数据统计及SPSS应用-方差分析
如何在SPSS数据分析报告中进行方差分析?
如何在SPSS数据分析报告中进行方差分析?关键信息项:1、数据准备要求2、方差分析的类型选择3、假设检验设定4、效应量的计算与解释5、结果的呈现与解读6、多重比较方法的应用7、异常值处理方式8、数据正态性检验步骤9、方差齐性检验方法10、结果的报告格式11 数据准备要求111 数据的收集与录入:确保数据的准确性和完整性,避免错误或缺失值。
112 数据的编码与分类:对变量进行合理的分类和编码,以便于后续分析。
113 数据的清洗:检查并处理异常值和离群点,可采用Winsorization 或删除等方法。
12 方差分析的类型选择121 单因素方差分析:适用于研究一个自变量对因变量的影响。
122 多因素方差分析:用于探讨多个自变量及其交互作用对因变量的影响。
123 协方差分析:在控制协变量的情况下,分析自变量对因变量的作用。
13 假设检验设定131 零假设和备择假设的确定:明确研究的预期方向。
132 检验水平的选择:通常设定为 005 或 001。
14 效应量的计算与解释141 部分η²:反映自变量对因变量变异的解释程度。
142 ω²:用于校正样本量对效应量的影响。
15 结果的呈现与解读151 ANOVA 表的解读:包括自由度、均方、F 值和 P 值等。
152 图形展示:如箱线图、均值图等,直观呈现组间差异。
16 多重比较方法的应用161 LSD 法:适用于样本量相等且方差齐性的情况。
162 Bonferroni 校正:控制多重比较的总体误差率。
17 异常值处理方式171 识别异常值的方法:如使用箱线图或 Z 分数等。
172 对异常值的处理决策:根据具体情况决定保留、修正或删除。
18 数据正态性检验步骤181 绘制直方图和 QQ 图:初步判断数据的正态性。
182 采用 ShapiroWilk 检验或 KolmogorovSmirnov 检验:进行正式的正态性检验。
19 方差齐性检验方法191 Bartlett 检验:适用于正态分布的数据。
SPSS数据的参数检验和方差分析
SPSS数据的参数检验和方差分析参数检验和方差分析是统计学中常用的两种分析方法。
本文将详细介绍SPSS软件中如何进行参数检验和方差分析,并提供一个示例来说明具体的操作步骤。
参数检验(Parametric Tests)适用于已知总体分布类型的数据,通过比较样本数据与总体参数之间的差异,来判断样本数据是否与总体相符。
常见的参数检验包括:1. 单样本t检验(One-sample t-test):用于比较一个样本的均值是否与总体均值相等。
2. 独立样本t检验(Independent samples t-test):用于比较两个独立样本的均值是否相等。
3. 配对样本t检验(Paired samples t-test):用于比较两个相关样本的均值是否相等。
4. 卡方检验(Chi-square test):用于比较两个或多个分类变量之间的关联性。
接下来,将以一个具体的实例来说明SPSS软件中如何进行单样本t检验和卡方检验。
实例:假设我们有一个数据集,记录了一所学校不同班级学生的身高信息。
我们想要进行以下两种分析:1. 单样本t检验:假设我们想要检验学生身高平均值是否等于169cm(假设总体均值为169cm)。
步骤如下:b.选择“分析”菜单,然后选择“比较均值”下的“单样本t检验”。
c.在弹出的对话框中,选择需要进行t检验的变量(身高),并将值169输入到“测试值”框中。
d.点击“确定”按钮,SPSS将生成t检验的结果,包括样本均值、标准差、t值和p值。
2.卡方检验:假设我们想要检验学生身高与体重之间是否存在关联。
步骤如下:a.打开SPSS软件,并导入数据集。
b.选择“分析”菜单,然后选择“非参数检验”下的“卡方”。
c.在弹出的对话框中,选择需要进行卡方检验的两个变量(身高和体重)。
d.点击“确定”按钮,SPSS将生成卡方检验的结果,包括卡方值、自由度和p值。
方差分析(Analysis of Variance,简称ANOVA)用于比较两个或以上样本之间的均值差异。
数据统计及SPSS应用-方差分析
单因素方差分析--假设条件
