(完整版)平方根和立方根经典讲义
(完整版)平方根、算术平方根、立方根重点例题讲解
6.1平方根、算术平方根、立方根例题讲解 第一部分:知识点讲解 1、学前准备【旧知回顾】2.平方根(1)平方根的定义:一般的,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。
即若a x =2,)0(≥a ,则x 叫做a 的平方根。
即有a x ±=,(0≥a )。
(2)平方根的性质:(3)注意事项:a x ±=,a 称为被开方数,这里被开方数一定是一个非负数(0≥a )。
(4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。
它与平方互为逆运算。
3. 算术平方根(1)算术平方根的定义:若a x =2,)0(≥a ,则x 叫做a 的平方根。
即有a x ±=,(0≥a )。
其中a x =叫做a 的算术平方根。
(2)算术平方根的性质:(3)注意点:在以后的计算题中,像22-52)(++,其中,25分别指的是2和5的算术平方根。
4.几种重要的运算: ① b a ab •=()0,0>>b a , ab b a =•()0,0>>b a②b a b a =)0,0(>≥b a , b aba =)0,0(>≥b a ③ a a =2)()0(≥a , a a =2 , a a =2-)(★★★ 若0<+b a ,则()ba b a b a b a --=+-=+=+2)(5.立方根(1)立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根。
即若a x =3,则x 叫做a 的立方根。
即有3a x =。
(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。
6.几个重要公式: ③ 333b a ab •=, 333ab b a =•333b a b a = )0(≠b , 333b a ba = )0(≠b④ a a =33)(可以为任何数)a (, a a =33 ,a a --33=)(第二部分:例题讲解题型1:求一个数的平方根、算术平方根、立方根。
初中数学课件 实数(平方根与立方根)
方根就是算术平方根,0的平方根是0,负数没有平方根.
(2)符号 a 只有当 a≥0 时有意,a<0 时无意义.
(3)当 a≥0 时, a 是一个非负数,它与a2 、a 统称为实数的“三大非负性”
(二)、立方根
(C)242
(D)88
,,
中,无理数的个数是
(A)1 个
(B)2 个
(C)3 个
(D)4 个
9.下列四个结论:(1)绝对值等于它本身的实数只有零;(2)相反数等于它本身的实数只
有零;(3)倒数等于它本身的实数只有 1;(4)算术平方根等于它本身的实数只有 1。其中
正确结论的个数是
(A)0 个 (B)1 个
(3) 3 1 35 3 8 2
27
27 3
例 6 若数m 的平方根 5 a 是 1
和a 1 9 ,求m 的值
解:由题意,知本题分两种情况来求解,
当m 0 时,其平方根为一对互为相反数,
则有: 5 a 1 a 1 9 0 故a , 3
则,5a 1 16 ,a 19 16,故m 162 256 当m 0 时,其方根是 0,
16
(A)3 是 9 的算术平方 9 根,3 即 =
(B)4 和-4 都是 16 的平方根,1 6即
= 4
(C)-3 是 9 的平方根,即 (2) 2
3.
x 的1 算术平方根是
=-3
2
(A)2
(B) 22
(C)
(D)4 是 16 的负的平方根,即
2
(D)
=-4
4.如果 (A)81
=3,则(x+1) 等于
平方根和立方根讲义
平方根与立方根知识梳理1、 平方根:(1)若x 2=a (a >0),那么x 叫做a 的 ,我们把 称为算术平方根,记为 。
规定,0的算术平方根为 。
(2)一个 的平方根有2个,它们互为 ; 只有1个平方根,它是0本身; 没有平方根。
(3)两个公式:()=2a ( );=2a2、立方根:(1)若x 3=a ,那么x 叫做a 的 ,记为 。
(2)一个正数的立方根有 个,0的立方根是 ,负数有 个立方根。
(3)立方根的性质:(3a )3 = ;33a =注意1:算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
注意2:平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。
典型例题一、弄清概念例1、9的平方根是 ,16的算术平方根是 ;327-的立方根是 。
例2、一个数的平方根是2m-4和3m-1,则这个数是 。
例3、已知23211a a -=-,求a 的值举一反三:1) 的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。
(3)若x 的平方根是±2,则x= ;16的平方根是(4)当x 时,x 23-有意义。
(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?二、利用算术平方根的双非负性解题例4、已知0262=-++b a ,解关于x 的方程 (a+2)x+b 2=a+1例5、若12)1(212-+-+-=x x x y ,求代数式2004)(y x +的值三、运用性质化简例6、a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++四、估算算术平方根的范围例7、已知79+与79-的小数部分分别为x 、y ,求3x+2y 的值[随堂练习]1、当_______m 时,5-m 有意义;当_______x 时,x -11有意义。
数的开方讲义
数的开方【教学内容】第十六章数的开方16.1 平方根16.2 立方根【知识点精析】一、平方根1.平方根如果一个数的平方等于a,那么这个数叫做a的平方根,即如果x2=a,则x叫做a的平方根,记作x=a±,其中a叫被开方数。
2.平方根的性质(1)任何一个正数的平方根有两个,它们互为相反数。
如正数a 的平方根是a+与-a恰是一对相反数;±,其中a(2)零的平方根是零,即00=;(3)负数没有平方根。
3.算术平方根正数a的正的平方根,叫做a的算术平方根。
4.开平方求一个非负数的平方根的运算,叫做开平方。
开平方与平方互为逆运算。
5.求一个正数的平方根的基本方法和基本步骤(1)明确(或易求出)所要求的正数是哪一个数的平方的。
①先写出是哪个数的平方等于已知的数;②再求出这个正数的算术平方根;③最后求出这个正数的平方根。
(2)不易求出所要求的正数是哪个数的平方的。
方法1:利用数学用表的平方根表查。
方法2:利用计算器计算。
6.注意的问题(1)负数没有平方根;(2)a的非负性,即当a≥0时,a≥0,非负数的算术平方根一定是非负数;(3)用计算器求一个正数的平方根应注意精确度,或根据精确度取近似数。
二、立方根1.立方根如果一个数的立方等于a,那么这个数叫做a的立方根,即如果x3=a,则x叫做a的立方根,记作:x=3a,其中a叫做被开方数,3叫做根指数。
2.立方根的性质任何一个正数的立方根是一个正数,即a>0时,3a>0;任何一个负数的立方根是一个负数,即a<0时,3a<0;零的立方根仍是零,即a=0时,3a=0。
3.开立方求一个数的立方根的运算叫做开立方。
开立方与立方互为逆运算。
4.求一个数的立方根的基本方法和基本步聚(1)明确(或易求出)所要求的数是哪一个数的立方的;①先指出所要求立方根的那个数是哪个数的立方;②根据立方根的定义,求出这个数的立方根。
(2)不易求出所要求的那个数是哪个数的立方的:①利用数学用表中的立方根表查;②利用计算器计算。
无理数、平方根与立方根讲义
一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根。
注:正数的立方根是正数,负数的立方根是负数,0的立方根是0。
