(完整版)八年级数学《直角三角形》知识点
湘教版八年级数学下册第一章《直角三角形》优课件
知识点回顾
直角三角形:有一个角是直角的三角形
一、直角三角形的性质:
1.直角三角形的两个锐角互余;
2.直角三角形斜边上的中线等于斜边的一半;
3.直角三角形中,30O角所对直角边是斜边的一半;
4.直角三角形两条直角边的平方和等于斜边的平方; (勾股定理)
熟记以下几组勾股数: 3、4、5; 5、12、13; 7、24、25;8、15、17
A
3
B
1
C
4
E
2
D
例4:如图:AD是△ABC中BC边上的高,E 为AC上一点,BE交AD于F,BF=AC, FD=CD,问BE,AC互相垂直么?请说明 理由
A
FE
B
DC
2.如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A,B,C,D的面积之和为______4_9____cm2。
3、在Rt△ABC中,∠C=90º,∠A=30º,BC=2cm, 则AB=_____cm。
4、在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,
AB=a,则DB等于( )
a
a
a
(A) (B) (C) (D)以上结果都不对
2
3
4
想一想
5、下图中的三角形是直角三角形,其余是 正方形,求下列图中字母所表示的正方形的 面积.
二、直角三角形的判定:
1.定义:有一个角是直角的三角形是直角三角形
2. 有两个角是互余的三角形是直角三角形 3. 若三角形中,较小两边的平方和等于较大边的平方,
则这个三角形是直角三角形(勾股定理的逆定理)
三、直角三角形全等的判定:
八年级数学《三角形》知识点
21D CB AD CBAD CB A八年级数学《三角形》知识点⒈ 三角形的定义三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的“△”没有意义. ⒉ 三角形的分类 (1)按边分类 (2)按角分类:⒊ 三角形的主要线段的定义 (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:是△ABC 的BC 上的中线. =DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点;这个点叫做三角形的重心。
④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:是△ABC 的∠BAC 的平分线. 2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;这个点叫做三角形的内心。
④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:是△ABC 的BC 上的高线. ⊥BC 于D. 3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;三角形等腰三角形不等边三角形 底边和腰不相等的等腰三角形 等边三角形 三角形 直角三角形斜三角形锐角三角形钝角三角形_ C_ B _ A③三角形三条高所在直线交于一点.这个点叫做三角形的垂心。
完整版)解直角三角形知识点总结
完整版)解直角三角形知识点总结解直角三角形直角三角形的性质:直角三角形有以下几个性质:1.直角三角形的两个锐角互余,即∠A+∠B=90°,因为∠C=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BD=AB/2=DC。
这是因为∠A=30°,∠C=90°,根据正弦定理得到BD=AB/2,根据余弦定理得到BD=DC。
3.直角三角形斜边上的中线等于斜边的一半,即CD=AB/2.这是因为D为AB的中点,且∠ACB=90°。
4.勾股定理:a²+b²=c²,其中c为斜边,a、b为直角边。
5.射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
这是因为CD⊥AB,根据相似三角形的性质得到CD²=AD×BD,同时根据勾股定理得到AC²=AD×AB,BC²=BD×AB,因此CD²=AC²-AD²=BC²-BD²。
锐角三角函数的概念:在直角三角形中,锐角A的正弦、余弦、正切、余切分别为sinA、cosA、XXX、cotA,它们的定义如下:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a。
锐角三角函数的取值范围是:-1≤sinα≤1,-1≤cosα≤1,tanα≥0,cotα≥0.锐角三角函数之间的关系:1.平方关系:sin²A+cos²A=1.2.倒数关系:tanA×tan(90°-A)=1.3.弦切关系:XXX,XXX。
4.互余关系:sinA=cos(90°-A),cosA=sin(90°-A),tanA=cot(90°-A),cotA=tan(90°-A)。
(完整版)初中三角形知识点总结
图形的初步认识:三角形考点一、三角形1、三角形的三边关系定理及推论(1) 三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180 。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边; 大边对大角。
4、三角形的面积三角形的面积=1x底X高2考点二、全等三角形1 、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
2、三角形全等的判定三角形全等的判定定理:(1) 边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“ SAS)(2) 角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ ASA)(3) 边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“ SS6)。
(4) 角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“ AAS)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“ HL”)3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:(1) 平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2) 对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3) 旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换考点三、等腰三角形1 、等腰三角形的性质(1) 等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
(完整版)人教版-八年级上册-三角形的知识点及题型总结
三角形的知识点及题型总结一、三角形的认识定义:由不在同一条直线上的三条线段首尾按序相接所构成的图形。
分类:锐角三角形(三个角都是锐角的三角形)按角分类直角三角形(有一个角是直角的三角形)钝角三角形(有一个角是钝角的三角形)三边都不相等的三角形按边分类等腰三角形底边和腰不相等的等腰三角形等边三角形例题 1图1中共几个三角形。
例题 2以下说法正确的选项是()A.三角形分为等边三角形和三边不相等三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形、直角三角形、钝角三角形例题 3 已知a、b、c为△ABC的三边长,b、c知足(b-2)2+|c-3|=0,且 a 为方程 |x -4|=2 的解 .求△ ABC的周长,并判断△ ABC的形状 .二、与三角形相关的边三边的关系:三角形的两边和大于第三边,两边的差小于第三边。
