电力电子器件典型全控型器件课程

合集下载

全控型电力电子器件

全控型电力电子器件

GTO的关断机理: 在双晶体管等效模型中,利用门 极负电流分流IC1,并快速抽取 V2管发射结侧载流子,以实现快 速关断 GTO优点:电压、电流容量大,适用于大 功率场合,具有电导调制效应,其通流能 力很强;缺点:电流关断增益很小,关断 时门极负脉冲电流大,开关速度低,驱动 功率大,驱动电路复杂,开关频率低
2.电力晶体管(Giant Transistor—GTR)
GTR是一种耐高电压、大电流的双极结型晶体管,电流驱动型全控器件。
GTR关断原理: 开通时,Uce正偏,提供基极电流; 关断时,I b小于等于零。 开通和关断可由基极电流来控制,故称为全控型器件和电流型驱动器件。
GTR优点:耐压高,电流大,开关特性好,通流能力强,饱和压降低 缺点:开关速度低,为电流驱动,所需驱动功率电路复杂,存在二次击穿问题
4.绝缘栅极晶体管(IGBT)
复合型器件,将GTR双极型电流驱动器件和电力MOSFET 单极型电压驱动器件结合。综合了GTR和MOSFET的优点,因而具有良好的特性。
关断原理:IGBT是一种压控器件。其C-E间主电流的通断是由栅极和射极间的电压 uGE的高低决定的。 E极为公共端。 IGBT优点:开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低, 输入阻抗高,为电压驱动,驱动功率小;缺点:开关速度低于电力MOSFET,电压, 电流容量不及GTO
3.电力场效应管绝缘栅型中的MOS型 (Metal Oxide Semiconductor FET)
关断原理:以G-S间施加电压的高低来控制D-S间主电流的通断。源极S为公共端。 门极几乎不取用电流,属压控器件。uGS正电压超过开启电压时导通,负电压作 用可使其快速关断。 优点:开关频率最高;驱动电流小,易驱动;通态电阻具有正温度系数(有利于器件 并联均流);缺点:电压电流容量较小;通态压降较大,ID大则压降随之增大。

第四章 全控型电力电子器件

第四章 全控型电力电子器件

图4-4 较为理想的门极电压和电流波形
《电力电子技术》
2.GTO的驱动电路
a) b) 图4-5 GTO门极驱动电路 a)小容量GTO门极驱动电路 b)较大容量GTO桥式门极驱动电路
《电力电子技术》
3.GTO的保护电路
b) c) d) 图4-6 GTO的阻容缓冲电路 图4-6为GTO的阻容缓冲电路。图4-6a只能用于小电流;图4-6b加 在GTO上的初始电压上升率大,因而在GTO电路中不推荐;图4-6c与图 4-6d是较大容量GTO电路中常见的缓冲器,其二极管尽量使用速度快 的,并使接线短,从而使缓冲器电容效果更显著。
《电力电子技术》
a)
第三节 电力场效应晶体管(Power MOSFET)
一、电力MOSFET的结构 电力MOSFET采取两次扩散工艺,并将漏极D移到芯片的另一侧表面上, 使从漏极到源极的电流垂直于芯片表面流过,这样有利于减小芯片面积和 提高电流密度。
a)
b) 图4-14 电力MOSFET的结构和符号 a) MOSFET元组成剖面图 b) 图形符号
《电力电子技术》
二、工作原理
IGBT的驱动原理与电力MOSFET基本相同,它是一种 压控型器件。其开通和关断是由栅极和发射极间的电 压 uGE 决 定 的 , 当 uGE 为正且 大 于开启电 压 uGE(th) 时, MOSFET内形成沟道,并为晶体管提供基极电流使其导 通。当栅极与发射极之间加反向电压或不加电压时, MOSFET内的沟道消失,晶体管无基极电流,IGBT关断。 PNP晶体管与N沟道MOSFET组合而成的IGBT称为N沟 道IGBT,记为N-IGBT,其电气图形符号如图4-19c所示。 对应的还有P沟道IGBT,记为P-IGBT。N-IGBT和P-IGBT 统称为IGBT。由于实际应用中以N沟道IGBT为多。

第1章电力电子2ppt-典型全控型器件

第1章电力电子2ppt-典型全控型器件
12
1.4.2 电力晶体管
1. GTR的结构和工作原理
基极b 发射极c 基极b
P+
N+
P+
P基区
N漂移区
N+衬底
c b
e
集电极c
a)
b)
ic=ib
空穴流 ib
Eb


