概率论 随机变量的函数及其分布
常见随机变量的分布函数
常见随机变量的分布函数在概率论和统计学中,随机变量是一个可以取得不同值的变量,其值是按照一定的概率分布规律出现的。
随机变量的分布函数描述了随机变量在不同取值上的概率。
下面是一些常见的随机变量及其分布函数:1. 伯努利分布(Bernoulli Distribution):伯努利分布是最简单的离散随机变量分布之一、它只有两个可能的取值,例如0和1,成功和失败,正面和反面等。
伯努利分布的分布函数可以表示为:F(x)=1-p,x<0F(x) = 1-p+px, 0<= x < 1F(x)=1,x>=12. 二项分布(Binomial Distribution):二项分布用于描述一系列独立重复实验中成功的次数。
成功和失败的概率分别为p和q=1-p。
二项分布的分布函数可以表示为:F(x)=Σ(从0到x)[C(n,i)*p^i*q^(n-i)],x为非负整数F(x)=Σ(从0到x)[(e^(-λ)*λ^i)/i!],x为非负整数4. 正态分布(Normal Distribution):正态分布是连续型随机变量的常用分布,也被称为高斯分布。
它具有对称的钟形曲线,其分布函数不具有一个简单的数学表达式。
正态分布的参数是均值μ和标准差σ。
5. 均匀分布(Uniform Distribution):均匀分布是最简单的连续型随机变量分布之一,它在一个给定的区间上的取值概率是均等的。
F(x)=(x-a)/(b-a),a<=x<=b6. 指数分布(Exponential Distribution):指数分布用于描述连续时间的等待事件,例如到达一些交叉口的时间间隔。
指数分布的分布函数可以表示为:F(x)=1-e^(-λx),x>=07. 对数正态分布(Log-Normal Distribution):对数正态分布是正态分布的指数函数,它使用对数尺度来处理正态分布不适用的情况,例如财富分布和人口增长。
概率论与数理统计课件第2章
X0
1
pk 03.5
0.25
4
625
0.0625
X的分布函数为
2 0.125
0
x0
0.5
0 x1
F
(
x)
0.75 0.875
1 x 2 2 x3
0.9375 3 x 4
Байду номын сангаас
1
x4
0.0
分布函数 是累计概率
例3 有人对随机变量X的分布列表述如下:
X -1
0 12 3
P
a 0.16
a2 2a 0.3
第2章 随机变量及其分布
2.1 随机变量及其分布函数 2.2 离散型随机变量及其分布律 2.3 几种常见的离散型分布 2.4 连续型随机变量及其密度函数 2.5 正态分布 2.6 随机变量函数及其分布
2.1 随机变量及其分布函数
一、随机变量 二、随机变量的分布函数
信息管理学院 徐晔
一、随机变量
例
包含出现1点
包含出现1,2点
包含出现1,2,3点
包含出现1,2,3,4 点 包含出现1,2,3,4,5 点包含出现1,2,3,4,5,6 点
分布函数的性质
F(x) P(X x), ( x )
(1) F x 在 , 上是一个不减函数 ,
即对 x1 , x2 , 且 x1 x2 ,都有 F x1 F x2 ;
样本点
1, 4, 5 2, 3, 4 2, 3, 5 2, 4, 5 3, 4, 5
黑球数 X
1 2 2 1 1
由上表可以看出,该随机试验的每一个结果都对应
着变量 X 的一个确定的取值,因此变量 X 是样本空
间Ω上的函数:
第二章随机变量及其分布函数
28
例2.2.9 设在时间t分钟内通过某交叉路口的汽车 数服从参数与t成正比的泊松分布. 已知在一分钟内 没有汽车通过的概率为0.2,求在2分钟内多于一辆 车通过的概率.
S={红色、白色} ?
将 S 数量化
非数量 可采用下列方法
X ()
红色 白色
S
1 0R
3
即有 X (红色)=1 , X (白色)=0.
1, 红色, X () 0, 白色.
这样便将非数量的 S={红色,白色} 数量化了.
4
实例2 抛掷骰子,观察出现的点数.
