随机过程(超容易理解+配套例题)(课堂PPT)
随机过程第十一章PPT课件
17
例8.赌徒输光问题: 甲乙两人玩抛硬币游戏,一开始甲带有 a元钱,乙带有m a元钱,独立重复抛 一枚均匀硬币,若第n次出现正面,则 甲赢1元,否则甲输1元。游戏一直到某人 输光结束。计算最后甲输光的概率。
18
解 : 以 Sn表 示 抛 n次 硬 币 后 甲 所 拥 有 的 钱 数 。 则 {Sn}是 一 时 齐 M arkov链 , 状 态 空 间 是 {0,1,...,m },一 步 转 移 概 率 为 :
p ijP X n 1j|X n i q pjj ii
i,j 0 ,1
p
p
一 步 转 移 矩 阵 P q pq p , 状 态 转 移 图 : 0
q q
1
9
例 3 ( . 随 机 游 动 )
1
2
3
4
5
设 一 醉 汉 在 I{1, 2, 3, 4, 5}作 随 机 游 动 : 如 果 现 在 位 于 点 ( i 1i5),则 下 一 时 刻 各 以 1/3概 率 向 左 或 向 右 移 动 一 格 , 或 以 概 率 1/3呆 在 原 处 ; 如 果 现 在 位 于 点 1( 或 点 5) , 则 下 一 时 刻 以 概 率 1移 到 点 2( 或 点 4) 。
令 h i P ( 最 终 被 7 吸 收 |X 0 i ) , 则 h 7 1 , h 3 0 .
利 用 对 称 性 , h1h5h91 2.
利用Markov性和全概率公式:
h2
13h1
13h5
13h3
1. 3
22
§2 有 限 维 分 布 CK方 程
pijs,suv piks,supkjsu,suv
离去者
系统
现用马氏链来描述这个服务系统:
随机过程及其统计描述ppt课件.ppt
任意时刻下,观测目的是X取什么值;全程的情况下, 观测目的是X(t)的函数形式.
7
12.1 随机过程的概念
随机相位正弦波
随机过程举例
考虑: X (t) a cos(t ), t (,)
式中 a,是正常数,是 (0, 2 ) 上服从均匀分布的随机变量。
当 在(0, 2 ) 内随机的取一个值 i ,可得样本函数:
2
0 cos(t1 ) cos(t2 ) f ( )d
a2
2
2
0 cos(t1 ) cos(t2 )d
a2
4
2
0 {cos[(t1 t2 ) 2 ] cos(t1 t2 )}d
a2 2
cos (t1
t2 )
方差函数
2 X
(t)
RX
(t , t )
2 X
(t)
a2 2
18
12.2 随机过程的统计描述
随机过程举例
抛掷一枚硬币的试验,样本空间是S={H,T}, 现借此定义随机过程:
cos t,
X (t) t,
当出现H, 当出现T,
t (, )
可将此随机过程改写为
X (t) Y cost (1Y )t ,
其中
Y
1, 0,
出现H 出现T
,
t (, )
X对Y和t的依赖,决定了X是一个随机过程. 确定了 Y之后,即可确定任意时刻和全程的观测结果.