Ec

ie=(1+ib c)
图1-15 GTR的结构、电气图1图-15形符号和内部载流子的流动
a) 内部结构断面示意图 b) 电气图形符号 c) 内部载流子的流动
➢ 典型代表——门极可关断晶闸管、电力晶体管、 电力场效应晶体管、绝缘栅双极晶体管。
2
1.4.1 门极可关断晶闸管
➢ 门极可关断晶闸管
➢ (Gate-Turn-Off Thyristor —GTO)
• 晶闸管的一种派生器件 • 可以通过在门极施加负的脉冲电流使其关断 • GTO的电压、电流容量较大,与普通晶闸管接
4) 电流关断增益off
——最大可关断阳极电流与门极负脉冲电流最大值
IGM之比称为电流关断增益。
off
= I ATO I GM
(1-8)
off一般很小,只有5左右,这是GTO的一个主要缺点。
1000A的GTO关断时门极负脉冲电流峰值要200A 。
11
1.4.2 电力晶体管
➢ 术语用法:
• 电力晶体管(Giant Transistor——GTR,直译为巨 型晶体管)
近,因而在兆瓦级以上的大功率场合仍有较多 的应用
3
1.4.1 门极可关断晶闸管
1. GTO的结构和工作原理
➢ 结构:
• 与普通晶闸管的相同点: PNPN四层半导体结构,外部引 出阳极、阴极和门极。

第3讲 晶闸管与全控型电力电子器件

第3讲 晶闸管与全控型电力电子器件

3
2.4.2
术语用用法:
电力力晶体管
" 电力力晶体管(Giant Transistor——GTR,直译为巨
型晶体管) 。
" 耐高高电压、大大电流的双极结型晶体管( Bipolar
Junction Transistor——BJT),英文文有时候也称为 Power BJT。 应用用:
" 20世纪80年代以来,在中、小小功率范围内取代晶闸
trr URRM t gr O iA 100% 90%
10% 0 td uAK
tr IRM
t
t
图2-15 晶闸管的开通和关断过程波形
电力电子技术
3
2.3.3 闸管的主要特性参数 1、电压定额
v
v
断态重复峰值电压UDRM ——在⻔门极断路而而结温为额定值时,允许重复加在器件上的 正向峰值电压。 反向重复峰值电压URRM ——在⻔门极断路而而结温为额定值时,允许重复加在器件上的 反向峰值电压。
⑵ GTO的动态特性
开通过程:与普通晶闸管相同 关断过程:与普通晶闸管有所不 同 储存时间ts ,使等效晶体退出饱 I A 90% IA 和; 下降时间tf ; 尾部时间tt —残存载流子子复合。
10% IA 0 t0 t1 O
t2
t3
t4
t5
t6
t
图2-24 GTO的开通和关断过程电流波形
通常tf 比比ts小小得多,而而tt 比比ts 要⻓长。⻔门极负脉冲电流幅 值越大大, ts 越短。 电力电子技术
电力电子技术
3
2 、双向晶闸管( Triode AC Switch——TRIAC 或 Bidirectional triode thyristor)

《电力电子技术》第2章 电力电子器件

《电力电子技术》第2章 电力电子器件
电力电子器件是基础 电能进行变换和控制是核心
2/89
上节课内容回顾
• 二、电力电子器件
1、概念:是指可直接用于处理电能的主电路中,实现 电能的变换或控制的电子器件。
2、特性:大功率、开关特性、驱动电路、损耗大,加散热
3、组成:主电路、控制电路、检测电路。。。。
4、分类:
1)控制程度:不控器件、半控器件、全控器件
12/89
2.1.3 电力电子器件的分类
■按照载流子参与导电的情况 ◆单极型器件 ☞由一种载流子参与导电。 ◆双极型器件 ☞由电子和空穴两种载流子参与导电。 ◆复合型器件 ☞由单极型器件和双极型器件集成混合而成, 也称混合型器件。
13/89
2.1.4 本章内容和学习要点
■本章内容 ◆按照不可控器件、半控型器件、典型全控型器件和其 它新型器件的顺序,分别介绍各种电力电子器件的工作 原理、基本特性、主要参数以及选择和使用中应注意的 一些问题。
检测