例题 1以以下各组数据为边长,能够成三角形的是(),4,5,4,8,7,10,4,5例题 2已知三角形的两边边长分别为4、5,则该三角形周长L 的范围是()A.1<L<9B.9<L<14C.10<L<18D.没法确立课后练习:1、若三角形的两边长分别为5、8,则第三边可能是()B. 62、等腰三角形的两边长分别为6、13,则它的周长为。
3、等腰三角形的两边长分别为4、已知三角形的两边长为 2 和4、5,则第三边长为。
4,为了使其周长是最小的整数,则第三边的为。
5、若等腰三角形的周长为13cm,此中一边长为 3cm,则等腰三角形的底边为()D.7cm 或3cm6、依据以下已知条件,能独一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠ A=30°C.∠A=60°,∠ B=45°, AB=4D.∠C=90°, AB=68、用7 根火柴棒首尾按序相连摆成一个三角形,能摆成个不一样的三角形。
(完整版)部编版数学八年级上册三角形性质解释
(完整版)部编版数学八年级上册三角形性
质解释
引言
本文档将解释数学八年级上册中关于三角形性质的内容。
我们
将探讨三角形的定义、构造、角度性质以及边长关系等方面的知识。
三角形的定义
三角形是由三条线段所组成的闭合图形。
它有三个顶点、三条
边和三个内角。
三角形的内角之和总是180度。
三角形的构造
我们可以通过给定的条件来构造不同类型的三角形。
例如,如
果给定两边长度和夹角度数,我们可以通过边边角(SSA)的构造
原理来构造出一个三角形。
角度性质
三角形的内角有一些重要的性质。
以下是一些常见的角度性质:- 三角形的三个内角之和是180度;
- 直角三角形有一个内角是90度;
- 锐角三角形的三个内角都是锐角,即小于90度;
- 钝角三角形的三个内角中至少有一个是钝角,即大于90度。
边长关系
三角形的边长之间也存在一些特定的关系。
以下是一些常见的边长关系:
- 等边三角形的三条边都相等;
- 等腰三角形有两条边相等;
- 直角三角形中,斜边的平方等于两条直角边的平方和;
- 三角形两边之和大于第三边。
结论
三角形的性质涵盖了它的定义、构造、角度性质和边长关系。
通过充分理解和掌握这些性质,我们能更好地分析和解决与三角形有关的问题。
以上是数学八年级上册关于三角形性质的解释,希望对你的研究有帮助。
人教版八年级数学-三角形-知识点+考点+典型例题(含答案)
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
八年级数学上册《直角三角形的性质》课件
通过测量直角三角形中的两个锐角,可以计算出 第三个角的大小,从而解决一些测量问题。
建筑设计中直角三角形应用
建筑设计
01
在建筑设计中,直角三角形常被用于计算建筑物的角度、高度
和距离等参数,以确保建筑物的稳定性和美观性。
结构工程
02
在结构工程中,直角三角形可以帮助工程师计算结构的支撑力
、承载力和稳定性等关键参数。
AA相似条件在直角三角形中应用
AA相似条件:如果两个三角形 中有两个角分别相等,则这两 个三角形相似。
在直角三角形中,由于一个角 是90度,因此只需要再证明一 个角相等即可判定两个直角三 角形相似。
常见的证明方法包括利用余角 相等、利用平行线的性质等。
利用三边比例关系判断相似
三边比例关系:如果两个三角形的三边长度成比例,则这两个三角形相似。
在直角三角形中,可以利用勾股定理和已知边长求出未知边长,进而判断三边是否 成比例。
需要注意的是,由于直角三角形的特殊性,有时候只需要证明两边成比例即可判定 相似。
实例分析与解题技巧
实例分析
通过具体题目分析,展示如何利 用AA相似条件和三边比例关系判 断直角三角形相似。
解题技巧
总结在解题过程中需要注意的问 题和技巧,如正确运用勾股定理 、灵活运用相似条件等。
勾股定理及其逆定理
勾股定理
勾股数
在直角三角形中,直角边的平方和等 于斜边的平方,即a² + b² = c²,其 中a、b为直角边,c为斜边。
满足勾股定理的三个正整数,称为勾 股数。例如,3、4、5是一组勾股数 ,因为3² + 4² = 5²。
勾股定理的逆定理
如果三角形的三边长a、b、c满足a² + b² = c²,那么这个三角形是直角三 角形,其中c为最长边。
湘教版数学八年级下册_《直角三角形的性质和判定》要点及典例分析
直角三角形的性质和判定
一、知识要点解析:
1.直角三角形的判定:
(1)定义:有一个角是直角的三角形是直角三角形.
(2)定理:有两个角互余的三角形是直角三角形.当然后面学了勾股定理后还可以运用勾股定理的逆定理进行判定.
注意:判定直角三角形要灵活运用定义和定理,根据具体题目具体分析.
2.直角三角形的性质:
(1)直角三角形的两个锐角互余。
(2)在直角三角形中,斜边上的中线等于斜边的一半.
二.典例分析
例1、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点. 如果M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请证明△OMN是直角三角形.
分析:要证明△OMN是直角三角形,只要证明∠MON=900即可.
证明:连接OA。
AN=BM,OA=OB,∠OAC=∠B=45°
△OAN≌△OBM,得ON=OM,∠AON=∠BOM
又∠AOM+∠BOM=90°
所以∠AON+∠AOM=90°,即∠MON=90°.
所以△OMN是直角三角形.
专项练习:
1、若一个三角形三内角之比为1:2:3,则该三角形一定是( )
A、锐角三角形
B、直角三角形
C、钝角三角形
D、不能确定
2、已知直角三角形中30°角所对的直角边长是2cm,则斜边上的中线的长是()
A. 2 cm
B. 4 cm
C. 6 cm
D. 8 cm
参考答案:
1.B
2.A。
(完整版)第十八章三角形知识点总结
(完整版)第十八章三角形知识点总结一、基本概念三角形是由三条线段所围成的封闭图形,它是几何学中非常重要的一个概念。
在研究三角形知识时,需要掌握以下基本概念:1. 三边:三角形由三条线段组成,分别称为三边。
记作AB、BC、CA,也可以用小写字母a、b、c表示。
三边:三角形由三条线段组成,分别称为三边。
记作AB、BC、CA,也可以用小写字母a、b、c表示。
2. 三角形的顶点:三角形的一个角的顶点叫做该三角形的顶点,记作A。
三角形的顶点:三角形的一个角的顶点叫做该三角形的顶点,记作A。
3. 三个内角:三角形内部的角叫做三角形的内角。
记作∠B、∠C、∠A,也可以用小写字母α、β、γ表示。
三个内角:三角形内部的角叫做三角形的内角。
记作∠B、∠C、∠A,也可以用小写字母α、β、γ表示。
4. 三个外角:三角形内部每个内角的补角叫做该内角的外角。
记作∠∠B、∠∠C、∠∠A。
三个外角:三角形内部每个内角的补角叫做该内角的外角。
记作∠∠B、∠∠C、∠∠A。
二、三角形的分类根据三边的关系,三角形可以分为以下几种类型:1. 等边三角形:三条边的边长相等,记作ABC。
等边三角形的每个内角都是60°,每个外角都是120°。
等边三角形:三条边的边长相等,记作ABC。
等边三角形的每个内角都是60°,每个外角都是120°。
2. 等腰三角形:两条边的边长相等,记作ABC。
等腰三角形的底边上的两个角是等角。
等腰三角形:两条边的边长相等,记作ABC。
等腰三角形的底边上的两个角是等角。
3. 直角三角形:其中一个角是直角(90°),记作ABC。
直角三角形的斜边是其他两条边的最长边。
直角三角形:其中一个角是直角(90°),记作ABC。
直角三角形的斜边是其他两条边的最长边。
4. 锐角三角形:三个内角都是锐角(小于90°)的三角形。
锐角三角形:三个内角都是锐角(小于90°)的三角形。
八年级数学上册教学课件《含30°角的直角三角形的性质》
∴∠B=60°,∠A=30°. ∴ AB=2BC.
