第4章风荷载分析
第4章风荷载
静风 软风 轻风 微风 和风 清劲风 强风 疾风 大风 烈风 狂风 暴风飓风
当风以一定的速度向前运动遇到建筑物、构筑物、桥梁等阻碍物时,将对这些阻碍 物产生压力。
风荷载是工程结构的主要侧向荷载之一,
它不仅对结构物产生水平风压作用,还会引 起多种类型的振动效应。
风灾实例 1926年9月,美国迈阿密17层高的 Meyer-Kiser大楼在一次飓风袭击下, 维护结构受到严重破坏,钢框架结 构发生塑性变形,大楼在风暴中严 重摇晃,顶部残留位移达0.61m。
第4章 风荷载
风致桥梁破坏 1940 年 11 月 7 日 , 美 国 华 盛 顿 州 塔 科 马 桥 ( Tacoma Bridge )因风振致毁,这一严重的桥梁事故,开始促使人 们对桥梁的风致振动问题进行系统深入的研究。该桥主跨 长853.4m,全长1810.56m,桥宽11.9m,而梁高仅1.3m。通 过两年时间的施工,于 1940 年 7 月 1 日建成通车。但由于当
使用功能 住宅、公寓 办公、旅馆 amax (m/s2) 0.15 0.25
第4章 风荷载
抗风减振措施
台北 101 大楼(高 508 米),在 92楼 层悬挂设置重达 800 吨的悬浮阻尼 球,通过吸收振动能量,避免大楼 在强风下大幅晃动
第4章 风荷载
抗风减振措施
上海环球金融中心(高492米),在395 米的第 90 层安装两台重达 150 吨、长宽 各 9 米的风阻器,中间桔红色的是用钢 索悬吊的重 100 多吨的配重物,其下安 装了驱动装置。
第4章 风荷载
第4章
第一节 第二节 第三节 第四节 第五节 风的有关知识 风压
风荷载
内容提要
结构抗风计算的几个重要概念 顺风向结构风效应 横风向结构风效应
建筑幕墙设计(第四章)荷载及其组合
横向验算风荷载单独作用下挠度。
4 荷载及荷载组合
第二节 风荷载 风荷载是作用于幕墙的一种主要直接作用,它垂 直作用于幕墙面板表面。 设计要求:(1)既需考虑长期使用过程中,在一定时距平
均最大风速的风荷载作用下保证 正常使用功 能不受影响。 (2)在阵风袭击下不受损坏,避免事故发生。
风荷载计算公式:
w w(主体结构) w w(外围护 幕墙)
k Z s z o k gz s z o
4 荷载及荷载组合
第二节 风荷载 1 基本风压Wo
当风以一定速度向前运动遇到幕墙阻碍时,幕墙承受风 压,幕墙所在地区不同,它们的基本风压不同。
Vo / 2 wo
A:近海海面、海岛、海岸、湖岸、沙漠 B:田野、乡村、丛林、丘陵、房屋稀疏的乡镇 C:密集建筑群的城市市区(一般城市) D:密集建筑群且房屋较高城市(北京、上海等)
4 荷载及荷载组合
A z c z
1.379( z /10) 0.616( z /10)
0.24
0.44
B z D z
4 荷载及荷载组合
4 阵风系数 gz 第二节 风荷载
瞬时风压峰值与10min平均风压(基本风压)的比值, 取决于场地粗糙度类别和建筑物高度。 K (1 2 ) 玻璃幕墙 石材金属幕墙取2.25 gz f K-地区粗糙度调整系数 A取0.92 B取0.89
A f
C取0.85 D取0.8
4 荷载及荷载组合
第一节 概述 2 幕墙的荷载组合 承载Hale Waihona Puke 极限状态G G w w w
第4章 荷载
4.1 Vertical Loads 竖向荷载
▪ For closely spaced identical loads (such as joist loads), it is customary to treat them as a uniformly distributed load rather than as discrete loads, as shown in Table. 4.1, Table 4.2, Table 4.3.