• 单一因素影响试验结果,该因素各水平:I=1, 2,…K • 各水平下样本均值为: x1 , x 2 ,...x k • 方差为: 2 2 2 σ1 ,σ 2 ...σ k • 前提条件:样本正态分布,方差差异不显著 • H0假设:均值差异不显著,x = x = ... = x (i ≠ j ) • H1假设:至少有, x i ≠ x j • 方差分析的实质:相同方差下,正态分布样本的 K个水平下的观测值的均值差异的检验。
单因素方差分析--Contrast选项
• 先验对照检验
–使用T检验检验用户定义的样本组合的均值差 异 –系数之和应等于0 –显著性水平<0.05对比组差异显著 –如:μ1+μ 2= μ 3
单因素方差分析--Contrast选项
多因素方差分析--基本概念
• 当作用在一个过程的因素不只一个时,对不同因 素或因素的不同水平造成不同结果的研究将采用 多因素方差分析的研究方法。 • 研究多个因素的各个水平对试验结果的影响,以 及各因素相互作用对试验的影响。
组内数据与该组均值间的离差平方和反映数据抽样误差为随机误差各组均值与总均值间的离差平方和反映各样本组均值的差异为系统误差ssssss由于离差平方和的值与其项数k与n有关因此在方差分析中不能作为比较组间差异与组内差异的依据应当去掉项数影响求其均方来比较组间与组内差异
数据管理与分析
数据统计及SPSS应用
• 注意:
多因素方差分析--基本引用
• 【 分析 】 【一般线性模型】 【 单变量】
–因变量:实验结果 –固定因素:不同水平来线性地影响因变量的值 (一般是可认为控制的,如温度,品种)。 –随机因素:通过随机大量取值来影响过程变化 的因素(一般不可控,比如身高,体重)。 –协变量:与因变量相关,用来控制影响过程变 化的干扰因素。
SPSS统计分析—差异分析
1判断两个总体的方差是否相同
SPSS采用Levene F方法检验两总体方差 是否相同
如果F值检验不显著Sig 的值大于05;表示两个组别群体变异数相等,此 时看“方差齐性相等”所列之t值,看其是否显著 如果“F值”检验显著(Sig的值小于05),表示两个组别群体变异数 不相等,此时看“方差齐性不相等”所列之t值,看其是否显著。
2输出的结果文件中第2个表格如下所示
3输出的结果文件中第3个表格如下所示
4输出的结果文件中第4个表格如下所示
5输出结果的最后部分是各组观察变量均 值的折线图;如图56所示
事后比较方法的选择
• LSD法实际上是t检验的变形;只是在变异和自由度的计算上利用了整个样本 信息,而不仅仅是所比较两组的信息 因此它敏感度是最高,在比较时仍然存 在放大α水准一类错误问题,但换言之就是总的二类错误非常的小,要是 LSD都没有检验出差别,那恐怕真的没有差别。
究者较为有利 但是,采用单尾检验必须提出支持证据,除非理论文献支持单侧的
概念,或是变量间的关系具有明确的线索显示必需使用单侧检验,否则需采用双侧
检验来检验平均数的特性。
邱 P169
独立两样本t检验
定义:所谓独立样本是指两个样本之间彼此独立没有任 何关联;两个独立样本各自接受相同的测量,研究者的主要目 的是了解两个样本之间是否有显著差异存在 这个检验的前提 如下:
两配对样本T检验的前提要求如下: • 两个样本应是配对的 在应用领域中;主要的配对资料包括: 具有年龄 性别、体重、病况等非处理因素相同或相似者。首先两 个样本的观察数目相同,其次两样本的观察值顺序不能随意改变。 • 样本来自的两个总体应服从正态分布。
• 原理 1 配对样本t检验是配对设计的样本差数的均值同总体均值0比较的t
《SPSS数据分析教程》方差分析
《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。
它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。
在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。
本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。
方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。
方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。