二、同步题型分析1、说说谁“有理”,谁“无理” 以下各数:-1,23,3.14,-π,3.⋅3,0,2,27,24,-0.2020020002……(相邻两个2之间0的个数逐次加1)其中,是有理数的是_____________,是无理数的是_______________. 在上面的有理数中,分数有______________,整数有______________. 答案:有理数:-1,23,3.14,3.3,0,2,27,24. 无理数:-π,-0.2020020002…… 分数:23,3.3,27整数:-1,0,2,242、在“()05,3.14 ,-π,()23,0.123334, 0.212212221…”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个3、下列语句正确的是( ) A.3.78788788878888是无理数B.无理数分正无理数、零、负无理数C.无限小数不能化成分数D.无限不循环小数是无理数4、在直角△ABC 中,△C =90°,AC =23,BC =2,则AB 为( )A.整数B.分数C.无理数D.不能确定答案:B5、面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是”或“不是”) 答案:不是,是)解:解:()28=±64±=即()2711=±)解:解:解:利用平方根来解下列方程.(2x-1)2-169=0变式训练:、下列计算正确的是(=±2 B ()0.02±0.0004±即()225=±11的平方根是(2)∵(x ﹣1)3=8, ∴x ﹣1=2, ∴x=3. 点评: 本题考查了学生开平方、立方的能力,也考查了解方程的方法,比较容易解答.变式训练1.求下列各式中的x :(1)4x 2=9; (2)1﹣(x+1)3=1001. 解答:解:(1)∵x 2=, ∴;(2)∵1﹣(x+1)3=1001,∴(x+1)3=﹣1000,∴x+1=﹣10,∴=﹣11.1、判断题(1)-0.01是0.1的平方根.………………………………………………………… …( )(2)-52的平方根为-5.……………………………………………………………… ( ) (3)0和负数没有平方根.……………………………………………………………… ( )(4)因为161的平方根是±41,所以161=±41.……………………………………… ( )(5)正数的平方根有两个,它们是互为相反数.…………………………………… ( ) 2、选择题(1)下列各数中没有平方根的数是( )A.-(-2)3B.3-3C.aD.-(a 2+1)(2)2a 等于( )A.aB.-aC.±aD.以上答案都不对(3)如果a (a >0)的平方根是±m ,那么( )A.a 2=±mB.a =±m2C.a =±mD.±a =±m(4)若正方形的边长是a ,面积为S ,那么( )A.S 的平方根是aB.a 是S 的算术平方根C.a =±SD.S =a3、填空题(1)若9x 2-49=0,则x =________.(2)若12 x 有意义,则x 范围是________.(3)已知|x -4|+y x +2=0,那么x =________,y =________.(4)如果a <0,那么2a =________,(a -)2=________.4、已知一个正方形ABCD 的面积是4a 2 cm 2,点E 、F 、G 、H 分别为正方形ABCD 各边的中点,依次连结E 、F 、G 、H 得一个正方形.(1)求这个正方形的边长.(2)求当a =2 cm 时,正方形EFGH 的边长大约是多少厘米?(精确到0.1cm )图1参考答案1.(1)× (2)× (3)× (4)× (5)√2.(1)D (2)D (3)D (4)B3.(1)±37 (2)x ≥-21(3)x =4,y =-8 (4)-a ,-a 4.(1)2a cm (2)2.8 cm【巩固练习】1、算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 2、2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 3、满足53<<-x 的整数x 是( ) A 、3,2,1,0,1,2-- B 、3,2,1,0,1- C 、3,2,1,0,1,2-- D 、2,1,0,1-4、下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根5、已知x ,y 是实数,且34x ++(y-3)2=0,则xy 的值是( ) A .4 B .-4 C .94 D .-946、下列说法中正确的是( )A .9的平方根是3B .16的算术平方根是±2 C. 16的算术平方根是4 D. 16的平方根是±27、下列说法中,正确的是( )[来源:学&科&网Z&X&X&K]A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,18、已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长. 答案:7cm。
讲解详细讲解平方根和立方根的概念运算规则和注意事项解答学生提出的疑问
讲解详细讲解平方根和立方根的概念运算规则和注意事项解答学生提出的疑问平方根和立方根是数学中重要的概念,它们在各个学科领域都有广泛的应用。
在本文中,我们将详细讲解平方根和立方根的概念、运算规则以及需要注意的事项,以解答学生们提出的疑问。
一、平方根的概念和运算规则平方根是指一个数的平方等于该数的非负根。
即,对于任意非负数x和非负数a,若a的平方等于x,那么我们称a是x的平方根。
用符号表示,可以写作√x=a。
平方根的运算规则如下:1. 非负数的平方根是唯一的。
即,一个非负数x只有一个非负平方根。
2. 负数没有实数平方根。
平方根的定义要求平方根是非负的,因此负数没有实数平方根。
3. 平方根运算具有交换律和结合律。
即,对于任意非负数x和y,有√(x*y)=√x*√y和√(x/y)=√x/√y。
4. 平方根运算满足开方运算法则。
即,对于任意正数x和正整数n,平方根运算和幂运算可以互相转换,即√(x^n)=(√x)^n。
二、立方根的概念和运算规则立方根是指一个数的立方等于该数的非负根。
即,对于任意数值x 和非负数a,若a的立方等于x,那么我们称a是x的立方根。
用符号表示,可以写作³√x=a。
立方根的运算规则如下:1. 实数的立方根是唯一的。
即,一个实数x只有一个实立方根。
2. 负数的立方根是存在的。
与平方根不同,负数是存在实数立方根的,例如-8的立方根是-2,因为(-2)^3=-8。
3. 立方根运算具有交换律和结合律。
即,对于任意数值x和y,有³√(x*y)=³√x*³√y和³√(x/y)=³√x/³√y。
4. 立方根运算也满足开方运算法则。
即,对于任意正数x和正整数n,立方根运算和幂运算可以互相转换,即³√(x^n)=(³√x)^n。
三、注意事项在计算平方根和立方根时,需要注意以下几点:1. 平方根和立方根的符号。
平方根是指非负根,因此其结果为正数或零。
平方根与立方根及解析
平方根与立方根及解析一、平方根的概念与运算性质平方根是数学中常见的运算,表示一个数的平方根。
如果一个数a的平方等于b(即a²=b),那么a就是b的平方根。
平方根通常用符号√表示。
平方根的运算性质如下:1. 非负数的平方根都是有意义的,即对于非负数b,b的平方根√b一定存在。
2. 负数的平方根在实数范围内没有实数解。
例如,-1的平方根不存在于实数范围内。
3. 如果a>0,那么a的平方根有两个解:一个是正的,一个是负的。
例如,4的平方根有±2两个解。
4. 平方根具有乘法性质,即√(ab)=√a * √b。
这个性质有助于进行平方根的计算。
二、立方根的概念与运算性质立方根是指一个数的立方等于另一个数的根。
如果一个数a的立方等于b(即a³=b),那么a就是b的立方根。
立方根通常用符号³√或者∛表示。
立方根的运算性质如下:1. 任意实数都有唯一的立方根。
即对于任意实数b,b的立方根³√b存在且唯一。
2. 正数的立方根只有一个解,即正数本身。
例如,8的立方根为2。
3. 负数的立方根在实数范围内没有实数解。
例如,-1的立方根不存在于实数范围内。
4. 立方根具有乘法性质,即³√(ab)=³√a *³√b。
这个性质有助于进行立方根的计算。
三、平方根与立方根的解析方法1. 平方根的解析方法求一个数的平方根可以使用不同的解析方法,其中最常见的方法有以下几种:(1)因数分解法:将一个数分解成若干个因数的乘积形式,然后对每个因数求平方根。
(2)二分法:首先确定一个范围,然后将范围内的数逐次求平方,直到找到与目标数接近的解。
(3)牛顿迭代法:利用泰勒级数来逼近目标数的平方根,通过迭代计算最终得到解。
2. 立方根的解析方法求一个数的立方根可以使用类似的解析方法,其中常见的方法包括:(1)因数分解法:将一个数分解成若干个因数的乘积形式,然后对每个因数求立方根。
平方根与算术平方根立方根无理数PPT课件
(2)个数不同:一个正数有两个平方根,而一个
正数的算术平方根只有一个。
(3)表示方法不同:正数a的算术平方根表示
第9页/共32页
立方根:
1. 定义:
一般地,如果一个数x的立方等于a,即x3=a, 那么这个数x就叫做a的立方根.(也叫做三次方 根) 。
2.表示方法:
第10页/共32页
什么叫做开平方?那开立方呢?
无理数: 无限不循环小数
含有 ~ 的数
有规律但不循环的数
第25页/共32页
按性质分类: 实数
正实数
0
负实数
正有理数
正无理数
负有理数
负无理数
负实数
正实数
0
第26页/共32页
你能在数轴上找到表示 的点吗?
2
小结:
有理数可以用数轴上的点表示,无理数也可以用数轴上的点 表示.
