过完全平方公式和平方差公式进行整式的乘法运算,再把−=x x 12代入,即可求解.【详解】解:∵−=x x 12,∴−+−+x x x (1)(3)(3)2=−++−x x x 21922=−−x x 2282=−−x x 282)(=⨯−218=−6.22. 【答案】AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【分析】依据平行线的判定,即可得到AD ∥EF ,得出∠3=∠D ,进而得出∠A =∠D ,再根据平行线的判定,即可得到AB ∥CD ,最后根据平行线的性质得出结论.【详解】∵∠1+∠2=180°,∴AD ∥EF (同旁内角互补,两直线平行).∴∠3=∠D (两直线平行,同位角相等).又∵∠3=∠A ,∴∠A =∠D .∴AB ∥CD (内错角相等,两直线平行).∴∠B =∠C (两直线平行,内错角相等).故答案为:AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】此题主要考查平行线的判定与性质,熟练掌握,即可解题.23. 【答案】(1)30,108(2)87分,86分,86.5分(3)估计得分超过86分的有100人【分析】此题考查的是条形统计图和扇形统计图、平均数、众数、中位数,用样本估计总体;(1)根据A 组的人数除以占比求出学生数,根据B 组的人数的占比乘以︒360即可求解;(2)根据平均数众数中位数定义计算即可求解;(3)用得分超过86分的学生人数的占比乘以500,即可求解.【小问1详解】 解:1240%30人,∴本次调查了30名学生,360140%10%20%108,∴B 组扇形统计图的圆心角度数为︒108;【小问2详解】因为C 组得分按从小到大排列为:86,86, 86,87,88, 89,∴C 组得分的平均数是6878688868689871分, 众数是86分, 中位数是=+286.58687分; 【小问3详解】3050010033人, 则估计得分超过86分的有100人.24. 【答案】(1)A 品牌粽子每袋是25元,B 品牌粽子每袋是30元(2)小明最多购买B 品牌粽子10袋【分析】此题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是理解题意,正确列出方程组和不等式.(1)设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意建立方程组,解方程组即可得到答案; (2)设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,根据总费用小于等于500建立不等式,解不等式即可得到答案;【小问1详解】解:设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意得⎩+=⎨⎧+=x y x y 3213555,解方程组得⎩=⎨⎧=y x 3025, 答:A 品牌粽子每袋是25元,B 品牌粽子每袋是30元;【小问2详解】解:设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,总费用为n 元,根据题意得=−+n m m 251830)(,整理得=+n m 5450,∵+≤m 5450500,∴≤m 10,∴小明最多购买B 品牌粽子10袋.25. 【答案】(1)=⨯⨯+4545100252)( (2)+=++n n n 1051001252)()(,证明见解析(3)6000【分析】(1)通过观察可得第4个式子;(2)通过观察可得第n 个式子,根据完全平分公式进行换算即可证明答案;(3)利用规律逆向计算,再利用平方差公式进行计算即可.【小问1详解】解:第4个等式为:=⨯⨯+4545100252)(, 故答案为:=⨯⨯+4545100252)(; 【小问2详解】解:猜想用含n 的等式表示为:+=++n n n 1051001252)()(,证明:+n 1052)( =++n n 100100252=++n n 100252)(=++n n 100125)(,故用含n 的等式表示为:+=++n n n 1051001252)()(;【小问3详解】解:−⨯⨯+11589100252)( =−1158522=+−1158511585)()(=⨯20030=6000,故答案为:6000.【点睛】本题考查数字的变化规律,通过观察所给的式子,找到式子规律是解题的关键.26. 【答案】(1)② (2)③(3)③【分析】本题考查二元一次方程的解和解二元一次方程组,解题的关键是掌握加减消元法和代入消元法. (1)先根据表格中的值,建立关于a 、b 的二元一次方程组,解方程组得到a 、b 的值,即可求出二元一次方程,再将=x 0代入方程即可求得答案;(2)依次将三个选项与原方程组件方程组,求出方程组的解进行判断即可;(3)根据表格的数据,建立关于c 、d 的二元一次方程组,解方程组得到c 、d 的值,即可得到原方程组,再解方程组即可得到答案.