方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。
在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。
在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。
步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。
步骤3:点击“数据视图”页面,输入各组别的数据。
确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。
步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。
步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。
步骤6:点击“选项”按钮,出现选项对话框。
可以选择计算哪些统计量,如均值、标准差、总和平方和等。
步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。
方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。
-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。
-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。
-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。
-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。
《SPSS的方差分析》课件
数据来源与格式
详细描述
介绍如何新建数据文件,以及如何导入不同格式的数据文件,如Excel、CSV等。同时说明数据的基本 格式和要求。
SPSS数据的基本操作与整理
总结词
数据清洗与整理技巧
VS
详细描述
介绍SPSS中常见的数据清洗和整理操作 ,如缺失值处理、异常值检测与处理、数 据排序与分组等。同时提供实际操作案例 和技巧。
03
对于非数值型数据或分类数据,需要进行 转换或处理,较为繁琐。
04
对于大规模数据集,计算量大,需要较长 时间才能得出结果。
方差分析的未来发展方向
结合机器学习算法
01
利用机器学习算法对方差分析进行优化,提高分析的效率和准
确性。
拓展到多因素分析
02
将方差分析拓展到多因素分析领域,对方差分析进行更深入的
06
总结与展望
方差分析的优缺点总结
01
优点
02
适用于多组数据的比较,能够快速准确地判断各组 之间的差异。
03
可用于不同类型的数据,如计数数据、计量数据等 ,具有广泛的适用性。
方差分析的优缺点总结
• 能够考虑多种影响因素,进行多因素分析 。
方差分析的优缺点总结
01
缺点
02
对数据的要求较高,需要满足一定的假设 条件,如正态分布、方差齐性等。
双因素方差分析
总结词
用于比较两个分类变量各自所划分的不同组 之间的总体均值是否存在显著差异。
详细描述
双因素方差分析是单因素方差分析的扩展, 用于比较两个分类变量各自所划分的不同组
之间的总体均值是否存在显著差异。在 SPSS中,可以通过“分析”菜单中的“一 般线性模型”选项进行双因素方差分析。
SPSS数据的参数检验和方差分析
SPSS数据的参数检验和方差分析SPSS软件是一种用于统计和数据分析的工具,它可以进行各种参数检验和方差分析。
本文将重点介绍SPSS中的参数检验和方差分析,并提供一些建议和注意事项。
参数检验是一种统计方法,用于确定一个或多个总体参数的真实值。
在SPSS中,可以使用各种统计方法进行参数检验,例如t检验、方差分析(ANOVA)、卡方检验等。
t检验是用于比较两个样本均值是否显著不同的方法。
在SPSS中,可以通过选择“分析”->“比较均值”->“独立样本t检验”或“相关样本t检验”来执行t检验。
在进行t检验之前,需要确保数据符合正态分布和方差齐性的假设。
可以使用SPSS中的正态性检验和方差齐性检验来验证这些假设。
方差分析是用于比较三个或更多组之间差异的方法。