每一个无理数都能在数轴上表示出来. 数轴上的点有些表示有理数,有些表示无理数. 每一个实数都可以用数轴上的一个点来表示;反过来, 数轴上的每一点都表示一个实数。即实数和数轴上的 点是一一对应的。
第21页/共32页
思考:
2 介于哪两个整数之间?你是根据什么考虑的?
A
1
2
B 4D
1
2
2C
1.42 __<__( 2)2 __<__1.52
1.4 ___<_ 2 __<__1.5
1.412 _<___( 2)2 __<__1.42 2
1.41 ___<_ 2 __<__1.42
1.414 2 _<___( 2)2 _<___1.415 2
第28页/共32页
12.1《平方根与立方根》ppt课件
自我评一评:
内 容
第1~4项内容,只要在等级栏里打“√ ” 。
自 我 评 价 需加油 良好
优
1、能理解平方根、算术平方根和 立方根的概念 2、会用乘方与开方的关系来求平 方根和算术平方根及立方根 3、能把自己的想法与他人分享 4、能认真倾听他人的想法、见解
5、本节课你的独特见解
6、本节课你还有疑惑的问题 7、你对老师的评价和建议
2、-27的立方根是多少?
2、立方根的表示方法
一个数a的立方根,用“ a ”表示(读作 “三次根号a”;其中a叫做被开方数。
3、求下列各数的立方根:(运用上述符号口答) (1)27; (2)-27; (3)0; (4) 0.125; (5)216; (6)64;(7)5; (8)1/125 (9)-0.064
3、我们把正数的正平方根和零的平方根,统 称为算术平方根。一个正数a(a≥0)的算术 平方根记作: a
二、平方根的性质:
2 1、一个正数的平方根有__个,它们的关系 互为相反数 是__________; 1 0 2、0的平方根有__个,它是__; 没有 3、负数___(填“有”或“没有”)平方 根. 1和0 4、一个数算术平方根等于本身的数有______ 三、开平方的概念:
3
六、思考:
我们在有理数里我们可以很快找到25的算术平 方根,但是有些找起来很困难,例如:1024的 算术平方根是多少?另外前的5的算术平方根是 多少? 我们可以利用我 们手上的计算器 来解决
计算器的使用
1、用计算器求下列各数的算术平方根: (1)2809;(2)0.0529;(3)5; 例:利用计算器键入: “ ”、 “2” 、“8”、“0”、“9”、“=” 2、用计算器求下列各数立方根: (1)4913;(2)25; 例:利用计算器键入: “3”、 “SHIFT”、“ “=” ”、“4913”、
平方根和立方根讲义
专题1: 平方根和立方根【基础知识梳理】 一、算术平方根1、算术平方根定义: 一般地,如果一个正数x 的平方等于a ,即2x =a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式2x =a (x ≥0)中,规定x =a ,x 就是a 的算术平方根。
例1:下列说法中正确的是( )A.25是5的算术平方根B.5是25的算术平方根C.5是25的算术平方根D.25是5的算术平方根 例2:81的算术平方根是 。
例3:若a+2有算术平方根,则a= 。
例4:若一个圆的面积为236cm π,则这个圆的直径为 cm 。
小结:(1)只有非负数才有算术平方根(2)一个非负数的算术平方根只有一个且仍旧为非负数。
2、你对正数a 的算术平方根a 的结果有怎样的认识呢?a 的结果有两种情:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
例如7525和=,25是完全平方数,7不是完全平方数。
3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?一般来说,被开放数扩大(或缩小)n 倍,算术平方根扩大(或缩小)n 倍,例如502500,525== 二、平方根1、平方根的定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。
即:如果2x =a ,那么x 叫做a 的平方根。
求一个数的平方根的运算,叫做开平方,即a x ±=。
例如:9的平方根是±3,±3的平方等于9,所以平方与开平方互为逆运算. 例5:求下列各数的平方根。
(1) 100 (2)169 (3) 0.25 (4)412 (5)49.0例6:求下列各式中的x 的值。
81)2(16)4(845.021)3(0100)2(225)1(2222=+==-=x x x x2、平方根的性质:讨论:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?正数有两个平方根,即正数进行开平方运算有两个结果,这两个平方根互为相反数;0的平方根只有一个0;负数没有平方根,即负数不能进行开平方运算;符号:非负数a 的算术平方根可用a 表示;负的平方根可用-a 表示;平方根则表示为a ±,这里的0≥a例7下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由. (1)-64 (2)0 (3)(-4)2(4)10-2例8:(1)下列运算正确的是( ) (2) :下列计算正确的是( )18324.148686.12144.3)3(.222±=±=+=+=--=-D C B A例9:若13++-x x 有意义,则x 的取值范围是 。
第1讲《平方根、立方根与非负数》
第1讲《平方根、立方根与非负数》知识点概述1、平方根(1)定义:如果一个数的平方等于a ,这个数就叫做a 的平方根(或二次方根)。
即:如果x 2=a ,那么x 就叫做a 的平方根。
(2)平方根的表示法:一个正数a 的正的平方根,用符号“a ”表示,读作“根号a ”; 正数a 的负平方根,表示为-a ,读作“负根号a ”。
(3)正数、零、负数的平方根:正数a 的平方根有两个,它们互为相反数,可以表示为±a ; 零的平方根有一个,仍是零; 负数没有平方根. 2.算术平方根(1)定义:一个正数a 的正的平方根,叫做a 的算术平方根,记作a ;0的算术平方根是0. (2)对a 的理解:①()2a =a ; ②a ≥0.(3)对记号a ,-a ,±a 的理解: ①a 表示非负数(a ≥0); ②-a 表示a 的算术平方根的相反数; ③±a 表示a 的平方根; ④a<0时,a ,-a ,±a 都没有意义.3、如果一个数的立方等于a ,那么这个数叫做a 的立方根。
即:如果x 3=a ,那么x 就叫做a 的立方根。
一个数a 的立方根,用符号“3a ”表示,读作“三次根号a ”。
注:任何数(正数、负数或零)都有一个立方根例题讲解例1、下列语句正确的是( )A .- a 没有平方根B .-5是 – 25的平方根C .( - 3)2 的平方根为-3D .-15是225的平方根例2、94的平方根是__;算术平方根是 ;0.04的算术平方根是 。
例3、求下列各数的立方根: (1)512 (2)-0.027 (3)-12564 (4)278 (5)-125 (6)-0.008.例4、求下列各数的平方根:(1)49 (2)8136 (3)232⎪⎭⎫ ⎝⎛-例5、求下列各数的算术平方根: (1)196(2)197(3)16例6、填空:(1)当x 时,3+x 有意义。
(2)如果a 的平方根是±3,则a = .(3)如果一个正数的平方根是a+3与2a -15,那么这个正数是(4的平方根是 ;算术平方根是___________ (5)若a 2=16,则a=________;若38a =,则a =(610y +=,则x 2+y 2=____________(7)代数式-3___________,这时a 与b 的关系是_________ (8)若2(2)289x +=,则x = ; 若24250x -=,则x =(9= 例7、下列命题中,正确的个数有( )(1)1的平方根是1; (2)1是1的平方根; (3)(-1)2的平方根是-1; (4)一个数的平方根等于它的算术平方根,这个数是0. A 、1 B 、2 C 、3 D 、4例8、要使2a -有意义,则a 的值为( )A 、a>0B 、a<0C 、a≥0D 、a=0例9、一个自然数的算术平方根是a ,则与这个自然数相邻的后继自然数的平方根是( ) A 、a+1 B 、a 2+1C 、±1+aD 、±12+a例10、当x 为何值时,下列各式在实数范围内有意义.(1)32+x ; (2)x 31-; (3)2)5(-x ; (4)21+x非负数的相关知识1、非负数的意义:在实数集合里,正数和零称为非负数.a 是非负数,可记作a ≥0,读作a 大于或等于零,即a 不小于零. 2、 初中学过的几种非负数:⑴ 实数的绝对值是非负数. 若a 是实数,则a ≥0.⑵ 实数的偶数次幂是非负数. 若a 是实数,则a 2n ≥0(n 是正整数).⑶ 算术平方根是非负数,且被开方数也是非负数。
平方根与立方根PPT课件
如果一个数 x 的平方等于 a, 那么这个数 x 叫做 a 的平方根.