【小问1详解】解:当=−x 4,=y 7时,−+=a b 479,当=x 2,=y 1时,+=a b 29,∴⎩+=⎨⎧−+=a b a b 29479 解方程组得⎩=⎨⎧=b a 33, ∴二元一次方程为:+=x y 339,即+=x y 3,当=x 0时,=y 3,故=p 3,故答案为:②;【小问2详解】解:∵+=ax by 9方程为:+=x y 3,∴①当方程为+=−x y 25时,方程组为:⎩+=−⎨⎧+=x y x y 253, 解方程组得:⎩=⎨⎧=−y x 118, ∵=−x 8不在−<<x 78范围内,故①不符合题意;③当方程为−=x y 31时,方程组为:⎩−=⎨⎧+=x y x y 313,解方程组得:⎩=⎨⎧=y x 21, ∵=x 1在−<<x 78范围内,故③符合题意;故答案为:③;【小问3详解】解:二元一次方程+=cx dy 1中,当,=−=−x y 72时,方程为−−=c d 721;当,==x y 813,方程为+=c d 8131;∴⎩+=⎨⎧−−=c d c d 8131721, 解方程组得⎩⎪=⎪⎨⎪⎪=−⎧d c 5151, 则方程+=cx dy 1为−+=x y 55111,即−+=x y 5, ∴方程组⎩+=⎨⎧+=cx dy ax by 19为:⎩−+=⎨⎧+=x y x y 53, 解方程组得⎩=⎨⎧=−y x 41, 故答案为:③.27. 【答案】(1)①见详解;②︒−α290 (2)︒−α2135【分析】本题考查三角形角平分线的性质,三角形的外角等知识点,解题的关键是三角形外角的计算. (1)①根据题意作图;②根据题意可知∠=∠PCD OCD ,进而得到∠=∠=∠ODF EDP DCP ,从而求解;(2)根据题意可得∠=︒+αPCF 90,∠=︒−=︒−︒+ααPDC 22904590,即可得到∠ODF 的度数. 【小问1详解】①根据题意作图如下: ;②∠=αPOC ,∴∠=︒−αPCO 90,∵CD 平分∠OCP ,∴∠=∠=︒−αPCD OCD 290, ⊥EF CD ,⊥CP OP ,∴∠+∠=∠+∠=︒EDP PDC PCD PDC 90,∴∠=∠=∠ODF EDP DCP ,∴∠=∠=︒−αODF PCD 290; 【小问2详解】根据题意画图可得:∠=αAOB ,⊥CP OP ,∴∠=︒+αPCF 90,∵CD 平分∠PCB ,∴∠=∠=︒+αPCD FCD 290, ∴∠=︒−=︒−︒+ααPDC 22904590, ⎝⎭ ⎪∴∠=︒+︒−=︒−⎛⎫ααODF 229045135. 28. 【答案】(1)B (2)a 2.53 (3)3,5,7【分析】本题考查了解一元一次不等式组,理解不等式组的“关联解”定义以及熟练掌握一元一次不等式组的解法是解此题的关键.(1)先求出每个不等式组的解集, 再根据不等式组的“关联解”定义判断即可;(2)先求出不等式组的解集是x a 35,求出x a 222,根据题意得出不等式组并求出即可. (3)先求出不等式组的解集是a x a 12,根据“关联解”定义得出⎩−−≤−≤⎨⎧−−≤−≤a a a a a a 1382182解出a 的范围,结合++a b c 1621010是整数即可求出结论.解:A .②①⎩>+⎨⎧+>x x x 2412, 解不等式①得:>x 1, 解不等式②得:x >4, 当=a 0时,不存在x x a 2012,B .②①⎩⎪>−⎨⎪⎧−+<x x x 21112, 解不等式①得:>−x 1, 解不等式②得:<x 2, 当=a 0,,=-x x 221112时,存在x x a 2012,C .②①⎩<−⎨⎧<+x x x x 22321 解不等式①得:<x 1, 解不等式②得:−x <2, 当存在x x a 2012, 当=a 0时,不存在x x a 2012,故选:B ;【小问2详解】 ②①⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231, 解不等式①得:≥−x 3, 解不等式②得:x a ≤+5, ∴不等式组的解集是x a 35, 若=−x 21,且+=x x a 212, x a 222,x a 352,a a 3225 a a 523, a 2.53,故答案为:−≤≤a 2.53;②①⎩≤+⎨⎧≥−−x x a x a 3221, 解不等式①得:≥−−x a 1, 解不等式②得:≤x a 2, ∴不等式组的解集是a x a 12, 若x a 81,且+=x x a 212,x a 382, ⎩−−≤≤⎨∴⎧−−≤≤a x a a x a 121221, ⎩−−≤−≤⎨∴⎧−−≤−≤a a aa a a 1382182, 解得:a 388,++=a b c 12,b c a 12,∴==++−+−a b c a a a 16162210101521012)(, a b c 1621010是整数,a 388,a 3,5,7. 故答案为:3,5,7.。

