动车组受电弓资料
动车组受电弓介绍课件
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
三、CX-PG型受电弓控制原理
ADD 状态
主风管 A
母线连接器
升弓 +110v
0v 1路故障信号输出
(常闭)
来自MVB总线:接触网、受电弓、 速度信息。 到MVB总线: 故障,主故障,升弓 等信息
E
压力控制及 ADD控制
D
气动调节器
•Nominal static force额定静止力
- On OHL 25 kV接触网上................................................ 70 N
•Pressure in pneumatic circuit 气路中的压力
- Max最大...................................................................... 10 bars - Min最小....................................................................... 5 bars - Startup 初始................................................................ 3 bars
•- Min. functional height D2最小功能高度D2 .......... 0.300 m
•- Lowered pantograph D1 受电弓最低位 D1........... 0.630 m
Picture for information only/ 此图仅供参考
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
电力机车、动车组受电弓型号与动态包络线资料
主要技术参数
额定工作电压„„„„„„„„„„„„„„25kV 额定工作电流„„„„„„„„„„„„„„700A 最大运行速度„„„„„„„„„„„„„300km/h 接触压力 „„„„„„„„„„70-120N (可调) 最大升弓高度„„„„„„„„„„„„„3000mm 落弓位高度„„„„„„„„„„„„„„„588mm 弓头总长度„„„„„„„„„„„„„„1950mm 工作长度„„„„„„„„„„„„„„„1450mm 滑板长度„„„„„„„„„„„„„„„1030mm
的大小。
b——预测抬升量 u——定位器有效抬升空间 S——受电弓横向偏移量 正常运行条件及最大跨距时: u≥2.0×b(使用非限位定位器) u≥1.5×b(使用限位定位器)
(5)严格控制线岔和锚段关节处非支抬高量
交叉线岔两接触线相距500mm处的高差,当两支均为工作支时,正线线岔侧线接触线
比正线接触线高10-30mm,侧线线岔两接触线高差不大于30mm,当一支为非工作支时,
曲线区段为350mm。
250~350 km/ h区段,受电弓动态最大抬升量150 mm,左右摆动量直线区段为250 mm、曲线区段为350 mm。
a—设计规定的受电弓横向摆动量 b—滑板拐点至受电弓诱导角端点的距离 c—滑板拐点至受电弓中心线的距离 d=2a+b e=a+b+c
动态包络线检测实质上就是对弓网关系进行机械安全性能方
(6)SS9型及其改进型TSG15型受电弓;HXD1B、HXD1C、HXD1D型电力 机车采用TSG15B型受电弓; (2)HXD2、HXD2B、HXD2C型电力机车采用DSA-200型受电弓; ( 3 ) HXD3 、 HXD3C型电力机车采用 DSA-200 型受电弓, HXD3B 型电力机车 采用TSG15型受电弓。
高速铁路牵引供电系统—高速铁路受电弓
• (1)具有很高的安全性 • (2)具有良好的受流性能 • (3)应采用状态维修,减少维修带来的干扰 • (4)具有较高的可靠性和较长的使用寿命
高速铁路的受流技术及其评价
高速铁路接触网—受电弓受流系统的新特点
• 3、高速受电弓的特性
• (1)小的静态抬升力差 • (2)较小的归算质量 • (3)良好的跟随特性 • (4)大的横向刚度 • (5)良好的气动力外型和气流调整装置 • (6)与接触导线摩擦性能相匹配的滑板材料及钛合金材料 • (7)具有紧急降弓控制系统
综合接地的必要性
• 钢轨铺设于地面上,与地不良绝缘,存在对地漏 泄电阻。对于普速电气化铁路,钢轨对地漏泄电 阻较低,列车牵引电流也不大,正常运行时,钢 轨电位不高,将钢轨作为地线用于某些沿线设备 接地,一般不会引发设备和人身安全问题。必要 时才增设小型地网。
综合接地的必要性
• 高速铁路(与既有线不同)的一些特征: • (1)列车牵引电流大 • (2)牵引网短路电流大 • (3)钢轨对地漏泄电阻高
• 评价弓网受流质量从以下七方面考虑:
