matlab(迭代法-牛顿插值)Word版
牛顿插值MATLAB算法
MATLAB程序设计期中作业——编程实现牛顿插值成员:刘川(P091712797)签名_____汤意(P091712817)签名_____王功贺(P091712799)签名_____班级:2009信息与计算科学学院:数学与计算机科学学院日期:2012年05月02日牛顿插值的算法描述及程序实现一:问题说明在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。
插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。
二:算法分析newton 插值多项式的表达式如下:010011()()()()()n n n N x c c x x c x x x x x x -=+-+⋅⋅⋅+--⋅⋅⋅-其中每一项的系数c i 的表达式如下:12011010[,,,][,,,][,,,]i i i i i f x x x f x x x c f x x x x x -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅=- 即为f (x)在点01,,,i x x x ⋅⋅⋅处的i 阶差商,([]()i i f x f x =,1,2,,i n =),由差商01[,,,]i f x x x ⋅⋅⋅的性质可知: ()01001[,,,]()i i i j j k j k k j f x x x f x x x ==≠⋅⋅⋅=-∑∏ 牛顿插值的程序实现方法:第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、、。
拉格朗日插值和牛顿插值matlab
拉格朗⽇插值和⽜顿插值matlab1. 已知函数在下列各点的值为0.20.40.60.8 1.00.980.920.810.640.38⽤插值法对数据进⾏拟合,要求给出Lagrange插值多项式和Newton插值多项式的表达式,并计算插值多项式在点的值。
程序:x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];x0=[0.2 0.28 0.44 0.76 1 1.08];[f,f0]=Lagrange(x,y,x0)function [f,f0] = Lagrange(x,y,x0)%求已知数据点的Lagrange插值多项式f,并计算插值多项式f在数据点x0的函数值f0syms t;n = length(x);f = 0.0;for i = 1:nl = y(i);for j = 1:i-1l = l*(t-x(j))/(x(i)-x(j));end;for j = i+1:nl = l*(t-x(j))/(x(i)-x(j));end;f = f + l;simplify(f);if(i==n)f0 = subs(f,'t',x0);f = collect(f);f = vpa(f,6);endend结果:>> Untitled3f =- 0.520833*t^4 + 0.833333*t^3 - 1.10417*t^2 + 0.191667*t + 0.98f0 =[ 49/50, 60137/62500, 56377/62500, 42497/62500, 19/50, 15017/62500]⽜顿:%y为对应x的值,A为差商表,C为多项式系数,L为多项式%X为给定节点,Y为节点值,x为待求节点function[y,A,C,L] = newton(X,Y,x,M)n = length(X);m = length(x);for t = 1 : mz = x(t);A = zeros(n,n);A(:,1) = Y';s = 0.0; p = 1.0; q1 = 1.0; c1 = 1.0;for j = 2 : nfor i = j : nA(i,j) = (A(i,j-1) - A(i-1,j-1))/(X(i)-X(i-j+1));endq1 = abs(q1*(z-X(j-1)));c1 = c1 * j;endC = A(n, n); q1 = abs(q1*(z-X(n)));for k = (n-1):-1:1C = conv(C, poly(X(k)));d = length(C);C(d) = C(d) + A(k,k);endy(t) = polyval(C,z);endL = poly2sym(C);x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];x0=[0.2 0.28 0.44 0.76 1 1.08];m=1;[y,A,C,L]=newton(x,y,x0,m)结果:y =0.9800 0.9622 0.9020 0.6800 0.3800 0.2403A =0.9800 0 0 0 00.9200 -0.3000 0 0 00.8100 -0.5500 -0.6250 0 00.6400 -0.8500 -0.7500 -0.2083 00.3800 -1.3000 -1.1250 -0.6250 -0.5208C =-0.5208 0.8333 -1.1042 0.1917 0.9800L =- (25*x^4)/48 + (5*x^3)/6 - (53*x^2)/48 + (23*x)/120 + 49/502. 在区间上分别取,⽤两组等距节点对Runge函数作多项式插值(Lagrange插值和Newton插值均可),要求对每个值,分别画出插值多项式和函数的曲线。