在SPSS中,可以通过选择“分析”->“方差”->“单因素方差分析”或“多因素方差分析”来执行方差分析。
在进行方差分析之前,同样需要检验正态性和方差齐性的假设。
在进行参数检验和方差分析时,还需确认是否使用方差分析的正确方法。
例如,如果有多个自变量,可能需要使用混合设计方差分析或多重方差分析等方法。
SPSS提供了多种不同的方差分析方法,可以根据具体研究设计选择适当的方法。
进行参数检验和方差分析时,还需要注意一些统计概念和报告结果的规范。
例如,结果中应包括样本均值、标准差、置信区间、显著性水平等信息。
此外,还应使用适当的图表和图形来展示数据和结果,以帮助读者更好地理解研究结果。
除了参数检验和方差分析,SPSS还可以进行其他类型的统计分析,例如相关分析、回归分析、因子分析等。
这些分析方法可以用来探索和描述数据之间的关系,以及预测和解释变量之间的关系。
在使用SPSS进行数据分析时,还需注意数据的质量和准确性。
确保数据输入正确、完整,处理缺失值和异常值等。
此外,也需要根据研究目的和问题选择合适的统计方法,并理解相关假设和前提条件。
总之,SPSS是一种功能强大的统计和数据分析工具,在参数检验和方差分析方面提供了丰富的方法和功能。
《SPSS数据分析教程》——方差分析
《SPSS数据分析教程》——方差分析方差分析(Analysis of Variance,缩写为ANOVA)是统计学中用来测量和分析两个或多个样本之间变量差异的统计方法。
方差分析检验的是不同实验条件下样品的均值是否存在显著性差异,以此来判断实验条件对样品响应是否有影响。
简而言之,方差分析能够判断不同处理条件下样本变量的总体均值是否有显著差异,以便检验实验条件是否有效。
方差分析实际上是将实验条件分成实验组和非实验组,然后对试验组与非实验组的结果进行比较,看看实验处理是否有显著的结果。
另一种情况是将不同的实验条件分成若干组,然后将不同组之间的结果进行比较,看看不同的实验条件是否有显著的差别。
SPSS采取一步法方差分析,在用户指定自变量和因变量后,可以自动给出方差分析的结果,包括方差分析表,均值表,均方差表,以及F检验的统计量和显著性水平等。
另外,它还可以提供多元变量分析(MVA)结果,包括每个变量的贡献率,方差膨胀因子,皮尔逊相关系数,单变量分析等。
为了使用SPSS进行方差分析,首先要指定变量和实验条件。
然后,点击菜单栏“分析”,选择“双因素方差分析”。
spss之统计挖掘第6章 方差分析
5.“两两比较”
6.“保存”
▪ 单击“保存”按钮,弹出图6-18所示的“单变 量:保存”对话框
7.“选项”
▪ 单击“选项”按钮,弹出图6-19所示的“单变 量:选项”对话框。
析因设计方差分析
▪ 例6.3 A、B两种药物联合应用对红细胞增加数 的影响,数据见表6-8。数据库见6-3.sav。
▪ 1.操作步骤
▪ (4)单击“选项”按钮,将“因子与因子交互 ”列表中的“组别”移入右侧“显示均值”框 ,同时勾选“比较主效应”复选框;“输出” 列表中选择“描述统计”和“方差齐性检验” ,单击“继续”按钮,返回主对话框,单击“ 确定”按钮运行。
▪ 2.主要结果解读
▪ 图6-33所示给出两组的例数、均值和标准差; 图6-34所示为两组治疗后血压的Levene方差齐 性检验,本例F=0.049,P=0.826>0.05,因此 方差齐性,符合方差分析条件要求;图6-35所 示为协方差分析结果,可见组别因素F=0.820, P=0.373,组别因素(即两种药物)对降压效果 没有差别;而治疗前血压因素的F=6.463, P=0.017,说明治疗前血压确实对治疗后血压有 影响。
▪ (1)单击“分析”|“一般线性模型”|“单变 量”命令。
▪ (2)将“治疗后血压”放入“因变量”框;将 分组变量“组别”放入“固定因子”框;将“ 治疗前血压”放入“协变量”框。
▪ (3)单击“模型”按钮,在弹出框中将“因子 与协变量”列表中的“组别”和“治疗前血压 ”放入右侧“模型”列表。“构建项”中类型 选择“主效应”。其他默认,单击继续返回。
▪ 实例详解
▪ 例6.1:比较三个不同电池生产企业生产电池的 寿命,见例6-1.sav。此例企业为因素,不同厂 家为水平,本例为单因素3水平设计。
熟练使用SPSS进行单因素方差分析
熟练使用SPSS进行单因素方差分析
一、单因素方差分析介绍
