生物化学名词解释3
生物化学 名词解释
![生物化学 名词解释](https://img.taocdn.com/s3/m/6f560260011ca300a6c39069.png)
糖代谢1、糖酵解:葡萄糖经一系列酶促反应步骤转变成丙酮酸的过程。
2、发酵:细菌和酵母等微生物在无氧条件下,酶促降解糖分子产生能量的过程。
3、巴斯德效应:巴斯德发现的有氧氧化抑制糖的无氧酵解的作用。
是有氧氧化产生了较多的A TP抑制了糖酵解的一些酶所致,有利于能源物质的经济利用。
4、底物水平磷酸化:物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联ATP或GTP的合成,这种产生ATP等高能分子的方式称为底物水平磷酸化。
5、糖原分解:从糖原解聚生成葡萄糖的细胞内分解过程,由糖原磷酸化酶等催化完成。
6、糖原合成:体内由葡萄糖合成糖原的过程。
7、磷酸解作用:通过在分子内引入一个无机磷酸,形成磷酸脂键而使原来键断裂的方式。
实际上引入了一个磷酰基。
8、糖异生作用:由简单的非糖前体转变为糖的过程。
糖异生不是糖酵解的简单逆转。
虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。
9、丙酮酸脱氢酶系:又称丙酮酸脱氢酶系,是一种催化丙酮酸脱羧反应的多酶复合体,由三种酶(丙酮酸脱氢酶、二氢硫辛酸转乙酰基酶、二氢硫辛酸脱氢酶)和六种辅助因子(焦磷酸硫胺素、硫辛酸、FAD、NAD、CoA和Mg离子)组成,在它们的协同作用下,使丙酮酸转变为乙酰CoA 和CO2。
10、柠檬酸循环:体内物质糖类、脂肪或氨基酸有氧氧化的主要过程。
通过生成的乙酰辅酶A与草酰乙酸缩合生成柠檬酸(三羧酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环,从而为细胞提供了降解乙酰基而提供产生能量的基础。
由克雷布斯(Krebs)最先提出。
11、回补反应:补充生成某些成分以利于重要代谢通路的进行。
如三羧酸循环中通过多种方式生成草酰乙酸,以利于乙酰辅酶A进入三羧酸循环降解。
12、乙醛酸循环:异柠檬酸裂解酶的催化下,异柠檬酸被直接分解为乙醛酸,乙醛酸又在乙酰辅酶A参与下,由苹果酸合成酶催化生成苹果酸,苹果酸再氧化脱氢生成草酰乙酸的过程。
生物化学部分名词解释
![生物化学部分名词解释](https://img.taocdn.com/s3/m/31bc60b00342a8956bec0975f46527d3240ca68a.png)
生物化学部分名词解释生物化学是一门研究生物体内化学成分和化学过程的学科,通过对生物体内分子结构、化学反应和能量转化等方面的研究,揭示生命现象的化学基础。
本文将对一些生物化学中常见的名词进行解释,帮助读者更好地理解这一学科。
1. 蛋白质(Protein)蛋白质是由氨基酸组成的多肽链,是生物体内最基本的有机大分子。
它在细胞组织、骨骼、肌肉和酶等方面起着重要的结构和功能作用。
蛋白质的组成和结构决定了其功能和性质。
2. 核酸(Nucleic Acid)核酸是生物体内携带和传递遗传信息的大分子,包括DNA(脱氧核酸)和RNA(核糖核酸)两种类型。
DNA是构成基因的主要材料,携带了生物个体的遗传信息。
RNA则在基因表达和蛋白质合成过程中起作用。
3. 酶(Enzyme)酶是一类能够催化生物体内化学反应的蛋白质,其作用方式是降低反应的活化能,加快反应速率。
酶在生物体内参与了各种代谢过程,如消化、呼吸和免疫等,是维持生命活动的重要催化剂。
4. 代谢(Metabolism)代谢是生物体内化学反应的总体称谓,包括物质的合成和分解过程。
代谢是维持生命活动和细胞生长发育所必需的,能够提供细胞所需的能量和营养物质。
5. 糖(Carbohydrate)糖是生物体内最常见的一种有机化合物,主要功能是提供能量和构建细胞壁等。
糖可以分为单糖、双糖和多糖,其中葡萄糖是细胞代谢的主要能源。
6. 脂质(Lipid)脂质是一类在非极性溶剂中溶解、在极性溶剂中难溶解的有机化合物,包括脂肪和脂类。
脂质在生物体内起到能量储存、细胞膜结构和信号调节等功能。
7. 细胞膜(Cell Membrane)细胞膜是包围细胞的一层薄膜,由磷脂双层和蛋白质构成。
细胞膜起到了物质进出细胞的控制和细胞内外环境的分隔调节作用,是维持细胞内稳态的重要结构。
8. 酸碱平衡(Acid-Base Balance)酸碱平衡是指维持体液中正常酸碱度的稳定状态。
生物体内许多生命活动需要在特定的酸碱条件下进行,而酸碱平衡的失调会对生物体产生严重的影响。
生物化学名词解释
![生物化学名词解释](https://img.taocdn.com/s3/m/1c82aef8941ea76e58fa047e.png)
1、糖异生这种从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程称为糖异生。
机体内进行糖异生补充血糖的主要器官是肝,肾在正常情况下糖异生能力只有肝的1/10,长期饥饿时肾糖异生能力则可大为增强。
2、乳酸循环肌收缩(尤其是氧供应不足时)通过糖酵解生成乳酸。
肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。
葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为乳酸循环,也叫做Cori循环。
乳酸循环的形成是由于肝和肌组织中酶的特点所致。
肝内糖异生活跃,又有葡萄糖-6-磷酸酶可水解6-磷酸葡萄糖,释出葡萄糖。
肌除糖异生活性低外,又没有葡萄糖-6-磷酸酶,因此肌肉内生成的乳酸既不能异生成糖,更不能释放出葡萄糖。
乳酸循环的生理意义就在于避免损失乳酸以及防止因乳酸堆积引起的酸中毒。
乳酸循环是耗能的过程,2分子乳酸异生成葡萄糖需消耗6分子ATP。