• 1、弓网间动态接触压力 • 2、接触导线最大垂直振幅 • 3、接触导线的抬升量 • 4、离线 • 5、硬点 • 6、接触网的静态弹性差异系数 • 7、接触导线弯曲应力
高速铁路的受流技术及其评价
接触网-受电弓系统的受流质量评价
• 接触网—受电弓系统的受流质量与接触网和受电 弓的匹配性能有很大关系。
高速铁路牵引供电系统
高速铁路受电弓
高速铁路受电弓
高速列车电力牵引受流的主要特点
• 1、接触网(与受电弓)的波动特性。 • 2、高速列车在高速运行时所受的空气阻力较常
速列车大得多,空气动态力也是影响高速受流的 一个重要因素。 • 3、受电弓从接触网大功率受流问题。
CRH5受电弓课件
受电弓简介
采用DSA 250型受电弓。能适应中国既有线和客运 专线接触网。
单列动车组采用单弓受流方式,每台受电弓具有为 全列车供电的能力。
在动车组的TP车和TPB车车顶上各安装一台相同的 受电弓。
受电弓安装自动降弓装置(ADD)。 接触网导线距轨面工作高度在5300~6500 mm范围
内,可以保证列车以200km/h速度运行。
• 6. 之后压缩空气流入节流阀(降弓)(5),其作用是调 整降弓时间。
• 7. 如果减压阀故障,位于气路上的安全阀(6)可限制空 气压力。安全阀的设定值是4.5bar。
• 8. 压缩空气经一系列调整后流至气囊驱动装置(12), 然后气囊驱动装置可激活升弓装置并使受电弓缓慢上 升直至碳板接触到接触网线。
44 10
8 6
2
9 7
4 5 3
11 1
升弓装置
弓头
编织线
压缩空气供应原理
升弓操作步骤:
• 1. 电磁阀(14)的入口处始终通有压缩空气。
• 2. 可随时操作司机台上的受电弓提升杆以升起受电弓。
• 3. TCMS可输出信号使电磁阀(14)得电,允许空气经空 气滤清器(1)进入节流阀(升弓)(2),滤清器的作用是 清除压缩空气中的灰尘和湿气。
• 4. 然后,节流阀(2)允许空气压力缓慢进入减压阀(3)的 入口。节流阀可用于调整升弓时间。
• 5. 减压阀(3)的输出压力可以调整至预设值3.5bar。减 压阀(3)可调整受电弓与接触网之间的静态接触力,其 精度为±0.02 bar。由于气压每变化0.1bar会使接触压 力变化10N,因此减压阀必须要有相当高的精确度。
受电弓的几个重要尺寸
• 4 绝缘子安装高度 • 5 落弓位 • 6 最大伸展高度 • 7 最小工作高度 • 8 最大工作高度 • 14最小电气间隙
动车组受电弓升弓无法保持问题的分析
动车组受电弓升弓无法保持问题的分析摘要:随着高速铁路的发展,动车组在客运方面发挥着不可估量的作用。
而受电弓作为接触网导线和动车组牵引系统连接的纽带,它的运行状态直接影响着动车组安全运行。
因此,分析受电弓的原理和检修,具有一定的现实指导意义关键词:动车组运行;受电弓升弓;故障诊断及处理1动车组受电弓结构组成动车组受电弓主要由上臂杆、平衡杆、下臂杆、连接杆、阻尼器、碳滑板和升、降弓装置等部件组成。
其中,平衡杆的作用是防止受电弓在控制升弓和降弓时弓头失稳而产生翻转;连接杆用以微调实现对受电弓几何形状的调节;阻尼器用于对上臂杆和下臂杆之间产生的振荡进行阻尼衰减,保证碳滑板与接触网之间的良好接触;碳滑板则通过升弓装置的作用与架空接触网导通,实现电能的传输。
2动车组受电弓控制原理2.1受电弓气路控制原理动车组受电弓气路控制部分主要由升弓电磁阀、ADD电磁阀、调压阀和气囊等组成,为受电弓的机械结构提供控制压力,从而控制受电弓的升降,并根据控制需求对气路系统的空气压力进行调节,以调整弓网之间的动态接触力。
受电弓气路控制原理图如图1所示。
司机通过操纵升降弓开关,控制升弓电磁阀完成一定动作来实现受电弓的升弓和降弓。
当动车组需要进行升弓操作时,司机操纵升降弓开关发送升弓指令,升弓电磁阀得电而使得气路导通,列车管内压力空气首先进入过滤器进行过滤,然后通过升弓电磁阀和调压阀到达气囊,实现升弓动作;当动车组需要进行降弓操作时,司机操纵升降弓开关发送降弓指令,使得升弓电磁阀失电而隔断列车管与气囊之间的气路,气囊中的压力空气经升弓电磁阀排风口排至大气,受电弓在自身的重力作用下实现降弓动作。
2.2受电弓电路控制原理动车组受电弓电路控制部分主要由中央控制单元(CCU)、司机室显示屏(HMI)、多功能车辆总线(MVB)和网络接口模块等组成,为受电弓的控制系统提供通信、逻辑和监控诊断等功能。
受电弓电路控制原理图如图2所示。
受电弓的工作状态通过MVB传输给CCU,CCU再经MVB发送给HMI;HMI接收到CCU传输过来的信号后,根据预先设置好的模式曲线,反馈控制气动调节器,对受电弓与接触网间的接触力进行调整。
高速铁路受电弓
受电弓
1.1 受电弓的结构与特性
1.受电弓的相关术语
(11)最高工作高度。最高工作高度是指受电弓升至设计受流的最高平 面时,绝缘子顶上的受电弓安装平面到滑板顶面的垂直距离。