【必考题】初一数学下期末试题带答案

【必考题】初一数学下期末试题带答案

【必考题】初一数学下期末试题带答案一、选择题1.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B .C .D .2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==3.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°4.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=10 5.下列方程中,是二元一次方程的是( )A.x﹣y2=1B.2x﹣y=1C.11yx+=D.xy﹣1=06.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.27.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣58.不等式组1212xx+>⎧⎨-≤⎩的解集是()A.1x<B.x≥3C.1≤x﹤3D.1﹤x≤3 9.下列说法正确的是()A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.10.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .3211.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .12.过一点画已知直线的垂线,可画垂线的条数是( ) A .0B .1C .2D .无数二、填空题13.若264a =,则3a =______.14.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.15.27的立方根为 . 16.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).17.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.18.如图所示第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么(1)第4个图案中有白色六边形地面砖________块,第n 个图案中有白色地面砖________ 块.19.现有2019条直线1232019a a a a ,,,,,⋯且有12233445a a a a a a a a ⊥⊥,,,,…,则直线1a 与2019a 的位置关系是___________.20.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____. 参赛者 答对题数 答错题数 得分 A 19 1 112 B 18 2 104 C 17 3 96 D101040三、解答题21.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数.22.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .23.如图,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A 1 ,B 1 ,C 1 ; (2)画出平移后三角形A 1B 1C 1; (3)求三角形ABC 的面积.24.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .25.已知:方程组713x y ax y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】先求出不等式组的解集,再在数轴上表示出来即可. 【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A . 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.2.A解析:A 【解析】 【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 【详解】设索长为x 尺,竿子长为y 尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩.故选A . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键. 4.A解析:A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.5.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.6.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.8.D解析:D【解析】【分析】【详解】解:1212xx+>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3,所以解集为:1<x≤3;故选D.9.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.10.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线, ∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C', ∴A′E ∥AB , ∴△DA′E ∽△DAB ,则2A DE ABDSA D AD S''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.11.D解析:D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:故选D. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.12.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】a ,∴a=±8.2解:∵264故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数.. 14.(10)【解析】【分析】根据点的坐标求出四边形ABCD的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】∵A(11)B(-11)C(-1-2)D(1-2)∴AB=1-(-1)=2B解析:(1,0)【解析】【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即在DA 上从点D 向上2个单位长度所在的点的坐标即为所求,也就是点(1,0),故答案为:(1,0).【点睛】本题考查了规律型——点的坐标,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键. 15.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算 解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算16.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m-2=0即m=2∴P (50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 17.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==. 故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.18.18;4n +2【解析】【分析】根据所给的图案发现:第一个图案中有6块白色地砖后边依次多4块由此规律解决问题【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=1解析:18; 4n +2【解析】【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块); 第4个图案中有白色六边形地面砖有6+3×4=18(块); 第n 个图案中有白色地面砖6+4(n-1)=4n+2(块).故答案为18,4n+2.【点睛】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.19.垂直【解析】【分析】根据两直线平行同位角相等得出相等的角再根据垂直的定义解答进而得出规律:a1与其它直线的位置关系为每4个一循环垂直垂直平行平行根据此规律即可判断【详解】先判断直线a1与a3的位置关 解析:垂直.【解析】根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答,进而得出规律:a 1与其它直线的位置关系为每4个一循环,垂直、垂直、平行、平行,根据此规律即可判断.【详解】先判断直线a 1与a 3的位置关系是:a 1⊥a 3.理由如下:如图1,∵a 1⊥a 2,∴∠1=90°,∵a 2∥a 3,∴∠2=∠1=90°,∴a 1⊥a 3;再判断直线a 1与a 4的位置关系是:a 1∥a 4,如图2;∵直线a 1与a 3的位置关系是:a 1⊥a 3,直线a 1与a 4的位置关系是:a 1∥a 4,∵2019÷4=504…3,∴直线a 1与a 2015的位置关系是:垂直.故答案为:垂直.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导,解题的关键是:结合图形先判断几组直线的关系,然后找出规律.20.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6 解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩ ,解得:62x y =⎧⎨=-⎩, 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.三、解答题21.(1)见解析;(2)371∠=︒【解析】【分析】(1)由CD ⊥AB ,EF ⊥AB 即可得出CD ∥EF ,从而得出∠2=∠BCD ,再根据∠1=∠2即可得出∠1=∠BCD ,依据“内错角相等,两直线平行”即可证出DG ∥BC ;(2)在Rt △BEF 中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD 的度数,再根据BC ∥DE 即可得出∠3=∠ACB ,通过角的计算即可得出结论.【详解】(1)证明:∵CD AB ⊥,EF AB ⊥,∴CD EF ,∴2BCD ∠=∠,∵12∠=∠,∴1BCD ∠=∠,∴DG BC ;(2)解:在Rt △BEF 中,∠B=54°,∴∠2=180°-90°-54°=36°,∴∠BCD=∠2=36°.又∵BC ∥DG ,3353671ACB ACD BCD ︒︒︒∴∠=∠=∠+∠=+=【点睛】本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD ;(2)找出∠3=∠ACB=∠ACD+∠BCD .本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.22.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD ∥EG ,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)23.(1)A1(4,7),B1(1,2),C1(6,4);(2)见解析;(3)19 2【解析】【分析】(1)根据平移的规律变化结合平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(3)利用△ABC所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1) 观察图形可知点A(-2,2),点B(-5,-3),点C(0,-1),所以将三角形ABC向右平移5个单位长度,再向上平移3个单位长度后所得对应点的坐标为:A1(3,5),B1(0,0),C1(5,2);(2)△A1B1C1如图所示;(3)△ABC的面积=5×5-12×5×2-12×2×3-12×3×5=25-5-3-7.5=25-15.5=9.5.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.证明见解析.【分析】由∠1=∠2,得BD∥CE,所以∠4=∠E,又∠3=∠E,所以∠3=∠4,可得AD∥BE.【详解】证明:∵∠1=∠2,又∵∠3=∠E,∴BD∥CE,∴∠3=∠4,∴∠4=∠E,∴AD∥BE.【点睛】本题考核知识点:平行线的判定.解题关键点:理解平行线的判定.25.(1)-2<a≤3.(2)5;(3)a=-1.【解析】【分析】(1)求出不等式组的解集即可得出关于a的不等式组,求出不等式组的解集即可;(2)根据a的范围去掉绝对值符号,即可得出答案;(3)求出a<-12,根据a的范围即可得出答案.【详解】解:(1)713x y ax y a+=-⎧⎨-=+⎩①②∵①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∵方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∵-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<-12,∵-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.【点睛】本题考查了解方程组和解不等式组的应用,主要考查学生的理解能力和计算能力,题目比较好.。