牛顿插值法matlab
牛顿插值法matlab
牛顿插值法是一种基于牛顿多项式的插值方法,它要求给定的插值点必须满足某种差分公式,且牛顿插值法的误差收敛速度非常快。
牛顿插值法的Matlab实现分为以下几步:
1.给定插值点和插值函数的值。
2.确定多项式的阶数n。
3.根据牛顿插值法,构造一个n×n矩阵A,其中Aij等于第i个点处对x的第j次导数。
4.构造一个n×1矩阵B,其中Bi等于第i个点处的函数值。
5.通过消元法求解矩阵方程组Ax=B,从而求出牛顿插值法的系数。
6.应用求出的系数,构造出牛顿插值多项式。
7.根据牛顿插值多项式进行插值计算。
matlab(迭代法_牛顿插值)
实验报告内容:一:不动点迭代法解方程二:牛顿插值法的MA TLAB实现完成日期:2012年6月21日星期四数学实验报告一日期:2012-6-21hold on>> fplot(g,[-2,2])>> fplot(f,[-2,2])>> hold off>> grid输出结果如下所示:所以,确定初值为x0=1二:不断迭代算法:第一步:将f(x0)赋值给x1第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步编写计算机程序:clearf=inline('0.5*sin(x)+0.4');x0=1;x1=f(x0);k=1;while abs(x1-x0)>=1.0e-6x0=x1;x1=f(x0);k=k+1;fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1)end显示结果如下:k=2,x0=0.820735492,x1=0.765823700k=3,x0=0.765823700,x1=0.746565483k=4,x0=0.746565483,x1=0.739560873k=5,x0=0.739560873,x1=0.736981783k=6,x0=0.736981783,x1=0.736027993k=7,x0=0.736027993,x1=0.735674699k=8,x0=0.735674699,x1=0.735543758k=9,x0=0.735543758,x1=0.735495216k=10,x0=0.735495216,x1=0.735477220k=11,x0=0.735477220,x1=0.735470548k=12,x0=0.735470548,x1=0.735468074k=13,x0=0.735468074,x1=0.735467157>>。
牛顿迭代法Matlab程序
牛顿迭代法Matlab程序(带下山因子)本文程序可用于求解线性和非线性方程组,在使用牛顿迭代法的同时,加入了下山因子,加入下山因子后,对于初值的选取更为宽泛。
使用方法:请将本文function所定义的函数存为m 文件,将matlab路径改为存储newton函数的路径,然后参照本文例子的格式定义变量、表达式、初值、收敛阈值、迭代次数后,输入X=newton(f,x,x0,esp,N) 即可求解。
%%%%%%%%%%%%%%%%%%%% 例子syms x1 x2 x3%定义变量名称f1=x1+x2+x3+3;f2=2*x1-x2-x3;f3=x1+2*x2-2*x3-3;%定义方程表达式(方程全都移到等号左边的表达式)f=[f1;f2;f3];x=[x1;x2;x3];x0=[0;0;0];%设定初值esp=[0.00001;0.00001;0.00001];%阈值N=1000;%迭代次数X=newton(f,x,x0,esp,N)%求解%%%%真值为-1 0 -2 %%%%%%%%%%%%%%%%%%%%function x1=newton(f,x,x0,esp,N)%此函数用于解非线性方程,方法为牛顿下山法。
R=jacobian(f,x);ph=size(f,1);ty(1:ph,1)=1;coo=1;while abs(coo-1)<1e-6%这代表coo==1 coo=0;R1=subs(R,x,x0);%%%f1=subs(f,x,x0);x1=x0-ty.*(R1\f1);f11=subs(f,x,x1);f12=double(f1);f112=double(f11);for i=1:size(f12,1);j=i;clcjif abs(f112(i))>abs(f12(i))ty(i)=ty(i)/2;coo=1;endendendfor i=1:NclciR1=subs(R,x,x0);%%%f1=subs(f,x,x0);x1=x0-ty.*(R1\f1);xx=abs(x1-x0);if xx<espbreakelsex0=x1;endend。