集平均(统计平均)
X (t)是随机过程的所有样本函数在时刻 t 的函数值的平均值,通常称
这种平均为集平均或统计平均。
12
12.2 随机过程的统计描述
(二) 随机过程的数字特征
均方值函数
Ψ
随机过程课件.ppt
随机过程的统计描述 二 有限维分布族
两种描述
分布函数 特征数
设随机过程X (t),t T,对每一固定的t T ,随机变量X (t)的分布函数与t有关, 记为FX (x,t) PX (t) x,x R,称它为随机过程X (t),t T的一维分布函数 FX (x,t),t T称为一维分布函数族
为了描述随机过程在不同时刻状态之间的统计联系, 一般地,对任意n(n 2,3,L )个不同的时刻,t1,t2,L tn T
研究生课程
随机过程
汪荣鑫编 主讲教师:田ቤተ መጻሕፍቲ ባይዱ俊
2013年9月
第一章 随机过程基本概念
第1节 随机过程及其概率分布
1)随机过程概念 随机过程被认为是概率论的“动力学”部分,即
它的研究对象是随时间演变的随机现象,它是从 多维随机变量向一族(无限多个)随机变量的推广。
自然界中事物的变化过程可以大致分成为两类: 确定性过程:事物变化的过程可用时间的确定函数表示;
4
x1 (t )
3
2
1
t1' t1 t2 t2' t3 t3' t4' t4
t
4
例5:考虑抛掷一颗骰子的试验:
(1) 设X n是第n次(n 1)抛掷的点数,对于n 1, 2,L 的不同值,
X n是随机变量,服从相同的分布,P( X n
i)
1 6
,i
1, 2,3, 4,5, 6
因而X n , n 1构成一随机过程,称为伯努利过程或伯努利随机序列,
它的状态空间为1,2,3,4,5,6。
(2) 设Yn是前n次抛掷中出现的最大点数,Yn , n 1也是
一随机过程,它的状态空间仍是1, 2,3, 4,5, 6。
随机过程_课件---第三章
随机过程_课件---第三章第三章随机过程3.1 随机过程的基本概念1、随机过程定义3-1 设(),,F P Ω是给定的概率空间,T 为一指标集,对于任意t T ∈,都存在定义在(),,F P Ω上,取值于E 的随机变量()(),X t ωω∈Ω与它相对应,则称依赖于t 的一族随机变量(){},:X t t T ω∈为随机过程,简记(){}tX ω,{}tX 或(){}X t 。
注:随机过程(){,:,}X t t T ωω∈Ω∈是时间参数t 和样本点ω的二元函数,对于给定的时间是()00,,t T X t ω∈是概率空间(),,F P Ω上的随机变量;对于给定样本点()00,,X t ωω∈Ω是定义在T 上的实函数,此时称它为随机过程对应于0ω的一个样本函数,也成为样本轨道或实现。
E 称为随机过程的相空间,也成为状态空间,通常用""t X x =表示t X 处于状态x 。
2、随机过程分类:随机过程t X 按照时间和状态是连续还是离散可以分为四类:连续型随机过程、离散型随机过程、连续随机序列、离散随机序列。
3、有穷维分布函数定义3-2 设随机过程{}t X ,在任意n 个时刻1,,n t t 的取值1,,nt tX X 构成n 维随机向量()1,,n t t XX ,其n 维联合分布函数为:()()11,,11,,,,nnt t nt t nF x x P X x Xx ≤≤其n 维联合密度函数记为()1,,1,,n t tn f x x 。
我们称(){}1,,11,,:1,,,nt t n n Fx x n t t T ≥∈ 为随机过程{}t X 的有穷维分布函数。
3.2 随机过程的数字特征1、数学期望对于任何一个时间t T ∈,随机过程{}t X 的数学期望定义为()()tX t t E X xdF x μ+∞-∞==?()t E X 是时间t 的函数。
2、方差与矩随机过程{}t X 的二阶中心矩22()[(())],tX t t t Var X E X E X t T σ==-∈称为随机过程{}t X 的方差。
随机过程Ch3泊松过程ppt课件-48页PPT精选文档
13
n
P [ N (t) N (0)] n j P N (t h) N (t) j j0
n
Pn j (t )Pj (h) j0
n
Pn (t ) P0 (h) Pn1 (t ) P1 (h) Pn j (t )Pj (h) j2
设随机过程{ N(t) , t 0 }是一个计数过程,
0
满足
08.10.2019
9
(1) N (0) 0
2
(3) P{N(h) 1} h (h)