就是说, 当 x2 =a (a≥0) 时, 称 x 是 a 的平方根.
例练1
求下列各数的平方根:
⑴ 100
16 ⑷ 25
⑵ 0.49
1 ⑸24
⑶ 1.69
⑴解:因为102=100, 且(-10)2=100,
所以100的平方根为 ±10.
初二数学
2 x =2
x=
(之一)
如图中, 设面积为25cm2的正方形, 其边长为多少呢? 根据正方形的面积公式, 应该是, 边长 2 = 25 9 16 a 5 cm2 25 所以, 其边长为 5cm 又:面积为16,则边长为 4 ; 3x 4 3 ; 面积为9,则边长为 5cm 面积为5,则边长为多少呢? 面积为a,则边长又如何呢? 这时,可设其边长为 x ,得到 x2 x2=16 2. 64x2=25 3. (x-1)2=9 x=±4 x2=
25 64
x=±
5 8
x-1=±3
x=4 或x= -2
1、平方根的概念: 当x2=a(a≥0) 时, 就称x是a的平方根.
而a称为x的平方数. 即平方根是利用平方数来说的.
2、相关概念:
任何数都有平方数, 且只有一个; 但并不是任何数 都有平方根, 只有非负数才有平方根, 负数没有平方 根, 且正数的平方根是互为相反数的两个数. 通常记作: x=± √a
3、求一个非负数的平方根的运算 叫做开平方.
例练3
1. 下列表述正确的是( C ) A. 9的平方根是-3 B. -7是-49的平方根 C. -15是225的平方根 D. (-4)2的平方根是-4 2. 下列各数中没有平方根的是( D ) A. (-10)2 B. 0 C. -6 D. -(-5)2 √ √ √ √ 3. 下列各数: 0, (-3)2, -(-9), - -4 , 3.14-π , x2+1中, 有平 方根的数的个数是( B ) A. 3个 B. 4个 2 C. 5个 D. 6个 4 ± ±8 4. 平方得 25 的数是______; 64开平方得_____; 5 36 的平方根; (-9)2的平方根是_____. ±9 -6是______
平方根与立方根讲义(含答案)
平方根与立方根二、知识点+例题+练习知识点一:平方根与算术平方根1.平方根2.算术平方根3.平方根与算术平方根的区别(1)定义不同;(2)个数不同,一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个; (3)表示方法不同,正数a 的平方根表示为a (4)取值范围不同,正数的算术平方根一定是正数,正数的平方根为一正一负.一、求平方根和算术平方根若求一个算式的算术平方根,一般是先求出算式的值,再求出它的算术平方根,有时也可通过简单的变形化成一个正数的平方的形式,从而提高运算的速度和准确率.【例1】(1)求下列各数的平方根和算术平方根:①4964;②0.0001;③5;④2(3)-(2)平方根等于本身的数是________,算术平方根等于它本身的数是________.(3)一个数的平方根是22a b +和4613a b -+,则这个数是________.【例2】求下列各式的值(1)(2(3(4(5(6(1)2612=⨯=;(27512+=;(30.30.80.5=-=-;(429 0.91365 =⨯=;(520==;(6110.8250.25 5.2 45=⨯+⨯=+=;【答案】(1)12;(2)12;(3)0.5-;(4)965;(5)20;(6)5.2.【变式训练1-1】9的算术平方根是A B.-3 C.±3 D.3【答案】D【解析】∵32=9,∴9的算数平方根是3,故选D.【变式训练1-2】(-2)2的算术平方根是A.2 B.±2 C.-2 D【答案】A【解析】∵(-2)2=4,4的算术平方根是2,∴(-2)2的算术平方根是2,故选A.【名师点睛】求一个式子的算术平方根时,先把这个式子化简,再按算术平方根的定义求化简所得数的算术平方根即可.【变式训练1-3】25的平方根是A.5 B.-5 C.D.±5【答案】D【解析】∵(±5)2=25,∴25的平方根为±5,故选D.【变式训练1-4】设a-3是一个数的算术平方根,那么A .a ≥0B .a >0C .a >3D .a ≥3【答案】D【解析】∵3a -是一个数的算术平方根,∴30a -≥,解得3a ≥,故选D .【名师点睛】本题考查的是算术平方根的“非负性”,即非负数a0≥. 【变式训练1-5】下列说法正确的是是2的一个平方根②–4的算术平方根是2 的平方根是±2 ④0没有平方根 A.①②③ B .①④C .①③D .②③④【答案】C是2的一个平方根,正确;②–4没有算术平方根,错误; 的平方根是±2,正确;④0有平方根,是0,错误;故选C . 【变式训练1-6】求下列各式的值:(12)3);(4 【解析】(1. (2)=-0.9. (3)=1114±. (4.二、利用平方根的知识解方程先将方程转化为一个式子的平方等于一个非负数的形式,再利用开平方发求解. 【例1】求下列各式中的x .(1)x 2=17;(2)212149x -=0.【解析】(1)因为2(17=,所以x =. (2)2121049x -=, 212149x =, x =117±. 【例2】求下列各式中x 的值:(1)4(x -1)2-16=0; (2)8(2x +1)3-1=0.【解析】(1)4(x -1)2-16=0, 4(x -1)2=16, (x -1)2=4, x -1=±2, x =-1或x =3.(2)8(2x +1)2-1=0, 8(2x +1)2=1, (2x +1)2=18,2x +1=±4,2x =-1±4,x =-128-或x =-12+8.【变式训练2--1】求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______;(3)若294x =,则x =______; (4)若x 2=2(2)-,则x =______. 【解析】一个正数的平方根有两个,且互为相反数.【答案】(1) 1.1x =±;(2)x =±13;(3)32x =±;(4)x 2=±.【变式训练2-2】求下列各式中x 的值.(1)29x =; (2)22500x -=(3)21(51)303x --= (4)2(100.2)0.64x -=【解析】本题考察的是平方根,正数的平方根有两个,且互为相反数.(1)3x =±; (2)225,5x x ==±;(3)221(51)3,(51)9,513,5133x x x x -=-=-=±=+;或513x =-,解得45x =或25x =-.(4)100.20.8,0.2100.8,0.210.8x x x -=±=±=或0.29.2x =解得54x =或x =46.【答案】(1)3x =±; (2)5x =±;(3)45x =或25x =-; (4)54x =或x =46.三、对定义和性质的考察【例1】判断下列各题,并说明理由(19±. ( ) (2)算术平方根一定是正数.( )(3 ( ) (4)2a -没有算术平方根. ( )(53=±. ( )(6)若236x =,则6x ==±. ( ) (7)6-是2(6)-的平方根. ( ) (8)2(6)-的平方根是6-. ( ) (9)2a 的算术平方根是a .( )(105,则5a =-.( )(11)若两个数平方后相等,则这两个数也一定相等. ( ) (12)如果两个非负数相等,那么这两个数各自的算术平方根也一定相等. ( )【解析】(6)(7)(12)正确. 【变式训练3-1】判断题:(1 ( ) (2)2a 的算术平方根是a . ( )(36,则6a =-.( )(4)若264x =,则8x =±.( )(58±. ( ) (6)若两个数平方后相等,则这两个数也一定相等. ( ) (7)如果一个数的平方根存在,那么必有两个,且互为相反数. ( ) (8)2a -没有平方根. ( ) (9)如果两个非负数相等,那么他们各自的算术平方根也相等. ( ) 【解析】 (1)×;(2)×;(3)×;(4)√;(5)×;(6)×;(7)×;(8)×;(9)√.【例2】x 为何值时,下列各式有意义?(1;(2(3(4);(5);(6;【解析】略【答案】(1)0x≥;(2)x=0;(3)2x≤;(4)x为任意数;(5)x>1;(6)112x-≤≤.