(12)工作范围。工作范围是指最高工作高度与最低工作高度之差。 (13)落弓高度。落弓高度是指受电弓在落弓位置时,从绝缘子顶上的 受电弓安装平面到滑板的最高表面或最高的受电弓的其他部件的垂直距离。 (14)升降系统。升降系统是指提供升弓和降弓动力的装置。
受电弓
1.1 受电弓的结构与特性
受电弓是安装在电气列车上的一 种从一条或多条接触线集取电流的装 置。受电弓由框架、底架、弓头和升 降系统等部分组成,其几何形状可以 改变。
受电弓
1.1 受电弓的结构与特性
1.受电弓的相关术语 (1)框架。能使弓头相对于受电弓的底架在垂直方向上运动的铰接结构
,称为框架。 (2)底架。底架是指受电弓中支承框架的固定部件,它安装并固定于车
受电弓
1.1 受电弓的结构与特性
5.受电弓滑板
受电弓滑板是电力机车重要的集电元件,其安装在受电弓的最上部, 直接与接触线接触。滑板的质量和机电性能对受流质量影响很大。
(1)弓网受流对滑板的技术要求。 ①为防止接触线与滑板间的接触电阻过大,引起发热而烧损接触线和 滑板,滑板的材料必须具有良好的导电性能。 ②接触线与滑板之间必须具有良好的摩擦性和互润性,以减少维修量 ,延长设备使用寿命。
接触线起到接触滑道的作用,它保证将电能不间断地传输到电力机车的 受电弓上,为了使受电弓滑板的磨损均匀,接触线与受电弓中心线形成交角 ,以“之”字形布置,即在定位点处保证接触线与电力机车受电弓滑板中心 有一定偏移量(拉出值)。接触线拉出值的大小由电力机车受电弓最大允许 工作范围、线路情况、行车速度等因素决定。在直线区段,线路中心线与机 车受电弓中心线重合,接触线沿线路中心线上空成“之”字形对称布置。在 曲线区段,电力机车车身随线路的外轨超高向曲线内侧倾斜,受电弓也呈倾 斜状,线路中心与受电弓中心不重合。
电力机车、动车组受电弓动态包络线资料
电力机车、动车组受电弓动态包络线资料武汉供电段 方卫健一、受电弓的定义安装在电气列车上的一种从一根或几根接触线上集取电流的专用设备,由弓头、框架、底架和传动系统等部分组成,其几何形状可以改变。
运行时,受电弓全部或部分带电,与安装平台的车顶电气绝缘,将电流从接触网传输到车内的电气系统。
二、受电弓类型介绍目前,国内电气化铁路上运行的受电弓主要有TSG系列、DSA系列等单臂受电弓,各类受电弓发展进程如下图:2.1 TSG1-600/25型单臂受电弓适用于相应速度等级的各种电力机车。
主要技术参数额定工作电压…………………………………25kV额定工作电流…………………………………600A最大运行速度………………………………80km/h静态接触压力 …………………………(70±10)N工作高度……………………………680~1800mm最大升弓高度 ……………………………2400mm折叠高度 ……………………………………432mm弓头总长度………………………………≯2160mm滑板长度 ………………………………≯1250mm2.2 TSG3-630/25型单臂受电弓适用于相应速度等级的各种电力机车。
2.3 TSG15型单臂受电弓适用于相应速度等级的各种电力机车。
主要技术参数额定工作电压…………………………………25kV额定工作电流…………………………………630A最大运行速度……………………………170km/h静态接触压力 …………………………(90±10)N工作高度……………………………500~2250mm最大升弓高度 ……………………………2600mm折叠高度 ……………………………………228mm弓头总长度…………………………………2085mm滑板长度 …………………………………1250mm 主要技术参数额定工作电压…………………………………25kV额定工作电流………………………………1000A最大运行速度……………………………200km/h静态接触压力 …………………………(70±10)N工作高度…………………………500~2250mm最大升弓高度 ……………………………2600mm图(2) TSG3-630/25受电弓 图(1)TSG1-600/25受电弓2.4 DSA-150型单臂受电弓DSA150型受电弓,设计速度160 Km/h,适用于相应速度等级的各种电力机车及动车组。
动车组受电弓
5
4
3
2
如果出现以下情况,应更换弓角: 如果涂层磨损严重, 应更换弓角。
1、弓角 2、固定螺栓 3、弓头托架
2 13Biblioteka 1 1、碳结块 2、大裂缝 3、小裂缝 2
3
碳滑板的更换: 1. 拆除碳滑板两端ADD系统的压缩空气连接(3)。 2. 旋松带锥形弹簧垫圈的六角螺母M8(2),然后拆除碳滑板支 架(5)。 3. 小心地拆除碳滑板(1)。 4. 安装时按相反步骤操作即可。
1 1. 碳滑板 2. 带锥形弹簧 垫圈的M8六角 螺母 3. 压缩空气连 接(ADD系统) 4. 测试螺钉 5. 碳滑板支架
三、受电弓工作特点
3、升弓时滑板离开底架要快,贴近接触导线
要慢,防弹跳 ; 4、降弓时脱离接触导线要快,以防拉弧;落 在底架上要慢,以防对低架有过分的机械冲 击。