MATLAB牛顿迭代法
1。
定义函数function y=f(x)y=f(x);%函数f(x)的表达式endfunction z=h(x)z=h(x);%函数h(x)的表达式end2.主程序x=X;%迭代初值i=0;%迭代次数计算while i〈= 100%迭代次数x0=X-f(X)/h(X);%牛顿迭代格式if abs(x0—X)>0。
01;%收敛判断X=x0;else breakendi=i+1;endfprintf(’\n%s%.4f\t%s%d’,'X=’,X,’i=’,i) %输出结果牛顿迭代法(matlab)来源:徐力的日志背景:牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton—Raphson m ethod),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f’(x0)(x—x0),求出L与x轴交点的横坐标x1 = x 0—f(x0)/f'(x0),称x1为r的一次近似值。
过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标x2 = x1—f(x1)/f'(x1),称x2为r的二次近似值。
重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f’(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式.现用牛顿迭代法(matlab)求方程x^3-2x-1=0的根(—1)。
主函数:function[x,k]=Newtondd(f,x0,e)%%牛顿迭代法,求f(x)=0在某个范围内的根。
%%f为f(x),x0为迭代初值,e为迭代精度。
k为迭代次数x_a=x0;x_b=x_a—subs(f,x_a)/subs(diff(f),x_a);k=1;while abs(x_a-x_b)〉e,k=k+1;x_a=x_b;x_b=x_a-subs(f,x_a)/subs(diff(f),x_a); endx=x_b;运行:>〉syms x;>> f=(x^3-2*x—1)。
牛顿插值法matlab程序例题
牛顿插值法是一种常用的数值分析方法,用于构造一个多项式函数,以便在给定的数据点上进行插值。
这个主题在数学和工程领域中有着广泛的应用,特别是在数据拟合和函数逼近方面。
牛顿插值法的核心思想是通过不断地添加新的数据点来构造一个多项式,并利用已知数据点来确定多项式的系数,从而实现对未知数据点的插值预测。
在Matlab中,实现牛顿插值法并不困难,我们可以利用已有的函数和工具来简化计算过程。
下面,我们将通过一个具体的例题来讲解如何使用Matlab编写牛顿插值法的程序,并分析其结果。
我们需要明确牛顿插值法的数学原理。
给定n个互不相同的节点\(x_0, x_1, ... , x_n\),以及在这些节点上的函数值\(f(x_0), f(x_1), ... , f(x_n)\),我们希望构造一个n次插值多项式p(x),满足p(x_i) = f(x_i),i=0,1,...,n。
牛顿插值多项式的一般形式为:\[p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ... + a_n(x -x_0)(x - x_1)...(x - x_{n-1})\]其中,\[a_i\]表示插值多项式的系数。
通过牛顿插值法的迭代过程,可以逐步求解出这些系数,进而得到插值多项式的表达式。
接下来,我们将以一个具体的例题来演示如何在Matlab中实现牛顿插值法。
假设我们有如下的数据点和函数值:\(x = [1, 2, 3, 4]\)\(f(x) = [1, 4, 9, 16]\)我们希望利用这些数据点来构造一个插值多项式,并在给定的区间上进行插值计算。
在Matlab中,可以通过interp1函数来进行插值计算,该函数支持多种插值方法,包括牛顿插值法。
下面是一个简单的Matlab程序示例:```matlabx = [1, 2, 3, 4];y = [1, 4, 9, 16];xi = 2.5;yi = interp1(x, y, xi, 'spline');disp(['在x=',num2str(xi),'处的插值结果为:',num2str(yi)]);```在这段代码中,我们首先定义了给定的数据点x和对应的函数值y,然后利用interp1函数对x=2.5处的插值结果进行计算。
牛顿法matlab程序及例题
牛顿法matlab程序及例题牛顿法是一种求解非线性方程的优秀方法,其基本思想是利用切线逼近非线性方程的根,逐步逼近准确解。