【变式训练3-2】若A=A的算术平方根是_________.【解析】A22(16)a+,故A的算术平方根为216a+.【答案】216a+【变式训练3-3】设a a的值是________.【解析】a48a必须是完全平方数,因为24843=⨯整数的整数a为3.【答案】3四、算术平方根非负性的应用常用的三类非负性的表示形式:绝对值、偶次幂、算术平方根,当几个非负数的和为0时,则每一个非负数均为0,这一结论在解答许多数学问题中起着关键的作用.【例1】a的取值为A.0 B.−12C.–1 D.1【答案】B【解析】∵2a+1≥02a+1=0,∴a的取值为–12.故选B.【例2】若实数x,y20(y+-=,则xy的值为__________.【答案】【解析】根据题意得:20xy⎧-=⎪⎨-=⎪⎩,解得2xy⎧=⎪⎨=⎪⎩,则xy=【例3】x、y0,则xy=__________.【答案】–6【解析】由题意可知:x+2=0,y–3=0,∴x=–2,y=3,∴xy=–6,故答案为:–6.【变式训练4-1】如果3a b-+【解析】由绝对值和算术平方根的非负性及相反数的定义解题.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3==.【答案】3【变式训练4-2】已知2b=,求11a b+的平方根.【解析】由题可知940490aa-≥⎧⎨-≥⎩,49a∴=,b=2,==【答案】【变式训练4-3】已知x,y,z满足21441()02x y z-+-=,求()x z y-的值.【解析】由题可知44102012x yy zz⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412xyz⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y-1111()()22416=--⨯-=.【答案】1 161.立方根的概念和性质2.开立方(1)定义:求一个数的立方根的运算,叫做开立方.(2)性质:①正数的立方根是正数,负数的立方根是负数,0的立方根是0;=③3==a .(3)开立方是一种运算,正如开平方与平方互为逆运算一样,开立方与立方也互为逆运算.开立方所得的结果就是立方根.3.平方根和立方根的区别和联系1.被开方数的取值范围不同在a 是非负数,即a ≥0中,被开方数a 是任意数.2.运算后的数量不同一个正数有两个平方根,负数没有平方根,而一个正数有一个正的立方根,负数有一个负的立方根.一、求立方根和开立方根据开立方与立方互为逆运算的关系,我们可以求一个数的立方根,或者检验一个数是不是某个数的立方根.【例1】-64的立方根是 A .-4B .4C .±4D .不存在【答案】A【解析】∵(−4)3=−64,∴−64的立方根是−4,故选A .【例2 A .-1B .0C .1D .±1【答案】C-1-1,故选A .【名师点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.【变式训练1-1】下列计算中,错误的是AB 34=-C 112= D .25=- 【答案】D【解析】A .正确;B .正确;C .正确;D D . 【变式训练1-2】求下列各数的立方根:(1)-343;(2)8125. 【解析】(1)因为3(7)343-=-, 所以-343的立方根是-7. (2)因为328()5125=, 所以8125的立方根是25. 【变式训练1-3】求下列各式的值:(123)【解析】(1(2(3【例3】求下列各式的值(1(2(3) (4)3(5(6(7【答案】(1)0.4;(2)2-;(3)25-;(4)64;(5)43;(6)9;(7)6.【变式训练1-4】(1)填表:(2)由上你发现了什么规律?用语言叙述这个规律.(3) 根据你发现的规律填空:① 1.442== ,= ;① 7.696=,= .【答案】(1)0.01; 0.1; 1; 10; 100.(2)当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍(3) ①14.42; 0.01442; ①0.7696.二、利用立方根的知识解方程只含有未知数或某个关于未知数的整体的三次方的方程,可以先通过“移项、合并同类项、系数化为1”等变形为x 3=m 或(ax +b )3=m 的形式,再利用开立方的方法求解.【例1】若a 3=–8,则a =__________.【答案】–2【解析】∵a 3=–8,∴a =–2.故答案为:–2.【例2】求下列各式中的x :(1)8x 3+125=0;(2)(x +3)3+27=0. 【解析】因为381250x +=, 所以38125x =-,(2)因为3(3)270x ++=,所以3(3)27x +=-, 所以33x +=-,所以6x =-.【变式训练2-1】求下列等式中的x :(1)若x 3=0.729,则x =______; (2)x 3=6427-,则x =______;(3)若52,则x =______; (4)若x 3=3(2)--,则x =______. 【答案】(1)0.9;(2)43-;(3)1258;(4)2. 三、对立方根定义和性质的考察【例1】(1)下列说法中,不正确的是 ( )A . 8的立方根是2B . 8-的立方根是2-C . 0的立方根是0D . a(2)61164-的立方根是( )A . -B .114±C . 114D .114- (3)某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个(4)下列说法正确的是( )① 正数都有平方根;① 负数都有平方根,① 正数都有立方根;① 负数都有立方根;A .1个B .2个C .3个D .4个(5)若a 立方比a 大,则a 满足( )A . a <0B . 0< a <1C . a >1D . 以上都不对(6)下列运算中不正确的是( )A . =B . 3=C 1-D .4【答案】(1)D ;(2)D ;(3)C ;(4)C ;(5)D ;(6)B .【变式训练3-1】(1)若x 的立方根是4,则x 的平方根是______.(2)3311-+-x x 中的x 的取值范围是______,11-+-x x 中的x 的取值范围是______.(3)-27______.(40+则x 与y 的关系是______.(54=那么(66)2a -⋅的值是______.(6则x =______.(7)若m <0,则m .(8)若59x +的立方根是4,则34x +的平方根是______.【答案】 (1)8±;(2)任意数; x =1;(3)1-或5-;(4)互为相反数;(5)-12;(6)x =1; (7)0; (8) 四、平方根和立方根的综合应用在解决立方运算与开立方运算时,遵循的原则为正数的立方和立方根为正数,负数的立方和立方根为负数.【例1】64的平方根和立方根分别是A .8,4B .8,±4C .±8,±4D .±8,4【答案】D【解析】因为(±8)2=64,43=64,所以64的平方根和立方根分别是±8,4,故选D .【例9】已知2a -1的平方根是±3,3a +b -1的立方根是4,求a +b 的平方根.【名师点睛】此题主要考查了立方根和平方根的意义的应用,关键是根据平方根,求出2a -1=9,根据立方根求出3a +b -1=64,转化为解方程得问题解决.【例2】已知x +122x +y -6的立方根是2.(1)求x ,y 的值;(2)求3xy 的平方根.【解析】(1)∵x +12的算术平方根是,2x +y -6的立方根是2.∴x +12=2=13,2x +y -6=23=8,∴x =1,y =12.(2)当x =1,y =12时,3xy =3×1×12=36,∵36的平方根是±6,∴3xy 的平方根±6.【名师点睛】本题考查了算术平方根、立方根的性质,解决本题的关键是熟记平方根、立方根的定义,能熟练运用它们的逆运算是解本题的关键.【变式训练4-1】2(27)b +的立方根.