随堂演练
1. Rt△ABC中,CD是斜边AB上的高,∠B=30°, AD=2cm,则AB的长度是( C ) A.2cm B.4 cm C.8 cm D.16cm 2.等腰三角形一腰上的高与腰长之比为1∶2,则 等腰三角形的顶角为( D )
(2)能运用30°角的直角三角形的性质 解决相关问题.
推进新课
知识点1 直角三角形的性质
探究
将两个全等的含30°角的直 角三角尺摆放在一起.你能借助这 个图形,找到Rt △ABC 的直角边 BC 与斜边AB 之间的数量关系吗?
猜想 在直角三角形中,如果一个锐角等 于30°,那么它所对的直角边等于斜边的一半.
A.30° B.60° C.150° D.30°或150°
3. 在Rt△ABC中,∠A=90°,∠ABC=2∠C, BD是∠ABC的平分线.求证:DC = 2AD.
证明:∵∠A = 90°,∠ABC = 2∠C,
∴∠C = 30°,∠ABC = 60°.
又BD是∠ABC的平分线,
∴∠ABD=∠CBD=
∵ ∠ACB=90°,∠A =30°,
∴ ∠B =60°.
在△BCE 中,
E
∵ ∠BCE=60°,∠B =60°,
∴ △BCE 是等边三角形.
∴ BC =BE =CE.
B
C
在△ACE 中,
A
∵ ∠A=30°,∠ACE =30°,
∴ △AEC是等腰三角形.
∴ CE =AE.
∴ BC =BE =CE =AE.
A
符号语言:
∵ 在Rt△ABC 中,
北师大版八年级数学下册《直角三角形》三角形的证明PPT(第1课时)
获取新知
知识点二:直角三角形的边的关系
B
勾股定理 直角三角形两条直角边的平方
和等于斜边的平方.
A
C
关于勾股定理的证明,可以欣赏“16页的读一读”, 并可以上网搜索,诸如美国第二十任总统的证法、赵 爽弦图法等
勾股定理反过来,怎么叙述呢?
如果一个三角形两边的平方和等于第三边的平方,那 么这个三角形是直角三角形.
一项指标.现测得AB=4 cm,BC=3 cm,AD=13 cm,CD=12 cm, ∠ABC=90°,根据这些条件,能否得出∠ACD等于90°?请说明理由.
解:能.理由:在Rt△ABC中,
∵AB=4 cm,BC=3 cm,∠ABC=90°,
∴AC=
=5(cm).
在△ACD中,∵AD=13 cm,CD=12 cm,AC=5 cm,
你来给出完整的 证明过程吧,试 一试
例题讲解 例1 如图,在△ABC中,∠C=70°,∠B=30°,AD⊥BC 于点D,AE为∠BAC的平分线,求∠DAE的度数. 解:由题意可知, ∠BAC=180°-∠B-∠C=80°. ∵AE为∠BAC的平分线, ∴∠CAE=∠BAE= ∠BAC=40°. ∵AD⊥BC,∴∠ADC=90°. ∴∠CAD=90°-∠C=90°-70°=20°. ∴∠DAE=∠CAE-∠CAD=40°-20°=20°.
原命题都存在逆命题 ,
但是互逆命题的真假 无法保证
如果一个定理的逆命题也是定理,那么这两个定理叫 做互逆定理,其中的一个定理叫做另一个定理的逆定理.
注意1:逆命题、互逆命题不一定是真命题, 但逆定理、互逆定理,一定是真命题.
注意2:不是所有的定理都有逆定理.