(4) P{N(h) 2} (h)
其 中 ( h ) 表 示 当 h 0 时 对 h 的 高 阶 无 穷 小 ,
则 随机过程{ N(t), t 0 }称为一个计数过程
且满足:
(1) N(t) 0 (2) N(t)是整数值
(3)对任意两个时刻 0 t1 t2 ,有 N (t1) N (t2 ) ( 4 ) 对 任 意 两 个 时 刻 0 t 1 t 2 ,
N (t2 ) N (t1)等于在区间 (t1 , t2 ] 中发生的事件的个数
则称 N(t) 为具有参数 的 Poisson(泊松)过程
注意 从条件(3)可知泊松过程有平稳增量,且
E[N(t)]t 并称
速率或强度
(单位时间内发生的事件的平均个数)
08.10.2019
8
说明
要确定计数过程是Poisson过程,必须证明 它满足三个条件。(条件3很难验证)
为此给出一个与Poisson过程等价的定义
P0 (t )
o(h) h
,
当h
0时 有 P0(t )
《数学随机过程》PPT课件
几何直观意义
3.3 随机分析初步
附注C—关于赋范线性空间概念的回顾
设V是一个线性空间,若 V,存在一个实数|| ||与
之对应,且具有下列性质:
(1) || ||0 , 且|| ||=0 =0 ; (2) ||c· ||= |c|·|| || , 特别 ||- ||= || ||; c R (3) || + || || ||+ || ||; V 则称|| || 为V中元素 的范数(norm)(模、长度),此时线
CXX (t1, t2 ) cov{ X (t1), X (t2 )} E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} | CXX (t1, t2 ) |2 | cov{ X (t1), X (t2 )} |2 | E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} |2 {E | [ X (t1) mX (t1)][ X (t2 ) mX (t2 )] |}2 E | X (t1) mX (t1) |2 E | X (t2 ) mX (t2 ) |2 D[ X (t1)]D[ X (t2 )]
3.3 随机分析初步
附注A—关于线性空间概念的回顾
设V是一个非空的集合,K是一个数域,又设
(a)在V中定义加法: , V : + V ; (b)在V中定义数乘: V, k K: k · V ; 且 , , V , k,l K , 满足 (1) k ,l K, , V : (2) +( +)= ( + )+ ; (3) + = + ; (4)0V, V: +0= ; (5) V, V: +=0 (6) 1 K: 1· = ; (7) k ,l K, V: (kl)· =k·(l) ; (8)k ,l K, V: (k+l) = k +l ; (9) k K, , V : k( + )= k + k .
随机过程_课件---第四章
随机过程_课件---第四章第四章 Poisson 过程4.1 齐次Poisson 过程到达时间间隔与等待时间的分布1、定理4-1强度为λ的齐次Poisson 过程{,0}t N t≥的到达时间间隔序列{},1,2,n X n = 是独立同分布的随机变量序列,且是具有相同均值1λ的指数分布。
证:事件{}1X t >发生当且仅当Poisson 过程在区间[]0,t 内没有事件发生,即事件{}1X t >等价于{0}tN =,所以有()(0)t t t P X t P N e λ->===因此,1X 具有均值为1λ的指数分布,再求已知1X 的条件下,2X 的分布。
(](](]211(|)(|)((0tP X t X s P X s P P e λ->====在s,s+t 内没有事件发生(由独立增量性)在s,s+t 内没有事件发生)(由平稳增量性)在,t 内没有事件发生)上式表明2X 与1X 相互独立,而且2X 也是一个具有均值为1λ的指数分布的随机变量,重复同样的推导可以证明定理4-1的结论。
2、定理4-2等待时间n S 服从参数为n ,λ的Γ分布,即分布密度为1()(),(1)!n tt f t e n λλλ--=- 0t ≥证:因为第n 个事件在时刻t 或之前发生当且仅当到时间t 已发生的事件数目至少是n ,即事件{}{}t n N n S t ≥?≤是等价的,因此()()()!j tn t j nt P S t P N n ej λλ∞-=≤=≥=∑上式两边对t 求导得n S 的分布密度为11()()()!(1)!(),0(1)!j j tt j nj nn tt t f t e e j j t et n λλλλλλλλλ-∞∞--==--=-+-=≥-∑∑注:定理4-2又给出了定义Poisson 过程的另一种方法。