四、受电弓的结构
44
1.底架组成 2. 阻尼器 3.升弓装置 4.下臂组装 5.弓装配(支撑 装置) 6.下导杆 7.上臂组成 8.上导杆(平衡杆) 9.弓头 10.碳滑板 11.绝缘子
10 9 8 7 4 5 3
6
2
11 1
升弓装置
弓头
编织线
气动控制系统
1、TP/TPB 车的侧墙 2、阀板 3、空气滤清器 4、升弓节流阀 5、减压阀 6、压力表 7、降弓节流阀 8、安全阀
ADD自动降弓装置
自动降弓装置原理
9 停止阀
10 自动降弓阀 11 试验阀
12 升弓装置
13 碳滑板 14 电磁阀 15 压力开关
受电弓
二、弓网动力学
接触网 电力机车
1、增大弓网接触压力会减少离线率,但会加
速受电弓碳滑板的磨耗; 2、减小弓网接触压力随能降低设备损耗但弓 网离线率增大。
浅析CRH3型动车组受电弓工作原理及调试
浅析CRH3型动车组受电弓工作原理及调试摘要:CRH3型动车组受电弓是从接触网上受取电流的一种受流装置。
受电弓靠滑动接触受流,是动车组与固定供电装置之间连接的环节,其性能的优劣性直接影响到动车组工作的可靠性。
随着动车组运行速度的不断提高,对其受电弓性能,调试过程工作原理提出了越来越高的要求,探讨受电弓工作原理保证其性能稳定,实现动车组安全运行。
关键词:动车组;受电弓;原理;调试A brief analysis of the working principle and debugging of pantograph of CRH3emuAbstract:The model CRH3 pantograph is a current receiving device from the contact network.The pantograph receives the current by sliding contact, which is the link between the emu and the fixed power supply device.With the continuous improvement of the running speed of emu, higher and higher requirements are put forward for the pantograph performance and the working principle of the debugging process.Keyword:EMU;Pantograph;The principle;debugging引言受电弓是利用车顶接触网获取和传递电流的机械组成。
受电弓由气囊组成的气动平衡系统控制,该气囊的压力空气由气动控制单元提供。
在压力空气作用下气囊产生扭矩,通过凸轮及弹性连接轴作用在下臂的铰链处,从而使受电弓根据设定速度升弓。
动车组受电弓简述
动车组受电弓简述摘要:中国高铁技术在世界高铁技术舞台上扮演者越来越重要的角色,受电弓是动车组列车从接触网获取能量的电气设备,是动车组列车非常重要的子系统之一,越来越受到人们的重视。
本文主要介绍受电弓结构分类、受电弓的结构以及其工作原理等。
关键词:动车组;受电弓;结构;工作原理1.引言近年来,随着国家铁路建设的发展,高速铁路交通发展十分迅猛,动车组的普及为人们的日常出行带来了极大的方便,是当下客运业务的主力军。
动车组列车是一个大型系统,而受电弓作为动车组列车获得电能的唯一装备,在动车组这个大系统中有着举足轻重的作用。
本文主要介绍受电弓的分类、结构组成、工作过程的动作原理等,以期对相关从业人员有所帮助,保障高速动车组列车的安全可靠的运行。
2.受电弓概述受电弓是电力牵引机车从接触网取得电能的电气设备,安装在机车或动车车顶上。
动车组用受电弓外观如图1所示。
图1 动车组受电弓3.受电弓的分类按其控制方式分类,受电弓可分为:被动控制受电弓、半主动控制受电弓和主动控制受电弓。
按结构形式分类,受电弓可分为:双臂式、单臂式、垂直式和石津式。
双臂式受电弓是一种较为传统的受电弓,外形类似菱形,也被称为“菱”形受电弓。
由于其在运用过程中存在扯断线路的风险,加之其保养成本较高,现仅有少数车型仍在使用双臂式受电弓。
垂直式受电弓是一种较为先进的受电弓形式,也被称为“T”形受电弓。
优点是风阻低;缺点是制造成本极高,该形式受电弓仅在个别试验车型使用。
石津式受电弓是日本冈山电气轨道的石津龙辅在1951年发明,又称为“冈电式”、“冈轨式”。
单臂式受电弓因外形像字母Z,也被称为“Z”形受电弓。
单臂式受电弓具有低噪音,低故障率,制造和保养成本低的特点。
对于动车组列车受电弓的选用,除了诸如磨耗小,可靠性高,运营和维修费用较低的技术要求外,还应该具有受留可靠,低重量,良好的空气动力学性能等特点。
因此动车组受电弓多选用单臂式受电弓。
4.受电弓结构介绍以单臂式受电弓为例介绍受电弓结构。
动车组受电弓介绍课件