则有
S={1,2,3,4,5,6} 样本点本身就是数量 X () 恒等变换
20
泊松分布是一个非常常用的分布律,它常与 单位时间、单位面积等上的计数过程相联系. 例如一小时内来到某百货公司中顾客数、单位 时间内某电话交换机接到的呼唤次数和布匹 上单位面积的疵点数等随机现象都可以用泊
松分布来描述. 附表 2 给出了不同 值对应的
泊松分布函数的值.
21
泊松分布的取值规律
记 P(k; ) k e ,则
P
1 2
X
5
2
P(X
1 X
2)
P(X 1) P(X 2) 5
9
12
例 2.2.2 一只口袋中有 m 只白球, n m 只黑球.连 续无放回地从这口袋中取球,直到取出黑球为止.设 此时取出了 X 只白球,求 X 的分布律.
解 X 的可能取值为 0,1,2,, m ,且事件{X i}意 味着总共取了 i+1 次球,其中最后一次取的是黑球而 前面 i 次取得都是白球.
或 X ~ Bn, p.
二项分布的背景是伯努利试验:如果每次试验中事 件A发生的概率均为p,则在n重伯努利试验中A发生 的次数服从参数为n,p的二项分布。
第四章 随机变量及其分布
第一节 随机变量及其分布函数
一、 随机变量的概念
1、含义:用来表示随机现象结果的变量。 ①样本点本身是用数量表示的; T ②样本点本身不是用数量表示的。 H 总之,不管随机试验的结果是否具有数量的性 质,都可以建立一个样本空间和实数空间的对 应关系,使之与数值发生联系,用随机变量的 取值来表示事件。 2、定义:定义在样本空间Ω={ω}上的实值 函数X=X(ω)称为随机变量,常用大写英文字 母或小写希腊字母来表示,相应地,用小写英 文字母表示其取值。
为了方便地表示随机事件的概率及其运算,我 们引入了分布函数的概念。
定义:设X 是一随机变量,对x R,
称F ( x ) P ( X x )为随机变量X的分布函数;
并称X 服从分布F ( x ),记为X ~ F ( x ).
注:(1)分布函数表示的是随机事件的概率。 (2)分布函数与微积分中的函数没有区别。
P ( X 0) F (0) F (0 0) 0.8 0.3 0.5 P ( X 1) F (1) F (1 0) 1 0.8 0.2
X P
1 0.3
0 0.5
1 0.2
思考:X还能取 到其他数值吗?
例4 一汽车沿一街道行驶,需要经过三个设有红绿信号 灯的路口,且信号灯的工作相互独立,以X表示汽车首 次遇到红灯已通过的路口数,求X的概率分布列。 解:记Ai—汽车在第i个路口遇到红灯,i=1,2,3. 1 P ( Ai ) P ( Ai ) , 且A1 , A2 , A3相互独立. 2 X的可能取值为 0, 1, 2, 3.
共有10个不同的样本点
记X表示“空格个数”,则有
X ( ) 2
X ( ) 1 X ( ) 0
概率论与数理统计课件:随机变量及其分布
随机变量及其分布
首页 返回 退出
§2.2 离散型随机变量及其分布律
定义 设离散型随机变量 X 所有可能取的值为xk , k = 1, 2,
X 取各个可能值的概率,即事件{ X xk } 的概率,为
P{ X xk } pk , k 1, 2, .
称此为离散型随机变量 X 的分布律.
随机变量及其分布
首页 返回 退出
定义2.1 设随机试验E, 其样本空间S, 若对样本
空间每一个样本点e, 都有唯一一个实数X(e)与之对
应,那么就把这个定义域为S的单值实值函数X=X(e),
称为随机变量。
随机变量通常用大写字母X,Y,Z 或希腊字母 ξ,η等表示.
而表示随机变量所取的值时,一般采用小写字母x,y,z等.
量方面,如,投掷一枚均匀骰子,我们观察出现的点
数。
记X=“出现的点数”
则X的可能取1, 2, …, 6中任一个数,可见X是变量;
又X取那个值不能事先确定,故此X的取值又带有随机
性.