定理
“两直线平行,内错角相等”
(完整版)第一章直角三角形的性质与判定复习
17第一章直角三角形的性质与判定复习一、知识点总结1、直角三角形的性质:(1) __________________________________________ 在直角三角形中,两锐角 ;(2) 在直角三角形中,斜边上的中线等于 __________ ■勺一半; (3) 在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于 (4) 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边 所对的角等于 ___________ 。
(5) 在直角三角形中,两条直角的平方和等于 ____ 的平方。
勾股定理 2、 直角三角形的判定: (1) 有一个角等于 _______ 的三角形是直角三角形; (2) 有两个角 ___________ ■勺三角形是直角三角形; (3) 如果三角形一边上的中线等于这条边的 ________ 那么这个三角形是 直角三角形。
(3)如果一个三角形中其中两条边的平方和等于第三条边的平方,那么这 个三角形是直角三角形。
3、 常用的勾股数据:⑴ 3,4,5⑵ 5,12,13 ⑶ 2,1, .3 ⑷ 1,1, . 2一、选择题(本大题共14小题,共 1. 下列各组数中,是勾股数的( A.12 , 15, 18 B.11 , 60, 61 42.0 分)) C.15 , 2. 下列四组数中,不是勾股数的一组数是( A. a=8, b=15, c=17C.a=7, b=24, c=25 16, 17 )B.a=9, D. a=3, D.12, 35,36b=12, b=5, c=7 c=15 3. 若直角三角形的三边长为偶数,则这三边的边长可能是( ) A.3 , 4, 5 B.6 , 8, 10 C.7 , 24, 29 D.8, 12, 20 4. 分别以下列各组数据为三角形三边的长度,那么不能构成直角三角形的是( A.3 , 4, 5B.5 , 12 , 13 5. 下列各组数中不是勾股数的是( A.3 , 4 , 5 B.4 , 5 , 6 6. 下列几组数:①7 , 24 , 25;②8 , 于1的正整数).其中是勾股数的有(A.1 组B.2组 7. 在下列各组数中,是勾股数的一组是C.7, 13, 15 )D.8 ,15,17 A.0.3、0.4、0.5 5、4 8. 下列不能组成直角三角形三边长的是 A.5, 12 , 13B.6 , 8 , 10C.5 , 12 , 17;③9 , )C.3组)15, ) C.9 ,16, 13 40, C.2521D.6 , 8, 10 241 :④ n -1 , 2n , D.4组、7、24D.8,15,已知大正方9. 如图,是4个全等的直角三角形镶嵌而成的正方形图案, 形的面积为49 ,小正方形的面积为 4 ,若用x , y 表示直角三角形的两2n +1 (n 是大D.6、条直角边(x >y ),请观察图案,指出下列关系式不正确的是( 2 2 A. x +y =49 B. x-y=2 C.2xy+4=49 D.x+y=13 10. 如果一个直角三角形的两边分别是 2、5,那么第三边的平方是 A.21 B.26 C.29 D.21 或 29 11. 下列各组数中,以 a 、b 、c 为边的三角形不是直角三角形的是( A.a=, 2 一, b =2 , c=2 . c= ■ C.a=・■,b=・、,c=m c=13 12. 下列四组线段中,可以构成直角三角形的是( A.1.5,2,3 D.a=5, b=12. B a = . , b=2, 13. △ ABC D E 分别为 A.6 B.4 14. 如图,△ ABC 中,点 四边形EBCF 面积为(A.4B.6 B.4,5,5C.2, AB AC 中点,S ^ABC =8, C.2 ) 3,4 D.1, 则厶DEC 的面积为D.1 E 、F 分别为AB AC 中点,△ AEF 面积为 ) C.8 D.10 二、填空题(本大题共16小题,共48.0分) 15. 如图,在菱形 ABCD 中, AC 若OE=2则菱形ABCD 的周长是 16. 等腰三角形的顶角是 120°, _____ cm .2 2 2 217. 观察下列各式:3 +4 =5 ; 8 +6=10 ; 15+8=17; 中的规律?请用你发现的规律写出接下来的式子: 18. 写四组勾股数组. _________ , ______ , _______ , ________ . 19. 如图,OP=1,过P 作PP 丄OP 得 OR=JJ ;再过 R 作P 1P 2丄OP 且 RP 2=1,得OP=.;又过P 2作 P 2P 3丄OB 且卩2卩3=1,得OP=2;…依此 法继续作下去,若△ OPnPn +1的面积大于6时,n 至少是 ______________________ . 20. 如图,在 Rt ^ABC 中,/ ACB=90 AC=3 BC=4,分别以 AB AC BC 为边在AB 同侧作正方形ABEF ACPQ BDMC 记四块阴影部分的面积分别为 S3、S,贝y s+s+s+s= ________ . BD 相交于点O E 为AB 的中点, 底边上的高是 3cm , 则腰长为 2 2 2 24+10=26 ; P:S 、S 2、2, B…;你有没有发现其21. 如图,直线11、12、13分别过正方形 ABCD 的三个顶点 A, B , D,且相互平行, 若11与12的距离为1, 12与13的距离为1,则该正方形的面积是 ___________ . 22. 如图所示,矩形纸片 ABCD 中, AB=6cm , BC=8bm ,现将其沿EF 对折,使得 点C 与点A 重合,则EF 长为 ________ cm .23. 如图,一透明的圆柱体玻璃杯,从内部测得底部直径为6cm,杯深8cm•今有一根长为16cm的吸管如图放入杯中,露在杯口外的长度为h,则h的变化范围是: __________ 24. △ ABC的3条边的长分别为6、8、10,与其相似的△ DEF的最长边为15,则△ DEF的最短边为_______ , △ DEF的面积为 _______ •25. 如图,在△ ABC中,E, D, F分别是AB, BC, CA的中点,AC=4 BC=5, AB=6则四边形AEDF的周长是_______ •26. 如图,在?ABCD中, E、F分别是AD CD的中点,EF与BD相交于点M 若厶DEM的面积为1,则?ABCD勺面积为27. 如图,四边形ABCD中,/ A=90°, AB=2 - , AD=2点M N分别为线段BC, AB上的动点(含端点,但点M不与点B重合),点E, F分别是DMMN的中点,贝U EF长度的最大值为______ •28. 如图,在△ ABC中,D, E分别是AB, AC的中点,那么△ ADE与四边形DBCE的面积之比是_______ •29. 已知三角形3条中位线的比为3: 5: 6,三角形的周长是112cm,这三条中位线长分别是_________ •30. 如图,在△ ABC中,D、E、F分别是各边的中点,AH是高,/ DHF=50,/ DAF= ______ °.、解答题(本大题共14小题,共112.0分)31.如图1,将两个完全相同的三角形纸片/ B=Z E=30°,(1)操作发现:如图2,固定△ ABC 使厶DEC绕点C旋转,当点D恰好落在AB 边上时,①厶ADC是______ 三角形;②设△ BDC的面积为$,△ AEC的面积为S2,那么S与Sa的数量关系是ABC和DEC重合放置,其中/ C=9C° ,(2)猜想论证当△ DEC绕点C旋转到如图3所示的位置时,小明猜想(1 )中S与S 的数量关系仍然成立,并尝试分别作出了△ BDC和厶AEC中BC CE边上的高,请你证明小明的猜想.