Chapter 4 Loads 荷载
▪ Lateral loads which act horizontally on the structure: ▪ ① wind load (WL). ▪ ② earthquake load (EL). ▪ ③ hydrostatic and earth loads. ▪ 水平荷载:包括风荷载、地震荷载、土压力。
R
(
20)
P 40
0.5
(psf)
(4.1)
4.2 Lateral Loads 水平荷载
▪ 1. Wind 风载 ▪ Wind load depends on: velocity of the wind, shape of the building, height,
geographical location, texture of the building surface and stiffness of the structure. Wind loads are particularly significant on tall buildings. ▪ 结构所承受的风载主要取决于风速、建筑的形状、高度、地理位置、 建筑表面形状及建筑结构的刚度。风荷载对结构的影响十分重要。
《工程结构荷载及可靠度设计》课程笔记
《工程结构荷载及可靠度设计》课程笔记第一章:荷载类型1.1 荷载与作用荷载是指作用在结构上的各种力,它们可以导致结构的变形、位移或破坏。
荷载通常分为两类:直接作用和间接作用。
1. 直接作用:指直接施加在结构上的力,如人的重量、家具、车辆等。
这些力可以直接作用在结构的某个部分,导致该部分产生应力、应变和变形。
2. 间接作用:指不是直接施加在结构上的力,但会通过结构的一部分传递到另一部分,如温度变化、地震等。
这些力不会直接导致结构产生应力,但会通过结构的变形和位移产生影响。
1.2 作用的分类荷载作用可以分为以下几类:1. 恒载:指在结构使用过程中始终存在的荷载,如结构自重、固定设备等。
恒载的大小和作用点一般不会发生变化。
2. 活载:指在结构使用过程中可能变化的荷载,如人的活动、车辆的行驶等。
活载的大小和作用点可能会随着时间发生变化。
3.偶然荷载:指在结构使用过程中可能发生,但发生概率较小的荷载,如意外事故、爆炸等。
偶然荷载的大小和作用点通常难以预测。
4.地震作用:指地震时地面的震动对结构产生的影响。
地震作用是一种特殊的偶然荷载,其大小和作用点取决于地震的强度和震中距离。
5.风荷载:指风对结构产生的影响。
风荷载的大小和作用点取决于风速、风向和地形等因素。
6.温度作用:指温度变化对结构产生的影响。
温度作用可能导致结构产生膨胀或收缩,从而产生应力、应变和变形。
7.变形作用:指由于地基沉降、结构老化等原因导致结构产生的变形。
变形作用可能会导致结构的应力、应变和位移发生变化。
8.爆炸作用:指由于爆炸事故对结构产生的影响。
爆炸作用通常会导致结构产生局部破坏或整体破坏。
9.浮力作用:指由于水的浮力对结构产生的影响。
浮力作用通常发生在水下结构或浮体结构中。
10.制动力、牵引力与冲击力:指由于车辆行驶、机械运动等原因对结构产生的影响。
这些力可能会导致结构产生振动、噪声和疲劳损伤。
11.预加力:指在施工过程中预先施加在结构上的力,如预应力混凝土结构中的预应力钢筋。
《工程结构荷载与可靠度分析》李国强(第四版)课后习题答案
第一章荷载类型1、荷载与作用在概念上有何不同?荷载:是由各种环境因素产生的直接作用在结构上的各种力。
作用:能使结构产生效应的各种因素总称。
2、说明直接作用和间接作用的区别。
将作用在结构上的力的因素称为直接作用,将不是作用力但同样引起结构效应的因素称为间接作用,如温度改变,地震,不均匀沉降等。
只有直接作用才可称为荷载。
3、作用有哪些类型?请举例说明哪些是直接作用?哪些是间接作用?①随时间的变异分类:永久作用、可变作用、偶然作用②随空间位置变异分类:固定作用、可动作用③按结构的反应分类:静态作用、动态作用。
4、什么是效应?是不是只有直接作用才能产生效应?效应:作用在结构上的荷载会使结构产生内力、变形等。
不是。
第二章重力1、结构自重如何计算?将结构人为地划分为许多容易计算的基本构件,先计算基本构件的重量,然后叠加即得到结构总自重。