有了随机变量,有关事件的表示也方便了,如
{X=2}, {X≤2}, ……
随机变量及其分布
首页 返回 退出
这样的例子还有很多. 又如,研究手机的使用寿命
或写成
随机变量及其分布
5
P( X k )
6
k 1
1
, k 1, 2,
6
首页 返回 退出
常见离散型随机变量
(一)“0-1”分布
设随机变量 X 只可能取 0 和1 两个值,它的分布律
为
k
P X k p(
1 p)1k k 0,1
(0 p 1)
第二章随机变量及其概率分布(概率论)
当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25
解
⎧0
x<0
F
(
x)
=
⎪⎪ ⎨
⎪
0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3
随机变量及其分布函数
随机变量及其分布函数随机变量是描述随机事件的数学工具,它将随机事件映射到实数上。
我们可以将随机变量理解为一个函数,它将样本空间上的随机事件转化为一个实数。
随机变量的取值通常用大写字母来表示,例如X、Y、Z等,并且随机变量的取值可以是有限个或无限个。
随机变量的分布函数一个随机变量有着不同取值的可能性,而这些可能性可以用概率来描述。
针对一个随机变量而言,其取值在不同的范围内所对应的概率,就被称为该随机变量的分布函数。
分布函数通常用F(x)来表示,其中F是函数符号,x是随机变量的取值。
对于一个随机变量X,其分布函数定义为:F(x) = P(X≤x)其中P(X≤x)指的是随机变量X小于或等于x的概率。
因此,对于小于或等于x的所有可能取值,X的分布函数F(x)均可以计算出来。
随机变量的类型随机变量可以分为两类:离散随机变量和连续随机变量。
离散随机变量离散随机变量是只能取某些特定离散值的随机变量,它们通常意味着某个事件只能发生某些确定的次数。
例如,抛掷一颗骰子的结果就是一个典型的离散随机变量,因为其可能取的值只有1、2、3、4、5、6六种可能。
对于某个离散随机变量而言,它的分布函数是一个阶梯函数,在每个离散值处有一个跳跃,即:F(x) = P(X≤x) = ΣP(X=i),i≤x其中ΣP(X=i)表示随机变量取i的概率,i≤x表示X取i的所有取值小于或等于x。
例如,对于一个只能取0或1的离散随机变量X,其分布函数F(x)可以表示为:F(x) = P(X≤0) + P(X=1) = P(X=0) + P(X=1)其中P(X=0)和P(X=1)表示X取0和1的概率,因此:F(0) = P(X=0)F(1) = P(X=0)+P(X=1)连续随机变量连续随机变量是指可以取到任意实数值的随机变量,通常用于描述某个事件的结果可以连续变化的场景。
例如,衡量人的身高或体重就是一种典型的连续随机变量。
对于某个连续随机变量而言,由于它可以取到任意实数值,因此其分布函数也是一个连续函数。
概率论与数理统计-随机变量及其分布-随机变量与分布函数
7
01 随机变量
如何描述随机变量的统计规律呢 ?
无论是离散型随机变量,还是连续型随机变量以及其他类型 的随机变量,都需要一种统一的描述工具.
对一个样本空间,当建立了随机变量后,我们感兴趣的随机 变量落在某区间或等于某特定值的概率. 为此给出分布函数的概 念.
8
本讲内容
01 随机变量 02 分布函数
02 分布函数 定义 设 X 为随机变量,x 是任意实数,称函数 为 X 的分布函数.
x
如果将 X 看作数轴上随机点的坐标,那么分布函数 F(x) 的
值就表示 X 落在区间
的概率.
10
02 分布函数
用分布函数计算 X 落在( a ,b ] 里的概率:
因此,只要知道了随机变量X的分布函数, 它的统计特性 就可以得到全面的描述.
分布函数是一个普通的函数,正是通过它,我们可以用数 学分析的分布函数
分布函数的性质
(1) F ( x ) 单调不减,即
(3) F ( x ) 右连续,即 如果一个函数具有上述性质,则一定是某个随机变量X 的分 布函数. 也就是说,性质(1)--(3)是鉴别一个函数是否是某随机变 量的分布函数的充分必要条件.
01 随机变量
随机变量 ( random variable ) 定义 设 S 是试验E的样本空间, 若
按一定法则
ω.
X(ω)
R
4
01 随机变量
随机变量通常用
X,Y,Z或 , ,等表示
随机事件可以通过随机变 量的关系式表达出来 例如 某人每天使用移动支付的次数——随机变量X {某天至少使用1次移动支付} {某天1次也没有使用}
12
02 分布函数
例 解
《概率论》第2章§3随机变量的分布函数
面积成正比,且射击都能中靶,记 表示弹X 着
X
点与圆心的距离.求 的分布X函数.