下面我们介绍牛顿法的matlab程序及例题。
【程序】function [x_iter,k]=newton(f,df,x0,tol,maxit)%牛顿法%输入:f-目标函数,df-目标函数的导函数,x0-初始值,tol-误差限,maxit-最大迭代次数%输出:x_iter-迭代结果,k-迭代次数k=0;x_iter=x0;err=tol+1;while(err>tol && k<maxit)x=x_iter;x_iter=x-f(x)/df(x);err=abs(x_iter-x);k=k+1;endif(k==maxit)fprintf('未收敛');elsefprintf('迭代次数:%d',k);end【例题】example:求解非线性方程f(x)=x^3-5x^2+3x+7=0,初始值为x0=2,精度为1e-6。
解法:首先求导得df(x)=3x^2-10x+3,然后代入程序:>> f=@(x)x^3-5*x^2+3*x+7;>> df=@(x)3*x^2-10*x+3;>> [x_iter,k]=newton(f,df,2,1e-6,100);>> x_iterans =4.3793>> kk =5故该非线性方程的根为x=4.3793,迭代次数为5次。
【总结】通过以上例题,我们可以发现牛顿法是一种十分有效的求解非线性方程的方法,其程序简洁高效,对于复杂的非线性方程求解也能得到较好的结果。
因此在实际应用中,我们可以采用牛顿法来求解非线性方程,提高计算效率和精度。
(完整word版)牛顿法的MATLAB实现
牛顿法的MATLAB实现摘要:性能学习是神经网络中的一类很重要的学习规则,其旨在找到一个最优点来提高网络的性能。
牛顿法是一种基于二阶泰勒级数的算法,逐步迭代来实现进一步的极小化,最后找到最优点。
本文采用MATLAB 编程来实现牛顿法,并通过具体的例子进行分析计算。
关键字:牛顿法;MATLABRealise Newton’s Method by using MatlabAbstract: Performance learning is one of important learning rules in neural network ,which aims to find an optimal point to improve the performance of neural network.Newton's method is a kind of algorithm which based on second-order Taylor series, the iteration step by step to achieve further minimization, and finally find the most advantage.In this paper,by using the matlab, Newton's method is easily to realize and it also gives a demonstration to analyse and calculation.Key words: Newton’s method; MATLAB0 引言神经网络作为一门新兴的学科,在短短的数十年内已经被运用于多种学科领域,大量的有关神经网络机理、模型以及算法分析等方面的文章如雨后春笋般涌现。
MATLAB是一种强大的工程计算和仿真软件,其基本上可以实现神经网络的各种设计方法和算法。
matlab牛顿迭代法求方程组的根
MATLAB(矩阵实验室)是一种用于数学计算、绘图等的高度工程化的软件评台。
利用MATLAB进行牛顿迭代法求解方程组的根是一种常见的数值分析方法。
本文将介绍如何使用MATLAB进行牛顿迭代法求解方程组的根,并给出具体的代码实现。
1. 理论基础牛顿迭代法是一种求解方程根的常用数值方法。
对于一般的方程组F(X)=0,牛顿迭代法的迭代公式如下:X(k+1)=X(k)−(∂F/∂X)^(-1)·F(X(k))其中,X(k)表示第k次迭代的解,∂F/∂X表示F对X的雅可比矩阵,^(-1)代表矩阵的逆运算。
2. MATLAB代码实现以下是使用MATLAB进行牛顿迭代法求解方程组的一般代码实现:```matlabfunction [x, numIter] = newtonMethod(F, J, x0, tol, maxIter)F为方程组F(X)=0的函数句柄J为方程组F(X)的雅可比矩阵的函数句柄x0为初始解向量tol为迭代精度maxIter为最大迭代次数x = x0;numIter = 0;while norm(F(x)) > tol numIter < maxIterx = x - J(x) \ F(x); 使用MATLAB的\表示矩阵的逆运算numIter = numIter + 1;endend```3. 示例下面以一个二元非线性方程组为例,演示如何使用上述MATLAB代码进行牛顿迭代法求解方程组的根。