2、土的重度与有效重度有何区别?成层土的自重应力如何计算?土的天然重度即单位体积中土颗粒所受的重力。
如果土层位于地下水位以下,由于受到水的浮力作用,单位体积中,土颗粒所受的重力扣除浮力后的重度称为土的有效重度。
3、何谓基本雪压?影响基本雪压的主要因素有哪些?基本雪压是指当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。
主要因素:雪深、雪重度、海拔高度、基本雪压的统计。
4、说明影响屋面雪压的主要因素及原因。
主要因素:风的漂积作用、屋面坡度对积雪的影响(一般随坡度的增加而减小,原因是风的作用和雪滑移)、屋面温度(屋面散发的热量使部分积雪融化,同时也使雪滑移更易发生)。
5、说明车列荷载与车道荷载的区别。
车列荷载考虑车的尺寸及车的排列方式,以集中荷载的形式作用于车轴位置;车道荷载则不考虑车的尺寸及车的排列,将车道荷载等效为均布荷载和一个可作用于任意位置的集中荷载形式。
第三章侧压力1.什么是土的侧压力?其大小与分布规律与哪些因素有关?土的侧向压力是指挡土墙后的填土因自重或外荷载作用对墙背产生的土压力。
工程荷载与可靠度分析简答题汇总
工程荷载与可靠度分析简答题汇总1.第一章绪论1.1解释作用,荷载,以及两者有什么区别施加在结构上的集中荷载或者分布荷载,以及引起结构外加变形或约束变形的原因的总称。
当以力的形式作用在结构上时,称为直接作用,习惯上称为荷载。
1.2解释什么是作用效应作用效应是结构对所受作用的反应,即由于直接作用或间接作用于结构构件产生的内力、位移、挠度、裂缝、损伤的总称,用S表示。
当作用为直接作用时,其效应也被称为荷载效应。
1.3工程结构设计理论工程结构设计理论是处理工程结构的安全性、适用性与经济性的理论以及方法,主要解决工程结构产生的各种作用效应与结构材料抗力之间的关系,涉及有关结构上的作用结构抗力,结构可靠度和结构设计方法及优化设计等方面的问题。
1.4作用的分类作用形式:直接作用、间接作用。
时间:永久作用,可变作用,偶然作用。
空间位置:固定作用,自由作用。
结构的反应:静态作用,动态作用。
1.5什么是容许应力设计法:容许应力设计法是建立在弹性理论基础上的设计方法,在使用荷载作用下,它规定结构构件在使用阶段截面上的最大应力不超过材料的许用应力。
以结构构件的计算应力不大于有关规范给出的材料的容许应力的原则来进行设计的方法。
1.6什么是极限状态设计法:当整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,则此特定状态称为该功能的极限状态,按此状态进行设计的方法称极限状态设计法。
国际上把处理可靠度的精确程度分为:水准1-半概率方法 2-近似概率法 3-全概率方法2.第二章-重力荷载2.1什么是基本雪压:指以当地一般空旷平坦地面上统计所得重现期为50年的最大积雪的自重2.2风的飘积作用:下雪过程中,风会把部分将要飘落或者已经飘积在屋面上的雪吹到附近地面或临近较低的屋面上,这种影响称为风对雪的飘积作用。
2.3简述对屋面积雪的影响因素?风的漂移作用;屋面形式;屋面的散热情况。
4.第四章-风荷载4.1简述风的形成原因:空气从气压大的地方向气压小的地方流动而形成。
第四章 风荷载
§4.3
风压高度变化系数
《建筑结构荷载规范》(GB50009-2012)为方便设计人员使用,用风 压高度变化系数 综合考虑不同高度和不同地貌情况的影响。对于平坦或稍 有起伏的地形,风压高度变化系数直接按下表取用;对于山区的建筑物, 风压高度变化系数除由下表确定外,还应考虑地形条件的修正。表中地貌 (地面粗糙程度)分为A、B、C、D四类。
§4.2
基本风速和基本风压
3. 平均风速的时距 风速随时间不断变化,常取某一规定时间内的平均风速作为计算标准。 平均风速与时距的大小有密切关系,如果时距取的很短,例如3s,则平均 风速只反映了风速记录中最大值附近的较大数值的影响,较低风速在平均 风速中的作用难以体现,致使平均风速较高;相反,如果时距取的很长, 例如1天,则必定将一天中大量的小风平均进去,致使平均风速值较低。一 般来说,时距越大,平均风速越小;反之,时距越小,则平均风速越大。