显然当 x 时0 ,{X 故x} , 称这样的随机变量
F(x) P{X x} 0 为连续型随机变量
若 0 x 由2题, 意有 P{0 X为 常x}数 kx2 , k
Q P{0 X 2} k22 1 k 1/ 4
O
第二章
随机1 变量2及其分3布x
§3 随机变量的分布函数 3/5
r.v X的分布函数
F(x) P{X x } , x
F ( x)是单调不减函数
0 F(x) 1且
F () lim F(xx)10x,2 F() lim F(x) 1
F
(
x)
x Q {X
右连续函数即F ( x1 )
x1} {X P{X
x x2 } x1 }
当
x
时F
(
x
0)
lim
tx
F(t)P{XF
(x)x当2} x
F(x2) 时
{X x性} 质
是分布函数的本质{特X 征x} S
满r.v足的性分质布函PP{{数XX 必 xx满的}}关关足F于于(性x)质必xx 右左是连连某续续r.v的分布函数
第二章 随机变量及其分布
F(0x)当x0Px{X20,, xP时x}{X2P{存xXF0}在(0x}) P{0,令X
x}
x2 4
即 X的则若分x布由函2F, 题数(xF意)为(处有xf)F处(Ft()(x连x){)xPX续12{002/tPEX4,,,,,(N故,0xxS0x其xD})fx(t它0tx201S})d,,怎故2t第2,0,样二章理F随解(tO机1)这y变(t一量F1(x及)结0其2,t论分3布?2)x
概率论(随机变量的分布函数)
注: 1. 设X为连续型随机变量,对于任意可能值 a ,
P{X a} 0.
证明 x 0,则{X a} {a x X a}
0 P{X a} P{a x X a} F(a) F(a x) 0(x 0 )
试求c为待定常数又因为0x2为必然事件故1216补充定义x2处函数值为0后得到简称概率密度密度函数的概率称为其中为连续型随机变量使对任意实数非负可积函数存在的分布函数如果对于随机变量一定义probabilitydensity
第三节 随机变量的分布函数
一、概念的引入
需要知道 X 在任意有限区间(a, b)内取值的概率.
(1) 曲线关于直线 x= 对称 . 1 f(x)
2
这表明P{ h X } P{ X h}
(2) 当 x= 时,f(x)取得最大值;
O
x
(3) 在 x= 处曲线有拐点,且以x轴为渐近线 ;
(4) 对固定的,改变的值,图形沿Ox轴平移;
(5) 对固定的,改变, 越小,图形越尖.
正态分布的分布函数为: F ( x) 1
为X 的分布函数(distribution function) 记作 X ~ F(x) 或 FX(x)
如果将 X 看作数轴上随机点的坐标,那么分
布函数 F(x) 的值就表示 X落在区间
(, x] 的概率.
—X——x |——> x
三、分布函数的性质
1 单调不减 即 若 x1< x2,则F(x1) ≤F(x2);
例如 求随机变量 X 落在区间( x1, x2 ]内的概率.
P{ x1 X x2} P{ X x2}P { X x1}
概率论第六讲--随机变量的分布函数
及
其
y
由 FY ( y) F (x, )
[
f (x, y)dx]dy
知Y是连续型随机变量,其概率密度为
分 布
称为(X,fYY)(关y)于 Y的 f边(x缘, y)概dx率密度.
例3 求例1中二维随机变量(X、Y)关于X
和关于Y的边缘分布律。
例4 设随机变量X和Y具有联合概率密度 求
已知 分布函数F(x)
函 则f(x)在连续点处: f ( x) F `( x)
数
§2.5 多维随机变量及其分布
(一)二维随机变量
1.二维随机变量
引例1 E:火炮射击观察“弹着点”的位置;
例2 E:抽查学龄前儿童,观察身体素质。
定义:
随机试验E,样本空间为S={e},设X=X(e) 和Y=Y(e)是定义在S上的随机变量,由它们构 成的向量(X,Y),称为二维随机变量。
其 且F(-∞,-∞)=0,F(+∞,+∞)=1.
分 (3)F(x,y)关于x或y右连续.