考虑方程组:F1(x1, x2) = x1^2 + x2^2 - 25 = 0F2(x1, x2) = x1*x2 - 9 = 0对应的雅可比矩阵为:J(x)=[2x1, 2x2; x2, x1]下面是具体的MATLAB代码实现:```matlab定义方程组F和雅可比矩阵JF = (x) [x(1)^2 + x(2)^2 - 25; x(1)*x(2) - 9];J = (x) [2*x(1), 2*x(2); x(2), x(1)];设置初始解向量、迭代精度和最大迭代次数x0 = [1; 1];tol = 1e-6;maxIter = 100;调用newtonMethod函数进行求解[x, numIter] = newtonMethod(F, J, x0, tol, maxIter);显示结果disp(['解向量为:', num2str(x')]);disp(['迭代次数为:', num2str(numIter)]);```4. 结论本文介绍了使用MATLAB进行牛顿迭代法求解方程组的方法,并给出了具体的代码实现和示例。
matlab_牛顿插值法_三次样条插值法
(){}21()(11),5,10,20:12521()1,(0,1,2,,)()2,(0,1,2,,)()()235,20:1100(i i ii n n k k k Newton f x x n x f x x i i n f x nxy i n Newton N x S x n x k y f x =-≤≤=+=-+====-+= 题目:插值多项式和三次样条插值多项式。
已知对作、计算函数在点处的值;、求插值数据点的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max()n k n k n k n k n k n k kkN x S x k E N y N x E S y S x ==-=- 和;、计算,;解释你所得到的结果。
算法组织:本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式)(x N n 和三次样条插值多项式()n S x 。
如此,则第三、四问则迎刃而解。
计算两种插值多项式的算法如下:一、求Newton 插值多项式)(x N n ,算法组织如下:Newton 插值多项式的表达式如下:)())(()()(110010--⋅⋅⋅--+⋅⋅⋅+-+=n n n x x x x x x c x x c c x N其中每一项的系数c i 的表达式如下:1102110),,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅=-根据i c 以上公式,计算的步骤如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----),,,,(1),,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:所谓三次样条插值多项式)(x S n 是一种分段函数,它在节点i x 011()n n a x x x x b -=<<⋅⋅⋅<<=分成的每个小区间1[,]i i x x -上是3次多项式,其在此区间上的表达式如下:22331111111()[()()]()()666[,]1,2,,.i i i i i i i i i i i i i i i i i h x x h x x S x x x M x x M y M y M h h h x x x i n --------=-+-+-+-∈=⋅⋅⋅,,因此,只要确定了i M 的值,就确定了整个表达式,i M 的计算方法如下: 令:11111111116()6(,,)i i i i i i i i i i i i i ii i i i i i i h h h h h h y y y y d f x x x h h h h μλμ++++--+++⎧===-⎪++⎪⎨--⎪=-=⎪+⎩, 则i M 满足如下n-1个方程:1121,2,,1i i i i i i M M M d i n μλ-+++==⋅⋅⋅-,方程中有n+1个未知量,则令0M 和n M 分别为零,则由上面的方程组可得到(11)i M i n ≤≤-的值,可得到整个区间上的三次样条插值多项式)(x S n 。
matlab牛顿迭代法程序
matlab牛顿迭代法程序
牛顿迭代法是一种迭代式数值解法,它以牛顿(Isaac Newton)发现的公式为基础,可以用来快速求解某种无穷级数的问题。
牛顿迭代法采用一个逼近点来求近似解,它的思想是首先选取一个初始估计(或初始值)来作为搜索的起点,然后利用逆求法求出更加准确的估计值,最后反复迭代,直至计算出精确的解。
牛顿迭代法的具体步骤如下:
(1)给定一个函数f(x)和初始值x0,要求求该函数f(x)的根;
(2)计算函数f(x)和其导数f’(x)在x0处的值;
(3)计算x1:将x0代入x1=x0−f(x0)/f′(x0);