§4.1
风的基本知识
4.1.3 我国的风气候总况
§4.1
4.1.4 风级
风的基本知识
为了区分风的大小,根据风对地面(或海面)物体的影响程度将风划为若 干等级。风力等级(wind scale)简称风级,是风强度的一种表示方法。 国际通用的风力等级是由英国人蒲福(Beaufort)于1805年拟定的,故又 称蒲福风力等级(Beaufort scale )。 由于早期人们还没有仪器来测定风速,因此就按照风所引起的现象来划分 等级,最初是根据风对炊烟、沙尘、地物、渔船、渔浪等的影响大小,分为 13个等级(0~12级)。 后来又在原分级的基础上,增加了风速界限,将蒲福风力等级由 12级台风 扩充到17级,增加为18个等级(0~17级)。
§4.2
基本风速和基本风压
第四章 风荷载-PPT课件
( 影 响 是 以 沿 海 开 始 出 现 8 级 风 或 暴 雨 为 标 准 。 )
2、季风(season wind) 冬季:大陆温度低、气压高;相邻海洋温度比大陆高、气压低 风从大陆吹向海洋 夏季:大陆温度高、气压低;相邻海洋温度比大陆低 、气压高
风从海洋吹向大陆
三、风级(根据风对地面或海洋物体影响程度) 13个等级(0级12级)(P37,表4-1) 0级 1级 2级 3级 4级 5级 6级 7级 8级 9级 10级 11级12级 静风 软风 轻风 微风 和风 清劲风 强风 疾风 大风 烈风 狂风 暴风飓风
一、结构的风力和风效应 PL 截面 风速 B PM PD
流经任意截面物体所产生的力 结构上的风力 顺风向力→PD 、 横风向力→ PL 、扭力矩→ PM 结构的风效应
~ 由风力产生的结构位移、速度、加速度响应、扭转响应
二、顺风向平均风与脉动风 顺风向风速时程曲线
v(t)
v
vf
t
v 平 均 风 速 — 长 周 期 成 分 , 周 期 一 般 在 1 0 m i n 以 上
高度 10米高为标准高度 公称风速时距 =10min
1 v v t dt 公 称 风 速 ,即 一 定 时 间 间风速的样本时间
基本风速的重现期T0 基本风速出现一次所需要的时间
o
一年
最大风速 --随机变量
p
面积 p0=1-1/T0
2 v 2 w 风 压 : ( k N /m ) 1630
3 2 = 0 . 0 1 2 0 1 8 k N / m ( 空 气 单 位 体 积 的 重 力 ) , g = 9 . 8 m / s
2、基本风压w0 按规定的地貌、高度、时距等量测的风速所确定的风压 地貌(地面粗糙度)
第四章设计要求及荷载效应组合共59页文档
4.4 稳定和抗倾覆
4.4.2 高层钢结构的稳定验算
大部分钢结构计算需要考虑P-△效应。
《高钢规》5.2.10条 高层建筑钢结构同时符合下列条件
时,可不验算结构的整体稳定。
一、结构各层柱子平均长细比和平均轴压比满足下式要
求:
Nm m 1 N pm 80
式中,λm—楼层柱的平均长细比; Nm—楼层柱的平均轴压力设计值; Npm—楼层柱的平均全塑性轴压力;
钢结构
除框架结构外的转 换层
各种结构类型
1/120 1/50
4.2 侧移限制
4.2.2 防止倒塌层间位移限制
对框架结构,当轴压比小于0.40时,可提高10%;当柱子全 高的箍筋构造采用比本规程中框架柱最小配箍特征值大30% 时,可提高20%,但累计提高不宜超过25%。
4.3 舒适度要求
高度不小于150m的高层建筑结构应具有良好的使用条 件,满足舒适度要求。按现行国家标准《建筑结构荷载规 范》规定的10年一遇的风荷载取值计算的顺风向与横风向 结构顶点最大加速度不应超过表4-4的值。必要时,可通过 专门风洞试验结果计算确定顺风向与横风向结构顶点最大 加速度 a m a x。
Npm fyAm
fy—钢材屈服强度; Am—柱截面面积的平均值。
4.4 稳定和抗倾覆
4.4.2 高层钢结构的稳定验算
二、结构按一阶线性弹性计算所得的各楼层相对侧移值, 满足下列公式要求:
u 0.12 Fh
h
Fv
式中,Δu—按一阶线性弹性计算所得的质心处层间侧移; h—楼层层高; ∑Fh—计算楼层以上全部水平作用之和; ∑Fv—计算楼层以上全部竖向作用之和;