铜碳条 Wearing height磨损高度.......................... 5 mm Width 宽度............................................... 54 mm
•Consumed current at 25 kV 25kV电压下额定电流 - Standstill (110°C after 30 min) 静止状态(110°C 30分钟以后).................................. 120 A - Running (permanent) 运行(固定)............................................................... 1000 A
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
•Collector 弓头受流板
Dimensions 尺寸 Length L长度L............ 1,950 mm ± 10 Height H高........ 341 mm ± 5 (at nominal static force在额定静电压下)
- Horns弓角 .............................................insulated绝缘
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
CX-PG型受电弓运行条件
•Nominal operational voltage额定运行电压 - 25,000 V ........................................................................AC
CRH380B型动车组受电弓资料
•Extending伸长量
••••Maximum 最大值 D4....................... 2.600 m Max.functional height D3最大功能高度 D3 .......... 2.400 m Min. functional height D2最小功能高度D2 .......... 0.300 m Lowered pantograph D1 受电弓最低位 D1........... 0.630 m
•Collector 弓头受流板
Dimensions 尺寸 Length L长度L............ 1,950 mm ± 10 Height H高........ 341 mm ± 5 (at nominal static force在额定静电压下)
- Collecting bar wear 受流板磨损 Type – material类型-材料............. copper impregnated carbon 渗 铜碳条 Wearing height磨损高度.......................... 5 mm Width 宽度............................................... 54 mm - Horns弓角 .............................................insulated绝缘
Picture for information only/ 此图仅供参考
•Nominal static force额定静止力
- On OHL 25 kV接触网上................................................ 70 N
CRH2300kmh动车组受电弓
概要受电弓设置在M3-4 车、M5-6 车。
正常情况下,只能有一个受电弓升起。
因此当受电弓上升连锁装置继电器(PanIR)选择一侧的受电弓时,将不能输入另一侧受电弓的上升指令。
受电弓的升降指令能够通过设置在司机台的操作开关或者监控器的显示器发出。
为了安全起见,在不使用外电源充电的情况下,将2、6 车运转配电盘内的EXPanN 断开。
T1-1车受电弓控制电路PanN——受电弓、VCB开关VCBRR—真空电路断路器辅助(预留)继电器联锁PanOS—受电弓升弓开关(双联锁)MCR—主控制器继电器(串联双)联锁VCBRR—真空电路断路器辅助(预留)继电器(串联双)联锁EGSR—紧急接地开关继电器(串联双)联锁PanUS—受电弓升弓开关PanCGS—受电弓转换开关MCRR—主控制器辅助(预留)继电器(双)联锁MCR—主控制器预留继电器双联锁EGSR—紧急接地开关继电器VCBRR—真空电路断路器辅助(预留)继电器GS—接地开关受电弓控制电路T1-1车102 PanN 102B VCBRR(常开)102M PanOS(常开)107 PanOS(常开)8 VCB控制回路MCR(常开(串联双)联锁)102G VCBRR(常开(串联双)联锁)102N