3、必需脂肪酸凡是体内不能合成,必须由饲粮供给,或能通过体内特定先体物形成,对机体正常机能和健康具有重要保护作用的脂肪酸称为必需脂肪酸(essential fatty acids,缩写EFA)。
粗略概念:一类维持生命活动所必需的体内不能合成或合成速度不能满足需要而必需从外界摄取的脂肪酸。
必需脂肪酸主要包括两种,一种是ω-3系列的α-亚麻酸(18:3),一种是ω-6系列的亚油酸(18:2)。
详细概念:通常将具有两个或两个以上双键的脂肪酸称为高度不饱和或多不饱和脂肪酸(polyunsaturated fatty acid,缩写PUFA)。
4、脂肪动员脂肪细胞内贮存的脂肪(甘油三酯)在甘油三酯脂肪酶、甘油二酯脂肪酶和甘油一酯脂肪酶依次作用下,逐步水解生成游离脂肪酸和甘油,而被释放入血液中,以供其他组织利用,此过程称为脂肪动员。
甘油三酯的分解代谢反应式:5、必需氨基酸(essential amino acid):人体(或其它脊椎动物)必不可少,而机体内又不能自身合成的,必须由食物供应的氨基酸,称为营养必需氨基酸。
生物化学名词解释
![生物化学名词解释](https://img.taocdn.com/s3/m/2dcd8612182e453610661ed9ad51f01dc381574b.png)
绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。
通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。
3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。
4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。
第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。
2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。
单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。
3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。
4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。
5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。
6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。
7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。
生物化学名词解释大全
![生物化学名词解释大全](https://img.taocdn.com/s3/m/4180d845e97101f69e3143323968011ca200f759.png)
生物化学名词解释大全1. 生物化学(Biochemistry):研究生物体内化学成分、结构和功能之间的关系的学科。
2. 多肽(Polypeptide):由多个氨基酸残基通过肽键连接而成的聚合物,是蛋白质的组成部分。
3. 氨基酸(Amino Acid):生物体内构成蛋白质的基本单位,包含一个氨基(NH2)和一个羧基(COOH),以及一个特定的侧链。
4. 聚合酶链式反应(Polymerase Chain Reaction,PCR):一种体外复制DNA的技术,通过反复循环的酶催化,使得目标DNA序列在简单的反应体系中大量扩增。
5. 糖(Sugar):生物体内分子中含有羟基的有机化合物,是能源的重要来源,也是构成核酸和多糖的基本单元。
6. 代谢(Metabolism):生物体内发生的化学反应的总和,包括物质合成与分解、能量转化以及调节和控制这些反应的调节机制。
7. 酶(Enzyme):催化生物化学反应的蛋白质分子,可以促进反应速率,但本身在反应中不被消耗。
8. 核酸(Nucleic Acid):生物体内储存和传导遗传信息的分子,包括DNA和RNA,由核苷酸链组成。
9. 基因(Gene):DNA分子上的特定区域,编码了一种特定蛋白质的信息,是遗传信息的基本单位。
10. 代谢途径(Metabolic Pathway):由一系列相互作用的酶催化的反应组成的序列,用于维持生物体内能量和物质的平衡。
11. 脂质(Lipid):一类不溶于水的化合物,在生物体内发挥结构和能量储存的重要作用,常见的脂质包括脂肪酸、甘油和胆固醇等。
12. 细胞呼吸(Cellular Respiration):通过氧化分解有机物质以释放能量的过程,通常包括糖的氧化并产生二氧化碳和水。
13. 光合作用(Photosynthesis):将光能转化为化学能的过程,植物和一些微生物通过光合作用将二氧化碳和水转化为有机物质和氧气。
14. 激素(Hormone):由内分泌腺分泌并通过血液传递到细胞中起作用的化学物质,调节和控制生物体内的各种生理过程。
生物化学 名词解释
![生物化学 名词解释](https://img.taocdn.com/s3/m/89b4dda2dd3383c4bb4cd2e7.png)
名词解释1 生物化学:即生命的化学,它是从分子的水平来研究生命体内的基本物质的化学组成,结构特征,理化性质,以及这些物质在生物体内进行化学变化的规律及其与生理功能之间的关系的一门学科。
2蛋白质等电点:蛋白质在溶液中解离成正负离子的趋势相等即静电荷为零时溶液的ph称为蛋白质的等电点。
3 蛋白质变性:在某些理化因素作用下,蛋白质的空间构象发生改变或破坏,导致其生物活性的丧失和一些理化性质的改变,这种现象称为蛋白质的变性作用。
4 酶原:无活性的酶的前体。