布
多 • 2.离散型随机变量的联合分布律
维 设二维随机变量(X,Y)所有可能取值为
随 (xi,yj),记P{X=xi,Y=yj}=pij,称为二维
机
离散型随机变量(X,Y)的概率分布或分布 律,或称为随机变量X,Y的联合分布律.
机 F(x,y),如存在非负的函数f(x,y),
变 使对于任意x,y,都有:
量 则称(X,Y)是连续型的二维随机变量,
及 函数f(x,y)称为(X,Y)的概率密度,
其 或称为X和Y的联合概率密度.
分
布
多 概率密度f(x,y)的性质
维 1 f (x, y) 0;
概率论与数理统计-第二章-随机变量及其分布函数ppt课件
表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]
②
pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32
概率论与数理统计(随机变量函数的分布)
( 3) ( 2) ( 3) ( 2) 1
0.9987 0.9772 1 0.9759
2.4.2 连续型随机变量函数的分布
也可以这样计算:
102 108 X 108 117 108 P{102 X 117} P 3 3 3 X 108 P { 2 3} ( 3) ( 2) 0.9759 3
函 数 NORMDIST 返 回 累 ቤተ መጻሕፍቲ ባይዱ 函 数 值 ( 即 分 布 函 数
值);如果为FALSE,返回概率密度值.
2.4.2 连续型随机变量函数的分布
实验步骤: (1)在单元格B2中输入计算P{X < 102}的公式:
= NORMDIST(102, 108, 3, TRUE)
(2) 在单元格B3中输入计算P{X < 117}的公式:
f X [h( y)][ h' ( y)], y , fY ( y) 0, 其它
综合以上两式,定理证毕.
2.4.2 连续型随机变量函数的分布
说明:
若 f X ( x )在有限区间(a,b)外等于零,当 x (a, b) 时,g ( x ) ( , ) 且在(a,b)上恒有g'(x) > 0 (或恒有g'(x)<0 ),则仍可按式(2.12)求得 Y = g(X)概率密度.
2) 当y > 0时,FY ( y) P{ y X y} ( y) ( y) 2 ( y) 1 则
fY ( y) F 'Y ( y) 2 ( y) 2 1
2
《概率论与数理统计》第四节随机变量函数的分布
y,
(ln
y)
1, y
故Y的概率密度为:
fY
(
y)
1 2y
,
1
y e2,
0, 其它.
求连续型随机变量函数分布律的方法:
(2) 设y g( x)在区间I(k k 1,2,, s)上严格单调,且反函数分别
为x
hk (
y),则Y
g( X )的概率密度为: s
fY ( y) f X [hk ( y)] h'k ( y) .
P(Z 1) P( X 1) P( X 1) 0.2 0.1 0.3,
P(Z 4) P( X 2) 0.3,P(Z 9) P( X 3) 0.3,
因此Z的分布律为:
Z P
0 0.1
1 0.3
4 0.3
9 0.3
.
从例1看到,根据X的分布确定Y g( X )分布,只需用“事件相 同,概率相等”的思想处理. 一般地有,
h'(
y)
,
y ,
其它.
其中 min{ g(), g()}, max{g(), g()}.
一、分布函数
1. 分布函数:设X是一个随机变量,对任意实数 x,事件{X x}的
概率P( X x)称为随机变量X的分布函数,记作F( x),即
F( x) P( X x).
2. 分布函数的性质:
P( X k) k e,k 0,1,2,, 0, 则称X服从泊松分布,记k为! :X~ ( ).
4. 几何分布: 若随机变量X所有可能取值为1, 2, , 且分布律为:
P( X k) pqk1, k 1, 2,, 0 p 1, q 1 p,
则称X服从几何分布,记为:X~G( p).