从一列均值为1/λ的独立同分布的指数随机变量序列{},1n X n ≥出发,定义第n 个事件发生的时刻为n S ,则12n n S X X X =+++这样就定义了一个计数过程,且所得计数过程{},0t N t ≥就是参数为λ的Poisson 过程。
随机过程马尔科夫过程 ppt课件
输一局后输光)
2020/11/13
23
4.1 马尔可夫链与转移概率
( p q )u i pu i 1 qu i 1
p(ui1 ui ) q (ui ui1 )
ui1 ui
q p
(ui
ui1 )
i 1,2, , c 1
(1q)1,即 pq1
p
2
ui1ui uiui1ui1ui2 u1u0 ˆ
随机过程超容易理解配套例题
Poisson过程
1、计数过程: 随机过程N(t),t 0称为计数过程,假如N(t) 表 达从0到t时刻某一特定事件A发生旳次数, 它具有下列两个特点:
t
0
M
t
sf
s ds,
t0 t0
3、更新方程旳解
设更新方程中H(t)为有界函数,则方程存在惟一旳在有限 区间内有界旳解
t
K (t) H (t) 0 H (t s)dm(s)
4、更新方程在人口学中旳一种应用
考虑一种拟定性旳人口模型
B(t) ------在时刻t女婴旳出生速率,即在 [t,t+dt]之间有
注: 在有限旳时间内不可能有无限屡次更新发生。因为
If EX k 0
Tn
n
所以,if n ,
由大数定律知,依概率1有
n
Then Tn
从而,无穷屡次更新只可能在无限长旳时间内发生,即有限旳时间内最多只 能发生有限次更新。
N t supn;Tn t maxn;Tn t
2、更新方程 :如下形式旳积分方程称为更新方程
取有限或可列个值(称为过程旳状态,记为0,1,2,…),
而且,对任意n 0 及状态 i, j,i0,i1, ,in1 ,有
P( X n1 j X 0 i0 , X1 i1, , X n1 in1, X n i) P( X n1 j X n i)
2、转移概率
定义 i, j S, 称 P Xn1 j Xn i pij n
《随机过程》课件
马尔可夫过程的定义与性质
马尔可夫过程是一种重要的随机过程,具有马尔可夫性质,即未来状态只与当前状态有关。本部分将详 细介绍马尔可夫过程的定义和特性。
马尔可夫过程的应用
马尔可夫过程在很多领域都有广泛的应用,如金融风险评估、自然语言处理和社交网络分析等。我们将 义与性质
《随机过程》PPT课件
随机过程是一个重要的数学概念,本课件将深入介绍随机过程的定义、分类 以及常见例子,帮助您全面理解随机过程的本质。
随机过程的定义与随机变量的区别
了解随机过程和随机变量的不同之处对于理解随机过程的基本概念至关重要,本部分将详细讨论它们的 区别及其意义。
随机过程的分类及常见例子
随机过程可以根据其性质和特征进行分类,例如马尔可夫过程、泊松过程、布朗运动等。我们将介绍每 种类型的定义和常见应用。
布朗运动在金融和物理领域的 应用
布朗运动在金融领域和物理领域有着广泛的应用,如金融市场模型和粒子扩 散模型。我们将介绍一些相关的应用场景。
随机过程在数据分析中的应用
频率分析
利用随机过程的特性进行频率域信号分析, 如功率谱估计和频谱分析。
信号处理
利用随机过程的随机性和噪声模型进行信号 处理和滤波。
泊松过程是一种重要的随机过程,具有独立增量和平稳增量的特性。本部分 将详细介绍泊松过程的定义以及其它一些重要的性质。
泊松过程的应用
泊松过程在很多实际问题中具有重要的应用,如事件发生的模拟、人流和交通流量的预测等。我们将分 享一些实际案例。
布朗运动的定义与性质
布朗运动是一种连续时间的随机过程,具有随机漂移和随机扩散的特性。本部分将详细探讨布朗运动的 定义和一些重要的性质。
时域分析
通过对随机过程的统计特性进行分析,如均 值、方差和自相关函数。
《随机过程》课件
泊松过程
定义
泊松过程是一种计数随机过程,其事件的发生是 相互独立的,且具有恒定的平均发生率。
例子
放射性衰变、电话呼叫次数、交通事故等。
应用领域
物理学、工程学、保险学等。
03
随机过程的变换与函数
随机过程的线性变换
线性变换的定义