EGSR (常开(串联双)联锁)102P PanUS(常开)(常闭)106X 106 PanCGS (常开)106Y MCRR(常开(双)联锁)110 MCR(常开联锁)EGSR继电器MCRR (常开(双)联锁)111 MCR(常开联锁)VCBRR继电器1001 GS(常闭)100 受电弓控制电路102 PanN 102B T2-8车VCBRR(常开)102M PanOS(常开)107 PanOS(常开)8 VCB控制回路MCR(常开(串联双)联锁)102G VCBRR(常开(串? ┝ ?102N EGSR(常开(串联双)联锁)102P PanUS(常开)(常闭)106Y 106 PanCGS (常开)106X MCRR(常开(双)联锁)110 MCR(常开联锁)EGSR继电器MCRR(常开(双)联锁)111 MCR(常开联锁)VCBRR 继电器1001 GS(常闭)100 M1-2到M5-6车受电弓控制电路M1-2 M2-3 M3-4 M4-5 M5-6 M1-2到M3-4车受电弓控制电路M1-2 M2-3 M3-4 PanDCOV—受电弓隔离开关电磁阀(分闸)PanDCCV—受电弓隔离开关电磁阀(合闸)PanDCCR—受电弓上升辅助继电器PanDCTD—受电弓隔离开关定时继电器PanDCCS—受电弓隔离开关辅助触头开关(合闸)VCB—真空电路断PanDCN—受电弓隔离开关NFB路器辅助(预留)继电器联锁PanCOR—受电弓切断继电器PanCOR-R—受电弓切断继电器—重新设置EGS—真空电路断PanUR(PanUR1)—受电弓升弓继电器路器辅助(预留)继电器联锁PanUV—受电弓升弓阀PanIR—受电弓互锁继电器PanDWR—受电弓降弓继电器PanDWAR—?GS—接地开关车端联接转换器控制电路联110 车端联接转换器(联)110S 110 110 110S 车端联接转换器(联)110111 车端联接转换器(联)111S 111 111 111S 车端联接转换器(联)111 开105 105110 车端联接转换器(开)110S 110 110 110S 车端联接转换器(开)110111 车端联接转换器(开)111S 111 111 111S 车端联接转换器(开)111 105 105 M3-4 M4-5 M5-6 105 M3-4、M5-6车受电弓互锁控制电路M3-4 车、M5-6 车的PanIR、受电弓上升指令继电器PanUR 关系。
时速200公里动车组受电弓解读
ADD自动降弓装置
接口 · 绝缘子安装孔:
共有三个(Z),是受电弓与车顶固定的安装点。
·电气接口:
共有三个(X、Y),是受电弓的电流流出点。
·空气接口:
共有两个(V、W),是受电弓的压缩空气输入接口 以及去压力开关的空气接口。
区别
• • • • 绝缘子高度:我公司为306mm,其他为400mm。 绝缘子材质:我公司为树脂,其他为硅橡胶。 最大工作电流:我公司为1000A,其他为500A。 ADD功能截止阀:我公司和四方公司安装在车顶受电弓 上,而庞巴迪公司装于车内。 • 气动控制装置:我公司和四方公司安装于车内,而庞 巴迪公司装在车顶受电弓上。
200km/h动车组受电弓
张妍 2008.4.27
·受电弓的国产化 ·受电弓简介 ·参数 ·结构 ·压缩空气供应原理 ·自动降弓装置原理 ·接口 ·区别 ·受电弓的维修维护
受电弓的国产化
本次技术引进采用德国STEMMANN公司的受电弓, 国内供货商是北京赛得公司。北京赛德公司是由同车股份 公司控股的股份公司,以原来的大同厂的受电弓车间为主 体。赛德公司早在2001年就已经从德国STEMMANN公司 技术引进DSA250型受电弓,并且于2002年就已经进行完 国产化工作。
44
10 9 8 7 4 5 3
6
2
11 1
• DSA250结构: • 升弓装置安装在底架上,通过钢丝绳作用于下 臂。上臂、下臂和弓头由较轻的铝合金结构做 成。滑板安装在U形弓头支架上,弓头支架垂 悬在4个拉簧下方,两个扭簧安装在弓头和上 臂间,这种结构使滑板在机车运行方向上移动 灵活,而且能够缓冲各方向上的冲击,达到保 护滑板的目的。
• 7. 如果减压阀故障,位于气路上的安全阀(6)可限制空 气压力。安全阀的设定值是4.5bar。 • 8. 压缩空气经一系列调整后流至气囊驱动装置(12), 然后气囊驱动装置可激活升弓装置并使受电弓缓慢上 升直至碳板接触到接触网线。 • 9. 供电线路上还装有压力表(4)以显示减压阀的出口空 气压力。
CRH2A型动车组受电弓结构原理及常见故障分析
CRH2A型动车组受电弓结构原理及常见故障分析摘要:随着我国高速铁路的发展,动车组在客运方面发挥着越来越重要的作用。
而受电弓作为接触网导线和动车组牵引系统连接的纽带,它的运行状态直接影响着动车组速度的提升。
因此分析受电弓的结构原理及运用中常见的故障原因,具有一定的现实意义。