随机变量的分布函数及其计算
随机变量的分布函数及其计算随机变量的分布函数是指随机变量取值在一个区间内的概率累计值的函数。
在概率论中,分布函数也被称为累积分布函数(Cumulative Distribution Function,简称CDF)。
分布函数常用于描述随机变量的取值范围和概率分布。
对于离散型随机变量来说,其分布函数可以表示为:F(x)=P(X≤x),其中P表示概率,X表示随机变量,x表示变量的取值。
对于连续型随机变量来说,其分布函数可以表示为:F(x) = ∫[−∞, x] f(t)dt,其中f(t)表示随机变量的概率密度函数。
下面将分别介绍离散型随机变量和连续型随机变量的分布函数计算方法。
离散型随机变量的分布函数计算方法:在离散型随机变量中,概率函数通常是已知的。
因此,我们只需要对所有可能取值的概率进行累加,即可得到分布函数的值。
具体计算步骤如下:1.确定一些特定值x。
2.计算所有小于等于x的概率之和,即F(x)=P(X≤x)。
如果x取一些可能的取值,那么F(x)就是这个取值之前(包括这个取值)所有概率的累积。
例如,假设X是一个骰子的点数,其可能取值为1、2、3、4、5、6;对应的概率分别为1/6、可以计算得到分布函数如下:F(0)=P(X≤0)=0F(1)=P(X≤1)=1/6F(2)=P(X≤2)=2/6F(3)=P(X≤3)=3/6F(4)=P(X≤4)=4/6F(5)=P(X≤5)=5/6F(6)=P(X≤6)=1连续型随机变量的分布函数计算方法:在连续型随机变量中,通常会给出概率密度函数f(x),例如正态分布、均匀分布等等。
对于连续型随机变量,其分布函数是通过对概率密度函数进行积分得到的,具体计算步骤如下:1.确定一些特定值x。
2. 计算从负无穷到x的概率密度函数的积分,即F(x) = ∫[−∞, x] f(t)dt。
积分的结果是一个累积概率,表示随机变量的取值小于等于x的概率。
例如,假设X是一个服从正态分布N(0,1)的随机变量,其概率密度函数为:f(x)=(1/√(2π))*e^(-x^2/2)我们可以计算得到分布函数如下:F(−∞) = ∫[−∞, -∞] f(t)dt = 0F(0) = ∫[−∞, 0] f(t)dt = 0.5F(1) = ∫[−∞, 1] f(t)dt ≈ 0.8413F(2) = ∫[−∞, 2] f(t)dt ≈ 0.9772F(3) = ∫[−∞, 3] f(t)dt ≈ 0.9987总结:随机变量的分布函数可以用来描述随机变量在一些取值范围内的概率分布情况。
概率论第二章
将 p = 0.5 代入,得
1 0 X ~ 0 .5 0.25 2 0.125 3 0 .0625 0 .0625 4
下面,重点介绍三种离散型随机变量的概率分 布。 (一)0-1分布 分布 若X 的分布律为 k 1− k P { X = k } = p (1 − p ) , k = 0 ,1 或者 0 1 X p pk 1− p 则称随机变量 X 服从参数为 的0-1分布 参数为p的 分布. 参数为 如果试验的结果只有两个:成功与失败,并且成 功的概率为p,则成功的次数 X 服从参数为p的0-1 分布。
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.99) − 20(0.01)(0.99) = 0.0169 设A为“四个人中至少有一个人来不及维修”这 一事件,则有
20 19
P( A) ≥ P{ X ≥ 2} = 0.0169
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.98)
400
− 400(0.02)(0.98)
399
直接计算上式比较麻烦,为此需要一个近似计算 公式。我们先引入一个重要的分布。
(三) 泊松分布 三 泊松分布(Poisson Distribution) 如果随机变量 X 的分布律为:
例6 社会上定期发行某种奖券,中奖率为p.某人 每次购买一张奖券,如果没有中奖则下次继续购买1 张,直至中奖为止.求该人购买次数的分布律. 解 设该人购买的次数为X ,则X的可能取值为
1, 2 , L .
{X = 1} 表示第一次购买就中奖,其概率为p.
3-1-随机变量及分布函数
P ( a b ) F ( b ) F ( a 0)
概率论-第三章
0 x0 2010年考研题 1 设随机变量X的分布函数为F ( x ) 2 0 x 1 x 求P ( X 1) 1 e x1
解
P ( X 1) P ? ( X 1) P ( X 1)
( ) 称为是样本空间 上的(实值)随机变量,称
F ( x ) P ( ( ) x ) , x (, )
是随机变量 ( )的分布函数
注意: F(x)
是一个普通 概率论-第三章 的函数!