单因素方差分析又称因子方差分析,是分析两组或多组数据中变量之
间差异大小的统计方法。
它利用方差分析检验对比数据之间的统计学差异,检验其中一成分是否有一定的影响,而其他成分是否能够有一定的共同作用。
单因素方差分析的设计以及分析结果解释与双因素方差分析大体类型,但是单因素方差分析只有一个变量,因果关系没有双因素方差分析的那么
清楚,只能用于衡量数据之间的统计学差异。
二、SPSS进行单因素方差分析步骤
1.打开spss统计软件,进入数据文件,“新建”,双击“统计分析”,“ANOVA”,“一因子方差分析”菜单,可以调出一因子方差分析
的菜单
2.选择数据输入框,点击“定义变量”,在工具栏出现的表格中,双
击“变量名”栏位,输入分析变量的名称(建议以英文字母表示)
3.点击定义按钮,定义变量类型,选择“基本类型”,输入变量名,
点击确定按钮
4.在定义按钮下,右击工具栏中的“数据”栏位,然后点击“设定数据”,在设定数据窗口中,选择“任何变量”,输入变量的值,点击确定
按钮,完成变量定义
5.点击完成按钮,输入变量名,点击确定按钮,至此。
SPSS统计分析第五章方差分析
可以同时建立多个多项式。一个多项式的一级系数输入结束,激活Next按钮,单击 该按钮后Coefficients 框中清空,准备接受下一组系数数据。
如果认为输入的几组系数中有错误,可以分别单击Previous或Next按钮前后翻找出 错误的一组数据。单击出错的系数,该系数显示在编辑框中,可以在此进行修改, 修改后年击Change按钮,在系数显示框中出现正确的系数值。当在系数显示框中选 中一个系数时,同时激活Remove按钮;单击该按钮将选中的系数清除。
Coefficients:为多项式指定各组均值的系数。 因素变量分为几组,输入几个系数,多出的无意 义。如果多项式中只包括第一组与第四组的均值 的系数,必须把第二个、第三个系数输入为0值。 如果只包括第一组与第二组的均值,则只需要输 入前两个系数,第三、四个系数可以不输入 。 多项式的系数需要由读者自己根据研究的需要输 入。
二、方差分析中的术语
因素与处理(Factor and Treament) 水平(Level) 单元(Cell) 因素的主效应和因素间的交互效应 均值比较 协方差分析
1.因素与处理
因素(Factor)是影响因变量变化的客观条件;例如影响农作物产量的因素有气温、降雨量、日照时 间等; 处理(Treatments)是影响因变量变化的人为条件。也可以通称为因素。如研究不同肥料对不同种系 农作物产量的影响时农作物的不同种系可称为因素,所施肥料可视为不同的处理。 一般情况下Factors与Treatments在方差分析中可作相同理解。在要求进行方差分析的数据文件 中均作为分类变量出现。即它们的值只有有限个取值。即使是气温、降雨量等平常看作是连续变 量的,在方差分析中如果作为影响产量的因素进行研究,就应该将其数值用分组定义水平的方法 事先变为具有有限个取值的离散变量
SPSS数据分析—单因素及多因素方差分析
SPSS数据分析—单因素及多因素方差分
析
T检验可以用于解决单个样本或两个样本的均值比较问题。
但是,当涉及到两个以上的样本时,就不能使用T检验,而
需要使用方差分析。
方差分析是基于变异分解的思想,利用F
分布进行比较。
在算法方面,由于线性模型的引入,在SPSS中,方差分
析可以在比较均值和一般线性模型菜单中完成。
在适用条件方面,方差分析和两个独立样本的T检验一样,也需要满足独立性、正态性和方差齐性。
方差分析的原假设是n个样本的均值相同或n个样本来自同一个总体,或自变量对因变量没有影响。
由于涉及到两组以上的样本进行分析,因此除了需要说明多个样本均值是否有差异之外,还需要进一步说明哪些样本存在差异,因此需要进行多重比较。
在SPSS中,可以通过分析-比较均值-单因素ANOVA或
分析-一般线性模型-单变量来进行方差分析。
在一般线性模型
菜单中,方差分析更加具体细致,可以根据线性模型的思想进行分析。
SPSS方差分析在生物统计的应用
SPSS方差分析在生物统计的应用SPSS方差分析在生物统计的应用在生物统计学中,SPSS(统计软件包for社会科学)是一个非常常用的统计分析工具。
方差分析(ANOVA)是SPSS中常用的一种分析方法,它能够帮助研究人员验证不同组之间的平均值是否存在显著差异。