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm,今天的水位为0cm,那么2天前的水位用算式表示正确的是()A.(+3)×(+2) B.(+3)×(﹣2) C.(﹣3)×(+2) D.(﹣3)×(﹣2)2、若,则以下四个结论中,正确的是()A .一定是正数B .可能是负数C .一定是正数D .一定是正数3、下表是淮河某河段今年雨季一周内水位变化情况,(其中 0 表示警戒水位)那么水位最高是()星期一二三四五六日水位变化/米+0.03 +0.41 +0.25 +0.10 0 -0.13 -0.2A .周一B .周二C .周三D .周五4、将 7 张扑克牌,全部背面朝上,每次翻三张且必须翻三张,最少翻多少次可翻成全部背面朝下()A . 3B . 4C . 5D . 65、计算-2+3的结果是A.1 B.-1 C.-5 D.-6 6、在、、、这四个数中比小的数是()A.B.C. D.7、 -5的相反数是()A. -5 B. 5 C.D.8、 5的相反数是()A、-5B、5C、D、9、的倒数为()A.-2 B.2 C.D.10、已知,则下列四个式子中一定正确的是( ).A. B. C. D.二、填空题(共10题)1、设有理数、、满足及,若,,则的值为__________.2、若|m|=1,|n|=2,且|m+n|=m+n,则=________.3、若,则______.4、已知:,则_________.5、湛江市某天的最高气温是℃,最低气温是℃,那么当天的温差是℃.6、如果水位上升1.2米,记作+1.2米,那么水位下降0.8米记作______米。

7、计算:的结果是___________.8、-2的绝对值等于___________9、经验证明,在一定范围内,高出地面的高度每增加l00m,气温就降低大约0.6℃,现在地面的温度是25℃,则在高出地面5000m高空的温度是_________.10、若实数a、b满足,则=__________。

初一数学下学期第一章试题及答案

初一数学下学期第一章试题及答案

初一数学下学期第一章试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是负数的相反数?A. 5B. -5C. 0D. -32. 一个数的绝对值是其自身,这个数是:A. 正数B. 负数C. 非负数D. 非正数3. 如果a > 0,b < 0,那么a + b:A. 一定大于0B. 一定小于0C. 可能大于0,也可能小于0D. 无法确定4. 计算下列算式的结果:2^3 + 3^2 - 4 * 5 =A. 1B. 2C. 3D. 45. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 无法确定6. 以下哪个选项是正确的不等式?A. 2 > 3B. 2 < 3C. 2 = 3D. 2 ≥ 37. 一个数的立方是-27,这个数是:A. 3B. -3C. 3或-3D. 无法确定8. 以下哪个选项是正确的等式?A. 2 + 3 = 5B. 2 * 3 = 6C. 2 / 3 = 0.6D. 2 - 3 = -19. 计算下列算式的结果:(3 - 2) * (4 + 5) =A. 5B. 6C. 9D. 1010. 一个数的倒数是其自身,这个数是:A. 1B. -1C. 0D. 无法确定二、填空题(每题3分,共30分)1. 一个数的相反数是其自身的______倍。