(3)拓展探究,如图4,已知/ ABC=60,点D是角平分线上一点,BD=CD=4 DE// AB 交BC于点E (如图4)•若在射线BA上存在点F,使S^DCF=S A BDE,请直接写出相应的BF32. 已知:如图,在△ ABC 中,/B=90 , AB=$m , BC=cm .点 p 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.当一个点到达终点时另 一点也随之停止运动,设运动时间为 x 秒, (1) 求几秒后,AP BQ 的面积等于6cm 2? (2) 求几秒后,PQ 的长度等于5cm ?(3) 运动过程中,△ PQB 的面积能否等于 8cm 2?说明理由.33.如图,每个小正方形的边长都是1,(1) 求四边形 ABCD 勺周长和面积;2)Z BCD 是直角吗?34. 如图〔,△ ACB 和△ ECD 都是等腰直角三角形, CA=CB CE=CD ACB 的顶点 A 在厶ECD的长. A的斜边DE 上(1) 求证:Al+A[j=2AC ;(2) 如图2,若AE=2 AC=2 ,点F 是AD 的中点,直接写出 CF 的长是A ----- > p B35. 如图四边形ABCD中, / C=90 , BC=1, DC=2 AB= ,AD=3,求出这个四边形的面积.36. 如图,在△ ABC 中,D 为BC上一点,且AB=5 BD=3AD=4,且厶ABC的周长为18,求AC的长和△ ABC的面积.37.如图所示,在厶ABC中,AB: BC CA-3: 4: 5且周长为36cm,C 点P从点A开始沿AB边向B点以每秒2cm的速度移动,点Q从/点C沿CB边向点B以每秒1cm的速度移动,如果同时出发,则/过3秒时,求△ BPQ的面积. /A p >38. 如图:正方形网格中每个小方格的边长为均1,且点A、B、C为格点.(1)求厶ABC的面积;(2)通过计算判断△ ABC的形状;.3)求AB边上的高.39. 如图,△ ABC中,AB=5cm , BC=Mm, AC=£m,若动点P从点C开始,按C^A^B的路径运动,且速度为每秒2cm,设出发的时间为t秒.(1)请判断△ ABC的形状,说明理由.(2)当t= ______ 时,△ BCP是以BC为腰的等腰三角形.3)另有一点Q,从点C开始,按 3B T A^C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,P、Q两点之间的距离为?B40.已知a、b、c满足(a-7.5 ) 2+ +| c-8.5|=0 .求:(1)a、b、c 的值;(2)求以a、b、c为边构成的三角形面积.41.如图,△ ABC 中,/ C=Rt Z, AB=5cm, BC=©m,若动点P从点C开始,按C^A T B—C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ ABP的周长.(2)问t满足什么条件时,△ BCP为直角三角形?3)另有一点Q,从点C开始,按C—B—A—C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线卩0把厶ABC的周长分成相等的两部分?42.如图,在△ ABC 中,AB=30cm, BC=35:m , Z B=60°,有一动点M自A向B以1cm/s的速度运动,动点N自B向C以2cm/s的速度运动,若M, N同时分别从A, B出发.(1)经过多少秒,△ BMN为等边三角形;2)经过多少秒,△ BMN为直角三角形.43.如图,在△ ABC中,D、E是AB AC中点,AG为BC边上的中线,DE AG相交于点0,求证:AG与DE互相平分.44.如图,已知正方形ABCD和正方形AEFG连结BE DG(1)求证:BE=DG BE! DG(2)连接BD EG DE,点MN P分别是BD EG DE的中点,连接MP PN, MN求证:△ MPN是等腰直角三角形;(3)若AB=4, EF=2J空,/ DAE=45 ,直接写出MN=。
八年级数学上册第十一章三角形知识点总结归纳完整版(带答案)
八年级数学上册第十一章三角形知识点总结归纳完整版单选题1、下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2答案:D分析:若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D.小提示:本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.2、要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行答案:C分析:用夹角可以划出来的两条线,证明方案Ⅰ和Ⅱ的结果是否等于夹角,即可判断正误方案Ⅰ:如下图,∠BPD即为所要测量的角∵∠HEN=∠CFG∴MN∥PD∴∠AEM=∠BPD故方案Ⅰ可行方案Ⅱ:如下图,∠BPD即为所要测量的角在△EPF中:∠BPD+∠PEF+∠PFE=180°则:∠BPD=180°−∠AEH−∠CFG故方案Ⅱ可行故选:C小提示:本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明3、刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是()A.6cm的木条B.8cm的木条C.两根都可以D.两根都不行答案:B分析:利用三角形的三边关系可得答案.解:利用三角形的三边关系可得应把8cm的木条截成两段,如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.故选:B.小提示:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.4、如图,若干个全等的正五边形排成圆环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10B.9C.8D.7答案:D分析:先根据多边形的内角和公式(n−2)·180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.解:∵五边形的内角和为(5−2)×180°=540°,∴正五边形的每一个内角为540°÷5=108°,∴正五边形的每一个外角为180°−108°=72°,如图,延长正五边形的两边相交于点O,则∠1=180°−2×72°=36°,360°÷36°=10,∵已经有3个五边形,∴10−3=7,即完成这一圆环还需7个五边形.故选:D.小提示:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.5、已知△ABC中,D、E分别是边AB、AC上的点,连接DE、BE、DC,下列各式中正确的是().A.S△ADES△ABC =ADABB.S△ADES△ABC=AEACC.S△ADCS△ABC =ADABD.S△ADES△EDC=AEAC答案:C分析:A选项,设点E、C到AB的距离分别为ℎ1,ℎ2,则ℎ1<ℎ2,根据三角形面积公式进行判断即可;B选项设点D、B到AC的距离分别为x,y,则x≠y,x<y,根据三角形面积公式进行判断即可;C选项,设点C到AB距离为h,△ADC=12AD⋅ℎ,S△ABC=12AB⋅ℎ,根据三角形面积公式进行判断即可;D选项,设点D到AC距离为ℎ3,则S△ADE=12AE⋅ℎ3,S△EDC=12CE⋅ℎ3,根据三角形面积公式进行判断即可A选项:设点E、C到AB的距离分别为ℎ1,ℎ2,则ℎ1<ℎ2,S△ADE=12AD⋅ℎ1,S△ABC=12AB⋅ℎ2,∴S△ADES△ABC =12AD⋅ℎ112AB⋅ℎ2=AD⋅ℎ1AB⋅ℎ2≠ADAB,故A错误;B选项:设点D、B到AC的距离分别为x,y,则x≠y,x<y,S△ADE=12AE⋅x,S△ABC=12AC⋅y,S△ADES△ABC=12AE⋅x12AC⋅y=AE⋅xAC⋅y≠AEAC,故B错误;C选项:设点C到AB距离为h,△ADC=12AD⋅ℎ,S△ABC=12AB⋅ℎ,∴S△ADCS△ABC =12AD⋅ℎ12AB⋅ℎ=ADAB,故C正确;D选项:设点D到AC距离为ℎ3,则S△ADE=12AE⋅ℎ3,S△EDC=12CE⋅ℎ3,∴S△ADES△EDC =12AE⋅ℎ312CE⋅ℎ3=AECE=AEAC−AE≠AEAC,故D错误.