线性变换是指对随机过程中的每个时间点,将该点的随机变量或随机向量乘以一个常数 或矩阵,并加上另一个常数或矩阵。
应用
微分在随机过程的理论和应用中非常重要,例如在金融 领域中,可以通过计算股票价格的导数来预测股票价格 的变动趋势。
积分的定义
随机过程的积分是指对随机过程中的每个时间点,将该 点的随机变量进行积分。
积分的性质
积分运算可以改变随机过程的统计特性,例如期望、方 差和协方差等。
应用
积分在随机过程的理论和应用中也有重要应用,例如在 信号处理中,可以通过对信号进行积分来提取信号的特 征或进行信号的合成。
连续随机过程
01
定义
连续随机过程是在时间或空间上 连续取值的随机现象的数学模型 。
02
03
例子
应用领域
电子信号、温度波动、随机漫步 等。
物理、工程、金融等。
马尔可夫过程
定义
马尔可夫过程是一种特殊的随机过程,其未来状态只依赖于当前 状态,与过去状态无关。
例子
赌徒输赢的过程、天气变化等。
应用领域
统计学、计算机科学、人工智能等。
将随机信号视为随时间变化的随机变量序列,具有时间和概率的统 计特性。
随机模型
根据实际需求建立信号的随机模型,如高斯过程、马尔可夫过程等 。
信号的滤波与预测
滤波器设计
根据随机模型设计滤波 器,用于提取有用信号 或抑制噪声。
随机过程第三章-PPT
总之,若随机过程处处均方连续,则它得自相关函数所 在上也处处连续,反之也成立。
性质3、1 若随机过程X(t)就m是 s 则它得数学期望也必定连续,即:
lim E[ X (t t)] E[ X (t)]
t 0
连续得,
E [| X (t t) X (t) |2 ]≥ E2[ X (t t) X (t)]≥ 0
性质3、2 如果自关函数RX (t1,t2 ) 在 t1 t2 时连 续,且存在二阶偏导数
2R t1t2 t1 t2
则随机过程在均方意义下存在导数(证明略)
应当指出,随机过程有导数,首先过程必须就是连
续得,但随机过程得连续性不能保证过程一定有
导数。
2、 随机过程得均方导数X (t) 得数学期望
E
lim
t1 0
X
(t1
t1 )
Y (t2 ) t1
X
(t1 )Y
(t2
)
lim E[ X (t1 t1)Y (t2 )] E[ X (t1)Y (t2 )]
t1 0
t1
lim RXY (t1 t1, t2 ) RXY (t1, t2 )
t1 0
t1
RXY (t1, t2 ) t1
x满足
lim E
n
xn x 2
0
则称随机变量序列xn依均方收敛于随机变量x,并记
为
lim
n
xn
x
或 xn m s (xm·s——就是英文Mean—Square缩写)
1、 两个均方收敛性判据
里斯—菲希尔定理:对随机变量序列
构造柯西序列
如果满足
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、随机过程的定义
设随机试验E的样本空间为S={e},对其每一个元素e i (i=1,2,…)都以某种 法则确定一个样本函数x(eti, ),由全部元素{e}所确定的一族样本函数x(t, e)称为随机过程,记为x(t)。
解:
设 N ( t )表示在时间t时到达的顾客数
P (N (0 .5 ) 1 ,N (2 .5 ) 5 )
P ( N ( 0 . 5 ) 1 ,N ( 2 . 5 ) N ( 0 . 5 ) 4 )
P (N (0 .5 ) 1 )P (N (2 ) 4 )
(40.5)1 e40.5 (42)4 e42
N t
X t Yi i 1
称{X(t),t≥0}为复合泊松过程。
条件Poisson过程
1、定义:设 是一个正的随机变量,分布函数为G(x),设N(t) 是一个计数过程,
在 的条件下, {N(t),t≥0}是参数为 的泊松过程,即对任意的 s, t≥0,有
P N tsN sn tne t
n!
随机过程简介
1、实际背景: 在许多实际问题中,不仅需要对随机现象做 特定时间点上的一次观察,且需要做多次的 连续不断的观察,以观察研究对象随时间推 移的演变过程.
Ex.1 对某城市{X 的(气t)温a , 进t行 b n} 年,的连续观察,记 录得 :
研究该城市气温有无以年为周期的变化规律?
1
Ex.2 从杂乱电讯号的一段观察{Y(t),0< t< T} 中,研究是否存在某种随机信号S(t )?
n
t P { N (t s ) N (s ) n } t ,n 0 ,1 ,2 ..... e n !