2. 如果一个数的绝对值是5,那么这个数可以是______或______。

3. 一个数的平方是16,这个数是______或______。

4. 一个数的立方是8,这个数是______。

5. 计算下列算式的结果:(-2)^3 = ______。

6. 计算下列算式的结果:(-3) * (-4) = ______。

7. 计算下列算式的结果:5 / (-2) = ______。

8. 计算下列算式的结果:(-6) + 4 = ______。

9. 计算下列算式的结果:3^2 - 2^2 = ______。

10. 计算下列算式的结果:4 * (-2) + 3 = ______。

2024北京燕山区初一(下)期末数学试题及答案

2024北京燕山区初一(下)期末数学试题及答案

2024北京燕山初一(下)期末数 学2024年6月下面各题均有四个选项,其中只有一个....是符合题意的. 1.2的相反数是(A )-2 (B )2 (C) ±2 (D )1.4142.“一去二三里,烟村四五家,亭台六七座,八九十枝花。

”这首仅20个字的小诗,数字就占了一半.领悟到了数学和语文的学科融合。

下面四个“数”字的图片中可以通过平移图案(1)得到的是(A) (B) (C) (D)3.如图, AB 与CD 交于点O ,∠AOE 与∠AOC 互余,∠AOE = 20°,则∠BOD 的度数为 (A) 20° (B) 70° (C)90° (D)110° 4.下列各数中,比大6且比7小的数是(A) 28 (B) 43 (C) 643 (D) 585.一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为 (A) >−x 1 (B) <0x (C) x ≤2 (D)<x 26.小明同学统计了他所在小区居民每天早晨跑步的时间,并绘制了频数分布直方图. 如右图所示:①小明同学一共统计了 74 人; ②每天早晨跑步不足 30 分钟的有 14 人 ;③每天早晨跑步 30~40 分钟的人数最多 ;④每天早晨跑步 0~10 分钟的人数最少 .根据图中信息,上述说法中正确的是 (A) ①②③ (B) ②③④ (C) ①③④ (D)①②③④ 7.若,则下列不等式中错误的是 (A) −>−a 1b 1 (B) +>+a1b 1(C) >2a 2b(D) −>−2a 2b8.《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?其译文是 :今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,则可列二元一次方程组为>a b(A) ⎩+=⎨⎧+=x y x y ,501030.2 (B) ⎩+=⎨⎧+=x y x y ,105030.2(C) ⎩+=⎨⎧−=x y x y ,501030.2 (D) ⎩+=⎨⎧+=x y x y ,103050.29.一副三角尺按如图所示的位置摆放,那么∠α的度数是(A) 15° (B) 30° (C) 45° (D) 60°10.如图,在平面直角坐标系xOy 中,点A 的坐标为(4,0).线段 OA 以每秒旋转90°的速度,绕点O 沿顺时针方向连续旋转,同时,点P 从点O 出发,以每秒移动1个单位长度的速度,在线段OA 上,按照 O →A →O →A …的路线循环运动,则第1314秒时点P 的坐标为 (A)(0,1) (B)(0,2) (C)(-1,0) (D) (-2, 0) 二、填空题(本题共16分,每小题2分) 11.1625的平方根是 . 12.如图,把一块含有45°的直角三角形的三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是 .13.已知点P ,y (3)到x 轴的距离是2个单位长度,则P 点的坐标为 .14.如图,请你添加一个条件,使 AB ∥CD ,这个条件是 , 你的依据是 .15.下列调查,①了解我区饮用水的水质情况,选择抽样调查 ;②了解某种型号节能灯的使用寿命,选择全面调查 ;③了解歼-20新一代双发重型隐形战斗机各零部件的质量,选择抽样调查 ;④了解一批药品是否合格,选择全面调查.调查方式选择合理的是 .16.一辆匀速行驶的汽车在11:20距离A 地 50 km ,要在12:00之前驶过A 地,道路最高限速100km/h ,该车速度v 应满足的条件是 .17.如图,在平面直角坐标系xOy 中,线段CB 可以看作是线段AO 经过平移得到的,写出一种由线段AO 得到线段CB 的过程: .18.