5 酶的活性中心:有些必需基因在一级结构上相距很远,但在形成特定空间结构时彼此靠近,形成具有特定空间构象的区域,该区域能与底物特异性结合并将底物转化为产物,称之为酶的活性中心。
6 米氏常数:Km值等于酶促反应速度为最大速度一半时的底物浓度。
7 维生素:机体维持正常生命活动不可缺少的一类小分子有机化合物。
8呼吸链:代谢物脱下的成对氢原子通过多种酶和辅酶所组成的连锁反应体系逐步传递最终与氧结合生成水的链式连锁反应体系。
9 生物氧化:物质在生物体内进行氧化分解称为生物氧化。
10 糖酵解:是指葡萄糖或糖原在无氧情况下,经过一系列中间代谢分解成乳酸的过程。
11 血浆脂蛋白:是脂类在血浆中的存在形式,也是脂类在血液中的运输形式。
12 B-氧化:脂酰Co A进入线粒体基质,从脂酰基的B-碳原子开始进行脱氢,加水,再脱氢,硫解的连续反应。
13 联合脱氨基:L-谷氨酸脱氢酶和转氨酶的联合,以及嘌呤核苷酸循环。
14 基因:染色体中携带有遗传信息的DNA片段,是遗传的功能单位。
15 半保留复制:DNA在复制时首先是两条链之间的氢键断裂两链分开,然后分别以每条链为模版各自合成一条新的DNA链,这样新合成的每个子代DNA分子中,一条链来自亲代DNA,另一条链是新合成的,这种复制方式为半保留复制。
16 必需氨基酸:必需氨基酸指的是人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。
生物化学名词解释
![生物化学名词解释](https://img.taocdn.com/s3/m/0d42825583c4bb4cf6ecd156.png)
糖类:1、糖:是多羟基的醛或酮及其缩聚物和某些衍生物以及可以水解产生这些化合物的物质的总称。
2、单糖:是最简单的糖,不能再被水解为更小的单位。
3、寡糖:也称低聚糖,是由2-10个分子单糖缩合而成,水解后产生单糖。
4、多糖:是由多个单糖分子缩合而成。
多糖中由相同的单糖基组成的称同多糖,不相同的单糖基组成的称杂多糖。
5、糖异生:糖异生是指从非糖物质合成葡萄糖的过程。
动物可以将丙酮酸、甘油、乳酸及某些氨基酸等非糖物质转化成糖。
6、糖原:糖原是动物体内葡萄糖的储存形式。
7、糖酵解:酶将葡萄糖降解成丙酮酸并伴随着生成ATP的过程,又称EMP途径,缺氧时在细胞胞浆中进行。
脂质:1、脂质:脂类是脂肪酸(C4以上的)和醇[包括甘油醇、鞘氨醇(成称神经醇)、高级一元醇和固醇]等所组成的酯类及其衍生物。
2、单脂:为脂酸与醇(甘油醇、高级一元醇)所组成的酯类。
3、复脂:脂酸与醇(甘油醇,鞘氨醇)所生成的酯,同时含有其他非脂性物质,如糖、磷、酸及氮碱。
4、磷脂:含磷酸与氮碱的脂类,分甘油醇磷脂和鞘氨醇磷脂两类。
鞘氨醇磷脂不含甘油醇而含鞘氨醇。
5、糖脂:含糖分子的脂类,由鞘氨醇或甘油醇与脂酸和糖所组成,如脑苷脂和神经节苷脂。
6、水解:脂肪在酸碱及脂肪酶作用下酯键断裂,产生甘油与脂酸;7、皂化:碱水解脂肪产生的脂酸盐称皂,因此碱水解脂肪的作用称皂化作用;8、皂化值:皂化1g脂肪所需的KOH的质量(mg)。
与脂酸的分子量成反比(为什么?1g中的mol数不同)。
作用:可用来推算油脂的平均分子量。
9、氢化:不饱和脂肪在催化剂影响下,不饱和双键可加入氢而成饱和脂,这个作用称为氢化。
10、卤化:溴碘同样可加入不饱和脂肪的双键上,产生饱和的卤化脂,这种作用称为卤化。
11、碘价(值):100g脂质样品所能吸收的碘的质量(g)。
作用:可推知脂酸的不饱和程度。
可用来测定油脂中脂肪酸的不饱和度。
12、氧化:不饱和脂肪酸与分子氧作用,产生脂酸过氧化物。
生物化学名词解释
![生物化学名词解释](https://img.taocdn.com/s3/m/584a24ad4b35eefdc9d33326.png)
练习题一、名词解释1.复性:蛋白质的变性作用如果不过于剧烈,则是一种可逆过程,变性蛋白质通常在除去变性因素后,可缓慢地重新自发折叠成原来的构象,恢复原有的理化性质和生物活性,这种现象成为复性2. 等电点(pI)当蛋白质溶液在某一定pH值时,使某特定蛋白质分子上所带正负电荷相等,成为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH值即为该蛋白质的等电点(isoelectric point,pI)。
3. 同工酶存在于同一种属或不同种属,同一个体的不同组织或同一组织、同一细胞,具有不同分子形式但却能催化相同的化学反应的一组酶,称之为同工酶(isoenzyme)4. 诱导契合:诱导契合学说:酶的活性中心在结构上具柔性,底物接近活性中心时,可诱导酶蛋白构象发生变化,这样就使使酶活性中心有关基团正确排列和定向,使之与底物成互补形状有机的结合而催化反应进行。
5. 变构效应:有些酶分子表面除了具有活性中心外,还存在被称为调节位点(或变构位点)的调节物特异结合位点,调节物结合到调节位点上引起酶的构象发生变化,导致酶的活性提高或下降,这种现象称为别构效应6. 糖酵解:糖酵解是将葡萄糖降解为丙酮酸并伴随着ATP生成的一系列反应,是生物体内普遍存在的葡萄糖降解的途径。
该途径也称作Embden-Meyethof-Parnas途径,简称EMP途径。
8. β-氧化脂肪酸在体内氧化时在羧基端的β-碳原子上进行氧化,碳链逐次断裂,每次断下一个二碳单位,即乙酰CoA,该过程称作β-氧化。
9. 半保留复制DNA在复制时,两条链解开分别作为模板,在DNA聚合酶的催化下按碱基互补的原则合成两条与模板链互补的新链,以组成新的DNA分子。
这样新形成的两个DNA分子与亲代DNA分子的碱基顺序完全一样。
由于子代DNA分子中一条链来自亲代,另一条链是新合成的,这种复制方式称为半保留复制10. 转录转录是在 DNA的指导下的RNA聚合酶的催化下,按照碱基配对的原则,以四种核苷酸为原料合成一条与模板DNA互补的RNA 的过程。
生物化学名词解释