本文将介绍SPSS方差分析的基本原理和在生物统计中的应用。
一、方差分析的基本原理方差分析是一种统计方法,用于测试两个或多个样本平均数之间是否存在显著差异。
方差分析的基本原理是比较不同组别的方差之间的差异和同一组别内部的方差之间的差异,通过计算F值来判断差异是否显著。
F值大于临界值时,可以认为组别之间的差异是显著的。
二、生物统计中方差分析的应用在生物统计中,方差分析在许多方面有广泛的应用。
下面将介绍方差分析在生物统计中的三个常见应用场景。
1. 实验设计在生物学实验中,研究人员常常需要将实验对象分为不同的组别进行处理或观察。
通过方差分析可以评估不同处理组之间的差异是否显著。
例如,研究人员可以将实验对象分为两组,分别接受不同剂量的药物处理,并观察它们的生理指标是否有显著差异。
方差分析可以帮助研究人员确定不同处理组之间的差异是否受到药物剂量的影响。
2. 品种比较在农业或植物学中,研究人员经常需要比较不同品种或种群之间的差异。
方差分析可以用于比较不同品种植物的生长速度、抗病性等性状。
通过方差分析,研究人员可以确定不同品种之间的差异是否显著,并选择最适合的品种进行种植或繁殖。
3. 环境因素影响评估环境因素对生物特征或行为的影响是生物统计研究中常见的问题。
方差分析可以帮助研究人员确定环境因素对生物特征的影响是否显著。
例如,研究人员可以研究温度对昆虫行为的影响,将昆虫置于不同温度条件下观察其活动性。
通过方差分析,研究人员可以得出不同温度条件下昆虫行为的差异是否显著。
三、SPSS方差分析的步骤SPSS是一个功能强大且易于使用的统计软件,它提供了方差分析的实现方法。
SPSS操作—方差分析
SPSS操作—方差分析
一、概念
方差分析(ANOVA)法是统计学中一种用于检验三个或以上水平的均数差异的统计方法。
方差分析从表面上看是利用方差的大小,在一定的概率和显著水平下,比较多组数据的均值差异,确定数据的显著性。
一般来说,它用来检验有多自变量时的均数差异,其中包括一个或多个因素,每个因素又有两个或者多个水平。
二、SPSS操作步骤
1、打开SPSS软件,点击“文件”,选择“新建”,在弹出的界面中选择“数据集”,点击“确定”,新建一个数据集。
2、将所要分析的数据输入到数据集中,在“变量视图”中定义响应变量和自变量,并设置其变量类型,完成数据的输入。
3、点击“分析”,选择“统计”,在弹出的界面中选择“参数检验”,点击“F检验”,然后在窗口中选择因变量和自变量,完成基本的参数设置,点击“确定”,弹出方差分析窗口,点击“确定”,即可开始运行方差分析。
4、方差分析运行完毕后,在输出窗口中可以看到结果,包括方差分析汇总表和方差分析的结果等信息。
5、方差分析的结果主要包括拟合度指数、F值、绝对值、样本量、概率值、单组比较、多组比较等内容,在这里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
µ
( abm )
多因素方差分析--检验方法
• 因素A组间 • 因素B组间 • 因素AB交互组间 • 组内残差Residual
多因素方差分析--检验方法
• 总离差平方和: • 总离差均方: • 三因素离差平方和:
多因素方差分析--假设条件
–GLM Univariate 检验过程基于线性模型,假 定各因素及协变量与因变量呈线性相关 –误差的值相互独立 –误差的变化为常量 –误差是均值为0的正态分布
数据管理与分析
数据统计及SPSS应用
方差分析
方差分析
• • • • 方差分析的基本概念 单因素方差分析 多因素方差分析 协方差分析
机械销售数据
• A1是强调运输方便性广告 • A2是强调节省燃料的经济性广告 • A3是强调低噪音的优良性广告 判断:广告的类型对产品的销售是否有显著的影 响:
• 注意:
多因素方差分析--基本引用
• 【 分析 】 【一般线性模型】 【 单变量】
–因变量:实验结果 –固定因素:不同水平来线性地影响因变量的值 (一般是可认为控制的,如温度,品种)。 –随机因素:通过随机大量取值来影响过程变化 的因素(一般不可控,比如身高,体重)。 –协变量:与因变量相关,用来控制影响过程变 化的干扰因素。
8.1 方差分析的基本概念
• 术语:
– – – – 因变量(Dependent)---某试验结果 因素(Factor)---影响试验结果的(自)变量 水平---因素划分类别,自变量取值类别。 可控因素---因素的不同水平可能会导致不同试 验结果。 – 不可控因素---随机因素,对试验结果的影响也 是随机的。
单因素方差分析--PostHoc选项
Sig.>0.05差异不显著;0 包含在置信区间差异不显著
单因素方差分析--PostHoc选项
将差异不显著的放在一组称为齐性组
单因素方差分析--Contrast选项
• 多项式趋势检验
–将组间平方和分解为各种趋势成分的效应(如 线性、二次、三次。。。). –最高可选择5阶,如因素有K个水平,检验到K-1 阶,检验各组均值的关系呈线性,还是曲线,如 pμ1-=q μ 2或pμ12-=q μ 22 。。。 –当各组数据不平衡时,分别给出加权和不加权 的分解情况
单因素方差分析--PostHoc选项
–Hochberg's GT2检验。 –Gabriel 检验。 –Waller-Duncan检验。 –Dunnett检验。
• 方差非齐性时的检验方法
–Tamhane's T2检验,T检验进行配对比较检验。 –Dunnett's T3检验,正态分布下的配对检验检验。 –Games-howell检验,对应方差非齐性的检验。 –Dunnett's C检验,正态分布下的配对比较检验
8.1 方差分析的基本概念
• 方差分析---把一组数据的总变异分解为若干种来 自不同来源的变异的方法。 • 方差分析的目的---通过分析实验数据中不同来源 的变异对总体变异贡献的大小,从而确定实验中 的可控因素(称自变量)是否对实验结果(称因 变量)有重要的影响。 • 方差分析不仅常用于取自实验设计的数据,也可 以用于来自抽样调查的数据。
方差分析的基本概念
• 使用方差分析的基本条件:
–各水平的观测数据总体,要能够看作是服从正 态分布的总体中随机抽取的样本。 –各组观测数据是从具有相同方差的相互独立的 总体中随机抽取的样本。 第一个条件可以不苛求,第二个条件必须满足。
各组数据的均值必须具有可比性
方差分析的基本概念
– 由于各种因素的影响,在不同条件下所做的试 验,通常会得到一批呈波动状态的数据,即得 到的数据之间存在一定的差异。引起波动(或 称差异)的原因大体可以分为两类:
• 同一水平的观测值的差异,称为组内差异,是试验 中的随机误差,由此而产生的差异也是随机的,而 且是不可避免的; • 不同水平的观测值的差异,称为组间差异。可能是 抽样带来的随机误差,也可能是试验条件所致,这 种误差成为系统误差, 试验条件为试验中的可控因 素。
单因素方差分析--基本思想
• 单因素试验:在一项试验中,只有一个试验因素 变化,其它因素保持不变。 • 单因素方差分析:研究单因素实验设计的方差分 析。 • 单因素方差分析基本步骤:
方差分析的基本概念
• T-TEST 过程的是实现两个样本均值差异的显著性 检验。 • 方差分析可以检验两个或两个以上样本均值差异 的显著程度。
–T检验: 研究关于单因素双水平的 问题 –单因素方差分析: 研究关于单因素多水平的问题 –多因素方差分析: 研究关于多因素多水平的问题 –协方差分析: 研究关于含不可控因素的问 题
多因素方差分析--功能选项
• 选择分析模型
– “Full Factor” 为系统缺省模型,包括主效应分析(各控 制变量和协变量)以及所有控制变量的交互效应的分析。 – “Custom”为用户自定义模型,
• 只分析模型中的主效应 • 选择交互效应类型 • 分析模型中的双交互或多交互效应
–单击某一个单个的因素变量名,箭头将该变量设置到Model框中。 –可以同时送两个或多个到Model框中。 –Build Term(s)中的: » Interaction项指定任意交互效应, » Main effects选项指定主效应。 » All 2-way项指定双交互效应。 » All 3-way项指定3交互及其以下的效应。 » All 4-way项指定4交互及其以下的效应。 » All 5-way项指定5交互及其以下的效应。
–因素A的水平数a,i=1,2...a –因素B的水平数b,j=1,2...b –重复测量次数m,k=1,2...m
两个因素对过程的作用
因素 B 因素 A 1 2 … b 行平均值
x111
1
x121 x122 ... x12 m
……
x1b1 x1b 2 ... x1bm