某段高速公路全长200千米,交警部门在距离入口10千米处设置了摄像头,并在以后每隔18千米处都设置一个摄像头;此外,交警部门还在高速公路上距离入口3千米处设立了限速标志牌,并在以后每隔5千米处都设置一块限速标志牌(如图).小糖糖坐在后座从入口开始数经过的摄像头和标志牌个数,数到7时发现此处同时设置有标志牌和摄像头.小糖糖此时离入口的距离是 千米.三、解答题(本题共64分,第19题5分,第20~21题,每题6分;第22题5分,第23题6分,24~27题,每题各7分,第28题8分)19.计算: —−+−32227122.20.解不等式组:⎩⎪−−⎨⎪⎧−<−x x x x ≤,26105178(1)并把解集在数轴上表示出来,再写出它的所有正整数...解.21. 解方程组:⎩−=⎨⎧+=x y x y 43 5.68,22.已知:如图,直线AB 、CD 被直线GH 所截,AEG EFD 112,68∠=︒∠=︒,求证: AB // CD . 完成下面的证明:证明:∵AB 与直线GH 相较于点E ,AEG ∠=︒112, ∴AEG 112∠==︒,∵EFD 68∠=︒.∴FEB EFD ∠+∠= .∴ // ( )(填推理的依据). 23.按要求画图,并解答问题:已知:如图,OC 平分∠AOB ,点D 在射线OA 上. (1)过点D 作直线DE ∥OB ,交OC 于点E ; (2)若∠=︒AOB 70,求∠DEC 的度数.24.如图,在平面直角坐标系x O y 中,A (4,3),B (3,1),C (1,2).将三角形ABC 向上平移3个单位长度,再向左平移4个单位长度,可以得到三角形A 1B 1C 1,其中点A 1、B 1、C 1分别与点A 、B 、C 对应. (1)画出平移后的三角形A 1B 1C 1; (2)直接写出A 1、B 1、C 1三个点的坐标;(3)已知点P 在y 轴上,以A 1、B 1、P 为顶点的三角形面积为2,求点P 的坐标.25.为了解某小区家庭4月份用气量情况(该小区共有300户家庭,每户家庭人数在2﹣5之间,这 300户家庭的平均人数约为3.4).(1)下面三个样本中, (填样本序号)的数据能较好地反映该小区家庭4月份用气量情况;Ca .抽样调查小区15户家庭4月份用气量统计表 (单位:m 3):d .用扇形统计图描述数据:根据以上信息,解答下列问题:①频数分布表整理数据中m = ,补全“频数分布直方图”,扇形统计图描述数据中n = ;②由样本可以估计出:该小区人均用气量超过m 63的家庭约为: 户;该小区人均用气量在5.5≤x <6.7m 3之间的家庭约为 户(结果保留整数).26.有48支队 520名运动员参加篮球、羽毛球比赛,其中每支篮球队10人,每支羽毛球队12人,每名运动员只能参加一项比赛.篮球、羽毛球队各有多少支参赛?27.如图,O 为直线AB 上一点,OC ⊥AB 于点O .点P 为射线OC 上一点,从点P 引两条射线分别交直线AB 于点D ,E (点D 在点O 左侧,点E 在点O 右侧,),过点O 作OF ∥PD 交PE 于点F ,G 为线段PD 上四月份家庭人均用气量频数直方图)3m (家庭数(频数一点,过G 做GM ⊥AB 于点M . (1)①依题意补全图形;②若∠PDO =27°,求∠POF 的度数;(2)直接写出表示∠EOF 与∠PGM 之间的数量关系的等式.28.若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“友好方程”,例如:方程的3x -6=0解为x=2.不等式组⎩<⎨⎧−>x x ,410的解集为x <<14.因为<<124.所以称方程3x-6=0为不等式组⎩<⎨⎧−>x x ,410的“友好方程”.(1)请你写出一个方程 ,使它为不等式组⎩−−⎨⎧−>−x x x x ≤,3(1)5232的“友好方程” ;(2)若关于x 的方程−=x k 24是不等式组⎩−+−⎨⎧+>x x x x ≥,3(1)2(21)9312 的“友好方程”,求k 的取值范围;(3)若关于x 的方程+−=x m 340是关于x 的不等式组⎩−⎨⎧+>x m m x m m ,≤2+133的“友好方程”,且此时不等式组有3个整数解,直接写出m 的取值范围初二数学试题 第 页(共 页)燕山地区2023—2024学年度第二学期七年级期末考试七年级数学试题参考答案及评分标准2024年6月一、选择题(本题共20分,每小题2分)题号12345678910答案ABBBCCDADD二、填空题(本题共16分,每小题2分)111213141516171854±25°(3,2)或(3,-2)∠CDA =∠DAB,内错角相等两直线平行,(答案不唯一)①75<v ≤100线段AO 向右平移四个单位,再向上平移两个单位得到线段CB .