称为Poisson过程的强度或者速率,也 就是说单位事件内事件发生的次数。
6
例:顾客到达某商店服从 =4的Poisson分布
已知商店上午9:00开门,试求到9:30时 仅到一位顾客,而到11:30时总计已达5位 顾客的概率。
(1)N(0)=0;
(2)过程有独立增量;
(3)对任意实数 t 0 ,s 0 ,N (t s) N (t)为具有参数
m (ts)m (t)ts()d的Poisson分布。 t
t
令 m(t) (s)ds 0
8
例 设某设备的使用期限为10年,在前5年内它平均2.5年需要维修一次, 后5年平均2年需要维修一次,求它在使用期内只维修过一次的概率。
1!
4!
0.0155
7
Poisson过程的推广
当Poisson过程的强度 不再是常数,而与时间t有关时, Poisson过程被推广为非齐次Poisson过程。一般来说,非 齐次Poisson过程不具有平稳增量。
非齐次Poisson过程
计数过程{N(t),t 0}称做强度函数为 (t)0(t0)的非齐次 Poisson过程,如果
研究随机过程的一个重要切入点就是研究一个随机信号的数字特征,数 字特征主要包括数学期望、相关函数、方差、协方差、均方值。其中数 学期望是一阶矩,后面四个是二阶矩。可以通过研究随机过程的二阶矩 特征来判断随机过程是否平稳等等。
4
Poisson过程
1、计数过程: 随机过程N(t),t 0称为计数过程,如果N ( t ) 表 示从0到t时刻某一特定事件A发生的次数, 它具备以下两个特点:
则称0
更新过程
1、更新过程的定义
设{Xn,n≥1}是独立同分布的非负随机变量,分布函数为F(x),且F(0)<1,令
n
T0 0, Tn Xk k1
记 EXn=0 xdF(x),0
Ntsupn;Tnt或 Nt ITnt n1
称{N(t),t≥0}更新过程。
解 考虑非齐次泊松过程,强度函数
1
(t )
2.5 1
2
0t5 5 t 10
m (1 0 )1 0(t)d t51d t1 01 d t 4 .5
0
02 .5 52
P {N (1 0 )N (0 ) 1 }(4 .5 )1e 4 .59e 9 2
1 !
2
9
复合Poisson过程
设{Yi,i≥1}是一族独立同分布的随机变量, {N(t),t≥0}是泊松过程,且{Yi,i≥1}与 {N(t),t≥0}独立,记
(1)N(t) 0 且取值为整数; (2)s t 时,N ( s ) N ( t ) 且 N ( t ) N ( s ) 表 示 ( s , t ] 时 间 内 事 件 A 发 生 的 次 数 。
5
2、Poisson过程 计数过程 {N(t),t 0}称为参数为 ( 0)的Poisson 过程,如果 (1)N(0)=0; (2)过程有独立增量; (3)对任意的s, t 0,
设有一个过程x(t),若对每一个固定的时刻t j ( j=1,2…),Xt (j )是一个 随机变量,则x(t)称为随机过程。
2
随机过程x(t,e)四种不同情况下的意义: .当t固定,e固定时,x(t)是一个确定值; .当t固定,e可变时,x(t)是一个随机变量; .当t可变,e固定时,x(t)是一个确定的时间函数; .当t可变,e可变时,x(t)是一个随机过程;
一个典型的更新过程的例子就是机器零件的更换。在0时刻,安装上一
个新零件并开始运行,当零件在X1时刻发生损坏,马上用一个新的来
替换(假设替换零件不需要时间),当第二个零件从X1时间开始运行,
到X2时间发生损坏时,我们马上换第三个零件….这些零件的使用寿命
是独立同分布的,那么到t时刻为止已经更换的零件数目就构成一个更
平稳过程 1)严平稳过程:
若 t1,t2,Ltn T,及 h0,(Xt1,Xt2,L,Xtn)
与 (Xt1h,Xt2h,L,Xtnh)
有相同的联合分布,也就是说主要性质 只与变量之间的时间间隔有关。
3
2)宽平稳过程: 如果随机过程{x(t),t T }所有二阶矩都存在, 并且E[x(t)]= ,协方差函数 (t, s ) 只与时间差 t-s有关,那么称{x(t), t T }为宽平稳过程。