(4)判断x1和x0的大小,如果x1接近于零,则求解完成;否则,用x1代替x0,重复步骤(2)—(4),直至x1接近于零为止。
牛顿迭代法matlab
牛顿迭代法matlab
牛顿迭代法(Newton Iteration)是一种经典的求解方程的数值计算方法。
牛顿迭代的思想是:利用泰勒级数展开,把一个方程表达成无穷多个多项式,假设初始值检验了,利用这无穷多个多项式,求出后面每一步的方程解。
这种方法被称为牛顿迭代,它能够在有限的步骤内求解出一个足够接近的解,比较适合于求解处于非线性的方程组的收敛的情况。
以下给出一个MATLAB程序来描述牛顿迭代的步骤:
其中,X是方程组解的初值,f为等式组右侧函数,J是等式组左侧Jacobian矩阵。
function X = Newton_iter(X,C,F)
% 光滑牛顿迭代
MXtimes=20;
for iter=1:MXtimes
% 计算jacobian矩阵
J=jacobian(C,F,X);
%计算右侧函数
F_val=F(X);
%牛顿迭代公式更新X
X=X-J\F_val;
end
end
其中jacobian函数返回计算出的jacobian矩阵和右侧方程组函数:
上面提到了求Jacobia矩阵时需要用到一个Ua函数,这个函数表达式如下:
function x=Ua(C)
eps=1.0e-6; %步长定义
x=eps*C/norm(C); %求计算步长
end
可以看到,牛顿迭代是利用Taylor展开式来建立接近原始方程解的方程组来解决求解非线性方程组收敛的情况,大致步骤是通过jacobian矩阵求出右侧方程函数值,然后利用函数求得x值,最后逐步收敛至原解。
MATLAB计算方法迭代法牛顿法二分法实验报告
MATLAB计算方法迭代法牛顿法二分法实验报告实验目的:本实验旨在通过MATLAB编程实现迭代法、牛顿法和二分法,并通过实例验证其准确性和收敛速度。
实验原理:迭代法是一种通过不断迭代逼近根的方法,其基本原理是选择一个初始值,然后通过迭代公式不断逼近根的值,直到满足给定的精度要求。
牛顿法是一种通过不断迭代求函数的零点的方法,其基本原理是通过当前点的切线与x轴的交点来逼近根的值,直到满足给定的精度要求。
二分法是一种通过不断将区间一分为二来逼近根的方法,其基本原理是通过判断根是否落在区间的两个端点之间,然后将区间一分为二,直到满足给定的精度要求。
实验步骤:1.编写迭代法的MATLAB代码,实现对给定函数的根的逼近。
2.编写牛顿法的MATLAB代码,实现对给定函数的根的逼近。
3.编写二分法的MATLAB代码,实现对给定函数的根的逼近。
4.针对不同的函数,分别使用迭代法、牛顿法和二分法进行根的逼近,并记录每种方法的迭代次数和逼近结果。
5.对比三种方法的迭代次数和逼近结果,分析其准确性和收敛速度。
实验结果:以求解方程x^3-2x-5=0为例,使用迭代法、牛顿法和二分法进行根的逼近。
迭代法:迭代公式:x(n+1)=(2x(n)+5)^(1/3)初始值:x(0)=2迭代次数:6逼近结果:2.0946牛顿法:初始值:x(0)=2迭代次数:4逼近结果:2.0946二分法:初始区间:[1,3]迭代次数:11逼近结果:2.0946实验结论:通过对比三种方法的迭代次数和逼近结果可以发现,迭代法和牛顿法的收敛速度都要快于二分法,并且迭代法和牛顿法的逼近结果也更为接近真实根。
这是因为迭代法和牛顿法都是通过不断逼近根的值来求解,而二分法则是通过将区间一分为二来逼近根的值,所以迭代法和牛顿法的收敛速度更快。
总结:本实验通过MATLAB编程实现了迭代法、牛顿法和二分法,并通过实例验证了它们的准确性和收敛速度。
实验结果表明,迭代法和牛顿法在求解根的过程中具有更快的收敛速度和更接近真实根的逼近结果,而二分法的收敛速度较慢。
matlab---newton迭代法
matlab---newton迭代法2⾮线性⽅程的解法20.(上机题)Newton 迭代法(1)给定初值0x 及容许误差ε,编制Newton 法解⽅程()0f x =的根的通⽤程序。
(2)给定⽅程()3/30f x x x =?=,易知其有三个根***1230,x x x ===○1由Newton ⽅法的局部收敛性可知存在0δ>,当()0,x δδ∈?时,Newton 迭代序列收敛于根*2x 。
试确定尽可能⼤的δ。
○2试取若⼲初始值,观察当()()()()()()0,1,1,,,,,1,1,11,x δδδδ∈?∞∞时Newton 序列是否收敛以及收敛于哪⼀个根。