【解析】由题可知80270a b +=⎧⎨+=⎩,解得827a b =-⎧⎨=-⎩,235,+= 【答案】1【变式训练4-2】已知2x -的平方根是±2,27x y ++的立方根是3,求22x y +的平方根.【解析】2(2)=±,6x ∴=;3=,8y ∴=,10==±.【答案】101.在,,0,-2这四个数中,是无理数的为()A.0 B. C. D.-22. 下列无理数中,与最接近的是()A. B. C. D.3. ±3是9的()A.平方根B.相反数C.绝对值D.算术平方根答案与解析1.【答案】 C.【解析】根据无理数的概念: 无限不循环的小数,就是无理数;无理数主要有三类: ①开方开不尽的, ②π及含π的倍分等, ③如:0.1010010001…这类的无规律的数.2.【答案】C.【解析】根据算数平方根的意义,4=16, 再根据算术平方根的性质,被开方数越大, 其算术根越大,通过观察发现17的被开方数最接近16的被开方数,从而得出答案.3.【答案】A.【解析】解: ∵ 9)3(2=±, 3±∴是9的平方根. 故选A.1. 若9.28,89.233==ab a ,则b 等于( )A. 1000000B. 1000C. 10D. 100002. 若2,3==b a ,且0<ab ,则:b a -= .3. 下列语句正确是( )A .无限小数是无理数B .无理数是无限小数C .实数分为正实数和负实数D .两个无理数的和还是无理数答案与解析1.【答案】B.【解析】 被开方数扩大2n 10倍,开方后结果扩大10n 倍;根据开方与乘法互逆运算可得.2.【答案】 -7. 【解析】2,3==b a a 3, 4.b ∴=±= 又0<ab ,a 3, 4.b ∴=-=则a-b = -7.3.【答案】B.【解析】 解: A.无限不循环小数是无理数, 故A 不符合题意;B.无理数是无限小数, 符合题意. C.实数分为正实数、负实数和0, 故C 不符合题意 D.互为相反数的两个无理数的和是0,不是无理数, 故D 不符合题意. 故答案为:B.1. 已知:A=y x y x -++3是3++y x 的算术平方根,B=322+-+y x y x 是y x 2+的立方根,求A -B 的平方根.2. 已知4+11的小数部分为a ,411-的小数部分为b .求:(1)a+b 的值;(2)a-b 的值.1.【答案】A=y x y x -++3是3++y x 的算术平方根,∴x-y=2; 又B=322+-+y x y x 是y x 2+的立方根,∴x-2y+3=3,得方程组x y 2x 2y 33-=⎧⎨-+=⎩,解得:x 42y =⎧⎨=⎩,∴A=3,B=2 ∴A-B=1.【解析】根据算术平方根的概念和立方根的概念解题.2.【答案】3114<<,∴411+的小数部分a=4+11-7=11-3411-的小数部分b=4-11;(1)a+b=11-3+4-11=1;(2)a-b=11-3-(4-11)=-7.【解析】首先估算出11的取值范围:3<11<4,进一步确定a 、b 的数值,代入求得(1)(2)即可.基础1. 下列说法不正确的是( )A .8的立方根是2B .-8的立方根是-2C .0的立方根是0D .125的立方根是±5四、课后作业2. 所有和数轴上的点组成一一对应的数组成( )A .整数B .有理数C .无理数D .实数3. 若2m-1没有平方根,则m 的取值范围是________.答案与解析1.【答案】D.【解析】 125的立方根是5,D 选项错误.根据立方根的定义,因为一个数的立方根只有一个,一个正数的立方根是正数,一个负数的立方根仍是负数.2.【答案】D.【解析】数轴上的点和实数是一一对应的关系.3.【答案】21≥m 【解析】 解: 负数没有平方根. 012≥-∴m , 21≥m . 故答案为:21≥m .1. 估计38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间2. 化简式子 )4(2-结果正确的是( )A .±4B .4C .-4D .±23. 一个正数x 的平方根是3a -4和1-6a ,求a 及x 的值.答案与解析1.【答案】C .【分析】因为6的平方是36, 7的平方是49.而38在36和49 的中间,所以38的值在6和7之间. 故选:C .2.【答案】B.【分析】应先算16)4(2=- , 再将求16的算数平方根即可.3.【答案】 解: 由题意得3a-4+1-6a=0, 解得a=-1则3a-4=-7, 4972==x .答:a 的值是-1,x 的值是49.1. 如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A .3B .8C .5D .2.52. 已知x+12平方根是±13,2x+y ﹣6的立方根是2,求3xy 的算术平方根.3. 已知2a ﹣1的平方根是±3,3a+b ﹣1的立方根是4,求a+b 的平方根.答案与解析1.【答案】C .【分析】解答:2<5<2.5<,2与离的最近,故选C.由图可知这个点与2离的最近,而其中四个选项中的数与2离的最近且大于1的数是.2.【答案】解: 由题意可知: X+12=13,2X+y-6=8,∴ x=1,y=13×y=3×1×12=36. 36的算术平方根为6.3.【答案】∵ 2a﹣1的平方根是±3,∴ 2a﹣1=9,∴ a=5,∵ 3a+b﹣1的立方根是4,∴ 3a+b﹣1=64,∴ b=50,∴ a+b=55,.∴ a+b的平方根是55。
(完整版)平方根和立方根经典讲义
内容基本要求略高要求较高要求平方根、算术平方根了解平方根及算术平方根的概念,会用根号表示非负数的平方根及算术平方根 会用平方运算求某些非负数的平方根立方根 了解立方根的概念,会用根号表示数的立方根会用立方根运算求某些数的立方根 实数了解实数的概念会进行简单的实数运算实数可按下图进行详细分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数实数与数轴上的点一一对应.(以下概念均在实数域范围内讨论) 平方根的定义及表示方法:如果一个数的平方等于a,那么这个数叫做a 的平方根. 也就是说,若2x a=,则x就叫做a 的平方根.一个非负数a 的平方根可用符号表示为“a”.算术平方根:一个正数a有两个互为相反数的平方根,其中正的平方根叫做a 的算术平方根,可用符号表示为a ;有一个平方根,就是0,0的算术平方根也是0,负数没有平方根,当然也没有算术平方根.知识点睛中考要求平方根和立方根一个非负数的平方根不一定是非负数,但它的算术平方根一定是非负数,即若0a ≥0a .平方根的计算:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.通过验算我们可以知道:⑴ 当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥). ⑵ 平方根和算术平方根与被开方数之间的关系:①若0a ≥,则2()a a =;②不管a 2(0)||(0)a a a a a a ≥⎧==⎨-<⎩注意二者之间的区别及联系.⑶若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a ≤<<1a 2a 之间,即:120a a a ≤<范围.立方根的定义及表示方法:如果一个数的立方等于a ,那么这个数叫做a 的立方根,也就是说,若3,x a =则x 就叫做a 的立方根, 一个数a 的立方根可用符号表3a ,其中“3”叫做根指数,不能省略. 前面学习的a 其实省略了根指数“2”2a a 3a “三次根号a ”2a “二次根号a ”a “根号a ”.任何一个数都有立方根,且只有一个立方根,正数的立方根为正数,负数的立方根为负数,0的立方根为0.立方根的计算:求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.通过归纳我们可以知道:⑴当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍. 33a a =,33()a a =⑶若一个数a 介于另外两个数1a 、2a 之间,即12a a a <<, 31a 32a 33312a a a < 利用这个结论我们可以来估算一个数的立方根的大致范围.