故选C.小提示:本题考查了与三角形的高有关的计算,掌握三角形的高的定义,根据三角形的面积计算是解题的关键.6、一个多边形截去一个角后,变成16边形,那么原来的多边形的边数为()A.15或16或17B.15或17C.16或17D.16或17或18答案:A分析:分三种情况讨论,当截线不经过多边形的顶点时,当截线经过多边形的一个顶点时,当截线经过多边形的两个顶点时,再利用数形结合的方法可得答案.解:如图,当截线不经过多边形的顶点时,被截后的多边形比原多边形增加一条边,所以当被截后的多边形为16边形,则原多边形为15边形,如图,当截线经过多边形的一个顶点时,被截后的多边形与原多边形边数相同,所以当被截后的多边形为16边形,则原多边形为16边形,如图,当截线经过多边形的两个顶点时,被截后的多边形比原多边形少一条边,所以当被截后的多边形为16边形,则原多边形为17边形,故选:A.小提示:本题考查的是用直线截多边形的一个角后,被截后的多边形的边数与原多边形的边数之间的关系,解题的关键是清晰的分类讨论.7、当n边形边数增加2条时,其内角和增加()A.180°B.360°C.540°D.720°答案:B分析:根据n边形的内角和定理即可求解.解:原来的多边形的边数是n,则新的多边形的边数是n+2.(n+2−2)•180−(n−2)•180=360°.故选:B.小提示:本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.8、在△ABC中,∠A=12∠B=13∠C,则△ABC为()三角形.A.锐角B.直角C.钝角D.等腰答案:B分析:根据∠A=12∠B=13∠C分别设出三个角的度数,再根据三角形的内角和为180°列出一个方程,解此方程即可得出答案.∵∠A=12∠B=13∠C∴可设∠A=x,∠B=2x,∠C=3x根据三角形的内角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案选择B.小提示:本题主要考查的是三角形的基本概念.9、如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A.35°B.95°C.85°D.75°答案:C分析:根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.小提示:本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.10、能说明“锐角α,锐角β的和是锐角”是假命题的例证图是().A.B.C.D.答案:C分析:先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.解:A、如图1,∠1是锐角,且∠1=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B、如图2,∠2是锐角,且∠2=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C、如图3,∠3是钝角,且∠3=α+β,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D、如图4,∠4是锐角,且∠4=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C.小提示:本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.填空题11、如图,∠A+∠B+∠C+∠D+∠E=______.答案:180度##180°分析:如图,连接BC,记CD,BE的交点为G,先证明∠D+∠E=∠GBC+∠GCB,再利用三角形的内角和定理可得答案.解:如图,连接BC,记CD,BE的交点为G,∵∠D+∠E=180°−∠DGE,∠GBC+∠GCB=180°−∠BGC,∠DGE=∠BGC,∴∠D+∠E=∠GBC+∠GCB,∴∠A+∠ABG+∠GBC+∠GCB+∠ACG=180°,∴∠A+∠ABG+∠ACG+∠D+∠E=180°,所以答案是:180°小提示:本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.12、如图,点D在△ABC的边BA的延长线上,点E在BC边上,连接DE交AC于点F,若∠DFC=3∠B=117°,∠C=∠D,则∠BED=________.答案:102°分析:首先根据∠DFC=3∠B=117°,可以算出∠B=39°,然后设∠C=∠D=x°,根据外角与内角的关系可得39+x+x=117,再解方程即可得到x=39,再根据三角形内角和定理求出∠BED的度数.解:∵∠DFC=3∠B=117°,∴∠B=39°,设∠C=∠D=x°,39+x+x=117,解得:x=39,∴∠D=39°,∴∠BED=180°−39°−39°=102°.所以答案是:102°.小提示:此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.13、已知AD、AE分别是△ABC的高和中线,若BD=2,CD=1,则DE的长为______.答案:0.5或1.5分析:根据题意作出草图,分类讨论即可求解.解:AD、AE分别是△ABC的高和中线,BD=2,CD=1,如图,当△ABC是钝角三角形时,∴BC=BD−CD=1∴DE=BD−BE=BD−12BC=2−12=32当△ABC是锐角三角形时,∵BC=BD+DC=2+1=3∴BE=12BC=32∴DE=BD−BE=2−32=12当△ABC是直角三角形时,CD=0,不合题意,所以答案是:12或32 小提示:本题考查了三角形的高线,中线的定义,线段的和差关系,分类讨论是解题的关键.14、一个多边形外角和是内角和的29,则这个多边形的边数为________. 答案:11分析:多边形的内角和定理为(n −2)×180°,多边形的外角和为360°,根据题意列出方程求出n 的值. 解:根据题意可得:29×(n −2)×180°=360°, 解得:n =11 ,所以答案是:11.小提示:本题主要考查的是多边形的内角和公式以及外角和定理,属于基础题型.记忆理解并应用这两个公式是解题的关键.15、如图,△ABC 中,∠A =60°,∠B =40°,DE ∥BC ,则∠AED 的度数是______.答案:80°分析:根据三角形内角和定理可得∠C =80°,根据平行线的性质即可得答案.∵∠A =60°,∠B =40°,∴∠C =180°﹣∠A ﹣∠B =80°,∵DE ∥BC ,∴∠AED =∠C =80°,所以答案是:80°小提示:本题考查三角形内角和定理及平行线的性质,任意三角形的内角和等于180°;两直线平行,同位角相等;熟练掌握相关性质及定理是解题关键.解答题16、如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多1,AB与AC的和为11(1)求AB、AC的长;(2)求BC边的取值范围.答案:(1)AB=6,AC=5(2)1<BC<11分析:(1)根据三角形中线的定义,BD=CD.