![生物化学名词解释](https://img.taocdn.com/s3/m/d7a2861a4b7302768e9951e79b89680203d86b3d.png)
生物化学名词解释零、绪论1.生物化学:从分子水平来研究生物体内基本物质的化学组成、结构,及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢:生物体与外界环境进行有规律的物质交换,称为新陈代谢。
3.分子生物学:是现代生物学的带头学科,主要研究分子遗传学,生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能。
4.药学生物化学:是研究与药学科学相关的生物化学理论、原理和技术,及其在药物研究、药品生产、药物质量监控与药品临床方面应用的基础学科。
一、糖的化学1、糖基化工程:通过增加、删除或调整蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。
2、单糖:凡不能被水解成更小分子的糖称为单糖。
3、多糖:由许多单糖分子缩合而成的长链结构。
4、寡糖:是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。
5、结合糖:也称糖复合物或复合糖,是指糖和蛋白、脂质等非糖物质结合的复合分子。
6、同聚多糖:也称均一多糖,由同类型的单糖缩合而成。
7、杂多糖:也称不均一多糖,由不同类型的单糖缩合而成。
8、粘多糖:也称糖胺聚糖,是一类含氮的不均一多糖,其化学组成通常为糖醛酸及氨基己糖或其衍生物,有的还含有硫酸。
9、糖蛋白:是糖与蛋白质以共价键结合的复合分子。
10、肽聚糖:又称胞壁质,是构成细菌细胞壁基本骨架的主要成分,是一种多糖与氨基酸链相连的多糖复合物。
11、蛋白质聚糖:是一类由糖和蛋白质结合形成的非常复杂的大分子糖复合物,其中蛋白质含量一般少于多糖。
12、脂多糖:一般由外层低聚糖链、核心多糖及脂质三部分组成。
13、内切糖苷酶:可水解糖链内部的糖苷键,有的可将长的多糖链切为较短的寡糖片段。
14、外切糖苷酶:只能切下多糖非还原末端的一个单糖,并对单糖组成和糖苷键有专一性要求。
二、脂的化学1、必需脂肪酸:人体不能合成必须从食物获取的脂肪酸。
生物化学名词解释
![生物化学名词解释](https://img.taocdn.com/s3/m/20c287561fd9ad51f01dc281e53a580217fc5075.png)
第一部分绪论1.生物化学(Biochemistry):是生命的化学,是研究生物体的化学组成和生命过程中的化学变化规律的一门科学。
是从分子水平来研究生物体(人、动物、植物和微生物)内基本物质的化学组成、结构及在生命活动中这些物质所进行的化学变化的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢:生物体内的各种基本物质在生命过程中不断进行着相互联系、相互制约、相互对立而又统一的、多样复杂的、又有规律的化学变化,其结果是生物体与外界环境进行有规律的物质交换,称为新陈代谢。
通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。
3.分子生物学(molecular biology):是现代生物学的带头学科,它主要研究遗传的分子基础,生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。
第二部分维生素与微量元素1.维生素(vitamin):是维持人体生命活动必需的一类有机物质,也是保持人体健康的重要活性物质。
维生素在体内的含量很少,但在人体生长、代谢、发育过程中却发挥着重要的作用。
机体不能合成或合成量不足,不能满足机体的需要,必须经常通过食物中获得,人体对维生素的需要量很小。
2.微量元素(trace element):微量元素是指人体中每人每天需要量在100mg以下的元素,虽然所需甚微,但生理作用却十分重要,如铁、锌、铜、锰、铬、硒、钼、钴、氟等。
3.水溶性维生素(water-soluble vitamins):一类能溶于水的有机营养分子。
其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。
4.脂溶性维生素(lipid soluble vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。
脂溶性维生素包括维生素A、D、E和K,这类维生素能被动物贮存。
5.维生素原(provitamin):某些物质本身不是维生素,但是可以在生物体内转化成维生素,这些物质称为维生素原。
生物化学名词解释
![生物化学名词解释](https://img.taocdn.com/s3/m/1056915977232f60ddcca142.png)
1.生物化学:是一门在分子水平上研究生物体的化学组成、生命活动过程中的化学变化规律和生命本质的科学。
2.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学。
3.1953年,Watson和Crick提出DNA双螺旋结构,是生物化学发展进入分子生物时代的重要标志。
4.生物化学知识应用于中医药学研究也将大大促进中医药学的发展。
如中药成分对机体代谢及生物大分子的影响。
5.糖类:是一类多羟基酮及其缩聚物和衍生物。
6.单糖:只含有一个多羟基醛或多羟基酮单位7.成苷反应:在单糖的环式结构中,由醛基氧或羰基氧形成的羟基称为半缩醛羟基,该羟基可以和其他分子的羟基脱水缩合,生成糖苷。
8.寡糖:是由2-10个糖基以糖苷键结合而成的化合物。
包括麦芽糖、蔗糖和乳糖。
9.必需脂肪酸:人和动物正常生命活动需要但体内不能合成或合成量不足,必须从食物中摄取,故称之。