关键词:受电弓;结构原理;故障分析随着动车组的速度不断提高,对动车组牵引性能的要求也越来越高,受电弓作为连接接触网供电系统和动车组牵引系统的重要部件,其性能的好坏对速度的提升起到了至关重要的作用。
1受电弓结构CRH2A型动车组受电弓采用DSA250型单臂受电弓,主要由:底架、阻尼器、下臂、升弓装置、弓装配、上导杆、下导杆,滑板、弓头、等部件构成,升弓装置安装在底架上,通过钢丝绳作用于下臂。
下臂、上臂和弓头由较轻的铝合金材料结构设计而成。
滑板安装在U型弓头支架上,弓头支架垂悬在4个拉簧下方,两个扭簧安装在弓头和上臂间,这种结构使滑板在动车组运行方向上移动灵活,而且能够缓冲各方向上的冲击,达到保护滑板的目的。
2控制原理分析2.1升弓原理当动车组需启动受电弓时,首先由司机操纵受电弓升起旋钮保持3至5秒,通过控制系统发送升弓命令,控制受电弓电控阀接收到电路信号后动作打开,压缩空气经由电控阀流经由空气过滤器、升弓用单向节流阀、精密调压阀、压力表、降弓用节流阀、安全阀组成的受电弓气路控制阀板和高压绝缘软管进入车顶受电弓升弓装置,气囊充气,推动导盘前移,通过钢索带动下臂绕轴顺时针旋转,此时上臂在推杆的作用下逆时针转动,使受电弓弓头升起。
2.2降弓原理降弓时,操作司机室操纵台上的降弓按钮3至5秒,控制受电弓电控阀使气路与大气接通,气囊收缩,下臂逆时针转动,最终使受电弓弓头降到落弓位。
同时,还可调节升降弓节流阀和调压阀对受电弓的升降弓时间以及静态解除压力进行调整,保证运行时状态稳定。
2.3受电弓的自动降弓功能由于动车组运行的速度较高,受电弓极易因异物打击或接触网状态不佳造成故障,甚至发生刮网事故。
CRH380A型动车组受电弓升弓电路原理
故障 概述
2、升弓电磁阀故障
配属 XX 局 CRHXXXX 列动车组升 06 车受电弓 运行。运行途中司机反映 06 车受电弓自动降下并 停车。机械师下车检查 06 车受电弓可视部位无异 常,换升 04车受电弓维持运行。库内检查 06 车辅 助空气压缩机内升弓电磁阀指示灯点亮,测量电 磁阀线圈阻值为 11.317MΩ(标准值8.8kΩ±10%), 阻值异常。
故障 原因
分析为升弓电磁阀故障导致运行途 中升弓气路被切断使受电弓自动降下。
谢谢
(3)102线→PanUVN(【升弓】)闭合→106D线 →PanDCCS闭合→116F线→→PanDCCR得电。
②
升弓
(4)升弓继电器得电:【受电弓.VCB】空开→MCR 常开→VCBRR常开→EGSR常开→旋动受电弓升旋钮 PANUS→受电弓选择旋钮PANCGS→106Y(3车)线加压 →URO4常闭触点闭合→PanDWAR降弓辅助触点闭合 →PanIR互锁继电器触点闭合→PanUR(PanUR1)励磁触点 闭合;
故障 处理
110、111线异常断开: (1)故障现象应为4弓6弓都升不起,可换端操 作升弓验证,并检查总配继电器板;
(2)进行102B-110、102B-111短接开关短接处理。 并确认EGS及VCB处于断开状态,因为此时110、 111线不能检测EGS及VCB状态。 (3)确认各个受电弓可正常升起后,正常升弓 继续运行。
3、升弓操作流程图
事件 经过
二、相关案例
1、受电弓无法升起
CRH380A-25XX动车组00车主控,在运行途中 04车自受电弓自动降下,远程切除04车受电弓, 升06车受电弓,06车受电弓也无法升起。司机将 04车受电弓远程切除复位后,换01车主控分别重 新升04、06车受电弓,能够升起;保持受电弓升 起、VCB闭合状态之后再换回00车主控,继续行 车。
动车组受电弓
• 一个工作可靠的接触网 - 受电弓系统是确保高速
动力车良好取流的根本条件。
接触网-受电弓系统
•
由于接触网的接触导线是一根具有弹性的导线,
受电弓也是一个弹性体,故而两者构成的是一个
相互接触的弹性系统。
对高速接触网的要求
(1)在最高行车速度和更大的速度变化范围内应 能保近正常供电; (2)应有更高的耐磨性和抗腐蚀(包括抗电蚀)能
动车组概论(5)
高速受电弓技术
高 速 受 电 弓 外 形
高速受电弓特点
高速列车的行车速度较常速列车高得多,因 这就使接触网与受电的波动特性发生变化, 从而对受电产生影响;
化受电弓沿接触间导线移动的速度大大加快。
高速列车在高速运行时所受的空气阻力远
较常速列车大得多,空气动力也是影响高速
受电的一个重要因素;
力;
(3)在接触网的悬挂方面,目前在常速列车供电 中采用的弹性半补偿链形悬挂和弹性全补偿链形 悬挂已不能适应高速的要求,应有更为先进的接 触悬挂装置。
高速弓-网关系主要表现形式
在高速运行条件下,接触网 - 受电弓系统的工 作对受电产生的影响,表现在以下几个方面:
压力变化的后果
压力变小会造成受电弓 离线,出现电弧,使弓、 线烧伤; 压力变大会使接触导线
度赶不上高速列车的运行速度就会产生离线现象。
离线危害