电路

保护

电路

驱动ቤተ መጻሕፍቲ ባይዱ
电路
V1 LR
V2
主电路
电气隔离
图2-1 电力电子器件在实际应用中的系统组成
10/89
2.1.3 电力电子器件的分类
■按照能够被控制电路信号所控制的程度 ◆半控型器件 ☞主要是指晶闸管(Thyristor)及其大部分派生器件。 ☞器件的关断完全是由其在主电路中承受的电压和电 流决定的。 ◆全控型器件 ☞目前最常用的是 IGBT和Power MOSFET。 ☞通过控制信号既可以控制其导通,又可以控制其关 断。 ◆不可控器件 ☞电力二极管(Power Diode) ☞不能用控制信号来控制其通断。
■学习要点 ◆最重要的是掌握其基本特性。 ◆掌握电力电子器件的型号命名法,以及其参数和特性 曲线的使用方法。 ◆了解电力电子器件的半导体物理结构和基本工作原理。 ◆了解某些主电路中对其它电路元件的特殊要求。

《电力电子技术》课程教学大纲

《电力电子技术》课程教学大纲

电力电子技术课程教学大纲(POWERE1ECTRONIC)总学时数:40其中:实验学时数:0课外学时数:0学分数:2.5适用专业:电气工程与自动化专业一、课程的性质、目的和任务本课程是自动化专业的基础课程,它的任务是使学生掌握各类电力电子器件的工作原理,特性和主要参数及其各类变流装置发生的电磁过程,基本原理,控制方法,设计计算,实验技能以及它们的技术经济指标。

以便学生毕业后具有进一步掌握各种变流装置的能力,并为后续课“电力拖动与运动控制系统”打好基础。

二、课程教学的基本要求(一)掌握电力电子器件(主要为晶闸管,电力晶体管,可关断晶闸管、电力场效应晶体管和绝缘栅双极晶体管)的工作原理,特性和主要参数(含驱动、缓冲和保护电路)。

(二)熟练掌握单相,三相整流电路和有源逆变电路的基本原理,波形分析和各种负载对电路运行的影响,并能对上述电路进行初步的设计计算(包括触发电路与保护环节)。

(三)3.了解无源逆变、直流斩波、交流调压和交-交变频电路的工作原理,了解并掌握PWM控制技术及PW型逆变电路的基本原理和控制方法。

(四)初步了解软开关技术的基本概念和常用的组合变流电路的主要形式。

(五)初步了解电力电子学科的发展趋势。

(六)掌握基本变流装置的调试实验方法。

三、课程的教学内容、重点和难点绪论基本内容:电力电子技术的基本概念和内涵,电力电子技术发展历程,电力电子技术应用领域,本课程在国民经济中的作用意义,本课程的特点和学习方法。

基本要求:使学生了解电力电子技术的基本概念和内涵,了解本课程的重要性,认识到他所学的内容仅是电力电子学科中的最基本的内容,而本学科还有很多重要的课题有待去学习,去解决。

第一章电力电子器件一、电力电子器件概述基本内容:电力电子器件的概念和特征;电力电子系统的构成;电力电子器件的分类。

基本要求:1、了解电力电子器件的基本概念、主要特征以及主要类型;2、了解应用电力电子器件构成的系统的主要组成部分及各部分功能。

了解 全控型电力电子器件知识分享

了解 全控型电力电子器件知识分享
2020/7/3常1 常立即导致器件的永久损坏。必需避免。
安全工作区
防止二次击穿,采用保护电路,同时考虑器件 的安全裕量,尽量使GTR工作在安全工作区。
2020/7/31
4.特点
• 全控型,电流控制型 • 二次击穿(工作时要防止) • 中大容量,开关频率较低
2020/7/31
第三节 功率场效应晶体管(MOSFET )
(1)不可控器件:二极管VD (2)半控器件:普通晶闸管SCR (3)全控器件:GTO、GTR、功率MOSFET、IGBT等。
2、根据门极(栅极)驱动信号的不同
(1)电流控制器件:驱动功率大,驱动电路复杂,工作频率低。该 类器件有SCR、GTO、GTR。
(2)电压控制器件:驱动功率小,驱动电路简单可靠,工作频率高 。该类器件有P-MOSEET、IGBT。
S
D
D
G
N+PN+
N+PN+
沟道
N-
N+
D
G
G
S N沟道
S P沟道
a)
b)
图1-19
G: 栅极 D: 漏极 S: 源极
2020/7/31
电力MOSFET的结构和电气图形符号 a) 内部结构断面示意图 b) 电气图形符号
1.导通关断条件
漏源极导通条件:在栅源极间加正电压UGS 漏源极关断条件:栅源极间电压UGS为零
2020/7/31
2.特点
• 控制级输入阻抗大 • 驱动电流小 • 防止静电感应击穿 • 中小容量,开关频率高 • 导通压降大(不足)
2020/7/31
第四节 绝缘栅双极晶体管IGBT)
• 绝 缘 栅 双 极 型 晶 体 管 简 称 为 IGBT(Insulated Gate Biopolar Transistor),是80年代中期发 展起来的一种新型复合器件。