x112 ... x11m x 211 x 212 ... x 21m
1 2 k
单因素方差分析--检验方法
• 总变异(总离差平方和): SST = SSW + SS B • 组内变异(组内离差平方和):
SSW =
– 组内数据与该组均值间的离差平方和,反映数据抽样 误差,为随机误差 n k
∑∑(x
i =1 j =1
i
ij
− x i )2
• 组间变异(组间离差平方和):
–提出H0假设 –选择检验统计量 –计算统计量的观测值和概率值 –根据给出的显著性水平做出决策
单因素方差分析--假设条件
• 单一因素影响试验结果,该因素各水平:I=1, 2,…K • 各水平下样本均值为: x1 , x 2 ,...x k • 方差为: 2 2 2 σ1 ,σ 2 ...σ k • 前提条件:样本正态分布,方差差异不显著 • H0假设:均值差异不显著,x = x = ... = x (i ≠ j ) • H1假设:至少有, x i ≠ x j • 方差分析的实质:相同方差下,正态分布样本的 K个水平下的观测值的均值差异的检验。
• Descriptive: 输出描述统计量 • Homogeneity of variance: 检验方差齐性的假设
–⑵ Mean Plot 复选框:输出均值分布图 –⑶ Missing Values 选择框
单因素方差分析--PostHoc选项
• 多重比较:当得出结论均值差异显著时, 为了弄清均值差异究竟产生于哪对样本组 或哪几对样本组,需要对各水平均值逐对 地进行比较。 • 多重比较常常是在方差分析得到差异显著 的结论后进行;或在方差非齐性时,进行。
单因素方差分析--Contrast选项
• 先验对照检验
–使用T检验检验用户定义的样本组合的均值差 异 –系数之和应等于0 –显著性水平<0.05对比组差异显著 –如:μ1+μ 2= μ 3
单因素方差分析--Contrast选项
多因素方差分析--基本概念
• 当作用在一个过程的因素不只一个时,对不同因 素或因素的不同水平造成不同结果的研究将采用 多因素方差分析的研究方法。 • 研究多个因素的各个水平对试验结果的影响,以 及各因素相互作用对试验的影响。
GLM =General Linear Model
多因素方差分析--假设条件
• H0假设:
– HA---A因素各水平对结果影响无明显差异 – HB---B因素各水平对结果影响无明显差异 – HAB---AB交互作用对结果影响无明显差异 –主效应:每一个因素独立作用的效应 –交互效应:各因素水平复合作用的效应。 –研究交互作用的要求:同一水平下要有重复测量 (m>1),即每组都要有m>1个测量值
–注意,如果因变量不属于正态分布或分布不明, 则不能使用单因素方差分析,而需调用相关的 非参数检验过程。
单因素方差分析--options选项
• Options选项提供描述统计量的输出、方差 齐性检验、缺失值处理方式以及均值分布 图输出等选项。
–⑴ Statistics 选择框包括两个复选框:
单因素方差分析--检验方法
• 检验值F比率(F Ratio)
MS B 查表 → P F= MSW
{
> α 差异不显著 < =α 差异显著
单因素方差分析--检验方法
Sig.=0 <0.05
三地区对销售额的影响显著
单因素方差分析--基本引用
• 菜单命令【分析】【比较均值】【单 因素 ANOVA】调用单因素 ANOVA过程进行 单因素方差分析。
单因素方差分析--PostHoc选项
• 方差齐性时的检验方法:
– LSD最小显著差异检验 – Bonferroni修正的LSD检验(LSDMOD) – Sidak多重配对比较检验 – Scheffe同步进入的配对比较检验。 – R-E-G-W F(Ryan-Einot-Gabriel-Welsch F)检验。 – R-E-G-W Q(Ryan-Einot-Gabriel-Welsch range test) 检验。 – S-N-K各组均值配对比较检验(Student Newman-Keuls)检验。 – Tukey真实显著差异检验(Tukey's honestly significant difference)检验。 – Tukey‘ s-b 检验。 – Duncan多重范围检验(Duncan's multiple range test)。