1.造成供电时断时续,引起列车严重冲动; 2.会使弓、线间出现电弧放电、引起电蚀; 3.使两者的工作表面严重粗糙,进一步使弓、线 磨损加速,工作寿命缩短; 4.会造成牵引电流的急剧变化,有损于牵引电机 的技术状态; 5.会对通信线路产全干扰。
提高接触网-受电弓系统工作稳定性 的主要措施
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受电的一个重要因素;
高速受电弓特点
高速列车所需的牵引功率较常速列车大得多,
若采用多弓受电必然会增加阻力、加大噪声, 并引起接触网的波动干扰,因而受电弓的数 量不能太多,这问题。
接触网-受电弓系统
• 高速列车的受电是通过受电弓与接触网的接触导
线紧密接触而实现的,因而受电是否正常直接取
三:良好的结构设计
由于高速运行时空气阻力很大,因此高速受电 弓在结构设计上要作充分考虑,力求使作用在滑 板上的空气阻力由别的零件承担,从而使受电弓 滑板在其垂直工作范围内始终保持水平位置,以
减小甚至消除空气阻力对滑板与接触导线间接触
压力的影响。
四:对滑板的要求
滑板的材料、形状、尺寸应适应高速的要求,
决于接触网-受电弓系统的技术状态。
• 一个工作可靠的接触网 - 受电弓系统是确保高速
动力车良好取流的根本条件。
接触网-受电弓系统
•
由于接触网的接触导线是一根具有弹性的导线,
受电弓也是一个弹性体,故而两者构成的是一个
相互接触的弹性系统。
对高速接触网的要求
(1)在最高行车速度和更大的速度变化范围内应 能保近正常供电; (2)应有更高的耐磨性和抗腐蚀(包括抗电蚀)能
力;
(3)在接触网的悬挂方面,目前在常速列车供电 中采用的弹性半补偿链形悬挂和弹性全补偿链形 悬挂已不能适应高速的要求,应有更为先进的接 触悬挂装置。
高速弓-网关系主要表现形式
在高速运行条件下,接触网 - 受电弓系统的工 作对受电产生的影响,表现在以下几个方面:
压力变化的后果
压力变小会造成受电弓 离线,出现电弧,使弓、 线烧伤; 压力变大会使接触导线
1 )采用新型复合材料制成的接触导线,以提高 其抗拉强度; 2 )增大接触导线和承力索的截面,以增加接触 导线和承力索的张力; 3 )减少接触网的跨度,并采用更为合理的悬挂 方式,确定受电弓同时升弓工作条件下两个受电 弓之间的最小间隔距离; 4)改进受电弓的结构设计。
一:保持合适的接触压力
受电弓的滑板与接触导线之间要保持恒定的接 触压力,以实现比常规受电弓更为可靠的连续电 接触。 受电弓的滑板与接触导线之间的接触压力不能 过大或过小。 因此,受电弓的结构应保证滑板与接触导线在 规定的受电弓工作高度范围内保持恒定不变的、 大小合适的接触压力。
此外, 6 个受电弓同时升起与接触导线接触, 犹如 6 把高速拉动的“琴弓”在一根“琴弦”上 同时“奏乐”,产生极大的噪声。
(3)离线问题
当接触网的连接系统不能适应列车运行速度的 要求时,受电弓的滑板就会与接触导线脱离。 高速运行时,受电弓的向上推力指使接触导线 的位置急速变化,这一变化以横波的形式沿接触 导线前后传播,使导线产生波动;如果其传播速
二:减小受电弓的重量降低运动惯性力
与常规受电弓相比要尽可能减轻受电弓运动部 分的重量,运行中,受电弓将随着接触导线高度 变化而上下运动,在高速条件下,这种运动更为 频繁,从而直接影响滑板与接触导线之间接触压 力的恒定。
二:减小受电弓的重量降低运动惯性力
对于高速受电弓,除必须保证的机械强度和刚 度外,应尽可能降低受电弓运动部分的重量,从 而减小运动惯性力。这样才能使受电弓滑板迅速 跟上接触导线高度的变化,保证良好的电接触。
以保证良好的接触状态及更高的耐磨性能。
不同形状的接触滑板
五:受电弓的升降
要求受电弓在其工作高度范围内升降时,初
始动作迅速,终了动作较为缓慢,以确保在降弓 时快速断弧,并防止升降受电弓对接触网和底架
过大的冲击载荷。
五:受电弓的升降
度赶不上高速列车的运行速度就会产生离线现象。
离线危害
1.造成供电时断时续,引起列车严重冲动; 2.会使弓、线间出现电弧放电、引起电蚀; 3.使两者的工作表面严重粗糙,进一步使弓、线 磨损加速,工作寿命缩短; 4.会造成牵引电流的急剧变化,有损于牵引电机 的技术状态; 5.会对通信线路产全干扰。
提高接触网-受电弓系统工作稳定性 的主要措施
过分升高,同时使受电弓
滑板和接触导线的磨接加
剧;
(2)接触导线的被动和噪声
高速列车投入运用后,即暴露出由于接触导线 波动而产生严重的电弧放电以及强烈的噪声问题。 多弓的情况更为严重。
高速运行时,接触导线会产生复杂的多层横波, 其后果是:受电弓无法追随处于波动中的接触导
线以保持紧密、连续接触,导致受电弓频繁离线。
动车组概论(5)
高速受电弓技术
汇报人:范强飞
高 速 受 电 弓 外 形
高速受电弓特点
高速列车的行车速度较常速列车高得多,因 这就使接触网与受电的波动特性发生变化, 从而对受电产生影响;
化受电弓沿接触间导线移动的速度大大加快。
高速列车在高速运行时所受的空气阻力远
较常速列车大得多,空气动力也是影响高速