作业 186页 1,7
分布函数的性质
(1) 单调性 若x1 x2 , 则F ( x1 ) F ( x2 )
注意: 离散
型用分布列简 单
概率论-第三章
F ( x 0) F ( x ) P ( x )
事件的概率均可以用分 布函数F ( x )表示
必须记住, P ( b) F (b 0) 考研常考! P ( b) 1 F (b 0) P ( b) P( b) P( b) F ( b ) F ( b 0) P (a b) F ( b ) F ( a )
1 1 1 1 e e 2 2
1
注意:随机变量为混合型
概率论-第三章
设F1 ( x )与F2 ( x ) 分别为任意两个随机变量分布函数,
B 中”这一事件为 B , 则上述等可能 无关”.如果记”落入
l d c B •104页意味着 P ( B ) 几何概 ba ba 率 如果投在 [a , b]中的点的坐标为 (a b) ,令 ( ) (a b) ( )为随机变量 显然它的可能取值充满整个区间 [a , b .] •不是离 如何描述 ( )的统计规律性? 散型随
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p X [ f 1 ( y )] [ f 1 ( y )] , 0 y , pY ( y ) 其他 . 0,
1 [ f 1 ( y )] , 0 f 1 ( y ) 1, 其他 . 0, 1 1 , 0 ln y 1, y 其他 . 0, 1 , 1 y e, y 0, 其他 .
证 F ( x )是分布函数
0 F ( x ) 1, 且F ( x )单调不减
依题意, 又知 F ( x )严格单调增加
故 y R,
FY ( y ) P{Y y } P { F ( X ) y }
FY ( y ) P{Y y } P{ F ( X ) y } y 0, P ( ), P{ F ( X ) y }, 0 y 1, P ( ), y 1. y 0, 0, P{ X F 1 ( y )}, 0 y 1, 1, y 1.
且恒有f ( x ) 0(或恒有f ( x ) 0), 则Y f ( X )是连
续型随机变量,其概率 密度为
p X [ f 1 ( y )] [ f 1 ( y )] , y , pY ( y ) 0, 其它. 其中 f 1 ( y ) 是 f ( x ) 的反函数, ( , )是f 1 ( y )的定义域,
y 0, 0, 0, 0 y 1, FY ( y ) ln y , 1 y e, y e. 1,
从而
d FY ( y ) pY ( y ) dy
1 , 1 y e, y 0, 其他 .
例6 设圆的直径服从区间(0,1)上的均匀分布
P{ Y } P{ Y y } 0 P{ Y y }
于是
FY ( y ) P{Y y}
( y )
P{ X f 1 ( y )}
f 1 ( y )
pX ( x ) d x
FY ( y )
f 1 ( y )
由公式
pY ( y ) p X [ f 1 ( y )] [ f 1 ( y )]
得
Y aX b 的概率密度为
yb . a
1 yb pY ( y ) p X ( ), a a
1 1 a 2 πσ
1 a σ 2π
yb ( μ )2 a 2 2 σ e
y 0, 0, 0, y 0 , 1 F [ F ( y )], 0 y 1, y , 0 y 1, 1, 1, y 1. y 1 .
pY ( y ) [ FY ( y )]
1, 0 y 1, 0, 其他 .
( y) [ pY ( y ) FY
p X ( x ) d x ]
y 8 y 8 p ( y 8) 1 pX ( )( ) X 2 2 2 2
y8 1 pY ( y ) p X ( ) 2 2
x , 0 x 4, pX ( x ) 8 0, 其它.
故 Y 的分布律为
Y P
4
1
2
1 6
1 3
1 2
由此归纳出离散型随机变量函数的分布的求法.
离散型随机变量的函数的分布律 如果X是离散型随机变量,其 函数Y f ( X )
也是离散型随机变量, 若X的分布律为
X
x1
p1
x2
p2
xk
pk
pk
则Y f ( X )的分布律为
Y f (X )
积Y πX 2 / 4的密度函数为
p X ( 4 y / π ) | 1 / πy |, pY ( y ) 0,
1 , πy 0,
0 y π / 4, 其他.
0 y π / 4, 其他.
例8 设随机变量 X分布函数 F ( x )是严格
单调的连续函数,试 证明:Y F ( X )在[0,1] 上服从均匀分布.
pk
f ( x1 ) f ( x2 ) p1 p2
f ( xk ) pk
若 f ( xk ) 中有值相同的 , 应将相应的 pk 合并.