电力电子技术第二章全控型器件驱动与保护

电力电子技术第二章全控型器件驱动与保护
三、电压型全控型器件的驱动 1. 功率场效应晶体管(MOSFET)的驱动 (3)驱动电路实例
-电力电子技术-
9
自关断器件
浙江大学电气工程学院
三、电压型全控型器件的驱动 1. 功率场效应晶体管(MOSFET)的驱动
(4)专用驱动集成电路 IR21xx系列,IR2101、IR2110、2130等
-电力电子技术-
电容电压不突变,Uce 上升慢 R:限制GTR开通时电容放电 VD:GTR关断时将R短路
(b)开通吸收电路:又称为di/dt抑制电路,用于抑制器件开 通时的电流过冲和di/dt,减小器件的开通损耗。
LS:使iC上升慢 RS:GTR关断后,续流电流下降 VD:GTR通时,隔离RS旁路作用
19
自关断器件
17
自关断器件
浙江大学电气工程学院
-电力电子技术-
2) 关断过程 电感作用,IC维持,直至Uce → UCC, VDF通,Ic才下降。
解决方法∶ 错开高电压、大电流出现时刻 采用缓冲电路(snubber circuit), 又称吸收电路来实现
18
自关断器件
浙江大学电气工程学院
-电力电子技术-
(a)关断吸收电路:又称为du/dt抑制电路,用于吸收器件的 关断过电压和换相过电压,抑制du/dt,减小关断损耗。
浙江大学电气工程学院
-电力电子技术-
(c)复合吸收电路:关断缓冲电路和开通缓冲电路结合 在一起
LS, Rs, VD 组成开通吸收电路
RS,VD,CS组成关断吸收电路
20
自关断器件
浙江大学电气工程学院
2. IGBT的保护 措施:
1)检测过流信号,切断栅极控制信号 2)吸收电路抑制过电压,限制 duce

电力电子第2章 全控型电力电子器件b z

电力电子第2章 全控型电力电子器件b z

24/89
GTR、GTO、电力 MOSFET 和 IGBT 的特点比较表 器件 简称 GTR 名称 电力晶 体管 电气 符号 端子名 称 基极 优 点 缺 点
GTO
门极可 关断晶 闸管
1 3 2
电力场 P-MO 效应晶 SFET 体管 绝缘栅 IGBT 双极晶 体管
1 3 2
1
3
2
耐压高,电流大,开关特性 开关速度低,为电流驱动, 集电极 好,通流能力强,饱和压降 所需驱动功率大,驱动电路 低 复杂,存在二次击穿问题 发射极 阳极 电流关断增益很小,关断时 电压、电流容量大,适用于 门极负脉冲电流大,开关速 阴极 大功率场合,具有电导调制 度低,驱动功率大,驱动电 效应,其通流能力很强 路复杂,开关频率低 门极 漏极 开关速度快,输入阻抗高, 电流容量小,耐压低,一般 热稳定性好,所需驱动功率 只适用于功率不超过 10kW 源极 小且驱动电路简单,工作频 的电力电子装置 栅极 率高,不存在二次击穿问题 开关速度高,开关损耗小, 集电极 具有耐脉冲 电流冲 击的能 开 关 速 度 低 于 电 力 发射极 力,通态压降较低,输入阻 MOSFET,电压, 电流容量不 栅极 抗高,为电压驱动,驱动功 及 GTO,存在擎住效应 率小
漏源电压增加时, 漏极电流相应增加; 作为开关器件应用时, 应工作在该区域
截止区
UDS /V
UGS<UGS(th)
雪崩区
无反向阻断能力
图2-21 电力MOSFET输出特性
UDS 过高
2)电力MOSFET的基本特征
2.转移特征
ID /A
D +
50 40 30 20 10 0 2
Tc=25o
Tc=125o
消失,晶体管的基极电流被切断,IGBT关断。