式中,E J d 为结构一个主轴方向的弹性等效侧向刚度,可按倒 三角形分布荷载作用下结构顶点位移相等的原则,将结构的侧
第3,4章 高层建筑荷载
建筑物的抗震设防类别
建筑应根据其使用功能的重要性分为甲类、乙 类、丙类和丁类四个抗震设防类别。 甲类建筑应属于重大建筑工程和地震时可能发 生严重次生灾害的建筑, 乙类建筑应属于地震时使用功能不能中断或需 尽快恢复的建筑, 丙类建筑应属于除甲、乙、丁类以外的一般建 筑, 丁类建筑应属于抗震次要建筑。
局部风荷载:用于计算局部构件或围护构件或
维护构件与主体的连接。 对于檐口、雨蓬、遮阳板、阳台等突出构件的 上浮力,取μs>=-2.0。 对封闭式建筑,按外表面风压的正、负情况取2.0或+2.0。
3.1.3风洞试验
(JGJ3-2002)规定:有下列情况之一的建筑物, 宜按风洞试验确定风荷载。 1 高度大于200m 2高度大于150m,且平面性状不规则、立面形 状复杂,或立面开洞、连体建筑等 3 规范或规程中没有给出风载体形系数的建筑 物 4 周围地形和环境复杂的建筑物
3.2.3抗震计算理论
计算地震作用的方法可分为静力法、反应谱方法 (拟静力法)和时程分析法(直接动力法)。
反应谱理论
反应谱:单质点弹性体系在一定的地面 运动作用下,其最大反应(加速度、速 度和位移反应)与体系自振周期之间的 变化曲线(谱曲线)。
• 直接动力理论
用地震波(加速度时程)作为地面运动输入,直接计算 并输出结构随时间而变化的地震反应。 • 地震波的选取: 采用弹塑性动力分析方法进行薄弱层验算时,宜符合以下 要求:
第3章 高层建筑荷载
教学提示:本章主要介绍了高层建筑风荷载
的计算;抗震设防的准则和基本设计方 法,水平地震作用的计算方法(主要是 反应谱法)与竖向地震作用的计算方法。 教学要求:熟练掌握风荷载的计算方法,以 及用反应谱方法计算水平地震作用的方 法,理解抗震设防的准则和基本设计方 法,理解反应谱理论。
《工程结构荷载与可靠度分析》李国强(第四版)课后习题答案
第一章荷载类型1、荷载与作用在概念上有何不同?荷载:是由各种环境因素产生的直接作用在结构上的各种力。
作用:能使结构产生效应的各种因素总称。
2、说明直接作用和间接作用的区别。
将作用在结构上的力的因素称为直接作用,将不是作用力但同样引起结构效应的因素称为间接作用,如温度改变,地震,不均匀沉降等。
只有直接作用才可称为荷载。
3、作用有哪些类型?请举例说明哪些是直接作用?哪些是间接作用?①随时间的变异分类:永久作用、可变作用、偶然作用②随空间位置变异分类:固定作用、可动作用③按结构的反应分类:静态作用、动态作用。
4、什么是效应?是不是只有直接作用才能产生效应?效应:作用在结构上的荷载会使结构产生内力、变形等。
不是。
第二章重力1、结构自重如何计算?将结构人为地划分为许多容易计算的基本构件,先计算基本构件的重量,然后叠加即得到结构总自重。
2、土的重度与有效重度有何区别?成层土的自重应力如何计算?土的天然重度即单位体积中土颗粒所受的重力。
如果土层位于地下水位以下,由于受到水的浮力作用,单位体积中,土颗粒所受的重力扣除浮力后的重度称为土的有效重度。
3、何谓基本雪压?影响基本雪压的主要因素有哪些?基本雪压是指当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。
主要因素:雪深、雪重度、海拔高度、基本雪压的统计。
4、说明影响屋面雪压的主要因素及原因。
主要因素:风的漂积作用、屋面坡度对积雪的影响(一般随坡度的增加而减小,原因是风的作用和雪滑移)、屋面温度(屋面散发的热量使部分积雪融化,同时也使雪滑移更易发生)。
5、说明车列荷载与车道荷载的区别。
车列荷载考虑车的尺寸及车的排列方式,以集中荷载的形式作用于车轴位置;车道荷载则不考虑车的尺寸及车的排列,将车道荷载等效为均布荷载和一个可作用于任意位置的集中荷载形式。
第三章侧压力1.什么是土的侧压力?其大小与分布规律与哪些因素有关?土的侧向压力是指挡土墙后的填土因自重或外荷载作用对墙背产生的土压力。
第四章风荷载
【思考题】《规范》GB50009对远海海面和海岛的建筑物或构筑物,风压高
度变化系数z如何确定?