所以△ABD和△ADC的周长之差也就是AB与AC的差,然后联立关于AB、AC的二元一次方程组,利用加减消元法求解即可.(2)根据三角形三边关系解答即可.(1)解:∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)−(AC+AD+CD)=AB−AC=1,即AB−AC=1①,又AB+AC=11②,①+②得:2AB=12,解得AB=6,②−①得:2AC=10,解得AC=5,∴AB和AC的长分别为:AB=6,AC=5;(2)∵AB=6,AC=5;∴1<BC<11.小提示:本题考查了三角形的三边关系,三角形的中线定义,二元一次方程组的求解,利用加减消元法求解是解题的关键.17、如图,在△ABC中,CD平分∠BCA,E为CD延长线上一点,EF⊥AB于点F,已知∠ACB=70°,∠E= 30°.求∠A的度数.答案:25°分析:利用垂直的定义和三角形内角和定理求出∠EDF,利用对顶角的性质求出∠CDB,再利用角平分线的定义求出∠DCB,进而利用三角形内角和定理求出∠B,∠A.解:∵EF⊥AB,∴∠EFD=90°,又∵∠E=30°,∴∠EDF=180°−∠E−∠EFD=60°,∴∠CDB=∠EDF=60°.∵CD平分∠BCA,∠ACB=70°,∴∠DCB=12∠ACB=12×70°=35°.∴∠B=180°−∠CDB−∠DCB=180°−60°−35°=85°,∴∠A=180°−∠B−∠ACB=180°−85°−70°=25°,即∠A的度数为25°.小提示:本题考查角平分线、对顶角、三角形内角和定理的应用,解题的关键是熟练掌握对顶角的性质和三角形内角和定理.18、如图,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).(1)若α=70°,β=40°,求∠DCE的度数;(2)试用α、β的代数式表示∠DCE的度数_________.答案:(1)∠DCE=15°(2)α−β2分析:(1)根据三角形的内角和定理求出∠ACB的值,再由角平分线的性质以及直角三角形的性质求出∠DCE.(2)由(1)的解题思路即可得正确结果.(1)解:∵∠BAC=70°,∠B=40°∴∠ACB=180°−(∠BAC+∠B)=180°−(70°+40°)=70°,∵CE是∠ACB的平分线,∴∠ACE=12∠ACB=35°.∵CD是高线,∴∠ADC=90°,∴∠ACD=90°−∠BAC=20°,∴∠DCE=∠ACE−∠ACD=35°−20°=15°.(2)解:∵∠BAC=α,∠B=β∴∠ACB=180°−(∠BAC+∠B)=180°−(α+β),∵CE是∠ACB的平分线,∴∠ACE=12∠ACB=12×[180°−(α+β)]=90°−α+β2.∵CD是高线,∴∠ADC=90°,∴∠ACD=90°−∠BAC=90°−α,∴∠DCE=∠ACE−∠ACD=90°−α+β2−90°+α=α−β2.小提示:本题主要考查角平分线,高线以及角的转换,掌握角平分线,高线的性质是解题的关键.。
八年级数学上册直角三角形知识点总结
八年级数学上册直角三角形知识点总结
直角三角形是初中数学中的重要内容,下面是八年级数学上册直角三角形的知识点总结:
1. 三角函数
- 正弦函数:sin(A) = 对边/斜边
- 余弦函数:cos(A) = 邻边/斜边
- 正切函数:tan(A) = 对边/邻边
2. 特殊直角三角形
- 等腰直角三角形:两条直角边相等
- 30度-60度-90度特殊直角三角形:长边:短边:斜边 = 1:√3:2
- 45度-45度-90度特殊直角三角形:两条直角边相等,斜边等于直角边的√2倍
3. 定义和性质
- 直角三角形的定义:一个角为直角(90度)
- 直角三角形的性质:直角三角形的两条直角边平方和等于斜边平方(勾股定理)
4. 三角形的解题方法
- 已知两边求第三边:利用勾股定理求第三边的长度
- 已知一个角和一边求其他边:利用三角函数计算其他边的长度
- 解决实际问题:将实际问题转化为数学问题,利用三角函数解题
这些是八年级数学上册直角三角形的主要知识点总结,请认真研究,掌握这些内容,将有助于你在数学研究中的进一步理解和应用。
(完整版)八年级上学期数学三角形复习
三角形复习资料一、三角形相关概念1.三角形的概念由叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示:通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条,可以度量,而角的平分线是经过角的顶点且平分此角的一条.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连一个和它的对边的叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理①三角形两边之和第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.(四)三角形的内角结论1:三角形的内角和为°.表示:在△ABC中,∠A+∠B+∠C=180°结论2:在直角三角形中,两个锐角.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=180°)注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.(五)三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,这两个角为对顶角,大小相等.2.性质:①三角形的一个外角等于 .②三角形的一个外角大于 .如图中,∠ACD=∠A+∠B ,∠ACD>∠A ,∠ACD>∠B.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.(六)多边形(补充性)①多边形的对角线条对角线②n边形的内角和为③多边形的外角和为考点11、下列说法错误的是( ) .A.三角形的三条高一定在三角形内部交于一点 B.三角形的三条中线一定在三角形内部交于一点 C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点3.如图4,已知AB=AC=BD,那么∠1和∠2之间的关系是()A. ∠1=2∠2B. 2∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1-∠2=180°4.如图3,在△ABC中,点D在BC上,且AD=BD=CD,AE是BC边上的高,若沿AE所在直线折叠,点C恰好落在点D处,则∠B等于()A.25° B.30° C.45° D.60°_A_E_F5.如图5,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S∆ABC= 4cm,2则S阴影等于( )A.2cm B. 1cm C.2211cm2 D.cm22426.如图,在△ABC中,D,E分别是BC,AD的中点,S∆ABC=4cm,求S∆ABE._A_E考点31.关于三角形的边的叙述正确的是()_B_D_CA、三边互不相等B、至少有两边相等C、任意两边之和一定大于第三边D、最多有两边相等3.下面说法正确的是个数有()①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=1∠C,2那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在ABC中,若∠A+∠B=∠C,则此三角形是直角三角形。
人教版八年级数学上册第十一章三角形知识点 整理(完整版)