全控型电力电子器件

全控型电力电子器件
GTO的主要参数
断态重复峰值电压UDRM和反向重复峰值电压URRM以及通态平均电压 UT的定义与普通型晶闸管相同,不过GTO承受反向电压的能力较小, 一般URRM明显小于UDRM。擎住电流IL和维持电流IH的定义也与普通型晶 闸管相同,但对于同样电流容量的器件,GTO的IH要比普通型晶闸管大 得多。GTO还有一些特殊参数如下。
1 可关断最大阳极电流IAT0
可以通过门极进行关断的最大阳极电流,当阳极电流
超过IAT0时,门极则无力通过IG将GTO关断。
09.04.2020
3
1.3.1可关断晶闸管GTO——主要参 数
2
门极最大负脉冲电流IGRM
为关断GTO门极可以施加的最大反向电流
3
电流关断增益βOFF
βOFF=IAT0/IGRM,这一比值比较小,一般为5左右. 这就是说,要想关断GTO,所要求的门极负电流的 幅度也是很大的。如βOFF=5,GTO的阳极电流为1000A, 那么要想关断它必须在门极加200A的反向电流。可以 看出,尽管GTO可以通过门极反向电流进行可控关断,
■(下边的参数含义与放大用的晶体管相同)
◆电流放大倍数、直流电流增益hFE、集电极与发射极间漏电流Iceo、
集电极和发射极间饱和压降Uces、开通时间ton和关断时间toff ◆最高工作电压
☞GTR上所加的电压超过规定值时,就会发生击穿。 击穿电压不仅 和晶体管本身的特性有关,还与外电路的接法有关。
次击穿临界线(C线)。
IC ICM A
1ms B
0.01ms
另外安全工作区与导通控制 脉冲有关系,如左图,给出不同 宽度的脉冲对应的安全工作区
直流 FBSOA
C D
0
BUCE UCE

第二章全控型电力电子器件

第二章全控型电力电子器件
模块
IGBT
开关器件——IGCT=驱动电路+GCT
4kA/4.5kV IGCT
663A/4.5kV IGCT
GCT分解部件
第一节 门极可关断(GTO)晶闸管
1. 结构
➢与普通晶闸管的相同点:PNPN四层半导体 结构,外部引出阳极、阴极和门极; ➢和普通晶闸管的不同点:GTO是一种多元的 功率集成器件,内部包含数十个甚至数百个共 阳极的小GTO元,这些GTO元的阴极和门极 则在器件内部并联在一起。
2. 导通关断条件
导通:同晶闸管,AK正偏,GK正偏 关断:门极加负脉冲电流
3.特点
全控型 容量大 off≈5 电流控制型
电流关断增益off : 最大可关断 阳极电流与门极负脉冲电流最大 值IGM之比称为电流关断增益
off
I ATO I GM
1000A的GTO关断时门极负脉
冲电流峰值要200A 。
1.单管GTR
单管GTR的基本工作原理与晶体管相同 作为大功率开关管应用时,GTR工作在截止和导
通两种状态。 主要特性是耐压高、电流大、开关特性好
2.达林顿GTR
单管 GTR的电流增益低,将给基极驱动电 路造成负担。达林顿结构是提高电流增益 一种有效方式。
达林顿结构由两个或多个晶体管复合而成, 可以是PNP型也可以是NPN型,其性质由 驱动管来决定
第二节 GTR——电力晶体管
➢ 电力晶体管GTR (Giant Transistor,巨型晶体管) ➢ 耐 高 电 压 、 大 电 流 的 双 极 结 型 晶 体 管 ( Bipolar
Junction Transistor——BJT), 英 文 有 时 候 也 称 为 Power BJT ➢ 在电力电子技术的范围内,GTR与BJT这两个名称等效。 应用 ➢ 20世纪80年代以来,在中、小功率范围内取代晶闸管, 但目前又大多被IGBT和电力MOSFET取代