风压高度变化系数
ห้องสมุดไป่ตู้
离地面或海平
面高度(m) A
5
1.17
10
1.38
15
1.52
20
1.63
30
1.80
40
1.92
50
2.03
60
2.12
70
2.20
80
2.27
90
2.34
100
2.40
150
2.64
粗糙度和温度垂直梯度 通常认为在离地面高度为300m 500m时,风速不再受地面粗糙度
的影响,达到“梯度风速”,该高度称为梯度风高度HG
地面粗糙度等级低的地区,其梯度高度比等级高的地区为低。 GB50009-2001地面的粗糙度类别
A类—近海海面和海岛、海岸、湖岸及沙漠地区 B类—田野、乡村、丛林、丘陵、房屋比较稀疏的乡镇和城市郊区 C类—有密集建筑群的城市市区 D类—有密集建筑群且房屋较高的城市市区
200
2.83
250
2.99
地面粗糙度类别
B
C
D
1.00
0.74
0.62
1.00
0.74
0.62
1.14
0.74
0.62
1.25
0.84
0.62
1.42
1.00
0.62
1.56
1.13
0.73
1.67
1.25
0.84
1.77
1.35
0.93
1.86
1.45
1.02
第4章结构构件上的荷载及支座反力计算
第4章结构构件上的荷载及支座反力计算第4章主要是研究结构构件上所受到的荷载以及支座反力的计算。
结构构件上的荷载通常由外部荷载和内部荷载两部分组成。
外部荷载是指结构构件受到的来自外界的荷载作用,例如自重、活荷载、风荷载、地震作用等。
内部荷载是指结构构件内部的荷载,例如弯矩、剪力、轴力等。
在计算结构构件上的荷载时,通常采用静力学的原理,根据平衡条件和变形条件进行计算。
其中,平衡条件是指结构构件上受力的总和必须为零,即ΣF=0,ΣM=0;变形条件是指结构构件上的变形必须满足一定的条件,例如梁的弯曲变形必须满足梁的曲率方程。
在计算支座反力时,一般可以采用静力平衡的原理进行计算。
静力平衡的原理是指在结构构件的静力平衡状态下,结构构件上的受力总和必须为零。
在计算支座反力时,可以通过荷载和受力的平衡条件,根据结构构件的几何特性和荷载分布进行计算。
支座反力的计算是结构设计中的重要内容,其准确性对于结构的稳定性和安全性至关重要。
支座反力的计算需要考虑结构的几何形状、荷载分布、材料特性等因素,并且需要根据结构的使用要求和安全标准进行计算。
常用的计算方法包括力平衡法、变形平衡法、弹性平衡法等。
支座反力的计算是结构设计中的一项基本工作,它为结构的合理设计和安全使用提供重要依据。
合理的支座反力计算可以保证结构的稳定性和安全性,并且对于结构的经济性和可行性也有一定的影响。
总之,第4章是研究结构构件上的荷载及支座反力计算的重要内容。
荷载计算是结构设计的基础工作,而支座反力的计算对于结构的稳定性和安全性具有重要意义。
只有通过合理的计算方法和准确的计算结果,才能够保证结构的合理设计,从而满足设计要求和安全标准。
第四章风荷载作用下框架内力分析
第四章 风荷载作用下框架内力分析4.1 风荷载作用下的楼层剪力地区基本风压:0ω=0.45KPa风载体型变化系数:s μ=0.8-(-0.5)=1.3 风压高度变化系数:按C 类地区查表3风振系数:由于房屋高度未超过30米, 1.0β=0k z s z ωβμμω= (4-1) 由于房屋宽度为75m ,层高3.6m,故此框架结构受到的结点水平风荷载kF BH ω=(对顶层考虑女儿墙高度900mm )作用于房屋楼面处的集中风荷载标准值wk F 如下: 5层:5w k F =1.0⨯1.3⨯0.8⨯0.45⨯76.3⨯(3.62+0.9)=118.909kN 4层:4w k F =1.0⨯1.3⨯0.74⨯0.45⨯76.3⨯3.6=118.909 kN 3层:3w k F =1.0⨯1.3⨯0.74⨯0.45⨯76.3⨯3.6=118.909Kn 2层:2w k F =1.0⨯1.3⨯0.74⨯0.45⨯76.3⨯3.6=118.909kN 1层:1w k F =1.0⨯1.3⨯0.74⨯0.45⨯76.3⨯(4.22+3.62)=128.82kN 风荷载作用下剪力分布图3引自GB50009-2001,《建筑结构荷载规范》FF F F F 3600V 13900V 3V 2V 4V 536003600360096.41215.322334.237453.14581.96图4-1 风荷载作用下的剪力分布图4.2 风荷载作用下的框架内力4.2.1风荷载作用下的柱端弯矩表4-1 A 柱柱端弯矩表4-2 C 柱端弯矩4.2.2风荷载作用下梁端弯矩表4-3 风荷载作用下的梁端弯矩4.2.3风荷载作用下梁端剪力和柱轴力标准值表4-4 风荷载作用下梁端剪力和柱轴力标准值4.2.4风荷载作用下的框架梁内力图如下图4-2 风荷载作用下的框架内力图。