重、难点难点:平方根的性质【例1】 判断下列各题,并说明理由819±. ( ) a ( ) ⑶2a 的算术平方根是a . ( ) ⑷ 2()5a -,则5a =-. ( ) 93=±. ( ) ⑹ 6-是2(6)-的平方根. ( ) ⑺ 2(6)-的平方根是6-.( )⑻ 若236x =,则366x =±=±. ( ) ⑼ 若两个数平方后相等,则这两个数也一定相等. ( ) ⑽ 如果两个非负数相等,那么这两个数各自的算术平方根也一定相等. ( ) ⑾ 算术平方根一定是正数. ( ) ⑿ 2a -没有算术平方根. ( ) ⒀ 64的立方根是4±. ( )⒁ 1-是16-的立方根. ( )⒂ 33x x . ( ) ⒃ 互为相反数的两个数的立方根互为相反数. ( ) ⒄ 正数有两个互为相反数的偶数次方根,任何数都有唯一的奇数次方根. ( )【例2】 ⑴ 若22(2)a =-,则a = ;若22()(3)x -=-,则x = .⑵ 22x +,则(25)x +的平方根是 ;若25x =,则x = .⑶ 21a =-,则a ;若20a a =,则a . ⑷ 当0m <,2m 的算术平方根是 .⑸ 2()a b -算术平方根是a b -,则a b .⑹ 若一个自然数的一个平方根是m ,那么比它大1的自然数的平方根是 .⑺ 平方根等于本身的数是 ,算术平方根等于它本身的数是,立方根等于它本身的数是 ;平方根与立方根相等的数是 .例题精讲⑴21(51)30x --=; ⑵3(100.2)0.027x -=-3312573511164168---33321600010.125-【例4】 已知某正数的两个平方根是35a -与1a +,求这个正数.【例5】 已知3(2)27a b +=-235a b -=,求21(3)n a b ++的值(n 为正整数).【例6】 求22221995199519961996+⋅+的平方根.【例7】 (人大附单元测试)已知a 为实数,且满足200201a a a --=,求2200a -的值.【练习1】若22(3)x =-,33(2)y =-,求x y +所有可能值.【练习2】一个数的平方根是22a b +和4613a b -+,求这个数.【练习3】(101数学实验班单元练习)已知2a -的平方根是2±,27a b ++的立方根是3,求22a b +的平方根.【练习4】(2007年成都)22(5)0a b -+=,那么a b +的值为 .【练习5】22111a ab -+-+=,求a ,b 的值.课堂作业【练习6】若a 、b 为实数,且|1|20a ab --,求1111(1)(1)(2)(2)(1993)(1993)ab a b a b a b +++++++++的值.1. ⑴ (安顺市中考题)16的平方根是 ;2( 2.5)-的平方根是 ;2(2)-的平方根是 .⑵ (威海中考题38的相反数是 ;64的立方根是 .⑶ 平方根等于本身的数是 ,算术平方根等于它本身的数是 ,立方根 等于它本身的数是 ;平方根与立方根相等的数是 . ⑷ (江西省中考题)20n n 为( )A .2B .3C .4D .5 ⑸ (上海市中考题)12x -=的根是 . 31.815848 1.2231815848- _____. 2. 若一正数的平方根是36a +与29a +,求这个正数.3. 已知x y +的负的平方根是3-,x y -的立方根是3,求25x y -的平方根. 4. 243a b x a -+=+3a +的算术平方根,323b a y b -+=-3b -的立方根,求y x -的立方根.5.已知:|1|2340a b a b -+--.求:24a b +的立方根. 家庭作业。
平方根和立方根精选教学PPT课件
64
10 (3) 3 2
27
(4)3
解: (1) 3 27 3
(2) 3 2 10 3 64 4
27
27 3
(3) 3 27 3 27 3
64
64 4
(4)3 64 64 = - 4 + 4=0
课堂练习:求下列各式的值:
3 0.001 = -0.1 3 216 =6
的事,每当小姨妈讲起那段往事,我就想起那苦难无助地童年,小姨妈无私的爱,让我永远难忘。小姨妈的人生很苦,很少有人去关她,可是她却为我们这些没有母爱的孩子现出了她的青春和所有的爱。
我母亲去世后小姨妈也经常照顾我,关心我。她不但关爱我,还有我的三姨家兄弟妹们。还在我母亲没有去世时,我的三姨妈由于有病去世了,留下四个孩子,最小的才两岁,她为了照顾这四个孩子,就和我三姨父结婚,把他们养大成人,现在孩子们都有了自己的家, 可是小姨妈由于劳累过度,而病倒了,现在病在床上不能自理,当我今年回家看到小姨妈时,我很惭愧,她为我们付出的太多了,可我们又给了她什么,她看到我时那含泪的笑容,我才体会到母爱的无私和伟大,也许她不求我们什么,能常回家看看足矣,可我们却做不到,
平方根与立方根PPT教学课件
Lesson 21 What’s in a Name?
NEW WORDS
• Given name 名 • Family name 姓 • Formal adj.正式的;庄重的
Think about it
• How many names do you have? • How many names do Western
• ((4)some times也是一个名词短语,time在这里用作可数名词, 意思是“次数”。 some times的意思是“几次”。例如: I have been to the Great Wall some times. 我去过长城几次。
• 有一个口诀可以帮助记忆: 分开“一段时间”,相聚“某个时候”; S连住是“有时”,分开“几次”、“几倍”行。 解释:some和time分开写时表示“一段时间”,连着写时表示 “某个时候”;有S连着写时表示“有时”,分开写表示“几次”、 “几倍”的意思。
• 句中的need 详细用法如下:“need”双重角色的用法及其 区别 “need”既可以作情态动词,也可以作实义动词, 但是它们的用法不同。
• 作为情态动词的“need”的用法与其他情态动词“can”, “may”,“must”的用法基本相同:在限定动词词组中 总是位居第一,没有非限定形式,即没有不定式、-ing 分词或-ed分词等形式;第三人称单数现在时没有词形 变化;情态动词之间是相互排斥的,即在一个限定动词 词组中只能有一个情态动词
• “need”作为情态动词的用法: 一、need表示“需要”或“必须”,通常用于否 定句和疑问句。例如: 1.You needn't do it again.你不需要再做了。 2.He needn't worry about it.这件事他无需担 心。 3.Need he do this homework first?他需要先做 这些作业吗? 4.Need they fill in the form?他们需要填表吗?
算术平方根、平方根、立方根之间区别联系 ppt课件
(3) 25 36
5 (6) - 3 125 5
6
82
PPT课件
11
不 要 遗 漏 哦!
解下列方程:
1. 9(3 y)2 4
解: (3 y)2 4 9
2 3 y
3
y 3 23Βιβλιοθήκη y 2 1 或y 3 2
3
3
2. 2(7 x 5)3 8 0
解:
3
27(x
5)3
8
3
(x 5)3 8
3
27
x5 2 33
x52 33
x 1
当方程中出现平方时,若有解,一般都有 两个解
当方程中出现立方时,一般都有一个解
PPT课件
12
解方程:
(1)(x-1)3 125 (4)2(7 x 2)3 125 0
(2)23x 12 8
x2=a那么这个数X叫做a的平方根(也叫
做二次方根)。记为“ a ”读作“正、
负 根号a”
PPT课件
2
立方根的定义.
一般地,如果一个数的立方等于a,这个 数就叫做a的立方根(也叫做三次方根).
用式子表示,如果X3 =a,那么X叫做a的立方根.
数a的立方根用符号“3 a ”表示,读作“三次根号a
其中a是被开方数,3是根指数(注意:根指数3不能省 略).
PPT课件
3
区别
你知道算术平方根、平方根、立方根联 系和区别吗?