电力电子技术2 全控型电力电子器件

电力电子技术2 全控型电力电子器件
当 多子栅的源堆电积压状UGS态<0,时不,可由能于出表现面反电型场层效,应无,导栅电极沟下道面形的成P型。体区表面呈 当 而形0<成UGS沟<U道T时。,栅极下面的P型体区表面呈耗尽状态,不会出现反型层 当 漏源UGS电>U压T时大,于栅0,极则下会面产的生P型漏体极区电发流生,反VD型MO而S形处成于导导通电状沟态道。。若此时 综述:VDMOS的漏极电流受控于栅源电压和漏源电压。
2.1 门极可关断晶闸管(GTO)
一、GTO的工作原理 GTO的内部结构与普通晶闸管相
同,是PNPN四层三端结构,但在 制作时采用特殊工艺使管子导通 后处于临界饱和,这样可以用门 极负脉冲电流破坏临界饱和使其 关断。 GTO主要用于直流变换和逆变等 需要元件强迫关断的地方。其开 关时间在几µs-25µs之间,工作 电压高达6000V,电流大6000A, 适用于开关频率为数百Hz至 10kHz的大功率场合。
2、VDMOS的主要参数
(区进1)入通饱态和电区阻时R漏on:极在至确源定极的间栅的源直电流压电U阻GS下称,为V通DM态OS电由阻可。调电阻
(压称2)为阈阈值值电电压压U。T:沟道体区表面发生强反型所需的最低栅源电
(3)跨导gm:gm=ΔID/ΔUGS,它表示UGS对ID的控制能力的大小。
有 一外般接不电会阻引限起制GT电R的流特IC性的变增坏大。,
如 大 时 (负继, ,阻续U当CE效增I突C上应大然升)U下C到E,降,A这,又点个而不(现限I临C象继制界称续I值C为的增)二大增
次击穿。
2.2 电力晶体管
(2)安全工作区(SOA):指在输 出特性曲线图上GTR能够安全运 行的电流电压的极限范围。
C图中,导通与关断用两个独立 电源,开关元件少,电路简单。

电力电子器件全控型器件

电力电子器件全控型器件
28 第二十八页,共42页。
GTR的二次击穿与安全(ānquán)工作区
Ic
二次击穿(jī
IcM
P SB chuān)功率
SOA
P cM
O U ceM U ce
GTR的安全(ānquán)工 作区
29 第二十九页,共42页。
2021/11/11
2.4.3 电力(diànlì)场效应晶体 管
分为结型和绝缘栅型 通常主要指绝缘栅型中的MOS型(Metal Oxide
GTR的静态特性:在电力电子电路中,GTR工作在开关状 态,即工作在截止区或者饱和区。但GTR在开关过程中, 即在截止区和饱和区之间过渡时,一般要经过放大 区。
截止 (jiézhǐ)
区 放大 (fàngdà) 区
饱和区
21
第二十一页,共42页。
2021/11/11
2.4.2 电力(diànlì)晶体管
(1)最大可关断阳极电流IATO(GTO的额定电流) 电流过大时α1+α2稍大于1的条件可能被破坏,使器 件饱和程度加深,导致门极关断失败(shībài)。。
(2)电流关断增益 off(太小,GTO的主要缺点) GTO的关断增益 off为最大可关断阳极电流IATO与 门极负电流最大值IGM之比,通常只有5左右。
N2 P2 N2 N1
P1 A
6
第六页,共42页。
2021/11/11
2、GTO的工作原理 (1)开通过程 GTO也可等效成两个晶体管P1N1P2和N1P2N2
互连,GTO与晶闸管最大区别就是导通后回路增益 α1+α2数值不同(bù tónɡ),其中α1和α2分别为 P1N1P2和N1P2N2的共基极电流放大倍数。晶闸 管的回路增益α1+α2常为1.15左右,而GTO的 α1+α2非常接近1。因而GTO处于临界饱和状态。 这为门极负脉冲关断阳极电流提供有利条件。

第2章全控型电力电子器件-PPT精品文档

第2章全控型电力电子器件-PPT精品文档
(4) 极间电容
——极间电容CGS、CGD和CDS
2.特点
控制级输入阻抗大 驱动电流小 防止静电感应击穿 中小容量,开关频率高 导通压降大(不足)
第四节 绝缘栅双极晶体管IGBT)
绝缘栅双极型晶体管简称为IGBT(Insulated Gate Biopolar Transistor),是80年代中期 发展起来的一种新型复合器件。
1. 结构
与普通晶闸管的相同点:PNPN四层半导体 结构,外部引出阳极、阴极和门极; 和普通晶闸管的不同点:GTO是一种多元的 功率集成器件,内部包含数十个甚至数百个共 阳极的小GTO元,这些GTO元的阴极和门极 则在器件内部并联在一起。
2. 导通关断条件
导通:同晶闸管,AK正偏,GK正偏 关断:门极加负脉冲电流
3.特点
全控型 容量大 off≈5 电流控制型
电流关断增益off : 最大可关断 阳极电流与门极负脉冲电流最大 值IGM之比称为电流关断增益
off