包括亚油酸,α亚麻酸和花生四烯酸三种。
10.软脂酸有16个C,硬脂酸有18个C、11.氨基酸是蛋白质的结构单位。
自然界中的氨基酸有300多种。
其中用来合成蛋白质的氨基酸只有20种,这20种氨基酸称为标准氨基酸。
12.蛋白质主要由C、H、O、N组成,其中N是蛋白质的特征性元素。
生物样品中的蛋白质含量=样品含氮量陈×6.2513.氨基酸的结构:四个不同的原子或基团:羧基、氨基、R基和一个氢原子。
特点:α-氨基酸(Pro除外)、R侧链不同、不对称碳原子。
分类:○1非极性疏水R基氨基酸○2极性不带电荷R基氨基酸○3带正电荷R基氨基酸(碱性)○4带负电荷R基氨基酸(酸性)14.氨基酸的性质:(1)紫外吸收特征,色氨酸和酪氨酸在280nm波长是吸收峰。
(2)两性电解和等电点。
氨基酸都含有氨基和羧基,氨基可以结合H而带正电荷,羧基可以给出H而带负电荷,所以氨基酸是两性电解质,氨基酸这种解离特性称为两性电解。
在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为氨基酸的等电点(3)茚三酮反应15.蛋白质的分类:根据组成分为单纯蛋白质和缀和蛋白质;根据构像分为纤维肽蛋白质和球状蛋白质。
《生物化学》常用名词解释(三)
![《生物化学》常用名词解释(三)](https://img.taocdn.com/s3/m/227c34ea84868762caaed562.png)
《生物化学》常用名词解释(三)1.肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。
2.血红蛋白(hemoglobin):是由含有血红素辅基的4个亚基组成的寡聚蛋白。
血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。
3.波尔效应(Bohreffect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白的氧亲和力下降的现象。
4.别构效应(allostericeffect):又称之变构效应。
是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
5.镰刀型细胞贫血病(sickle-cellanemia):血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。
其特点是病人的血红蛋白β-亚基N端的第6个氨基酸残基是缬氨酸,而不是正常的谷氨酸残基。
6.酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。
酶不改变反应的平衡,只是通过降低活化能加快反应的速度。
7.全酶(holoenzyme):具有催化活性的酶,包括所有的必需的亚基、辅基和其它的辅助因子。
8.脱辅基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。
9.酶活力单位(U,activeunit):酶活力的度量单位。
1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25℃,其它为最适条件)下,在1分钟内能转化1微摩尔底物的酶量,或是转化底物中1微摩尔的有关基团的酶量。
10.比活(specificactivity):每分钟每毫克酶蛋白在25℃下转化的底物的微摩尔数(μm)。
比活是酶纯度的测量。
11.活化能(activationenergy):将一摩尔反应底物中的所有分子由基态转化为过渡态所需要的能量。
12.活性部位(activesite):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基的部分。
生化生物化学名词解释 (3)重点知识总结
![生化生物化学名词解释 (3)重点知识总结](https://img.taocdn.com/s3/m/dc3b4d6f7cd184254b353588.png)
1.模体:是蛋白质分子中具有特定空间构象和特定功能的结构成分。
其中一类就是具有特殊功能的超二级结构,一个模体总有其特征性的氨基酸序列,并发挥特殊的功能。
2.等电点:在某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性,此时该溶液的pH值即为该氨基酸的等电点。
.3.蛋白质的一级结构就是蛋白质多肽链中氨基酸残基的排列顺序。
主要化学键是肽键,有的还包含二硫键。
4.蛋白质二级结构是指多肽链的主链骨架中若干肽单元,各自沿一定的轴盘旋或折叠,并以氢键为主要次级键而形成的有规则或无规则的构象,如α-螺旋、β-折叠、β-转角和无规卷曲等。
蛋白质二级结构一般不涉及氨基酸残基侧链的构象。
5.蛋白质的三级结构是指多肽链在二级结构的基础上,由于氨基酸残基侧链R基的相互作用进一步盘曲或折迭而形成的特定构象。
也就是整条多肽链中所有原子或基团在三维空间的排布位置。
稳定主要靠次级键,包括氢键、盐键、疏水键以及范德华力等。
此外,某些蛋白质中二硫键也起着重要的作用。
6.蛋白质的四级结构是指由两个或两个以上亚基之间彼此以非共价键相互作用形成的更为复杂的空间构象。
主要稳定因素:氢键、离子键。
7.分子病:蛋白质分子发生变异导致的疾病。
8.蛋白质变性:天然蛋白质在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,称为蛋白质的变性作用9.变构效应:蛋白质的空间结构的改变伴随其功能的变化。
10.DNA变性:在某些理化因素(温度、pH值、有机溶剂和尿素等)的作用下,维持DNA 双螺旋结构的作用力氢键和碱基堆积力被破坏,形成无规线团状分子,从而引起核酸理化性质和生物学功能的改变。
11.Tm值:通常将紫外吸收的增加量达最大量一半时的温度称熔解温度,用Tm表示12.Km值:米氏常数Km值。