(答案不唯一)28三、解答题(本题共64分,第19题5分,第20~21题,每题6分;第22题5分,第23题6分,24~27题,每题各7分,第28题8分)19.解:原式=22-1-322+………………………3分=2………………………5分20.5178(1),1062x x x x ①.②-<-⎧⎪⎨--≤⎪⎩解: 3.x 由①,得>-……………………………………………1分2.x ≤由②,得…………………………………………2分∴3 2.x -<≤………………………………3分∴正整数解为1,2.………………………………5分……………………………………6分21.解:68,43 5.x y x y +=⎧⎨-=⎩①②②×2+①,得918x =.…………………………………………………………2分∴2x =.…………………………………………………………3分把2x =代入①,得初二数学试题 第 页(共 页)2+68y =.…………………………………………………………4分1y =………………………………………………………5分所以原方程组的解是2,1.x y =⎧⎨=⎩…………………………………………6分22.FEB∠…………………………………………………1分180︒…………………………………………………….2分AB ……………………………………………………….3分CD ………………………………………………………4分同旁内角互补,两直线平行…………………………5分23.(1)正确画出DE ∥OB ,标出点E ;…….………..……….2分(2)解:∵OC 平分AOB ∠(已知),∴12COB AOB ∠=∠(角平分线定义).….…….…………3分∵70AOB ∠=︒(已知),∴35COB ∠=︒(等量代换).………….………..……….4分∵DE ∥OB (已知),∴DEO COB ∠=∠(两直线平行,内错角相等).…………5分∴35DEO ∠=︒(等量代换).∴180********DEC DEO ∠=︒-∠=︒-︒=︒(补角定义)…6分24.(1)…………………………………2分(2)A 1(0,6)、B 1(-1,4)、C 1(-3,5)…………………………………5分初二数学试题 第 页(共 页)(3)∵点B 1到y 轴的距离为1∴×A 1P ×1=2∴A 1P =4…………………………………6分∴点P 的坐标为(0,2)或(0,10)…………………………………7分25.(1)样本3.……………………………1分(2)①m =9,……………………………2分补全“频数分布直方图”……………………………4分n=33.3%;……………………………5分②该小区人均用气量超过36m 的家庭约为:100户;该小区人均用气量在5.5≤x <6.7m 3之间的家庭约为180户.……………………………7分26.解:设有x 支篮球队和y 支羽毛球队参赛.根据题意,得列方程组⎩⎨⎧=+=+.520121048y x y x ,…………………………………4分解方程组得⎩⎨⎧==.2028y x ,…………………………………6分答:篮球、羽毛球队分别28支和20支参赛.………………………………7分27.(1)①依题意补全图形…….……….…...…2分②∵OF ∥PD ,∴∠1=∠2,∠3=∠PDO ,……………….…………….………………………...…3分∵∠PDO =27°,∴∠3=27°.∵OC ⊥AB ,∴∠1+∠3=90°,.……..……………………………………………………………...…4分∴∠POF =∠1=63°.………………………………….……………………………...…5分(2)∠PGM -∠EOF =90°……..…………………………….…………………….…...…7分12初二数学试题 第 页(共 页)28.(1)答案不唯一,方程的解大于1小于等于4都可以;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分(2)解不等式3+12x x >得:1x >-,解不等式得:∴⎩⎨⎧-+≥->+9)12(2)1(3213x x xx 的解集为41≤<-x ,关于x 的方程24x k -=的解为122x k =+,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分解得;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)314m <<⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分9)12(2)1(3-+≥-x x 4≤x。