I ATO I GM
1000A的GTO关断时门极负脉
冲电流峰值要200A 。
第二节 GTR——电力晶体管
电力晶体管GTR (Giant Transistor,巨型晶体管) 耐 高 电 压 、 大 电 流 的 双 极 结 型 晶 体 管 ( Bipolar
达林顿GTR的开关速度慢,损耗大
3.GTR 模块
将 GTR管芯、稳定电阻、加速二极管、 续流二极管等组装成一个单元,然后根 据不同用途将几个单元电路组装在一个 外壳之内构成GTR模块。
目前生产的GTR模块可将多达6个互相绝 缘的单元电路做在同一模块内,可很方 便地组成三相桥式电路。
3. GTR的二次击穿现象

第15章全控型电力电子器件及其应用

第15章全控型电力电子器件及其应用

PWM型变频器的基本工作原理
•PWM逆变器的输出电压 为等幅不等宽的脉冲列
•异步电动机的输入电压
•结论
•图15-11 PWM型变频器基本原理示意图
•按一定比例改变脉冲列中各脉冲的宽度,即可 •改变输入电压 (与输出电压 等效)的幅值。

一、PWM型变频器的基本工作原理
•1. 单相桥式PWM型变频电路的工作原理
•电力电 子 器件
• 全控型
•GTR(电力晶体管) •GTO (可关断晶闸管) •功率 MOSFET(功率场效应晶体管)
IGBT(绝缘栅双极晶体管)

全控型电力电子器件分类2
•全控型 电力电 子器件
•功率 MOSFET(功率场效应晶体管)
• 单极型 •SIT(静电感应晶体管)
•(一种载流子 参与导电) •GTR(电力晶体管)
•当 f1≤f1n时,对恒转矩负载,都采用电压频率比例调节, 低频段加以电压补偿的恒转矩调速方式,即
•=常数
•式中, 是定子供电额定频率; 是定子供电额定电压 。 •当f1>f1n时,对近似恒功率负载,采用只调节频率f1,而不
调节电压 的控制方式,即

二、变频器的分类及结构形式
• 1. 变频器的分类

二、 可关断晶闸管(GTO)
•GTO的结构和等效电路
•15-4

GTO的工作原理
•GTO 的开通原理:同普通晶闸管
•GTO的关断机理 : •闭合S,门极加负偏压 ,IC1被抽走,形成门 极负电流 - IG.
•?