等于酶促反应速度为最大反应速度一半时的底物浓度,单位是mol/L13.同工酶:是指催化相同的化学反应,但酶蛋白的分子结构,理化性质乃至免疫学性质不同的一组酶(一同三不同)14.酶的别构调节:体内一些代谢物可与某些酶的活性中心外的某个部位非共价可逆结合,引起酶的构象改变,从而改变酶的活性。
生物化学名词解释必考(3)
![生物化学名词解释必考(3)](https://img.taocdn.com/s3/m/41ad1e6126284b73f242336c1eb91a37f11132f1.png)
生物化学名词解释必考(3)生物化学名词解释必考58.糖核苷酸:单糖与核苷酸通过磷酸酯键结合的化合物,是双糖和多糖合成中单糖的活化形式与供体。
59.限制性核酸内切酶:能作用于核酸分子内部,并对某些碱基顺序有专一性的核酸内切酶,是基因工程中的重要工具酶。
60.内含子:真核生物的mRNA 前体中,除了贮存遗传序列外,还存在非编码序列,称为内含子。
61.外显子:真核生物的mRNA 前体中,编码序列称为外显子。
62.基因表达:是基因中的DNA序列生产出蛋白质的过程。
步骤大致从DNA转录成mRNA开始,一直到对于蛋白质进行后转译修饰为止。
生物化学重点名词解释2017-04-09 08:04 | #2楼生物化学:研究生物体分子组成及变化规律的基础学科,是对生命现象最为基础、深入的分子水平的机制探讨a 生物体的化学组成、分子结构、性质及功能。
b 生物分子的分解与合成,反应过程中的能量变化、及新陈代谢的调节与控制c 生物信息分子的合成及其调控,也就是遗传信息的贮存、传递和表达必需氨基酸:人体和其它哺乳动物自身不能合成,机体又必需,需要从饮食中获得的氨基酸。
氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。
构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。
构型的转变伴随着共价键的断裂和重新形成。
蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。
蛋白质的二级结构:在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。
蛋白质α-螺旋的特点:①右手螺旋②氨基酸侧链伸向螺旋外侧③每3.6个氨基酸残基螺旋上升一圈,螺距为0.54nm ④α-螺旋的每个肽链的N-H和第四个肽链的羰基氧形成氢键,氢键的方向与螺旋长轴基本平行。
β-折叠结构又称为β-片层结构,它是肽链主链或某一肽段的一种相当伸展的结构,多肽链呈扇面状折叠。
(1)两条或多条几乎完全伸展的多肽链(或肽段)侧向聚集在一起,通过相邻肽链主链上的氨基和羰基之间形成的氢键连接成片层结构并维持结构的稳定(2)氨基酸之间的轴心距为0.35nm(反平行式)和0.325nm(平行式)。
生物化学名词解释完全版
![生物化学名词解释完全版](https://img.taocdn.com/s3/m/e94d8cd95022aaea988f0f07.png)
第三章
1,酶:生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是
通过降低活化能加快反应的速度。
2,脱脯基酶蛋白:酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。
3,全酶:具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。
4,酶活力单位:酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。
14,催化常数(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。
15,双倒数作图:那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。
14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。
15,凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。
16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。
22,别构酶:活性受结合在活性部位以外的部位的其它分子调节的酶。
23,别构调节剂:结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。
生物化学名词解释3.
![生物化学名词解释3.](https://img.taocdn.com/s3/m/9b41c681af45b307e87197cf.png)
生物化学名词解释(三◇光反应(light reactions光合色素将光能转变成化学能并形成A TP和NADPH的过程。
◇暗反应(dark reactions利用光反应生成的A TP和NADPH的化学能使CO2还原成糖或其它有机物的一系列酶促过程。
◇Calvin 循环(Cavin cycle也称之还原戊糖磷酸循环(RPP cycle: reductive pentose phosphate cycle,C3途径(C3 pathway。
在光合作用期间,将CO2还原转化为糖的反应循环。
是植物用于固定二氧化碳生成磷酸丙糖的循环途径。
◇C4途径(C4 pathway一些植物中固定碳的途径,其特点是通过使CO2浓缩减少光呼吸。
在该途径中,在叶肉细胞CO2被整合到C4酸中,然后C4酸在维管束鞘细胞被脱羧,释放出的CO2被Calvin 循环利用。
◇光呼吸(photorespiration植物依赖光摄取氧进行磷酸乙醇酸代谢的过程。