第四章 风荷载
第四章 风荷载 第一节 风的基本知识
二、两类性质的大风
1. 台风 台风是发生在热带海洋上空的一种气旋。在暖热带洋面 上空,在合适的环境下,气流产生上升和对流运动。 2. 季风 由于大陆和海洋在一年之中增热和冷却程度不同,在大 陆和海洋之间大范围的、风向随季节有规律改变的风。
第四章 风荷载 第一节 风的基本知识
16
17
184-201
202-220
100-108
109-118
51.0-56.0
56.1-61.2
第四章 风荷载 第一节 风的基本知识
四、风的破坏作用 当风速和风力超过一定限度时,就会给人类社会带来巨大 灾害。 2005年8月23日,卡特里娜飓风在在美国新奥尔良以西地区 登陆,登陆时风速达到225km/h(64.4m/s)。
3
4 5 6 7 8 9 10 11 12 13 14 15
微风
和风 清劲风 强风 疾风 大风 烈风 狂风 暴风 飓风
0.6
1.0 2.0 3.0 4.0 5.5 7.0 9.0 11.5 14.0
1.0
1.5 2.5 4.0 5.5 7.5 10.0 12.5 16.5 —
旌旗展开
吹起尘土 小树摇摆 电线有声 步行困难 折毁树枝 小损房屋 拔起树木 损毁重大 摧毁极大
V Vz
式中 V——标准条件10m高度处时距为10分钟的平均风速(m/s);Vz— —非标准条件z高度(m)处时距为10分钟的平均风速(m/s);——换 算系数,按下表取值。
实测风速高度(m)
高度换算系数
4
1.158
6
1.085
8
1.036
10
1.000
12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.1 基本风速和基本风压
4.1.1 基本风速
标准高度 最大风速 的概率分布 或概率密度 曲线(线型) 基本风速 或基本风压
标准地貌
最大风速 的重现期
平均风速的时距
最大风速的样本
最大风速的样本 取年最大风速为统计样本,即每年以一最大风速记录值 为一个样本。 最大风速的重现期 设重现期为T0年,则1/ T0为超过设计最大风速的概率, 因此不超过该设计最大风速的概率或保证率P0应为:
飓风伊万在美国已造成45人死亡,其中16人 在佛罗里达。 飓风造成的损失在30亿至100亿美元之间。
飓风伊万摧毁的房屋
伊万过后,美国佛罗里达州彭萨科拉市附近的一座 大桥被飓风伊万摧毁
台风云娜登陆时卫星云图
台风云娜袭击浙江, 截 至16日12时的统计,台 风云娜已在浙江造成 164人不幸遇难,失踪 24人,受灾人口达1299 万人,直接经济损失达 181.28亿元。
1 P0 1 T0
我国荷载规范规定:对一般结构,重现期为 30 年,对 于高层建筑和高耸结构,重现期取50 年,对于特别重要和 有特殊要求的高层建筑和高耸结构,重现期可取100年。重 现期为T0年通常俗称为T0年一遇。
4.1.2 基本风压
1、标准高度的规定:房屋建筑类统一取10m为标准高度 2、标准地貌的规定:标准地貌指空旷平坦地区,在具体执行时,对 于城市郊区,房屋较为低矮的小城市,也作标准地貌处理。 3、平均风速的时距:取50年一遇的平均风速时距为10分钟(风的卓 越周期约在1分钟) 风速和风压之间的关系,可由流体力学中的伯努利方程得到。自由气流 的风速产生的单位面积上的风压力为:
风 结构物
理想模型
两类性质的大风 1.台风
地球自转
三圈环流模型
风 压
大陆与海洋吸热差异
弱的热带气旋→引入暖湿空气→在涡旋内部产生上升和对流运动→ 加强涡旋→ ‥‥‥→台风
2.季风