GTO和SCR的不同
•GTO的内部包含有数百个共阳极的小GTO,这些小 GTO称为GTO元。GTO元的阳极是共有的,门极和 阴极分别并联在一起。这是实现门极控制关断所采 取的特殊设计。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导通时1+2更接近1,导通时接近临界饱
和,有利于门极控制关断,但导通时管压 降增大。
多元集成结构,使得GTO比晶阐管开通更 快,承受能di/dt能力更强。
GTO的关断特性
GTO的关断过程有三个不同的时间,即存储时 间ts、下降时间tf及尾部时间tt。 存储时间ts :对应着从关断过程开始,到阳极电 流开始下降到90%IA为止的一段时间间隔。 下降时间tf :对应着阳极电流迅速下降,阳极电 压不断上升和门极反电压开始建立的过程。
2.4.1 门极可关断晶闸管
门极可关断晶闸管(Gate-Turn-Off Thyristor, GTO)
晶闸管的一种派生器件;
可以通过在门极施加负的脉冲电流使其关断;
GTO的电压、电流容量较大,与普通晶闸管接 近,因而在兆瓦级以上的大功率场合仍有较多 的应用
兆瓦以上首选,制造水平6kA/6kV。
2.4.2 电力晶体管
GTR的类型 目前常用的GTR有单管、达林顿管和模块三种类型。 单管GTR基本型。
单管GTR的电流放大系数很小,通常为10左右。
2.4.2 电力晶体管
达林顿GTR 达林顿结构的GTR是由两个或多个晶体管复合
而成。
优点:达林顿结构的GTR 电流放大倍数很大,可 以达到几十至几千倍。
时间。下降时间一般小于2s。
(5)擎住电流 擎住电流是指GTO元经门极触发后,阳极电
流上升到保持所有GTO元导通的最低值。
2.4.2 电力晶体管
c
1. GTR的结构和工作原理
b
电力晶体管 耐高电压、大电流的双极结型晶e体管
与普通的双极结型晶体管基本 原理是一样的。 主要特性是耐压高、电流大、 开关特性好。 通常采用至少由两个晶体管按 达林顿接法组成的单元结构。 采用集成电路工艺将许多这种 单元并联而成 。
1、GTO的结构 GTO为四层PNPN结构、三端引出线(A、K、G)
的器件。和晶闸管不同的是:GTO内部是由许多四层 结构的小晶闸管并联而成,这些小晶闸管的门极和 阴极并联在一起,成为GTO元,而普通晶闸管是独立 元件结构。下图是GTO的结构示意图、等效电路和电 气符号。
N2 P2 N2 N1 P1 A
尾部时间tt :则是指从阳极电流降到极小值时开 始,直到最终达到维持电流为止的时间。
3、GTO的动态特性
开通过程:与普通晶闸管相同(td + tr) 关断过程:与普通晶闸管有所不同
储存时间ts,使等效晶体管退出饱和。 下降时间tf ,退至放大区,iA减小 尾部时间tt —残存载流子复合。 通 常 tf<<ts<tt 。 门 极 负 脉 冲 电 流 幅 值 越 大,ts越短。
(2)电流关断增益off(太小,GTO的主要缺点) GTO的关断增益off为最大可关断阳极电流IATO与
门极负电流最大值IGM之比,通常只有5左右。
(3)开通时间ton 延迟时间与上升时间之和。延迟时间一般约
1~2s,上升时间则随通态阳极电流的增大而增大。 (4) 关断时间toff 一般指储存时间和下降时间之和,不包括尾部
第2章 电力电子器件
第一节 电力电子器件概述 第二节 不可控器件——电力二极管 第三节 半控型器件——晶闸管 第四节 典型全控型器件 第五节 其他新型电力电子器件 第六节 功率集成电路与集成电力电子模块
本章小结及作业
2.4 典型全控型器件
2.4.1 门极可关断晶闸管 2.4.2 电力晶体管 2.4.3 电力场效应晶体管 2.4.4 绝缘栅双极晶体管
延迟时间+上升时间:td :tt
4、主要参数
GTO有许多参数与晶闸管相同,这里只介绍一 些与晶闸管不同的参数。
(1)最大可关断阳极电流IATO(GTO的额定电流) 电流过大时α1+α2稍大于1的条件可能被破坏,使器 件饱和程度加深,导致门极关断失败。。
2.4 典型全控型器件
20世纪80年代以来,信息电子技术与电力电子技 术在各自发展的基础上相结合——高频化、全控 型、采用集成电路制造工艺的电力电子器件,从 而将电力电子技术又带入了一个崭新时代
典型代表——门极可关断晶闸管、电力晶体管、 电力场效应晶体管、绝缘栅双极晶体管
门极可关断晶闸管——在晶闸管问世后不久出现
缺点:饱和管压降增加, 增大了导通损耗,同时 降低了管子工作速度。
2.4.2 电力晶体管 GTR模块
2、GTO的工作原理
(1)开通过程
GTO 也 可 等 效 成 两 个 晶 体 管 P1N1P2 和 N1P2N2 互 连,GTO与晶闸管最大区别就是导通后回路增益 α1+α2数值不同,其中α1和α2分别为P1N1P2和N1P2N2 的共基极电流放大倍数。晶闸管的回路增益α1+α2 常 为 1.15左 右 , 而 GTO的 α1+α2 非 常 接 近 1。 因 而 GTO处于临界饱和状态。这为门极负脉冲关断阳极 电流提供有利条件。
2.4.2 电力晶体管
1. GTR的结构和工作原理
空穴流
ib
E
b
ic=βib

E


c
ie=(1+β)ib
GTR共发射极接法时内部主要载
流子的流动如图。集电极电流ic与
基电流ib之比为 β=
ic
ib
为电流放大系数,当考虑到集
电极和发射极间的电流Iceo时,ic 与ib关系为
ic= βib + Iceo
正常工作时处于: 临界饱和状态
由于GTO处于临界饱和状态,用抽走阳极电流 的方法破坏临界饱和状态,能使器件关断。而晶 闸管导通之后,处于深度饱和状态,用抽走阳极 电流的方法不能使其关断。
GTO能够通过门极关断的原因是其与普通晶 闸管有如下区别:
设计2较大,使晶体管V2控 制灵敏,易于
GTO关断。
(2)关断过程
当GTO已处于导通状态时,对门极加负的关 断脉冲,形成负的IG,相当于将IC1的电流抽出, 使晶体管N1P2N2的基极电流减小,使IC2和IK随之 减小,IC2减小又使IA和IC1减小,这是一个正反馈 过程。当IC2和IC1的减小使α1+α2<1时,等效晶体 管N1P2N2和P1N1P2退出饱和,GTO不满足维持导 通条件,阳极电流下降到零而关断。
相关文档
最新文档