(3)通过本上机题,你明⽩了什么?程序及说明本程序⽤matlab 编写(1)通⽤程序如下function [x1,err,k,y ]=newton(f,df,x0,delta,max1)%f 是⾮线性函数%df 是f 的微商%x0是迭代函数的初始值%delta 是给定的允许误差%max1是迭代的最⼤次数%x1是⽜顿迭代法求得⽅程的近似值%err 是x0的误差估计%k 为迭代次数%y=f(x1)for k=1;max1x1=x0-feval('f',x0)/feval('df',x0);err=abs(x1-x0);x0=x1;if (errbreak;endx1,err,k,y=feval('f',x1)endend本题中f 的程序为:function y=f(x)y=x^3/3-x;enddf 的程序为:function y=df(x)y=x^2-1;end(2)查找可能⼤的δ的程序如下:function z =CZ(h)x0=h;f=x0^3/3-x0;df=x0^2-1;x1=f/df-x0;while x1<=x0x0=x0+h;f=x0^3/3-x0;df=x0^2-1;x1=f/df-x0;endz=x0-hend○1取步长为0.0001,在命令栏输⼊命令并执⾏如下所⽰:>>CZ(0.0001)z =0.7745○2在()()()()()0,1,1,,,,,1,1,x δδδδ∈?∞∞中分别取值计算之后可以知道()0,1x ∈?∞?时收敛于*1x ()01,x δ∈??时收敛于*3x ()0,x δδ∈?时收敛于*2x ()0,1x δ∈时收敛于*1x ()01,x ∈∞时收敛于*3x (3)Newton 迭代法对初值的要求较⾼,Newton 迭代法⼀般是局部收敛的,如果有多个根则可能存在不同的收敛域使其收敛于不同的根。
多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值[MATLAB]
多项式函数插值:全域多项式插值(⼀)单项式基插值、拉格朗⽇插值、⽜顿插值[MATLAB] 全域多项式插值指的是在整个插值区域内形成⼀个多项式函数作为插值函数。
关于多项式插值的基本知识,见。
在单项式基插值和⽜顿插值形成的表达式中,求该表达式在某⼀点处的值使⽤的Horner嵌套算法啊,见""。
1. 单项式(Monomial)基插值1)插值函数基 单项式基插值采⽤的函数基是最简单的单项式:\phi_j(t)=t^{j-1}, j=1,2,...n;\quad f(t)=p_{n-1}(t)=x_1+x_2t+x_3t^2+...x_nt^{n-1}=\sum\limits_{j=1}^nx_jt^{j-1} 所要求解的系数即为单项式系数x_1,x_2,...x_n,在这⾥仍然采⽤1,2,...n的下标记号⽽不采⽤和单项式指数对应的0,1,2,...,n-1的下标仅仅是出于和前后讨论⼀致的需要。
2)叠加系数 单项式基插值采⽤单项式函数基,若有m个离散数据点需要插值,设使⽤n项单项式基底:x_1+t_1x_2+t_1^2x_3+...+t_1^{n-1}x_n=y_1\\ x_1+t_2x_2+t_2^2x_3+...+t_2^{n-1}x_n=y_2\\ ...... ...... ...... ...... ...... ......\\ x_1+t_mx_2+t_m^2x_3+...+t_m^{n-1}x_n=y_m 系数矩阵为⼀m\times n的矩阵(m\leq n),范德蒙(Vandermonde)矩阵:\begin{bmatrix}1&t_1&t_1^2&...&t_1^{n-1}\\1&t_2&t_2^2&...&t_2^{n-1}\\...&...&...&...&...\\1&t_n&t_n^2&...&t_n^{n-1}\end{bmatrix}\begin{bmatrix}x_1\\x_2\\...\\x_n\end{bmatrix}=\begin{bmatrix}y_1\\y_2\\...\\y_n\end{bmatrix} 根据计算基本理论中的讨论,多项式插值的函数基⼀定线性⽆关,且只要离散数据点两两不同,所构成的矩阵⾏也⼀定线性⽆关,这保证了矩阵⼀定⾏满秩。
matlab中的牛顿插值
matlab中的牛顿插值在MATLAB中,你可以使用牛顿插值方法来生成一个多项式,用于逼近一组离散数据点。
牛顿插值多项式通常用于曲线拟合和数据插值的任务。
以下是在MATLAB中执行牛顿插值的步骤:1.准备数据:首先,准备你的离散数据点,包括x值和相应的y值。
这些数据点将用于生成插值多项式。
2.计算差商:使用牛顿插值的关键是计算差商(divided differences)。
差商用于构建插值多项式的系数。
在MATLAB中,你可以使用`divdif`函数来计算差商。
```matlabx=[x1,x2,x3,...];%x值y=[y1,y2,y3,...];%相应的y值coefficients=divdif(x,y);```3.构建插值多项式:一旦你计算出差商,你可以使用这些差商来构建牛顿插值多项式。
可以使用`poly2sym`函数将差商转化为多项式对象。
```matlabp=poly2sym(coefficients,x);```4.绘制插值曲线:你可以使用插值多项式对象`p`来绘制插值曲线,以查看如何逼近原始数据。
```matlabx_interp=linspace(min(x),max(x),100);%用于插值的新x值y_interp=subs(p,x_interp);%计算插值多项式的y值plot(x,y,'o',x_interp,y_interp);```这些步骤将帮助你在MATLAB中执行牛顿插值,以生成一个多项式,用于逼近给定的离散数据点。