例2 设
X
1
1 6
1
2 6
2
3 6
pk
求Y X 2 5的分布律 .
解
Y 的分布律为 Y X2 5
Y
4
1
4
1
1
2
X
p
pk
4 1 2
第三节 随机变量的函数 及其分布(1)
(单个随机变量的函数的分布)
一、问题的提出 二、离散型随机变量 的函数的分布 三、连续型随机变量 来自函数的分布下 回停
一、问题的提出
在实际中,人们常常对随机变量的函数 更感兴趣. 例如,已知圆柱截面直径 d 的分布
πd 2 求截面面积A 的分布. 4
已知 t = t0 时刻噪声电压 V 的分布
求随机变量Y 2 X 8的概率密度.
解 1º 先求Y=2X+8 的分布函数 FY ( y ).
FY ( y ) P{Y y } P{2 X 8 y }
y8 P{ X } 2
y8 2
y8 2
pX ( x ) d x
2º 由分布函数求概率密度.
pX ( x ) d x
( y )
当 y 时, d FY ( y ) pY ( y ) dy d f 1 ( y ) [ pX ( x ) d x] d y
p X [ f 1 ( y )] [ f 1 ( y )]
对于 f ( x ) 0的情形可作类似的证明 .
方法2 (分布函数法)
FY ( y ) P {Y y } P {e X y }
y 0, P ( ), P{ X ln y }, y 0. y 0, 0, ln y p X ( x ) d x , y 0. ln y 0, 0, ln y ln y 当 y 0 时, p X ( x ) d x p X ( x ) d x , 0 ln y 1, 1 p X ( x ) d x , ln y 1.
1 1 2 1 + 6 6 2
3 6
三、连续型随机变量的函数的分布
设 X是连续型随机变量 , Y f (X )
下面给出两种方法来求Y的概率密度函数 1. 分布函数法 先求 : FY ( y )
再求 :
( y ). pY ( y ) FY
例3 设随机变量X的概率密度为
x , 0 x 4, 8 pX ( x ) 其它. 0,
即Y F ( X )服从[0, 1]上的均匀分布.
内容小结
1. 离散型随机变量的函数的分布 如果 X 是离散型随机变量 , 其函数 Y f ( X )
也是离散型随机变量 .若 X 的分布律为
X
x1
p1
x2
p2
xk
pk
pk
Y f (X )
则 Y f ( X )的分布律为
pk
f ( x1 ) f ( x2 ) p1 p2
随机变量Y = f (X)的分布?
例1 设离散型随机变量 X 的分布律
X
3
0
3
1 2
1 1 P 6 3 求Y=X-1的分布律.
解 Y 的可能取值为-4,-1,2.
1 P{Y 4} P{ X 3} 6 1 P{Y 1} P{ X 0} 3
1 P {Y 2} P { X 3} 2
y8 1 y 8 1 ) , 0 4, ( 8 2 2 2 其它. 0,
y8 , 8 y 16, 32 其它. 0,
2. 公式法 定理 (例2.18) 设随机变量X具有概率密度 pX ( x ), 其中 x .又设函数f ( x )在(a , b)上可导,
例4 设随机变量X ~ N ( , ), 试证明X的线性函数
2
Y aX b( a 0)也服从正态分布
证 X 的概率密度为
( x μ )2 2σ 2
1 pX ( x ) e 2πσ
, x .
设 y f ( x ) ax b,
得x f
1
1 yb 1 ( y) , 知 [ f ( y )] 0. a a
f ( xk ) pk
若 f ( xk ) 中有值相同的 , 应将相应的 pk 合并.
2. 连续型随机变量的函数的分布 方法1 FY ( y ) P{Y y } P{ f ( X ) y }
f ( x ) y
p X ( x )dx
( x )
ln y 0, 0, ln y p X ( x ) d x , 0 ln y 1, 0 1 pX ( x ) d x, ln y 1. 0 ln y 0, 0, ln y 1 d x , 0 ln y 1, 0 1 1d x , ln y 1. 0 y 1, 0, ln y , 1 y e, 1, y e.
1 [ f ( y )] , 当 f ( x ) 0时, 1 [ f ( y )] 1 [ f ( y )] , 当 f ( x ) 0时.
证 若 f ( x ) 0,
则 y f ( x )单调增加,且其反函数