光呼吸之所以发生是由于O2可以与CO2竞争核酮糖-1,5-二磷酸羧化氧化酶的活性部位。
◇β氧化途径(βoxidation pathway是脂肪酸氧化分解的主要途径,脂肪酸被连续地在β碳氧化降解生成乙酰CoA,同时生成NADH和FADH2,因此可产生大量的A TP。
该途径因脱氢和裂解均发生在β位碳原子而得名。
每一轮脂肪酸β氧化都是由4步反应组成:氧化、水化、再氧化和硫解。
◇肉毒碱穿梭系统(carnitine shuttle system脂酰CoA通过形成脂酰肉毒碱从细胞质转运到线粒体的一个穿梭循环途径。
◇酮体(acetone body在肝脏中由乙酰CoA合成的燃料分子(β羟基丁酸、乙酰乙酸和丙酮。
在饥饿期间酮体是包括脑在内的许多组织的燃料,酮体过多将导致中毒。
◇柠檬酸转运系统(citrate transport system将乙酰CoA从线粒体转运到细胞质的穿梭循环途径。
在转运乙酰CoA的同时,细胞质中的NADH氧化成NAD+、NADP+还原为NADPH。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学名词解释(三)◇光反应(light reactions)光合色素将光能转变成化学能并形成A TP和NADPH的过程。
◇暗反应(dark reactions)利用光反应生成的A TP和NADPH的化学能使CO2还原成糖或其它有机物的一系列酶促过程。
◇Calvin 循环(Cavin cycle)也称之还原戊糖磷酸循环(RPP cycle: reductive pentose phosphate cycle),C3途径(C3 pathway)。
在光合作用期间,将CO2还原转化为糖的反应循环。
是植物用于固定二氧化碳生成磷酸丙糖的循环途径。
◇C4途径(C4 pathway)一些植物中固定碳的途径,其特点是通过使CO2浓缩减少光呼吸。
在该途径中,在叶肉细胞CO2被整合到C4酸中,然后C4酸在维管束鞘细胞被脱羧,释放出的CO2被Calvin 循环利用。
◇光呼吸(photorespiration)植物依赖光摄取氧进行磷酸乙醇酸代谢的过程。
光呼吸之所以发生是由于O2可以与CO2竞争核酮糖-1,5-二磷酸羧化氧化酶的活性部位。
◇β氧化途径(βoxidation pathway)是脂肪酸氧化分解的主要途径,脂肪酸被连续地在β碳氧化降解生成乙酰CoA,同时生成NADH和FADH2,因此可产生大量的A TP。
该途径因脱氢和裂解均发生在β位碳原子而得名。
每一轮脂肪酸β氧化都是由4步反应组成:氧化、水化、再氧化和硫解。
◇肉毒碱穿梭系统(carnitine shuttle system)脂酰CoA通过形成脂酰肉毒碱从细胞质转运到线粒体的一个穿梭循环途径。
◇酮体(acetone body)在肝脏中由乙酰CoA合成的燃料分子(β羟基丁酸、乙酰乙酸和丙酮)。
在饥饿期间酮体是包括脑在内的许多组织的燃料,酮体过多将导致中毒。
◇柠檬酸转运系统(citrate transport system)将乙酰CoA从线粒体转运到细胞质的穿梭循环途径。
在转运乙酰CoA的同时,细胞质中的NADH氧化成NAD+、NADP+还原为NADPH。
每循环一次消耗2分子ATP。
◇酰基载体蛋白(ACP, acyl carrier protein)通过硫酯键结合脂肪酸合成的中间代谢物的蛋白质(原核生物)或蛋白质的结构域(真核生物)。
◇生物固氮作用(Biological nitrogen fixation)大气中的氮被还原为氨的过程。
生物固氮只发生在少数的细菌和藻类中。
◇尿素循环(urea cycle)是一个由4步酶促反应组成的可以将来自氨和天冬氨酸的氮转化为尿素的代谢循环。
该循环是发生在脊椎动物肝脏中的一个代谢循环。
◇脱氨(deamination)在酶的催化下从生物分子(氨基酸或核苷酸分子)中除去氨基的过程。
◇氧化脱氨(oxidative deamination)α-氨基酸在酶的催化下脱氨生成相应α-酮酸的过程。
氧化脱氨过程实际上包括脱氢和水解两个步骤。
◇转氨酶(transaminases)也称之氨基转移酶(aminotransferases)。
催化一个α-氨基酸的α-氨基向一个α-酮酸转移的酶。
◇转氨(transamination)一个α-氨基酸的α-氨基借助转氨酶的催化作用转移到一个α-酮酸的过程。
◇乒乓反应(ping-pong reaction)在该反应中,酶结合一个底物并释放出一个产物,留下一个取代酶,然后该取代酶再结合第二个底物和释放出第二个产物,最后酶恢复到它的起始状态。
◇生糖氨基酸(glucogenic amino acids)那些降解能生成可作为糖异生前体分子,例如丙酮酸或柠檬酸循环中间代谢物的氨基酸。
◇生酮氨基酸(acetonegenic amino acid)那些降解可生成乙酰CoA或酮体的氨基酸。
◇苯酮尿症(phenylketonuria)是由于苯丙氨酸羟化酶缺乏引起苯丙酮酸堆积的代谢遗传病。
缺乏苯丙氨酸羟化酶,苯丙氨酸只能靠转氨生成苯丙酮酸,病人尿中排出大量苯丙酮酸。
苯丙酮酸堆积对神经有毒害,智力发育出现障碍。
◇尿黑酸症(alcaptonuria)是酪氨酸代谢中缺乏尿黑酸氧化酶引起的代谢遗传病。
这种病人尿中含有尿黑酸,在碱性条件下暴露于氧气氧化并聚合为类似于黑色素的物质,从而使尿成黑色。
◇核苷磷酸化酶(nucleoside phosphorylase)能分解核苷生成含氮碱和戊糖的磷酸酯的酶。
◇核苷水解酶(nucleoside hydrolase)能分解核苷生成含氮碱和戊糖的酶。
◇从头合成(de novo synthesis )生物体内用简单的前体物质合成生物分子的途径,例如核苷酸的从头合成。
◇补救途径(salvage pathway)与从头合成途径不同,生物分子的合成,例如核苷酸可以由该类分子降解形成的中间代谢物,如碱基等来合成,该途径是一个再循环途径。