初一数学下册试题及答案

初一数学下册试题及答案

初一数学下册试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 6D. -6答案:A3. 计算下列算式:2x - 3 = 7,x的值是:A. 5B. 2C. 10D. 3答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是50°,那么顶角的度数是:A. 80°B. 50°C. 100°D. 30°答案:A5. 一个数的平方是36,这个数是:A. 6B. ±6C. 36D. ±36答案:B6. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 下列哪个选项是不等式?A. 3x + 4 = 7B. 2x - 5 > 0C. 6x = 12D. 7x - 3答案:B8. 一个数的立方是-8,那么这个数是:A. -2B. 2C. -8D. 8答案:A9. 计算下列算式:(-3)^2,结果是:A. -9B. 9C. -6D. 6答案:B10. 下列哪个选项是二次方程?A. 2x + 3 = 0B. x^2 - 4x + 4 = 0C. 3x - 7D. 5x^3 + 2x^2 - 6 = 0答案:B二、填空题(每题4分,共20分)11. 一个数的平方根是3,那么这个数是______。

答案:912. 一个数的立方根是-2,那么这个数是______。

答案:-813. 一个数的倒数是1/2,那么这个数是______。

答案:214. 一个数的绝对值是7,那么这个数可以是______或______。

答案:7,-715. 一个等腰三角形的底角是30°,那么顶角的度数是______。

答案:120°三、解答题(每题10分,共50分)16. 解方程:3x - 5 = 10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一下数学试题及答案
一、填空:
1若x<5,则|x-5|=______,若|x+2|=1,则x=______
2如果|a+2|+b+12=0,那么1/a+b=_______
34080300保留三个有效数字的近似值数是_______
4在代数式a2、a2+1、a+12、a2+|a|中,一定表示正数的是______
5-32的底数是____,幂是____,结果是____
6一个三位数,十位数字是a,个位数字比十位数字的2倍小3,百位数字是十位数字的一半,用代数表示这个三位数是_____
7若多项式2mx2-x2+3x+1-5x2-4y2+3x的值与x无关,则2m3-[3m2+4m-5+m]的值是____
二、选择题:
1已知x<0,且|x|=2,那么2x+|x|=
A、2
B、-2
C、+2
D、0
A、x>0,y>0
B、x<0y<0 x="">0,y<0 D、x<0,y>0
2如果一个有理数的平方根等于-x,那么x是
A、负数
B、正数
C、非负数
D、不是正数
3若m,n两数在数轴上表示的数,则按从小到大的顺序排列m,n,-m,-n,是
A、n<m<-n<-m
B、m<n<-m<-n
C、n<-m<m<-n
D、n<-n<m<-m
4如果|a-3|=3-a,则a的取值范围是
A、a≥3
B、a≤3
C、a>3
D、a<3
三、求值:
1若代数式2y2+3y+7的值为8,求代数式4y2+6y+9的值
2试证明当x=-2时,代数式x3+1 的值与代数式x+1x2-x+1 的值相等
四、
1化简求值:-3[y-3x2-3xy]-[y+24x2-4xy],其中x=2, y=1/2
2当x=-2时ax3+bx-7的值是5,求当x =2 时,ax3+bx-17的值
3已知多项式2x2+abx+3b与2bx2-2abx+3a的和中,只有常数项-3,求a与b的关系
五、选作题:
用简便方法指出下列各数的末位数字是几:
①2021 ②2135 ③2216 ④2315 ⑤2422 ⑥2527 ⑦2628
⑧2716 ⑨2818 ⑩2924
答案:
一、
(1)5-x,-1或-3
(2)4.08×106
(3)a2+1
(4)3 , 32, -9
(5)五四 1/3
(6)3 , 5
(7)17
二、⑴B ⑵D ⑶C ⑷B
三、⑴11 ⑵略
四、⑴x2-xy-4y2值为1 ⑵值为-29 ⑶a与b互为相反数(a=1,b=-1)
五、
①0 ②1 ③6 ④7 ⑤6 ⑥5 ⑦6 ⑧1 ⑨4 ⑩1
初一数学第五章单元测试A
一、填空(每格2分)班级______姓名______学号____
1、已知直线a与b相交,且∠1=70°,则∠2=__°,∠3=__°,∠4=___°.
2、∠A=50°,∠B=20°,∠C=30°,则∠1=____°.
3、已知,一个三角形的一个外角为70°,此三角形为___三角形.
4、如果三角形中有两个角相等,其中一个角的外角为100°,则这个三角形各内角为____________.第2题
5、直角三角形两锐角平分线相交所成的钝角为_____.
6、已知三角形的二边为2cm,5cm,周长为偶数,则第三边
为____cm.
7、ΔABC中,AE为CB边上的高,AF为ΔABC 第7题的角平分线,∠B=80°,∠C =30°,则∠EAF=____°.
8、ΔABC中,∠ACB=RtΔ,CD⊥AB于D,则∠1=___,∠2=____,互余的角有___对.若AC=2cm,CB=3cm,则ΔABC的面积=_____cm2.第8题
9、AB//CD,则∠1+∠2+∠3=____.
10、长、宽、高分别是4,5,6的’长方体内一点P,到各个面的距离和是___.
二、选择题(每题3分)第9题
1、下列长度的三条线段能组成三角形的是―――――――――――――()
A.3cm,7cm,10cm B.5cm,4cm,8cm
C.5cm,9cm,3cm D.3cm,6cm,10cm
2、ΔABC中,若与∠C相邻的一个外角为110°,∠A=40°,则∠B为―――――()
A.30° B.50° C.60° D.70°
3、锐角三角形中,最大角的取值范围是―――――――――――――()
A.0°<α<90° B.60°<α<180°
C.60°<α<90° D.60°≤α<90°
4、若三角形的三边a、b、c、均为正整数,且a≥b≥c,a=2,则符合这些条件的三角形有()
A.1个 B.2个 C.3个 D.4个
5、已知,∠2=62°,∠3=118°,则∠1与∠4的大小关系是――――――――――――()
A.∠1>∠4 B.∠1=∠4 C.∠1<∠4 D.不能确定
6、在长方体中,既与一个面平行,又与另一个面垂直的棱条数是()
A.1 B.4 C.8 D12.
7、下列说法正确的是――――――――――()
A.邻补角的平分线互相垂直
B.垂直于同一直线的两条直线互相平行
C.从直线外一点到这条直线的垂线段叫点到直线的距离
D.三角形的角平分线是一条射线.
三、解答题
1、AB//CD,∠A=100°,∠C=75°,∠1∶∠2=5∶7,求∠B的度数。

(10分)
2、DA⊥AC于A,BE//AD,交AC于B,∠D=∠E,则BD//CE,理由如下:(每格2分)
∵ DA⊥AC()
∴ DAC=90()
∵ EB//AD()
∴ ∠EBC=∠DAC=90°()
∵ ∠D=∠E()
∴ ∠C=____(等角的余角相等)
∴ BD//CE()
3、
(1)画一个长3cm,宽4cm,高的长方体的直观图.(7分)
(2)作ΔABC的三边上的高.(7分)
感谢您的阅读,祝您生活愉快。

相关文档
最新文档