人教版八年级数学上册知识点整理(完整版)第十一章三角形一、三角形的有关概念(一)三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
(二)基本元素1、三个顶点:点A、点B、点C2、三个内角:∠A、∠B、∠C3、三条边(1)表示方法①线段AB、AC、BC②a(∠A所对的边BC用a表示)、b、c(2)三角形的三边关系(依据:两点之间线段最短)①三角形两边之和大于第三边,数学语言:a+b>c,a+c>b,b+c>a。
;②三角形两边之差小于第三边,数学语言:a−b<c,a−c<b,b−c<a。
③判断三条线段能否组成三角形,只需判断“两条较短的线段之和大于第三条”即可。
4、三角形的表示方法:顶点是A、B、C的三角形,记作∆ABC,读作“三角形ABC”。
(三)三角形的稳定性:三角形三条边的长度确定之后,三角形的形状就唯一确定了。
二、三角形的分类(一)按边分类1、三边都不相等的三角形2、等腰三角形(1)概念:有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
(2)等边三角形:三边都相等的三角形叫做等边三角形(特殊的等腰三角形)。
(二)按角分类1、锐角三角形:三个内角都是锐角。
2、直角三角形:有一个内角是直角的三角形。
3、钝角三角形:有一个内角是钝角的三角形。
三、与三角形有关的线段(一)三角形的高1、定义:从三角形的一个顶点向它所对的边所在直线画垂线,顶点和垂足之间的线段叫做三角形的这条边上的高。
从∠ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所得线段AD叫做∠ABC 的边BC上的高,记作AD∠BC于点D。
3、几何语言(1)AD是三角形的边BC上的高。
(2)AD⊥BC于点D。
4、三角形三条高的位置(1)锐角三角形:三条高及其交点都在三角形内部。
(2)直角三角形:有两条高与两条直角边重合,斜边上的高在三角形内部,三条高交于三角形的直角顶点。
(完整版)八年级数学上册11章三角形知识点总结
八年级数学上册第11章三角形知识点总结11.1 与三角形有关的线段第1课时三角形的边1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
2。
三角形按边分类3. 三角形三边的关系(重点)(1)三角形的任意两边之和大于第三边.三角形的任意两边之差小于第三边.(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a.(2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b要求会的题型:①数三角形的个数方法:分类,不要重复或者多余②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边(最小两边之和>第三边)③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉.④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。
第2课时三角形的高、中线与角平分线1. 三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。
三角形的三条高的交于一点,这一点叫做“三角形的垂心”。
2. 三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线. 三角形三条中线的交于一点,这一点叫做“三角形的重心”。
三角形的中线可以将三角形分为面积相等的两个小三角形。
3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。
要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学《直角三角形》知识点
一、直角三角形的性质
1、直角三角形的两个锐角互余
可表示如下:∠C=90°⇒∠A+∠B=90°
2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30° 可表示如下: ⇒BC=2
1AB ∠C=90°
3、直角三角形斜边上的中线等于斜边的一半
∠ACB=90°
可表示如下: ⇒CD=
2
1AB=BD=AD D 为AB 的中点
4、勾股定理
直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+
5、射影定理(了解)
在直角三角形中,斜边上的高线是两直角边在斜边上的
射影的比例中项,每条直角边是它们在斜边上的射影和斜边
的比例中项
∠ACB=90° BD AD CD •=2
⇒ CD ⊥AB 6、常用关系式
由三角形面积公式可得: AB •CD=AC •BC
二、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理
如果三角形的三边长a ,b ,c ,有关系222c b a =+,那么这个三角形是直角三角形。
三、解直角三角形
1、解直角三角形的概念
在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
2、解直角三角形的理论依据
在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c
(1)三边之间的关系:222c b a =+(勾股定理)
(2)锐角之间的关系:∠A+∠B=90°
(3)边角之间的关系:
AB
AD AC •=2AB
BD BC •=2
练习:
一、选择题
1. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长为( )
A 、4 cm
B 、8 cm
C 、10 cm
D 、12 cm
2. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
3. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )
A 、13
B 、8
C 、25
D 、64
4. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
A 、 钝角三角形
B 、 锐角三角形
C 、 直角三角形
D 、等腰三角形.
5、等腰三角形腰长为13,底边长为10,则它底边上的高为 ( )
A.12
B.7
C.5
D.6
6.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
7.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,则下列结论中不正
确的是( )
A 、TQ =PQ
B 、∠MQT =∠MQP
C 、∠QTN =90°
D 、∠NQT =∠MQT 8.在△ABC 中, ∠A: ∠B: ∠C=1:2:3,CD ⊥AB 于D,AB=a ,则DB 等于( ) A.2a B.3a C.4
a D.以上结果都不对 二、解答题
1、已知:如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =DC. 求证: BE=DF
2.已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
3、已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E ,∠A=30°, 求BC ,CD 和DE 的长
N T Q P M A
B C D
E F 1 2 A B
C D。