◇痛风(gout)是尿酸过量生产或尿酸排泄不充分引起的尿酸堆积造成的,尿酸结晶堆积在软骨、软组织、肾脏以及关节处。
在关节处的沉积会造成剧烈的疼痛。
◇别嘌呤醇(allopurinol)是结构上(嘌呤环上第7位是C,第8位是N)类似于次黄嘌呤的化合物,对黄嘌呤氧化酶有很强抑制作用,常用来治疗痛风。
◇自杀抑制作用(suicide substrate)底物类似物经酶催化生成的产物变成了该酶的抑制剂。
例如别嘌呤醇对黄嘌呤氧化酶的抑制就属于这种抑制类型。
◇Lesch-Nyhan综合症(Lesch-Nyhan )也称之自毁容貌症,是由于次黄嘌呤-鸟嘌呤磷酸核糖转移酶的遗传缺陷引起的。
缺乏该酶使得次黄嘌呤和鸟嘌呤不能转换为IMP和GMP,而是降解为尿酸,过量尿酸将导致Lesch-Nyhan综合症。
◇激素(hormone)一类由内分泌组织合成的微量的化学物质,它由血液运输到靶组织,起着一个信使的作用调节靶组织(器官)的功能。
◇激素受体(hormone receptor)位于细胞表面或细胞内结合特异激素并引发细胞响应的蛋白质。
◇第二信使(second messenger)响应外部信号(第一信使),例如激素而在细胞内合成的效应分子,例如cAMP、肌醇三磷酸或二酰基甘油等。
第二信使再去调节靶酶,引起细胞内各种效应。
◇级联放大(cascade)在体内的不同部位,通过一系列的酶促反应来传递一个信息,并且初始信息在传到系列反应的最后时,信号得到放大,这样的一个系列叫做级联系统。
最普通的类型是蛋白水解和蛋白质磷酸化的级联放大。
◇G蛋白(G proteins)在细胞内信号传导途径中起着重要作用的GTP结合蛋白质,由α、β、γ三个不同亚基组成。
与激素受体结合的配体诱导GTP与G蛋白结合的GDP进行交换,结果激活位于信号传导途径中下游的腺苷酸环化酶。
G蛋白将胞外的第一信使肾上腺素等激素和胞内的腺苷酸环化酶催化的腺苷酸环化生成的第二信使cAMP联系起来。
G蛋白具有内源GTP酶活性。
◇激素效应元件(hormone response elements, HRE)是指类固醇、甲状腺素等激素受体结合的一段短的DNA序列(12~20bp),这类受体结合DNA后可改变相邻基因的表达。
◇半保留复制(semiconservative replication)DNA复制的一种方式。
每条链都可用作合成互补链的模板,合成出两分子的双链DNA,每个分子都是由一条亲代链和一条新合成的链组成。
◇复制叉(replication forks)Y字型结构,在复制叉处作为模板的双链DNA解旋,同时合成新的DNA链。
◇DNA聚合酶(DNA polymerase)以DNA为模板催化核苷酸残基加到已存在的聚核苷酸的3ˊ末端反应的酶。
某些DNA聚合酶具有外切核酸酶的活性,可用来校正新合成的核苷酸序列。
◇Klenow 片段(Klenow fragment)E.coli DNA聚合酶I经部分水解生成的C末端605个氨基酸残基片段。
该片段保留了DNA 聚合酶I 的5ˊ-3ˊ聚合酶和3ˊ-5ˊ外切酶活性,但缺少完整酶的5ˊ-3ˊ外切酶活性。
◇前导链(leading strand)与复制叉移动的方向一致,通过连续地5ˊ→3ˊ聚合合成的新的DNA链。
◇滞后链(lagging strand)与复制叉移动的方向相反,通过不连续地5ˊ→3ˊ聚合合成的新的DNA链。
◇冈崎片段(Okazaki fragments)相对比较短的DNA链(大约1000核苷酸残基),是在DNA的滞后链的不连续合成期间生成的片段,这是Reiji Okazaki 在DNA合成实验中添加放射性的脱氧核苷酸前体观察到的。
◇引发体(primosome)一种多蛋白复合体,E.coli中的引发体包括催化滞后链不连续DNA合成所需要的短的RNA 引物合成的引发酶、解旋酶。
◇复制体(replisome)一种多蛋白复合体,包含DNA聚合酶、引发酶、解旋酶、单链结合蛋白和其它辅助因子。
复制体位于每个复制叉处执行着细菌染色体DNA复制的聚合反应。
◇单链结合蛋白(SSB,single-strand binding protein)一种与单链DNA结合紧密的蛋白质,它的结合可以防止复制叉处的单链DNA本身重新折叠回双链区。
◇滚环复制(rolling-circle replication)复制环状DNA的一种模式,在该模式中,DNA聚合酶结合在一个缺口链的3ˊ端,绕环合成与模板链互补的DNA,每一轮都是新合成的DNA取代前一轮合成的DNA。
◇逆转录酶(reverse transcriptase)一种催化以RNA为模板合成DNA的DNA聚合酶,具有RNA指导的DNA合成、水解RNA 和DNA指导的DNA合成的酶活性。
◇互补DNA (cDNA , complementary DNA)通过逆转录酶由mRNA模板合成的双链DNA。
◇聚合酶链式反应(PCR, polymerase chain reaction)扩增样品中的DNA量和富集众多DNA分子中的一个特定DNA序列的一种技术。
在该反应中,使用与目的DNA序列互补的寡核苷酸作为引物,进行多轮的DNA合成。
其中包括DNA 变性、引物退火和在Taq DNA聚合酶催化下的DNA合成。
◇直接修复(direct repair)是通过一种可连续扫描DNA,识别出损伤部位的蛋白质将损伤部位直接修复的方法。
该修复方法不用切断DNA或切除碱基。
◇切除修复(excision repair)通过切除-修复内切酶使DNA损伤消除的修复方法。
一般是切去损伤区,然后在DNA聚合酶的作用下以露出的单链为模板合成新的互补链,最后用连接酶将缺口连接起来。
◇错配修复(mismatch repair)在含有错配碱基的DNA分子中使正常核苷酸序列恢复的修复方式。
这种修复方式的特点是:识别出正确的链,切除掉不正确链的部分,然后通过DNA聚合酶和DNA连接酶的作用合成正确配对的双链DNA。