冬季:大陆冷,海洋暖,风:大陆→海洋 夏季:大陆热,海洋凉,风:海洋→大陆
从国际空间站拍摄的飓风伊万云图 最高风速214 km/h(59.4m/s)
0.012018 2 v2 w v v (kN/m 2 ) 2g 2 9.80 1630
2
在不同的地理位臵,大气条件是不同的, γ和 g值也不相 同。资料缺乏时,空气密度可假设海拔高度为0m,取 ρ=1.25(kg/m3);重力加速度 g不仅随高度变化,而且与纬度 有关;空气重度 γ是气压、气温和温度的函数,因此,各地 的γ /g的值均不相同。为了比较不同地区风压的大小,必须对 地貌、测量高度进行统一规定。 根据统一规定,《建筑结构荷载规范》给出了全国各城 市50年一遇的风压值。当城市或建设地区的基本风压值在表 中未列出时,也可按《建筑结构荷载规范》中全国基本风压 分布图查得。在进行桥梁结构设计时,可按《公路桥涵设计 通用规范》中全国基本风压分布图查得基本风压值。
3. 不同重现期换算 重现期不同,最大风速的保证率将不同,相应的最大风 速值也不同。我国目前按重现期50年的概率确定基本风压。 重现期的取值直接影响到结构的安全度,对于风荷载比较敏 感的结构,重要性不同的结构,设计时有可能采用不同重现 期的基本风压,以调整结构的安全水准。不同重现期风速或 风压之间的换算系数可按表4.3取值。
表4.1 实测风速高度换算系数
实测风速高度/m 4 6 8 10 12 14 16 18 20
高度换算系数
1.158
1.085
1.036
1.000
0.971
0.948
0.928
0.910
0.895
2.不同时距换算 时距不同,所求得的平均风速也不同。有时天气变化剧 烈,气象台站瞬时风速记录时距小于10min,因此在某些情 况下需要进行不同时距之间的平均风速换算。Байду номын сангаас测结果表明, 各种不同时距间平均风速的比值受到多种因素影响,具有很 大的变异性。不同时距与10min时距风速换算系数可近似按 表4.2取值。 表4.2 不同时距与10 min时距风速换算系数
实测风速时距 时距换算系数 60min 0.940 10min 1.00 5min 1.07 2min 1.16 1min 1.20 0.5min 1.26 20s 1.28 10s 1.35 5s 1.39 瞬时 1.50
应该指出,表中所列出的是平均比值。实际上有许多因素影响该比 值,其中最重要的有: (1) 平均风速值。实测表明,10min 平均风速越小,该比值越大。 (2) 天气变化情况。一般天气变化越剧烈,该比值越大。如雷暴大风 最大,台风次之,而寒潮大风(冷空气)则最小。
表4.3 不同重现期与重现期为50年的基本风压换算系数
重现期/年 重现期换算系数 100 1.10 60 1.03 50 1.00 40 0.97 30 0.93 20 0.87 10 0.77 5 0.66
4.1.4 山区的基本风压
对于山区的建筑物,基本风压还应考虑地形的修正,修 正系数分别按下述规定采用: (1) 对于山峰和山坡,其顶部B处的修正系数可按下述 公式采用:
4.1.3 风速或风压的换算 1. 不同高度换算 即使在同一地区,高度不同,风速也会不同。当实测 风速高度不足10m标准高度时,应由气象台站根据不同高 度风速的对比观测资料,并考虑风速大小的影响,给出非 标准高度风速与10m标准高度风速的换算系数。缺乏观测 资料时,实测风速高度换算系数也可按表4.1取值。
w
1 2 2 v v 2 2g
式中,w——单位面积上的风压力(kN/m2); ρ——空气密度(kg/m3); γ——空气单位体积重力(kN/m3); g——重力加速度(m/s2); v——风速(m/s)。
在标准大气压情况下, γ=0.012018kN/m3,g =9.80m/s2,可得:
荷载与结构可靠度
第4章 风荷载
临沂大学建筑学院 郑国栋 2013年9月
本章内容
§4.1 基本风速和基本风压 §4.2 风压高度变化系数 §4.3 风荷载体型系数 §4.4 顺风向风振
§4.5 横风向风振
§4.6 桥梁风荷载
风的形成
风是空气从气压大的地方向气压小的地方流动而形成的。
压力差
大气热力学环流模型