算术平方根
平方根
立方根
表示方法
a 的取值
正数
性
0
质
负数
开 方 是本身
a ≠ a
苏教版初二平方根和立方根讲义
第一课时 平方根与立方根知识梳理一、 课前热身1、计算221=______, (-1)_____,= 223=______,(-3)_____,= 221.2=______,(-1.2)_____,= 220.1=______,(-0.1)_____,=2、填底数2____16=, 2____49=, 2____81=, 2____121=, 2____0=, 2____1=3.填空(1)______数的平方是49?它们的关系___________. (2)平方得81的数有____个.分别是_____________. (3)有没有一个数的平方等于负数的?____________. 二、平方根的概念1、如果一个数x 的平方等于a (即x 2=a ),那么这个数x 就叫做a 的_______ .(也叫做二次方根)记做 ;读作“____________”。
a 叫做“__________”。
其中正的平方根叫做 ;记作“______________”。
2、求一个数a 的平方根的运算,叫做 .注意:①±a 表示a 的_______,其中a______ ②算术平方根是平方根中的______________③开平方运算和平方运算是互为逆运算,平方运算是开平方运算的依据。
三、例题讲解+同步练习 题组一例1:求下列各数的平方根(开平方):课前检测5、已知,0a求b++b-11=+的值.a2知识梳理一. 平方根:1. 算术平方根的概念及表示方法如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根。
当0a≥时,a的算术平方根记为a,读作“根号a”,a叫做被开方数。
2. 平方根的概念及其性质(1)平方根的定义如果一个数的平方等于a,即2x a=,那=,那么这个数叫做a的平方根或二次方根。
即如果2x a么x叫做a的平方根。
(2)一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
平方根与立方根课件
平方根与立方根课件一、引言平方根与立方根是数学中常见的概念,在实际生活中也有着广泛的应用。
本课件将详细介绍平方根与立方根的概念、计算方法以及应用场景,帮助学生深入理解并掌握相关知识。
二、平方根的概念与计算1. 平方根的定义:平方根是指一个数的平方等于被开方数的数,也就是对于非负实数a,满足a^2=b,那么b就是a的平方根。
2. 平方根的计算方法:通过数学运算,我们可以得到平方根的计算方法,其中包括牛顿迭代法、二分法等。
课件将逐一介绍这些方法,并通过示例演示具体的计算步骤。
三、立方根的概念与计算1. 立方根的定义:立方根是指一个数的立方等于被开方数的数,也就是对于实数a,满足a^3=b,那么b就是a的立方根。
2. 立方根的计算方法:与平方根类似,立方根也有多种计算方法,如二分法、牛顿迭代法等。
课件将详细解释这些方法,并提供示例,帮助学生掌握立方根的计算步骤。
四、平方根与立方根的应用场景1. 面积和体积计算:平方根和立方根在几何计算中有着广泛的应用,可以用于计算图形的面积和体积。
2. 物理学中的应用:平方根和立方根在物理学中也有着重要的应用,例如在速度、加速度以及力的计算中。
3. 统计学中的应用:平方根和立方根在统计学中常用于计算方差和标准差等指标。
五、小结平方根与立方根是数学中的重要概念,通过本课件的学习,我们深入了解了它们的定义、计算方法以及应用场景。
希望本课件能够帮助学生更好地掌握平方根与立方根的知识,提升数学能力。
六、参考文献[参考文献1][参考文献2][参考文献3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容
基本要求
略高要求
较高要求
平方根、算术平方根
了解平方根及算术平方根的概念,
会用根号表示非负数的平方根及算术平方根 会用平方运算求某些非负数的平方根
立方根 了解立方根的概念,会用根号表示数的立方根
会用立方根运算求某些数的立方根 实数
了解实数的概念
会进行简单的实数运算
实数可按下图进行详细分类:
0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪
⎪
⎪
⎪
⎪⎪
⎪
⎨
⎬
⎩
⎪
⎪
⎪⎪
⎧⎨
⎪
⎪
⎨
⎪
⎪
⎪⎩
⎭
⎩⎪
⎪
⎫
⎧⎪⎪⎨⎬
⎪⎪⎩⎭⎩
正整数整数负整数有理数
有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数
实数与数轴上的点一一对应
.
(以下概念均在实数域范围内讨论
) 平方根的定义及表示方法:
如果一个数的平方等于a
,那么这个数叫做a 的平方根. 也就是说,若
2x a
=,则x
就叫做a 的平方根.
一个非负数
a 的平方根可用符号表示为
“
a
”.
算术平方根:
一个正数a
有两个互为相反数的平方根,其中正的平方根叫做a 的算术平方根,可用符号表示为
a ;
有一个平方根,就是0,
0的算术平方根也是0
,负数没有平方根,当然也没有算术平方根
.
知识点睛
中考要求
平方根和立方根
一个非负数的平方根不一定是非负数,但它的算术平方根一定是非负数,即若0a ≥0a .
平方根的计算:
求一个非负数的平方根的运算,叫做开平方.
开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.
通过验算我们可以知道:
⑴ 当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥). ⑵ 平方根和算术平方根与被开方数之间的关系:
①若0a ≥,则2()a a =;②不管a 2(0)
||(0)a a a a a a ≥⎧==⎨-<⎩
注意二者之间的区别及联系.
⑶若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a ≤<<1a 2a 之间,即:120a a a ≤<范围.
立方根的定义及表示方法:
如果一个数的立方等于a ,那么这个数叫做a 的立方根,也就是说,若3,x a =则x 就叫做a 的立方根, 一个数a 的立方根可用符号表3a ,其中“3”叫做根指数,不能省略. 前面学习的a 其实省略了根指数“2”2a a 3
a “三次根号a ”2a “二次根号a ”a “根号a ”.
任何一个数都有立方根,且只有一个立方根,
正数的立方根为正数,负数的立方根为负数,0的立方根为0.
立方根的计算:
求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.
通过归纳我们可以知道:
⑴当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍. 33a a =,33()a a =
⑶若一个数a 介于另外两个数1a 、2a 之间,即12a a a <<, 31a 32a 33312a a a < 利用这个结论我们可以来估算一个数的立方根的大致范围.
重、难点
难点:平方根的性质
【例1】 判断下列各题,并说明理由
819±. ( ) a ( ) ⑶2a 的算术平方根是a . ( ) ⑷ 2()5a -,则5a =-. ( ) 93=±. ( ) ⑹ 6-是2(6)-的平方根. ( ) ⑺ 2(6)-的平方根是6-.
( )
⑻ 若236x =,则366x =±=±. ( ) ⑼ 若两个数平方后相等,则这两个数也一定相等. ( ) ⑽ 如果两个非负数相等,那么这两个数各自的算术平方根也一定相等. ( ) ⑾ 算术平方根一定是正数. ( ) ⑿ 2a -没有算术平方根. ( ) ⒀ 64的立方根是4±. ( )
⒁ 1-是1
6-的立方根. ( )
⒂ 33x x . ( ) ⒃ 互为相反数的两个数的立方根互为相反数. ( ) ⒄ 正数有两个互为相反数的偶数次方根,任何数都有唯一的奇数次方根. ( )
【例2】 ⑴ 若22(2)a =-,则a = ;若22()(3)x -=-,则x = .
⑵ 22x +,则(25)x +的平方根是 ;若25x =,则x = .
⑶ 2
1a =-,则a ;若20a a =,则a . ⑷ 当0m <,2m 的算术平方根是 .
⑸ 2()a b -算术平方根是a b -,则a b .
⑹ 若一个自然数的一个平方根是m ,那么比它大1的自然数的平方根是 .
⑺ 平方根等于本身的数是 ,算术平方根等于它本身的数是
,立方根等于它本身
的数是 ;平方根与立方根相等的数是 .
例题精讲
⑴21
(51)30x --=; ⑵3(100.2)0.027x -=-
3312573511164168
---
33321600010.125-
【例4】 已知某正数的两个平方根是35a -与1a +,求这个正数.
【例5】 已知3(2)27a b +=-235a b -=,求21(3)n a b ++的值(n 为正整数).
【例6】 求22221995199519961996+⋅+的平方根.
【例7】 (人大附单元测试)已知a 为实数,且满足200201a a a --=,求2200a -的值.
【练习1】若22(3)x =-,33(2)y =-,求x y +所有可能值.
【练习2】一个数的平方根是22a b +和4613a b -+,求这个数.
【练习3】(101数学实验班单元练习)
已知2a -的平方根是2±,27a b ++的立方根是3,求22a b +的平方根.
【练习4】(2007年成都)22(5)0a b -+=,那么a b +的值为 .
【练习5
】22111
a a
b -+-+=,求a ,b 的值.
课堂作业
【练习6】若a 、b 为实数,且|1|20a ab --,
求1111(1)(1)(2)(2)(1993)(1993)ab a b a b a b +++++++++的值.
1. ⑴ (安顺市中考题)
16的平方根是 ;2( 2.5)-的平方根是 ;2(2)-的平方根是 .
⑵ (威海中考题3
8的相反数是 ;64的立方根是 .
⑶ 平方根等于本身的数是 ,算术平方根等于它本身的数是 ,立方根 等于它本身的数是 ;平方根与立方根相等的数是 . ⑷ (江西省中考题)20n n 为( )
A .2
B .3
C .4
D .5 ⑸ (上海市中考题)12x -=的根是 . 31.815848 1.2231815848- _____. 2. 若一正数的平方根是36a +与29a +,求这个正数.
3. 已知x y +的负的平方根是3-,x y -的立方根是3,求25x y -的平方根. 4. 243a b x a -+=+3a +的算术平方根,323b a y b -+=-3b -的立方根,求y x -的立方根.
5.
已知:|1|2340a b a b -+--.求:24a b +的立方根. 家庭作业。