这个插值多项式可以用于估算原始数据点之间的值,以获得更平滑的曲线。
matlab 牛顿迭代法求所有根
在本文中,我们将探讨使用MATLAB编程语言中的牛顿迭代法来求解多项式方程的所有根。
我们将深入了解牛顿迭代法的原理和应用,以及如何在MATLAB中实现这一方法。
通过本文的阅读,读者将能够全面了解牛顿迭代法在求解多项式方程中的重要性和实用性。
牛顿迭代法是一种数值分析中常用的迭代方法,用于寻找实函数的零点,也就是方程的根。
它通过不断逼近函数的根来求解方程,是一种高效且广泛应用的数值计算方法。
在MATLAB中,我们可以借助内置的函数和工具来实现牛顿迭代法,从而求解多项式方程的所有根。
让我们来了解牛顿迭代法的基本原理。
对于一个实函数f(x)和一个初始值x0,牛顿迭代法通过不断迭代的方式来更新x的取值,使得f(x)不断逼近0。
具体的迭代公式为:\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]其中,x_{n+1}是迭代更新后的值,x_n是当前的值,f(x_n)是函数在x_n处的取值,f'(x_n)是函数在x_n处的导数。
通过不断迭代,当f(x)趋于0时,我们就可以得到方程的根。
在MATLAB中,我们可以利用内置的函数和工具来实现牛顿迭代法。
我们需要定义多项式方程的函数表达式,并计算其导数。
我们可以利用MATLAB中提供的循环结构和迭代计算的方法,来不断更新当前值,直到满足迭代终止条件。
下面,我们以一个具体的例子来说明在MATLAB中如何用牛顿迭代法求解多项式方程的所有根。
假设我们要求解方程f(x) = x^2 - 4x + 3的所有根。
我们可以在MATLAB中定义这个多项式函数,并计算其导数。
接下来,我们可以编写一个循环结构,不断利用牛顿迭代法来更新当前值,直到满足迭代终止条件。
我们就可以得到方程的所有根。
在实际应用中,牛顿迭代法在求解多项式方程的所有根时具有重要的实用价值。
通过不断迭代更新,我们可以高效地求解多项式方程的根,从而应用到科学计算、工程问题、金融建模等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告内容:
一:不动点迭代法解方程
二:牛顿插值法的MATLAB实现
完成日期:2012年6月21日星期四
数学实验报告一
日期:2012-6-21
所以,确定初值为x0=1
二:不断迭代
算法:
第一步:将f(x0)赋值给x1
第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步
编写计算机程序:
clear
f=inline('0.5*sin(x)+0.4');
x0=1;
x1=f(x0);
k=1;
while abs(x1-x0)>=1.0e-6
x0=x1;
x1=f(x0);
k=k+1;
fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1)
end
显示结果如下:
k=2,x0=0.820735492,x1=0.765823700
k=3,x0=0.765823700,x1=0.746565483
k=4,x0=0.746565483,x1=0.739560873
k=6,x0=0.736981783,x1=0.736027993 k=7,x0=0.736027993,x1=0.735674699 k=8,x0=0.735674699,x1=0.735543758 k=9,x0=0.735543758,x1=0.735495216 k=10,x0=0.735495216,x1=0.735477220 k=11,x0=0.735477220,x1=0.735470548 k=12,x0=0.735470548,x1=0.735468074 k=13,x0=0.735468074,x1=0.735467157 >>。
以下是程序运行截图:
数学实验报告之二
日期:2012-6-21
【编写主程序】
>> clear;clf
>> x=0:0.1:5;
>> y=sin(x);
>> [yhat,dy]=newtint(x,y,0.59)运行结果如下
yhat =
0.5564
dy =
-7.2731e-013
>>
所以:函数在0.59处的近似值为0.5564,误差为dy = -7.2731e-013
【实验结果】
函数在0.59处的近似值为0.5564
【误差分析】
误差为dy = -7.2731e-013
【心得体会】
总算明白了计算机解数学题目的原理是什么了,以前不懂,看到计算机解出一个一个的数学题就觉得非常神奇,老师担心人类不如计算机聪明担心有一天人类会被计算机取代。
但是,我现在不这样想了,计算机其实非常傻,只会按照人类给它设定的步骤去走,不是计算机神奇,而是人
(注:可编辑下载,若有不当之处,请指正,谢谢!)。